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ABSTRACT

REMOTE DETECTION OF FOREST STRUCTURE IN THE W HITE 
MOUNTAINS OF NEW HAMPSHIRE:

AN INTEGRATION OF 
WAVEFORM LIDAR AND HYPERSPECTRAL REMOTE SENSING

DATA.

by

Jeanne E. Anderson 

University of New Hampshire, September, 2006

The capability of waveform lidar, used singly and through integration with high- 

resolution spectral data, to describe and predict various aspects of the structure of a 

northern temperate forest is explored. Waveform lidar imagery was acquired in 1999 

and 2003 over Bartlett Experimental Forest in the White Mountains of central New 

Hampshire using NASA’s airborne Laser Vegetation Imaging Sensor (LVIS). High- 

resolution spectral imagery from 1997 and 2003 was likewise acquired using NASA’s 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). USDA Forest Service 

Northeastern Research Station (USFS NERS) 2001-2003 inventory data was used to 

define basal area, above-ground biomass, quadratic mean stem diameter and 

proportional species abundances within each of over 400 plots. Field plots scaled to 

LVIS footprints were also established.

xii
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At the smallest scale, metrics derived from single LVIS footprints were strongly 

correlated with coincident forest measurements. At the larger scale of USFS NERS 

plots, strong correlations encompassing the full variability of the Forest Service data 

could not be established. Restrictions set by species composition and land-use, 

however, significantly improved both the descriptive and predictive power of the 

regression analyses.

Higher amplitude values of 1999 LVIS ground return metrics, obtained within two 

years of the January 1998 ice storm, were found to provide a spatial record of higher 

levels of canopy damage within older, unmanaged forest tracts. Subjected to repeated 

disturbance of intermediate severity over the time frame of decades, these particular 

tracts, predominately found on southeastern aspects, simultaneously support high 

levels of sugar maple abundance and low levels of sugar maple coarse woody debris. 

LVIS height metrics were used here to establish a statistical relationship with coarse 

woody debris data.

The integration of waveform lidar with hyperspectral data did enhance the ability to 

remotely describe a number of common measures of forest structure. Compositional 

abundance patterns, however, were not improved over use of AVIRIS data alone. 

Maps predicting species abundance patterns (primarily derived from AVIRIS data) 

with coincident patterns of stem size (derived from LVIS data) can be created for 

several of the dominant tree species of this region. The results are the near equivalent 

of a field-based forest inventory.

xiii
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INTRODUCTION

The spatial patterning of forest structure throughout the world reflects complex climatic, 

environmental and historical controls (Foster et al. 2003, Franklin et al. 2002, Foster et al. 

1998, Bormann and Likens 1979). Tremendous acreage of the northern woods of New 

England, New York and Canada exists in a stage of re-growth from one to two centuries 

or more of intensive cutting and altered land-use (Irland 1999, Northern Forest Lands 

Council 1994, Whitney 1994, Cronon 1983). Patterns of biological diversity and 

ecological complexity of much of this forest have been altered by this history and it is 

increasingly recognized that the legacies of such land-use will continue to influence 

ecosystem structure and function for decades or centuries into the future (Foster et al. 

2003, Franklin et al. 2002, Pickett et al. 1997, Christensen 1989, Foster and Boose 1992). 

These temperate forests are recognized as important components of the global carbon 

cycle, but assessing landscape-level variation in forest biomass and carbon stocks has 

proved to be a challenging task. This stems, in part, from the effects of historical use and 

the scarcity of information regarding disturbance patterns across complex landscapes. 

High levels of structural complexity are recognized as an indicator of persisting 

biological legacies (Franklin et al. 2000, Anderson 1999, Christensen et al. 1997,

1
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Christensen et al. 1996) particularly in late-successional temperate forests (Franklin et al. 

2002, Hagen 2001, Hagen and Whitman 2001). The use of structure-based indices 

combining factors such as stand structural complexity, connectivity and landscape-level 

heterogeneity is now advocated as an adaptive approach to addressing the conservation of 

biological diversity as part of ecologically sustainable forest management (Keeton et al. 

2001, Whitman and Hagen 2001, Lindenmayer et al. 2000, Zenner & Hibbs 2000, Pickett 

et al. 1997, Onal 1997, Christensen et al. 1996). Yet to date, the spatial variation of forest 

structure across large tracts of land has been rarely assessed (Parker 1995, Zimble 2003) 

and the knowledge base regarding the impacts of historical legacies on forest structure 

and biological diversity is also largely lacking.

Forest structure has been assessed in the guise of many different ecological terms and 

compilations of data (Parker 1995, Parker and Brown 2000, Pommerening 2002, Barker 

and Pinard 2001, Brokaw and Lent 1999, Latham et al. 1998, Campbell and Norman 

1989). Most directly, it is explored and assessed through measures of height, canopy 

architecture, canopy cover, light transmittance, canopy profiles and biomass amongst 

other variables. The patterning and variance in structure between various forest stands is 

encompassed and described within concepts such as forest heterogeneity, landscape patch 

dynamics and structural complexity (Lindenmayer et al. 2000, Christensen et al. 1997, 

Spies 1997, McGarigal and Coombs 1995, Franklin and Forman 1987, Runkle 1985). 

These concepts have been defined and explored in the ecological literature of past 

decades. But, these data are particularly time-consuming and difficult to collect across 

large areas in the field. In recent decades, three-dimensional structural data, from either

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



field or remote methods, have been infrequently measured. But on the strength of recent 

advances in laser altimetry sensors (Blair et al. 1994, Blair et al. 1999, Lefsky et al.

2002), airborne lidar sensors now provide an option for the rapid collection of image data 

at a scale sufficient to describe structural metrics for thousands of acres at a time. 

Furthermore, there is evidence that historical legacies can be detected within the remotely 

sensed patterns of forest structure and composition provided by lidar sensors as well 

(Dubayah et al. 2000). Integration with optical sensor data will potentially increase the 

ability to discriminate compositional detail as well.

Waveform Lidar

Laser altimetry, or lidar (light detection and ranging) is an emerging active remote 

sensing technology with a wide variety of applications in the Earth and planetary sciences 

(Blair et al. 1999, Wehr and Lohr 1999, Dubayah et al. 2000, Dubayah and Drake 2000, 

Lefsky et al. 2001a, Lefsky et al. 2002, Lim et al. 2003a). Of particular appeal to 

terrestrial ecologists is the promise of lidar to increase the accuracy of biophysical 

measurements and measurement of vertical structure (Lefsky et al. 2002, Dubayah et al. 

2000). The basic measurement made by a lidar device is the distance between the sensor 

and a target surface, obtained by determining the elapsed time between the emission of a 

short-duration laser pulse and the arrival of the reflection of that pulse (the return signal) 

to the sensor’s receiver. Multiplying this time interval by the speed of light results in a

3
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measurement of the round-trip distance traveled, and dividing that figure by two yields 

the distance between the sensor and target (Bachman 1979 in Lefsky et al. 2002). Lefsky 

et al. (2002) summarize the key differences among lidar sensors to include the laser’s 

wavelength, power, pulse duration and repetition rate, beam size and divergence angle, 

the specifics of the scanning mechanism, and the information recorded for each reflected 

pulse. Lasers for terrestrial applications generally have wavelengths in the infrared range 

of 900-1064 nanometers, where vegetation reflectance is highest. One drawback of 

working in this range of wavelengths is absorption by clouds, which impedes the use of 

these devices during overcast conditions (Lefsky et al. 2002).

