272 research outputs found

    Benthic habitat mapping in coastal waters of south–east Australia

    Full text link
    The Victorian Marine Mapping Project will improve knowledge on the location, spatial distribution, condition and extent of marine habitats and associated biodiversity in Victorian State waters. This information will guide informed decision making, enable priority setting, and assist in targeted natural resource management planning. This project entails benthic habitat mapping over 500 square kilometers of Victorian State waters using multibeam sonar, towed video and image classification techniques. Information collected includes seafloor topography, seafloor softness and hardness (reflectivity), and information on geology and benthic flora and fauna assemblages collectively comprising habitat. Computerized semi-automated classification techniques are also being developed to provide a cost effective approach to rapid mapping and assessment of coastal habitats.Habitat mapping is important for understanding and communicating the distribution of natural values within the marine environment. The coastal fringe of Victoria encompasses a rich and diverse ecosystem representative of coastal waters of South-east Australia. To date, extensive knowledge of these systems is limited due to the lack of available data. Knowledge of the distribution and extent of habitat is required to target management activities most effectively, and provide the basis to monitor and report on their status in the future.<br /

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Journal of Applied Hydrography

    Get PDF
    Fokusthema: Fernerkundung und Laserbathymetri

    Review of Remote Sensing Techniques for the Visualization of Mangroves, Reefs, Fishing Grounds, and Molluscan Settling Areas in Tropical Waters

    Get PDF
    Globally there has been tremendous progress in space technology especially in the field of satellite remote sensing applications during the past five decades. Satellite based sensors provide a repetitive and synoptic coverage of inaccessible / larger areas which generated a time series database useful in identification and mapping of environment and resources. These databases form a scientific tool for various stakeholders to device suitable strategies for management of coastal and marine resources. This chapter analyses the various applications of satellite remote sensing and numerical modelling on identification and mapping of mangroves, coral reefs, fishing and molluscan grounds in the coastal marine ecosystems with relevant case studies and illustrations. The mapping methods for mangroves explains the classification protocols, advantages in using different remote sensing techniques and the comparison of different mapping techniques. In case of reef mapping, the vulnerability mapping of reefs due to extreme events is also discussed. Fish movement in a dynamic environment and the mapping of these movements with the help of proxy indicators are also detailed. Molluscan mapping is done based on the biomass differences during different seasons and their physical attributes

    Big Earth Data and Machine Learning for Sustainable and Resilient Agriculture

    Full text link
    Big streams of Earth images from satellites or other platforms (e.g., drones and mobile phones) are becoming increasingly available at low or no cost and with enhanced spatial and temporal resolution. This thesis recognizes the unprecedented opportunities offered by the high quality and open access Earth observation data of our times and introduces novel machine learning and big data methods to properly exploit them towards developing applications for sustainable and resilient agriculture. The thesis addresses three distinct thematic areas, i.e., the monitoring of the Common Agricultural Policy (CAP), the monitoring of food security and applications for smart and resilient agriculture. The methodological innovations of the developments related to the three thematic areas address the following issues: i) the processing of big Earth Observation (EO) data, ii) the scarcity of annotated data for machine learning model training and iii) the gap between machine learning outputs and actionable advice. This thesis demonstrated how big data technologies such as data cubes, distributed learning, linked open data and semantic enrichment can be used to exploit the data deluge and extract knowledge to address real user needs. Furthermore, this thesis argues for the importance of semi-supervised and unsupervised machine learning models that circumvent the ever-present challenge of scarce annotations and thus allow for model generalization in space and time. Specifically, it is shown how merely few ground truth data are needed to generate high quality crop type maps and crop phenology estimations. Finally, this thesis argues there is considerable distance in value between model inferences and decision making in real-world scenarios and thereby showcases the power of causal and interpretable machine learning in bridging this gap.Comment: Phd thesi

    A review of marine geomorphometry, the quantitative study of the seafloor

    Get PDF
    Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry. This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.peer-reviewe

    Geo-Spatial Analysis in Hydrology

    Get PDF
    Geo-spatial analysis has become an essential component of hydrological studies to process and examine geo-spatial data such as hydrological variables (e.g., precipitation and discharge) and basin characteristics (e.g., DEM and land use land cover). The advancement of the data acquisition technique helps accumulate geo-spatial data with more extensive spatial coverage than traditional in-situ observations. The development of geo-spatial analytic methods is beneficial for the processing and analysis of multi-source data in a more efficient and reliable way for a variety of research and practical issues in hydrology. This book is a collection of the articles of a published Special Issue Geo-Spatial Analysis in Hydrology in the journal ISPRS International Journal of Geo-Information. The topics of the articles range from the improvement of geo-spatial analytic methods to the applications of geo-spatial analysis in emerging hydrological issues. The results of these articles show that traditional hydrological/hydraulic models coupled with geo-spatial techniques are a way to make streamflow simulations more efficient and reliable for flood-related decision making. Geo-spatial analysis based on more advanced methods and data is a reliable resolution to obtain high-resolution information for hydrological studies at fine spatial scale

    Challenges and New Advances in Ocean Color Remote Sensing of Coastal Waters

    Get PDF
    Knowing that coastal areas concentrate about 60% of the world's population (within 100 km from the coast), that 75-90% of the global sink of suspended river load takes place in coastal waters in which about 15% of the primary production occurs, the ecological, societal and economical value of these areas are obvious (fish resources, aquaculture, water quality information, recreation areas management, global carbon budget, etc). In that context, precise assessment of suspended particulate matter (SPM) concentrations and of the phenomena controlling its temporal variability is a key objective for many research fields in coastal areas. SPM which encompasses organic (living and non-living) and inorganic matter controls the penetration of light into the water and brings new nutrients into the system, both key parameters influencing phytoplankton primary production. Concentrations and availability of SPM are also known to control rates of food intake, growth and reproduction for various filter feeder organisms. Phytoplankton is highly sensitive to environmental perturbations (such as nutrient inputs, light, and turbulence). The abundance, biomass and dynamics of phytoplankton in coastal areas therefore reflect the prevailing environmental conditions and represent key parameters for assessing information on the ecological conditions, as well as on the coastal water quality. Because phytoplankton is highly sensitive to environmental perturbations [1], its distribution patterns and temporal variability represent good indicators of the ecological conditions of a defined region [2, 3]. Coastal waters also host complex ecosystems and represent important fishery areas that support industry and provide livelihood to coastal settlements. The food chain in the coastal ocean is generally short (especially in upwelling systems, having as low as three trophic levels) whereas the open ocean food web presents up to six trophic levels [4]. As a result, when compared to the open ocean, a relative lower fraction of the primary production gets respired in the coastal ocean while a higher fraction reaches the uppermost trophic level (fish) [5] or is exported to adjacent areas (coastal or open sea)..
    corecore