155 research outputs found

    Physical interpretation of the correlation between multi-angle spectral data and canopy height

    Get PDF
    Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally

    MAPPING FOREST STRUCTURE AND HABITAT CHARACTERISTICS USING LIDAR AND MULTI-SENSOR FUSION

    Get PDF
    This dissertation explored the combined use of lidar and other remote sensing data for improved forest structure and habitat mapping. The objectives were to quantify aboveground biomass and canopy dynamics and map habitat characteristics with lidar and /or fusion approaches. Structural metrics from lidar and spectral characteristics from hyperspectral data were combined for improving biomass estimates in the Sierra Nevada, California. Addition of hyperspectral metrics only marginally improved biomass estimates from lidar, however, predictions from lidar after species stratification of field data improved by 12%. Spatial predictions from lidar after species stratification of hyperspectral data also had lower errors suggesting this could be viable method for mapping biomass at landscape level. A combined analysis of the two datasets further showed that fusion could have considerably more value in understanding ecosystem and habitat characteristics. The second objective was to quantify canopy height and biomass changes in in the Sierra Nevada using lidar data acquired in 1999 and 2008. Direct change detection showed overall statistically significant positive height change at footprint level (ΔRH100 = 0.69 m, +/- 7.94 m). Across the landscape, ~20 % of height and biomass changes were significant with more than 60% being positive, suggesting regeneration from past disturbances and a small net carbon sink. This study added further evidence to the capabilities of waveform lidar in mapping canopy dynamics while highlighting the need for error analysis and rigorous field validation Lastly, fusion applications for habitat mapping were tested with radar, lidar and multispectral data in the Hubbard Brook Experimental Forest, New Hampshire. A suite of metrics from each dataset was used to predict multi-year presence for eight migratory songbirds with data mining methods. Results showed that fusion improved predictions for all datasets, with more than 25% improvement from radar alone. Spatial predictions from fusion were also consistent with known habitat preferences for the birds demonstrating the potential of multi- sensor fusion in mapping habitat characteristics. The main contribution of this research was an improved understanding of lidar and multi-sensor fusion approaches for applications in carbon science and habitat studies

    Remote detection of forest structure in the White Mountains of New Hampshire: An integration of waveform lidar and hyperspectral remote sensing data

    Get PDF
    The capability of waveform lidar, used singly and through integration with high-resolution spectral data, to describe and predict various aspects of the structure of a northern temperate forest is explored. Waveform lidar imagery was acquired in 1999 and 2003 over Bartlett Experimental Forest in the White Mountains of central New Hampshire using NASA\u27s airborne Laser Vegetation Imaging Sensor (LVIS). High-resolution spectral imagery from 1997 and 2003 was likewise acquired using NASA\u27s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). USDA Forest Service Northeastern Research Station (USFS NERS) 2001-2003 inventory data was used to define basal area, above-ground biomass, quadratic mean stem diameter and proportional species abundances within each of over 400 plots. Field plots scaled to LVIS footprints were also established. At the smallest scale, metrics derived from single LVIS footprints were strongly correlated with coincident forest measurements. At the larger scale of USFS NERS plots, strong correlations encompassing the full variability of the Forest Service data could not be established. Restrictions set by species composition and land-use, however, significantly improved both the descriptive and predictive power of the regression analyses. Higher amplitude values of 1999 LUIS ground return metrics obtained within two years of the January 1998 ice storm, were found to provide a spatial record of higher levels of canopy damage within older, unmanaged forest tracts. Subjected to repeated disturbance of intermediate severity over the time frame of decades, these particular tracts, predominately found on southeastern aspects, simultaneously support by levels of sugar maple abundance and low levels of sugar maple coarse woody debris. LVIS height metrics were used here to establish a statistical relationship with coarse woody debris data. The integration of waveform lidar with hyperspectral data did enhance the ability to remotely describe a number of common measures of forest structure. Compositional abundance patterns, however, were not improved over use of AVIRIS data alone. Maps predicting species abundance patterns (primarily derived from AVIRIS data) with coincident patterns of stem size (derived from LVIS data) can be created for several of the dominant tree species of this region. The results are the near equivalent of a field-based forest inventory