A new generation of instruments including most recently, the medium-altitude Laser 

Vegetation Imaging Sensor (LVIS) developed at NASA’s Goddard Flight Space Center 

in the 1990’s (Blair et al. 1994, Blair et al. 1999, Blair and Hofton 1999, Hofton et al. 

2000a, Hofton et al. 2000b) has expanded the capability of traditional laser altimeters by 

recording the laser backscatter amplitude with very high temporal resolution (Harding et 

al. 2001). At any particular height, the amplitude of the return waveform measures the 

strength of the return. Thus, for surfaces with a similar set of reflectances and geometry 

within a footprint, larger amplitudes indicate more canopy material per se (Dubayah et al. 

2000). The waveform provides only an apparent canopy profile because of attenuation of 

the beam through the canopy and must be adjusted to the true canopy profile. (Drake 

2001, Lefsky et al.l999b). Harding et al. (2001) present methods of developing 

representative canopy height profiles of the relative vertical distribution of canopy 

surface areas from full waveform data. LVIS is a pulsed laser altimeter and measures

4
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range by timing a short pulse of laser light between the instmment and the target surface. 

The entire time history of the outgoing and return laser pulses is digitized using a single 

detector, digitiser and timing clock and unambiguously describes the range to the surface 

as well as the vertical distribution of surfaces within each laser footprint (Blair et al. 

1999). These sensors are used in combination with other instruments such as global 

positioning system (GPS) receivers to obtain the position of the platform and inertial 

navigation systems (INS) to measure the attitude (roll, pitch and yaw) of the lidar sensor 

in order to locate the source of the return signal in three dimensions (Lefsky et al. 2002). 

Additional specifications specific to LVIS are detailed in Blair et al. (1999).

As a waveform-recording device, LVIS is at an advantage over discrete return (small 

footprint) systems in its enhanced ability to characterize canopy (including sub-canopy) 

structure, the ability to concisely describe canopy information over increasingly large 

areas, and the ability to acquire global data sets (Lefsky et al. 2002) from space-borne 

satellites. Large-footprint lidar systems (Blair et al. 1994, Blair et al.1999), by increasing 

the footprint size to the approximate crown diameter of a canopy-forming tree 

(approximately 10-25 meters), allow laser energy to consistently reach the ground even in 

dense forests (Weishampel et al. 1996, Drake 2001) and therefore, avoid the biases of 

small-footprint systems that frequently miss the tops of trees (see Nelson 1997). 

Conversely, large footprint fully-digitising lidar data is hard to obtain; with most 

commercial systems still using largely small-footprint (5-30 cm diameter), high pulse rate 

systems (1000-10,000 Hz) that record the range to the highest (and sometimes lowest)

5
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reflecting surface within the footprint (Dubayah et al. 2000). Small footprint, waveform- 

recording, lidar sensors are, however, emerging (Gutierrez et al. 2005).

Research over the past decade has demonstrated that large footprint, waveform sampling 

lidar altimetry (hereinafter referred to as lidar) can characterize the structural complexity 

and associated functional properties of natural landscapes relevant to ecological 

investigations by providing vertical and volumetric profiles of forest vegetation. The 

metrics have proven useful for predicting a range of ecological variables such as canopy 

height and structure, the density of forest cover, biomass, and light transmittance 

(Dubayah et al. 2000, Lefsky et al. 2002, Means et al. 1999, Harding et al. 2001, Parker 

et al. 2001, Ni-Meister et al. 2001). Lidar remote sensing can also generate data that can 

be used to provide three-dimensional, or volumetric characterizations of vegetation 

structure (Weishampel et al. 2000, Lefsky et al. 1999a, Harding et al. 2001). It can 

accurately capture spatial patterns of canopy heights (Drake and Weishampel 2000). The 

height data provided directly by laser altimetry sensors can serve as a surrogate estimator 

of stand age or successional state when coupled with species composition and site quality 

information (Dubayah et al. 2000). Lidar waveforms generated by medium-large 

footprint sensors such as LVIS, by themselves, can also be used to distinguish among 

important land-use types reflecting both historical and other environmental controls 

(Dubayah et al. 2000).

According to the overview published by Lefsky and his colleagues (2002), current 

ecological applications of lidar remote sensing tend to fall within three categories: remote

6
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sensing of ground topography, measurement of three-dimensional structure and function 

of vegetation canopies, and prediction of forest stand structure attributes (such as 

aboveground biomass). The ability of lidar to predict these variables has been very good, 

as compared with non-lidar remotely sensed estimates, with coefficients of determination 

usually in excess of 75% of variance explained. (Lefsky et al. 1999d, Hyde et al. 2005). It 

is important, however, that the relationships between lidar metrics and directly measured 

forest structural characteristics be examined in an expanding range of terrestrial biomes 

(Drake 2001, Lefsky et al. 2002). Lidar has only recently become available as a research 

tool and has yet to become widely available, but it is expected that lidar’s ability to 

rapidly measure the three-dimensional structure of canopies can and should stimulate the 

development of new systems of canopy description (Lefsky et al. 2002, Parker and 

Brown 2000, Parker et al. 2001).

A number of authors (Hyde 2005, Popescu et al. 2004, McCombs et al. 2003, Hudak et 

al. 2002, Lefsky et al. 2001, Drake 2001, Dubayah et al. 2000, Lefsky et al. 1999c, 

Ackermann 1999) have commented on the potential synergy provided through the 

integration of lidar with spectral data. This product can capture strengths of both sensor 

technologies and improve estimates of forest stand characteristics (Popescu et al. 2004). 

As noted by Lefsky et al. (2001), lidar offers unique access to stand structural 

information that cannot be well discerned by optical remote sensing methods. If 

combined with data from high spectral resolution remote sensors, lidar may offer even 

more valuable results. Typically, in working with visible/infrared data, users rely on the 

spectral signature of ground targets in the image. Some vegetation species cannot be

7
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separated due to their similar spectral response. Lidar images, however, contribute to the 

structural discrimination of similar spectral signals within the observed ground cover. 

Integration of lidar coverages with airborne AVIRIS hyperspectral capabilities should, 

therefore, potentially increase the sensitivity of the analyses.

Few studies have been published to date on the integration and/or fusion of lidar with 

spectral data. Hyde (2005) statistically combined LVIS data with passive optical and 

radar (S AR backscatter and InSAR range) data to produce broad scale maps of forest 

structure over the Sierra Mountain in California that are consistent and accurate relative 

to field data and LVIS data alone. Popescu et al. (2004) explored the feasibility of using 

small-footprint lidar data and multispectral imagery to estimate forest volume and 

biomass. They reported maximum r2 values for estimating biomass at 0.32 for deciduous 

trees (RMSE = 44 Mg ha"1) and 0.82 for pines (RMSE = 29 Mg ha"1). The use of fused 

data of lidar and optical imagery, as opposed to the use of lidar data alone, always 

improved biomass and volume estimates for pines and, in some cases, for deciduous 

plots. McCombs et al. (2003) used small footprint lidar and high-resolution multispectral 

data sets to estimate stem counts and tree heights in a spacing study of 15-year old 

loblolly pine stands. Their fused dataset did improve the accuracy of tree identification 

over the single data set approaches. At a regional scale, Hudak et al. (2002) looked at the 

integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy 

height. They found that an integrated technique of ordinary cokriging of the height 

residuals from an ordinary least squares regression model proved the best method for

8
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estimating and mapping forest canopy height, and an equitable distribution of lidar 

sampling points proved critical for efficient lidar-Landsat ETM+ integration.