    The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions

    Get PDF
    International audienceIn 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community

    Application of Iterative Noise-adding Procedures for Evaluation of Moment Distance Index for LiDAR Waveforms

    Get PDF
    The new Moment Distance (MD) framework uses the backscattering profile captured in waveform LiDAR data to characterize the complicated waveform shape and highlight specific regions within the waveform extent. To assess the strength of the new metric for LiDAR application, we use the full-waveform LVIS data acquired over La Selva, Costa Rica in 1998 and 2005. We illustrate how the Moment Distance Index (MDI) responds to waveform shape changes due to variations in signal noise levels. Our results show that the MDI is robust in the face of three different types of noise—additive, uniform additive, and impulse. In effect, the correspondence of the MDI with canopy quasi-height was maintained, as quantified by the coefficient of determination, when comparing original to noise-affected waveforms. We also compare MDIs from noise-affected waveforms to MDIs from smoothed waveforms and found that windows of 1% to 3% of the total wave counts can effectively smooth irregularities on the waveform without risking of the omission of small but important peaks, especially those located in the waveform extremities. Finally, we find a stronger positive relationship of MDI with canopy quasi-height than with the conventional area under curve (AUC) metric, e.g., r2 = 0.62 vs. r2 = 0.35 for the 1998 data and r2 = 0.38 vs. r2 = 0.002 for the 2005 data

    Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data

    Get PDF
    The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data

    Post-drought decline of the Amazon carbon sink

    Get PDF
    Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3 ± 0.2 (95% CI) PgC yr−1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005–2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35 ± 1.80 MgC ha−1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.The research was partially supported by NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology and partial funding to the UCLA Institute of Environment and Sustainability from previous National Aeronautics and Space Administration and National Science Foundation grants. The authors thank NSIDC, BYU, USGS, and NASA Land Processes Distributed Active Archive Center (LP DAAC) for making their data available. (NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology)Published versio

    Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.Background: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. \ud \ud Methodology and Principal Findings: A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. \ud \ud Conclusion and Significance: Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level

    Lidar-Based Models of Understory Bird Habitat in a Tropical Forest

    Full text link
    Where a poorly understood group of wildlife species seems to be declining quickly, a rapid assessment of the species’ habitat requirements may be needed in order to make the most optimal management decisions possible. We used bird presence data and a combination of field data and full-waveform lidar data to predict and interpret the distributions of declining insectivorous understory bird species at the La Selva Biological Station in Costa Rica. Raw lidar waveforms were used to create metrics of multi-dimensional forest structure which take into account not only horizontal structure such as patches and their arrangement or fragmentation, but also the vertical structure of vegetation such as canopy height and the distribution of canopy layers. Habitat models for four species of understory insectivore were developed using MaxEnt and validated using a jackknife approach, while guild diversity was estimated across the landscape using multiple logistic regression. Habitat projections for individual species showed high and significant predictive ability in jackknife tests. Results of habitat modeling showed significant differences between species in terms of which habitat variables were most important, but percent cover, distance to forest edge, foliage height diversity, and canopy height were consistently important. Metrics derived from canopy height profiles were consistently more useful predictors than metrics from the raw lidar waveforms. General metrics such as canopy height, elevation, and distance to edge were generally more useful predictors than understory-specific metrics, which could indicate that understory insectivores respond more strongly to climate & habitat patch size than to understory structure at a micro level. Alternatively, large-footprint lidar may be unable to adequately represent the aspects of understory structure which impact understory birds. Overall, however, models which included canopy height profile metrics significantly improved upon models which did not, indicating that inclusion of measures of multi-dimensional forest structure which account for the understory may add value to lidar-based habitat models for many wildlife species.Master of ScienceNatural Resources and EnvironmentUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/88165/1/AGrimm_Thesis_Final.pd
    corecore