Lim et al. (2003) are also advocates of integrated sensor data, noting:

Lidar systems will likely become integrated with digital cameras, creating an 
effective fusion with photogrammetry. Similarly, a fusion between geometric 
laser scanning and multispectral imaging systems can be expected to make up 
for the lack of multispectral information currently available from stand-alone 
lidar systems. Therefore, by integrating lidar systems with imaging sensors, 
more robust systems will emerge, thereby, satisfying the wide range of data 
requirements of the forest practitioner at local and regional scales.

Three Papers

The capability of waveform lidar, used singly and through integration with high- 

resolution spectral data, to describe and predict various aspects of the heterogeneous 

structure of a northern temperate forest is explored in this dissertation through three 

separate papers. Waveform lidar imagery was acquired in 1999 and 2003 over the 1000- 

ha. Bartlett Experimental Forest in the White Mountains of central New Hampshire using 

NASA’s airborne Laser Vegetation Imaging Sensor (LVIS). High-resolution spectral 

imagery from 1997 and 2003 was likewise acquired using NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). USDA Forest Service Northeastern 

Research Station (USFS NERS) 2001-2003 inventory data was used to define basal area 

(BA), above-ground biomass (AGBM), quadratic mean stem diameter (QMSD) and

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



proportional species abundances within each of over 400 plots. Additional field data 

were collected at Bartlett at the scale of LVIS footprints. Coarse woody debris data, 

collected and analyzed as part of a UNH master’s thesis, was provided by Andy Fast and 

Mark Ducey.

In the first of these papers, individual LVIS waveform height metrics were correlated 

with coincident footprint-level field plots. This was an exercise of calibration and 

validation of the LVIS data sets as flown in 1999 and 2003 as part of a larger NASA 

effort to assess LVIS in a wide variety of bionties. Resulting regression models were used 

to predict forest-wide levels of AGBM and QMSD and checked for use as a general 

model against a USFS NERS inventory data set of over 400 plots. Restrictions set by 

species composition and land-use, were explored as a means to improving both the 

descriptive and predictive power of the regression analyses.

The second paper explored the use of a broader set of 1999 LVIS metrics, inclusive of 

canopy energy and ground energy variables, to look at questions of spatial patterning due 

to natural disturbance. Examination of higher amplitude values of 1999 LVIS ground 

return metrics, obtained within two years of the January 1998 ice storm, suggested that 

this variable appears to provide a spatial record of higher levels of canopy damage within 

older, unmanaged forest tracts. Analyses using USFS NERS plot compositional 

abundance data, 1999 LVIS metrics, unpublished Forest Service records of the 1938 

hurricane damage, and a 2004 coarse woody debris data set were integrated into this 

study to further explore the spatial patterns that emerge in these areas of repeated natural

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



disturbance at Bartlett. LVIS height metrics were also used here to explore a statistical 

relationship with extensive coarse woody debris data in areas hardest hit by the 1998 ice 

storm.

The third paper is focused on the integration of waveform lidar with hyperspectral data 

and the capability of the integrated data to enhance the remote description of a number of 

common measures of forest structure and associated compositional abundance patterns. 

The use of regression models to predict and create maps that provide results that are a 

near equivalent of a field-based forest inventory was an additional objective of this work.
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CHAPTER 1

THE USE OF WAVEFORM LIDAR TO MEASURE NORTHERN TEMPERATE 

MIXED CONIFER AND DECIDUOUS FOREST STRUCTURE IN

NEW HAMPSHIRE

Abstract

The direct retrieval of canopy height and the estimation of aboveground biomass are two 

important measures of forest structure that can be quantified by airborne laser scanning at 

landscape scales. These and other metrics are central to studies attempting to quantify 

global carbon cycles and to improve understanding of the spatial variation in forest 

structure evident within differing biomes. Data acquired using NASA’s Laser Vegetation 

Imaging Sensor (LVIS) over the Bartlett Experimental Forest (BEF) in central New
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Hampshire (USA) was used to assess the performance of waveform lidar in a northern 

temperate mixed conifer and deciduous forest.

Using coincident plots established for this study, we found strong agreement between 

field and lidar measurements of height (r2 = 0.80, p < 0.000) at the footprint level. 

Allometric calculations of aboveground biomass (AGBM) and LVIS metrics (AGBM: r2 

= 0.61, PRESS RMSE = 58.0 Mg ha"1, p < 0.000) and quadratic mean stem diameter 

(QMSD) and LVIS metrics (r2 = 0.54, p = 0.002) also showed good agreement at the 

footprint level. Application of a generalized equation for determining AGBM proposed 

by Lefsky et al. in 2002a to footprint-level field data from Bartlett resulted in a 

coefficient of determination of 0.55; RMSE = 64.4 Mg ha-1; p = 0.002. This is slightly 

weaker than the strongest relationship found with a the best-fit single term regression 

model.

Relationships between a permanent grid of USDA Forest Service inventory plots and the 

mean values of aggregated LVIS metrics, however, were not as strong. This discrepancy 

suggests that validation efforts must be cautious in using pre-existing field data networks 

as a sole means of calibrating and verifying such remote sensing data. Regression models 

established at the footprint level for AGBM and QMSD were applied to LVIS data to 

generate predicted values for the whole of Bartlett. The accuracy of these models was 

assessed using varying subsets of the USFS NERS plot data. Coefficient of 

determinations ranged from fair to strong with aspects of land-use history and species
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composition influencing both the fit and the level of error seen in the predicted 

relationships.

Introduction

Research over the past decade has demonstrated that large footprint, waveform sampling 

laser altimetry (hereinafter referred to as lidar) can characterize the structural complexity 

and associated functional properties of natural landscapes relevant to ecological 

investigations by providing vertical and volumetric profiles of forest vegetation. Lidar 

metrics have proven useful for predicting a range of ecological variables such as canopy 

height and structure, the density of forest cover, biomass, and light transmittance 

(Dubayah et al. 2000, Drake et al. 2002, Lefsky et al. 2002b, Means et al. 1999, Harding 

et al. 2001, Parker et al. 2001, Hyde et al. 2005). Lidar remote sensing can also generate 

data that can be used to provide three-dimensional, or volumetric characterizations of 

vegetation structure (Weishampel et al. 2000, Lefsky et al. 1999a, Harding et al. 2001). It 

can accurately capture spatial patterns of canopy heights (Drake and Weishampel 2000). 

Height data provided directly by laser altimetry sensors can serve as a surrogate estimator 

of stand age or successional state when coupled with species composition and site quality 

information (Dubayah et al. 2000). Lidar waveforms generated by medium-large 

footprint sensors such as LVIS, by themselves, can also be used to distinguish among

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



important land use types reflecting both historical and other environmental controls 

(Dubayah et al. 2000).

It is expected that lidar’s ability to rapidly measure the three-dimensional structure of 

canopies can and should stimulate the development of new systems of canopy description 

(Lefsky et al. 2002b, Parker and Brown 2000, Parker et al. 2001) and provide ready 

means to facilitate the study of spatial variation patterning within forest structure across 

landscape scale tracts of land (Parker 1995, Zimble et al. 2003). According to the 

overview published by Lefsky et al. (2002b), current ecological applications of lidar 

remote sensing tend to fall within three categories: remote sensing of ground topography, 

measurement of three-dimensional structure and function of vegetation canopies, and 

prediction of forest stand structure attributes (such as aboveground biomass). The ability 

of lidar to predict biomass variables has been very good, as compared with non-lidar 

remotely sensed estimates, with six published waveform studies reporting greater than 

75% of variance explained (Lefsky et al. 1999a, 1999b, Means et al. 1999, Nilsson 1996, 

Drake et al. 2002, Hyde et al. 2005). These initial studies have been conducted in 

temperate deciduous, temperate coniferous, tropical wet forest and boreal coniferous 

biomes. It is important, however, that the relationships between lidar metrics and directly 

measured forest structural characteristics be examined in an expanding range of terrestrial 

biomes (Drake 2001, Lefsky et al. 2002b).

To this end, we report here on a northern temperate mixed conifer and deciduous forest in 

central New Hampshire (USA). The objective of this study was to assess the ability of a
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large footprint lidar to describe and predict forest structure in the variable terrain of 

mixed forest types typical of this region including northern hardwoods. The work was 

originally planned as part of the pre-launch calibration/validation of a spacebome laser 

altimeter, the Vegetation Canopy Lidar (VCL). The White Mountain National Forest site 

was selected as a part of a series of core VCL validation sites in North and Central 

America, representing globally important forest and woodland biomes and exhibiting 

diverse canopy structures and phenologies (Knox et al. 2000). As in previous studies 

(Drake et al. 2002, Hyde et al. 2005), calibration and validation is accomplished by 

comparing spatially explicit field measurements of structure to comparable metrics 

derived from data collected by NASA’s Laser Vegetation Imaging Sensor (LVIS; Blair et 

al. 1999). Few waveform-recording lidar studies assessing structural metrics have been 

previously reported from temperate deciduous forest (Lefsky 1997 and Lefsky et al. 

1999b; tulip poplar (Liriodendron tulipifera) association of the coastal plain of Maryland) 

and only one small footprint lidar study (Lim et al. 2003) has been reported from a 

predominately northern hardwood forest.
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Methods

Site

Over the past seventy years, the USFS Northeastern Research Station (USFS NERS) has 

assembled a large volume of field data (e.g. Leak 1982, 1996, 1999, Leak and Smith 

1996,1997, Leak and Sendak 2002, Smith et al. 2002) on a variety of ecosystem 

processes and forest metrics within the 1052 hectare Bartlett Experimental Forest (BEF) 

located within the White Mountain National Forest in the central White Mountains, N.H. 

(Figure 1.1). The landscape of this site reflects an extensive history of experimental forest 

management and varied natural disturbance regimes. Deciduous and coniferous forest 

types including northern hardwood [i.e. sugar maple (Acer saccharum Marsh), beech 

(Fagus grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britton)], red spruce- 

balsam fir (Picea rubens Sarg. - Abies balsamea (L.) Miller), eastern hemlock (Tsuga 

canadensis (L.) Carr.), and red oak-white pine (Quercus rubra L. - Pinus strobus L.)] are 

represented on a landscape ranging in elevation from 200 m to 850 m. Slopes vary from 

flat terrain to nearly vertical (rock cliff) conditions. The forest reflects a range of 

successional sequences, forest patch sizes, and structural distributions. Clear-cutting, 

group and individual tree selection, basal area and shelter-wood cuttings have been 

undertaken on approximately 55% of the forest. Forest ages in managed stands range 

from over 70 to less than 5 years old. The remaining portion of the forest serves as an
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unmanaged, natural control. Ages for trees within this experimental forest range upwards 

of 100 years (Leak and Smith 1996).

Lidar Data

Lidar data was acquired on September 26, 1999 and July 18-26, 2003 over the BEF using 

the Laser Vegetation Imaging Sensor (LVIS; Blair et al. 1999). LVIS was used to map a 

swath of land approximately 5 x 60 km. in 1999 and 8 x 60 km. in 2003, extending from 

Bartlett, N.H. to West Thornton N.H. LVIS is an airborne imaging laser altimeter that 

records the time and amplitude of a laser pulse reflected off target surfaces. The sensor 

digitizes the vertical distribution of intercepted surfaces between the first (top of the 

canopy) and the last (ground) return producing a waveform record. LVIS records circular 

footprints of variable size; 1999 footprints had a nominal radius of 12.5 m; 2003 

footprints were reduced to a nominal radius of 10 m. Additional detail on LVIS 

capabilities can be found in Blair et al. (1999). The 2003 LVIS flight consisted of a 

newly-enhanced laser altimeter instrument including digitally-recorded return 

waveforms, and integrated inertial navigation system (INS) and global position system 

(GPS) sensors that flew on the NOAA Cessna Citation aircraft at about 10 km above 

ground level during a one week mission fhttp ://lvis.asfc.nasa.aovt over New England. 

LVIS footprints are reported to be geo-located to within 1-2 m. (Blair and Hofton 1999; 

Hofton et al. 2000a).
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LVIS metrics used in this study were derived from waveforms using automated 

algorithms based on the research of Hofton et al. 2000b. Further information on the 2003 

LVIS beta data release is provided in Blair et al. (2004). Lidar canopy height was 

calculated by identifying two locations within the waveform; (1) where the signal initially 

increases above a mean noise level/threshold (the canopy top) and (2) at the center of the 

last Gaussian pulse (the ground return). The distance between these two locations was 

then calculated to derive the height metric (see Figure 1.2 adapted from Drake et al.

2002). The height of median energy metric was calculated by finding the median of the 

entire signal (i.e. above the mean noise level) from the waveform, including energy 

returned from both canopy and ground surfaces. The distance between this median 

location and the center of the last Gaussian pulse was then calculated to derive a height of 

median energy (Drake et al. 2002). Similarly, the 2003 metrics RH25 and RH75 were 

calculated by finding the relative height (RH), relative to the ground elevation, at which 

25% and 75% respectively of the waveform energy occurs (Blair et al. 2004). Varying 

abbreviations for comparable lidar metrics have been published within the literature and 

released via on-line data sources. Within this study, the 1999 lidar canopy height 

abbreviation of LHT is directly comparable to the 2003 metric RH100. Similarly, the 

1999 measure of height of median energy metric abbreviation of HOME is directly 

comparable to the 2003 metric RH50.

The number of footprints falling within the boundaries of BEF varies between the 1999 

(70,496) and 2003 (62,579) LVIS flights. A substantial number of footprints (18,217 of 

the 70,496: 26%) of the 1999 LVIS footprints were eliminated from analysis because of
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weak or ambiguous ground return signals. Research by Hofton et al. (2002) has noted 

that in some dense forest canopies, or areas of high canopy cover, the portion of the lidar 

signal being reflected from the ground can be weak, making ground determination 

ambiguous at best and indeterminable at worst. At Bartlett, this type of result may be 

potentially attributable to the often-dense cover of beech dominated-northem hardwoods 

and mixed hemlock-hardwood forests on site.

Field Data

Two separate sets of field data were available for analysis in this study. An initial set of 

footprint level ground plots (hereinafter referred to as the footprint level), specifically 

sited to be of use in the calibration and validation of individual LVIS waveforms, was 

created at the outset of this research in 2002. A second independent data set consisting of 

field plot data from the USFS NERS permanent inventory for BEF (hereinafter referred 

to as the USFS NERS plot level), re-sampled near in time to the original LVIS flight and 

coincident with the second LVIS flight, was also available to this study. These data 

provide a comprehensive ground inventory of standing biomass and species composition 

of the Bartlett Experimental Forest. Comparison of the results from each set of field data 

is instructive in assessing the interchangeability of pre-existing inventory data with 

original field data designed specific to the lidar study. The extensive nature of the second 

data set also allows the influence of land-use history and species composition on the 

relationships with waveform lidar metrics to be explored in a preliminary manner.
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Finally, it provides a substantial amount of independent data for assessing the accuracy of 

predictions made using the relationships obtained from the footprint level data. Each data 

set and associated data analysis is described in greater detail below.

Footprint Level

Field methods followed unpublished protocols developed by NASA’s VCL science team 

for forest structure data collection in different biomes in North and Central America. At 

BEF, plots were chosen to represent a range of height and habitat classes evident within 

the experimental forest. Twenty circular 0.07 ha (15 meter radius) plots centered on 1999 

laser footprints, distributed throughout the study area, were established. Trimble 

Navigation Pathfinder ProXR global positioning system equipment (GPS) was used to 

locate the center of these circular LVIS footprints. Data was collected in a 3-D over

determined mode utilizing real-time differential correction. The position dilution of 

precision (PDOP) mask was set at 6 and consistent readings from a minimum of five 

satellites producing less than 1-meter displacement were secured before marking the plot 

center. The 0.07 ha footprint plots were designed to allow direct comparison of field 

measurements with individual lidar footprints; the plot size was slightly larger than the 

nominal footprint to compensate for geolocation errors, if needed (Hyde et al. 2005). 

Subsequent to the establishment and siting of the footprint level plots, the coordinate data 

defining the center points of 1999 LVIS footprints was reprocessed. This correction 

increased the distance between the previously located field plots and the closest 1999
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LVIS footprints. The average distance between field plots and 1999 LVIS reprocessed 

position is 1.2 meters (with a maximum distance of 2.9 m). Right lines varied between 

1999 and 2003. As a result, the average distance between the center point of the same 

field plots and the center point of the closest 2003 footprint is 6.2 meters (with a 

maximum distance of 10.4 meters).

Field plot data were collected during the summers of 2002 and 2003. Laser rangefinders 

and sonic hypsometers were used to obtain precise tree structural data and create detailed 

stand maps for the GPS-sited research plots. Measurements included tree height, stem 

diameter (dbh), and the bearing and distance of each stem from plot center. Live and dead 

stems greater than 10 cm dbh were mapped. The dbh of the stem and crown radii metrics 

were measured with fiberglass tapes. Living stems were identified to species. A Laser 

Technology Inc. (LTI) Impulse series 200LR laser rangefinder (Laser Technology, Inc., 

Englewood, Colorado) in filter mode was used to collect tree height data. Haglof Forestor 

DME 201 (Forestry Suppliers Inc., Jackson, Mississippi) sonic hypsometers and sighting 

compasses were used to collect the horizontal distances and bearings used for stem 

mapping within the plot.

Stem diameters were used to calculate quadratic mean stem diameter (QMSD). QMSD 

was calculated as [£D2/n ]1/2 where D is the stem diameter and n is the number of stem 

diameters in the plot (Curtis and Marshall 2000). Estimates of aboveground woody 

biomass (AGBM) were calculated from the field dbh data using established allometric 

equations specific to the northeastern region, which includes bole, branch and foliar
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biomass (Hocker and Early 1983, Tritton and Hombeck 1981, Young et al. 1980, and 

Whittaker et al. 1974). These equations were applied to the field data to calculate total 

standing AGBM for each stem (live and dead) and then summed to provide the AGBM of 

all stems within a plot. Whole forest averages for these metrics are seen in Table 1.1.

Statistical analyses were conducted using JMP IN® software (Sail et al. 2005).

Dependent, independent variables and the regression residuals were tested for normality 

of their distributions using the Shapiro-Wilk W test (Shapiro and Wilk 1965) and normal 

quantile plots. Any variable or its transform not meeting one or more of the normality 

distribution tests was eliminated from regression analyses. A prediction error sum of 

squares root mean square error (PRESS RMSE) was calculated for each forest metric.

The PRESS RMSE is computed as the square root sum of squares of the prediction 

residuals (Mark and Workman 1991, Hastie et al. 2001). As a validation technique, Press 

RMSE tests how well the current model would predict each of the points in the data set 

(in turn) if they were not included in the regression. Low values of PRESS RMSE usually 

indicate that the model is not overly sensitive to any single data point. PRESS is 

considered comparable to tests of independent validation (Kozak and Kozak 2003).

At the footprint level, the scatter plots between field-measured maximum canopy height 

and the 1999 and 2003 LVIS measures of canopy height were compared (Figure 1.3). The 

2003 data cloud is more accurately clustered around the 1:1 line, with less consistent bias 

towards underestimation than seen in the 1999 results. As a result, footprint-level 

regression analyses were conducted using 2003 LVIS metrics.
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The subset of untransformed LVIS metrics that corresponds with the 20 footprint level 

plots are highly correlated (all pairs greater than 91%). To avoid the effects of multi- 

collinearity, simple linear regression was used to relate the dependent forest structural 

variables of height, QMSD2, or AGBM to the best single metric independent LVIS- 

derived variables (RH25, RH50 and their squares, RH752, or RH1002). For the footprint 

level AGBM regression linear model, both dependent and independent variables were 

normally distributed. For the footprint level QMSD regression model, both dependent 

and independent variables were squared to meet the normality requirements of regression.

USFS NERS Plot Level

The USFS NERS originally established a regular grid of over 400 permanent research 

plots at Bartlett Experimental Forest in 1931-1932. The latest re-sampling of 409 of these 

0.1 ha square plots was undertaken by the USFS NERS in the 2001-2003 field seasons. 

Observations recorded species and measured dbh in 1-inch (2.54 cm) dbh classes only for 

trees greater than 1.5 inches (ca. 4 cm) in size. Plots fell into either managed or 

unmanaged conditions (Leak and Smith 1996). QMSD and AGBM estimates were 

calculated in the same manner described for the footprint-level data, although the lower 

cut-off for stem size at the plot level (ca. 4 cm vs. 10 cm) should be noted. QMSD was 

calculated per plot using the same dbh cutoff as with the footprint level. Whole forest 

averages for these metrics can be found in Table 1.1. The relative fraction of AGBM 

attributed to each tree species was calculated for each of the 409 plots used in this

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



analysis. All inventory plots have been geo-referenced to within 3-meter positional

accuracy.

Given the larger number of available footprints from the 2003 LVIS flight and the 

coincident timing and collection of field versus flight data, plot level analyses were 

conducted using just the 2003 LVIS metrics. In comparison to the 0.1 ha square USFS 

NERS inventory plots, the 2003 LVIS circular footprints are 0.031 hectares in size. LVIS 

footprints whose center points were located within the bounds of USFS NERS plots were 

selected for analysis. Given the variable overlap of LVIS flight lines during the 2003 

flight over Bartlett, any given USFS NERS plot contained the center points of from one 

to seventeen lidar footprints. For each of the USFS NERS plots, a set of mean values 

was calculated from each of the aggregated LVIS 2003 metrics (RH25, RH50, RH75 and 

RH100).

USFS NERS plot level measures of AGBM and QMSD were compared to the mean 

values of the 2003 LVIS metrics (RH25, RH50, RH75 and RH100) through stepwise 

mixed multiple regression. Dependent, independent variables and the regression 

residuals were tested for normality of their distributions using the Shapiro-Wilk W test 

(Shapiro and Wilk 1965) and normal quantile plots. As multiple regression results in 

inflation of the probability of type 1 error (Wilkinson et al. 1992), we reduced the alpha 

(the critical value of p) to 0.01. For each model, variables not significant at this level 

were eliminated. In addition, the variance inflation factor (VIF) was recorded for models 

with multiple predictors. VIF indicates whether multicollinearity between variables
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inflates the variance of estimates and renders the model unstable and of less applicability 

to new sets of data. Variables with VIF values under 10 are indicative of models with low 

multicollinearity (Sail et al. 2003). Mallow’s Cp statistic was also used to compare the 

predictive abilities of various models (Kozak and Kozak 2003). As a result, square and 

cross-product variables were not used in these analyses. Lastly, PRESS RMSE was 

calculated for each forest metric.

Forest Service categorical data made available to this study designated 158 of the BEF 

USFS NERS plots as being located in largely unmanaged tracts of the experimental forest 

(Leak and Smith 1996). Analyses using mixed stepwise regression compared the plot 

level metrics of AGBM and QMSD with the set of aggregated mean LVIS metrics on this 

subset of data. These restrictions on the data set provide an initial coarse look at the 

influence of land use history on these relationships.

The relative fraction of biomass attributed to individual tree species within each of the 

409 USFS NERS plots was used to help assess the influence of species composition on 

the overall plot level relationships between plot-level AGBM and the aggregated mean 

LVIS metrics. The presence, absence, or dominance patterns of ten of the common tree 

species found at Bartlett were used to subset the data prior to regression. Subset data was 

analyzed using mixed stepwise multiple regressions. These included the identification of 

plots where certain species were absent, certain species were present in any amount, or 

certain species were present as a predominant species (i.e. species fraction of AGBM > 

0.25 or more).
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Predicted Relationships

To further assess the quality of the relationships modeled using the footprint level data, 

predicted AGBM and QMSD estimates for the experimental forest were created using the 

footprint-level models (Table 1.3; Eqs. 2 and 4) applied to the LVIS 2003 data set. The 

elimination of a significant number of 1999 LVIS footprints from analysis because of 

weak or ambiguous ground return signals means that the 2003 LVIS flight provided more 

comprehensive coverage of BEF through the contributions of an additional 10,300 

footprints above the useable 1999 totals. Simple linear regression was used to compare 

these predicted values with the USFS NERS plot-level measures for AGBM and QMSD. 

The influence of selected aspects of species composition and management history on 

these results was also examined by evaluating the models’ performance for selected 

subsets of plots. As with earlier analyses, PRESS RMSE statistics were generated and 

used to assess the level of error within each model.

Test of a Generalized Prediction Equation for AGBM

Lefsky et al. (2002a) have hypothesized that a single equation (AGBM = 0.342 * mean 

canopy height squared + 2.086 * the product of mean cover and mean canopy height; r2 = 

0.84, p <0.0001 or alternatively AGBM = 0.378 * mean canopy height squared; r2 = 0.84, 

p <0.0001) can be used to relate remotely sensed canopy structure to estimated AGBM in 

distinctly different forested biomes. Their initial work compared temperate deciduous,
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temperate coniferous and boreal coniferous biomes. The finding and replication of such a 

generalized equation across biomes would simplify modeling of forest carbon storage.

The latter version of the generalized equation was explored at both the footprint and plot 

levels at BEF. Lefsky et al. (2002a) define mean canopy height (MCH) as the average 

height of the waveforms associated with a plot. Footprint level plots at BEF compare the 

metrics derived from a single waveform with ground measures, while plot level data 

compare the mean of various waveform metrics occurring within a USFS NERS plot with 

ground measures. Of the 2003 LVIS waveform metrics assessed at BEF, the maximum 

height of the waveform (RH100) is the most comparable metric to MCH at the plot level, 

and differs at the footprint level only in being derived from a single waveform rather than 

as the average of aggregated waveforms. As such, a substitution of maximum canopy 

height squared (RH100 ) for mean canopy height squared was made to the generalized 

equation proposed for the prediction of AGBM at BEF. This provided an approximate, 

but reasonably close assessment of the relationship described by the generalized equation.

As above, simple linear regression was used to compare these predicted values with the 

USFS NERS plot-level measures for AGBM and QMSD. The influence of selected 

aspects of species composition and management history on these results was also 

examined by evaluating the models’ performance for selected subsets of plots. As with 

earlier analyses, PRESS RMSE statistics were generated.
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Results

Field Data

Across BEF as a whole, forest structural metrics as derived from footprint level 

measurements were comparable to results from plot level measurements (Table 1.1).

Plot level data from 2001-2003 of 409 (0.1 ha) plots had a mean AGBM of 241.9 Mg ha"1 

and 24.8 cm for QMSD. This compared well with the totals from the footprint level data 

established for this study: 230.4 Mg ha"1 for AGBM and 25.4 cm for QMSD of all 20 

(0.07 ha) footprint level plots. It should be noted that USFS NERS plot data extensively 

samples the upper end of the biomass spectrum at Bartlett leaving only 12 of 409 plots 

used in this study with total AGBM estimates under 100 Mgha"1.

Footprint Level

Regression results are summarized in Table 1.2. The mean of the maximum canopy 

height metrics derived from the 2003 LVIS data was most comparable to results from 

footprint level measurements (Table 1.1). At the footprint level, metrics from the 2003 

LVIS data were able to estimate the structural attributes of AGBM and QMSD 

throughout the range of conditions at Bartlett. The height at which 50% of the waveform 

energy occurs (RH50) was a significant predictor of total biomass at the footprint level
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for the 2003 LVIS metrics, explaining 61% of the variation. This result was compared to 

those derived from application of a generalized AGBM equation (Table 1.2:eq. 3) 

proposed by Lefsky et al. (2002a). Use of the 2003 LVIS metric of RH1002 produced a 

coefficient of determination of 0.55 with slightly higher error than the best-fit model from 

the footprint data. The 2003 LVIS metric of canopy height squared (RH1002) was also a 

good predictor of the square of QMSD explaining 54% of the variation. Scatter plots with 

best fit lines are found in Figure 1.4.

USFS NERS Plot Level

USFS NERS plot level regression results are summarized in Table 1.3. Relationships 

between plot level AGBM and QMSD estimates and LVIS 2003 metrics showed less 

overall agreement than those seen at the footprint level. While the coefficients of 

determination were not strong, improvement in the fit of the relationships and reduced 

levels of error were seen in the models derived from plots located in largely unmanaged 

forest conditions.

For this data set, the species composition of a plot did exert influence on the relationship 

between AGBM and LVIS metrics (Table 1.4). For example, when the percentage of red 

spruce biomass was relatively high within a plot, the data showed good agreement 

between aboveground biomass and the LVIS metric of canopy height. The presence of 

white pine at any level resulted in a strong relationship between estimated AGBM and
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LVIS metrics. The absence of the common components of northern hardwood forests, 

particularly yellow birch and American beech, within the plots also led to fairly strong 

agreement between aboveground biomass and certain LVIS metrics. Three-quarters of 

the relationships explored here were best predicted, alone or in combination, by the sub

canopy LVIS RH50 metric. When the predominance of a species was used to select plots, 

half of the relationships tended to be better predicted, alone or in combination, by the 

LVIS RH100 metric reflecting highest canopy height.

Predicted Relationships

Relationships between AGBM and QMSD, predicted using relationships established at 

the footprint level, and USFS NERS plot level measures are found in Table 1.5 and 

Figures 1.5 & 1.6. The influence of selected aspects of species composition and 

management history was also examined through varying restrictions on plot selection. 

Overall relationships for predicted AGBM and QMSD across all plots ranged from fair to 

strong. As seen earlier in the plot level relationships, coefficients of determination and 

levels of error associated with the predictions of AGBM tended to improve when the 

northern hardwood species of yellow birch and beech were not present. Unmanaged 

conditions and the predominance of spruce also improved the predicted relationships. 

These effects were more pronounced in the relationships with AGBM versus those seen 

with the QMSD models.
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Error was also reduced when plot selection was restricted by species composition and/or 

plots were sited in forest tracts with little recent management activity. The lowest PRESS 

RMSE error of 33.13 Mg ha'1 (Table 1.5) reported for a footprint-level AGBM regression 

model is approximately 14% of the mean USFS NERS plot level AGBM value of 241.9 

reported in Table 1.1. The lowest PRESS RMSE error of 2.17 cm (Table 1.5) reported for 

a footprint-level QMSD regression model is approximately 9% of the mean USFS NERS 

plot level QMSD value of 24.8 reported in Table 1.1.

Discussion

Footprint Level Relationships

The relationships between lidar metrics and field-derived forest structural measures at the 

footprint scale are generally strong. Single term equations (Table 1.2, eqs.2 and 4) 

derived through linear regression using the 2003 LVIS metrics explain up to 80% of the 

variation in maximum canopy height, 61% of the variation in estimated AGBM, and 54% 

of the variation in QMSD, across the range of conditions sampled in this northern 

temperate forest landscape.
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Some of the residual error may well reflect the increasing distance between the actual 

location of the footprint level field plots and the center of the closest LVIS footprints as 

flown in 2003. Additionally, the nominal size of the 2003 footprints is less than half the 

area of the footprint level field plots. Footprint level field plots were originally located 

using Trimble GPS to be within one meter of 1999 LVIS footprint coordinates, but 2003 

LVIS flight lines vary of necessity from those flown in 1999, resulting in less overlap 

between the closest 2003 LVIS footprints and the footprint level plots. The size of the 

footprint level field plots was also originally determined by the larger nominal footprint 

size of the 1999 flight.

Footprint level results from this research can be compared to the one other published 

study (Lefsky et al. 1999b) using waveform lidar on a temperate deciduous site in eastern 

Maryland. Mean AGBM figures are comparable for the two sites (NH: 241.9 Mg ha'1; 

MD: 235.9 Mg ha'1). Lefsky et al. (1999b) reported that a height index developed for 

their study, quadratic mean canopy height (QMCH) predicted 80% of the variance in 

aboveground biomass. Standard deviation of the residuals resulting from this linear 

regression was reported as 75.1 Mg h a 1. Although a different predictor is used with the 

Bartlett data, the results are somewhat lower with a predicted variance of 61% for 

AGBM. Error, however, was generally lower at Bartlett with PRESS RMSE calculated at 

58.03 Mg ha'1.

At Bartlett, application of a modified version of Lefsky et al.’s (2002a) generalized 

equation (AGBM = 0.378 * maximum canopy height squared) to footprint level data
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resulted in a coefficient of determination of 0.55; RMSE = 64.41 Mg ha-1; N=20; p = 

0.0002. This is only slightly weaker than the strongest relationship found with the 2003 

LVIS metrics and estimated AGBM at the footprint level (Table 1.2). Lefsky et al. 

(2002a) reported r2 values of 65% for temperate deciduous plots using both the 

generalized equation and an individual site equation.

USFS NERS Plot Level Relationships

Plot level relationships between AGBM and QMSD and LVIS 2003 metrics show less 

overall agreement (Table 1.3) than those established at the footprint level. The use of 

aggregated footprint metrics coincident within a larger plot does not provide as strong a 

fit as the more precisely matched footprint-level data set. The results may also reflect on 

some limitations of the Forest Service data set in sampling low biomass areas within the 

experimental forest. Without the full range of conditions sampled, the variability seen in 

total AGBM of mature forest types at BEF swamps the narrower range of LVIS metrics. 

The same patterns hold true for QMSD. The footprint data reflect a wider distribution of 

conditions.

The improvement seen in the fit and error of the relationships measured in unmanaged 

forest conditions likely reflects on the size and type of disturbance typically encountered 

at BEF and its’ interaction with geo-location errors. The majority of recent management 

actions at BEF are small operations, ranging from clear-cuts and group selection cuts of a
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few hectares to shelterwood and individual tree selection cuts within management 

compartments that may cover from 10 to 50 hectares. As a result, the maximum tree 

height of a given area can change dramatically within a few meters within or near the 

edges of these managed tracts. Such small scale edge effects, especially in areas of partial 

cutting, may confound relationships between LVIS footprints and nearby USFS NERS 

plots, even with relatively small spatial registration errors. The level of error seen in the 

regression models for each of the forest metrics consistently dropped in unmanaged forest 

conditions.

The most notable improvement in the fit of the relationship between Forest Service plot- 

level biomass measurements and LVIS metrics was seen when species composition of the 

plots was also factored into the analysis (Table 1.4). In particular, the absence of certain 

species with dense crown architecture tended to improve the relationship between plot 

estimates of AGBM and LVIS metrics. This was most apparent within unmanaged forest 

tracts at Bartlett. The total absence of American Beech or Yellow Birch within the plots 

demonstrated strong agreement between aboveground biomass and certain LVIS metrics. 

Beech is very effective at intercepting light in the understory. Studies from Hubbard 

Brook Experimental Forest (HBEF) (Siccama; unpublished data cited in Hane 2003) give 

an indication of the tremendous stem density that is currently achieved by beech in 

certain northern hardwood forests. Between 1965 and 1997, the number of beech in the 

understory (trees <10 cm. dbh) within northern hardwood tracts at HBEF has exploded 

by nearly fivefold; a response to the impact of beech bark disease on that forest following
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its arrival in the 1970’s (Hane 2003). A similar response is documented for the Bartlett 

Forest (Leak and Smith 1996).

Beech is a dominant species in forest communities where light intensities are typically 

quite low (Curtis 1959). Its clonal nature, particularly following disturbance, further 

augments the density of its cover in the understory. But the absence of beech in the 

forests at Bartlett is common in the higher elevation ridgeline coniferous forests on 

BEF’s western boundary. Here, the predominance of red spruce in these plots may be just 

as important as the absence of beech in explaining the strong relationship between 

biomass and LVIS metrics. Over 62% (15 of 24) of the plots selected at Bartlett as having 

a high fraction of spruce biomass were also selected as plots where beech is absent. 

Similarly, over 70% (24 of 34) of the plots selected at Bartlett where white pine is present 

were also selected as plots where yellow birch is absent.

Predicted Relationships

As suggested by the low coefficients of determination, the overall ability to predict 

AGBM and QMSD using the footprint level regression models across all of the forest 

conditions at BEF appears weak. Coefficients of determination between actual versus 

predicted measures of AGBM and QMSD were 0.27 and 0.20, respectively.
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Yet, under selected conditions, notable and potentially useful improvements were seen. In 

this northern temperate mixed conifer and deciduous forest, predictions made in areas 

relatively untouched by recent management operations were particularly good at 

producing results with lower levels of error. In addition, given some level of pre-existing 

knowledge of species composition (i.e. presence, absence, or predominance patterns), 

strong predictive models with associated strong reductions in error were produced for 

some forest types. For example, forest stands dominated by red spruce at BEF were more 

readily predicted. The distinctiveness of such stands, given their shorter stature at the 

higher elevations of Bartlett, likely contributed to the success of modeling them with 

LVIS metrics. Forest tracts dominated by the typical northern hardwoods species of 

yellow birch and American beech were the most difficult to model at BEF. Of the 

hardwoods, only sugar maple, where found in high abundance, provided relatively good 

results from the predictive models. The explanation behind this successful modeling of 

stands with high abundance of sugar maple may be complex, involving the history of 

natural disturbance over the past century and its relationship with broad environmental 

conditions at Bartlett. Further work on this question is underway. These findings 

augment those of other lidar researchers, such as Popescu et al. (2004), who have noted 

that differentiation of forest types will result in the improvement of regression models 

aimed at estimating forest parameters.

Application of a modified version of Lefsky et al.’s (2002a) generalized equation 

(AGBM = 0.378 * maximum canopy height squared) to the plot level data provided 

weaker results than the best fit model derived from the footprint level data, although the
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predictions did show the same trend towards improvement when analyses were restricted 

to plots with relatively unmanaged conditions or by species composition. The scatter 

plots and regression lines shown in Figure 1.7 show the tendency for the generalized 

equation to overestimate AGBM.

Conclusions

Metrics derived from an airborne waveform lidar sensor were significantly correlated 

with forest structural characteristics at the footprint level in a structurally variable 

northern temperate mixed conifer and deciduous forest. Single-term regression models 

were derived for AGBM without transformation of the dependent and independent 

variables. At the level of individual LVIS footprints, the relationships between lidar 

metrics and forest structural characteristics were weakened by problems of geo-location. 

In addition, height measures were more consistently underestimated by 1999 LVIS 

metrics than by 2003 LVIS metrics. As a result, predicted values for AGBM or QMSD 

used to map overall forest spatial patterning at Bartlett were more accurate when utilizing 

models derived from 2003 LVIS metrics.

USFS NERS plot level lidar metrics, however, were strongly correlated with forest 

structural characteristics only under more limited conditions in the same forest. With the
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majority of the field-measured forest structural data coming from the high-end of the 

biomass spectrum at Bartlett, the relationships between instmment metrics and field 

measures were more weakly correlated; impacting their use as a calibration and 

validation data set. These relationships could be selectively improved, however, when 

characteristics of land-use and species composition were taken into consideration. As a 

result, spatial patterning and variation seen in canopy height, QMSD and biomass can be 

mapped at a landscape scale; producing unique data sets for use in operations extending 

from ecological modeling and inventory to conservation planning and forest 

management. While data on species composition is not easily retrieved from lidar sensors 

alone, other sources of remote sensing data providing spectral information could 

complement lidar data in this respect. This will be a focus of future research.

A modification of the generalized biomass equation proposed by Lefsky et al. (2002a) 

met mixed success in this study. At the more precise scale of LVIS footprints, the 

equation was only slightly weaker in fit and error than the best-fit model derived from the 

associated field data. At the larger plot scale, the relationships between predicted and 

actual were relatively weak.

This study confirms earlier published findings on waveform lidar and adds further 

perspective on the workings of lidar sensors under conditions of high canopy closure in 

northern temperate mixed conifer and deciduous forests. Augmenting existing findings 

for discrete return lidar in northern hardwoods (Lim et al. 2003), it also demonstrates that
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waveform lidar can be used to estimate key biophysical properties of northern hardwood 

and associated forest types.
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Data Sources and Types N H ot or 
Footprint 
Size 
(ha)

Mean of 
Maximum 
Canopy Height 
(standard 
deviation) (m)

Mean
QMSD
(standard
deviation)
(cm)

Mean
AGBM
(standard
deviation)
(Mg ha-1)

Footprint - Level Hots 20 0.07 26.3 (7.6) 25.4 (8.0) 230.4 (88.4)

USFS NERS Inventory Hots 409 0.1 24.8 (3.6) 2415 (65.7)

LVIS 1999 Footprints within BEF 52279 0.049 22.9 (4.7)

LVIS 2003 Footprints within BEF 62579 0.031 25.4 (4.8)

Table 1.1 Measures of forest structure for Bartlett Experimental Forest
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Forest Metric r* PRESS RMSE Equation using 2003 LVIS metrics N P

Height 0.80 3.49 m (1) HT = 1.094 (RH100) -1.537 20 < 0.0001

AGBM 0.61 58.03 Mg ha1 (2) AGBM = 29554 +14.297 (RH50) 20 < 0.0001

AGBM
(generalized equation 
from Lefsky et al. 2002a)

0.55 64.41 Mg ha1 (3) AGBM = 0.378* (RH1002) 20 0.0002

QMSD2 0.54 235.65 (4) QMSD2 = 68.825 +  0.928 (RH1002) 20 0.0002

Table 1.2 Relation drips between 2003 LVIS metrics and selected measures of forest structure. 
Single-term regression equations were developed at the footprint-level.
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Forest
Metric

r2 or 
adj.r2

PRESS
RMSE

LVIS 2003 Metrics used in 
Regression Model

VIF N P

AGBM 0.27 56.51 Mg h a 1 Mean of RH50 1 409 <0.0001

ABGM
(U n u n jM )

0.41 46.94 Mg h a 1 Mean of RH50 1 158 <0.0001

QMSD 0.22 3.23 cm Mean of RH25 & Mean of RH75 < 2 409 <0.0001

QMSD
(Umaiuged)

0.31 2.62 cm Mean of RH100 1 158 <0.0001

Table 1 3  Rd ationships between aggregated 2003 LVIS metrics and USFS NERS inventory plot measures.
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S p ec ie sp re so tce /ab sen c e  a n d  species 
frac tio n  o f A G B M  in  

U SFS N E R S in v en to ry  p lo ts

i 3  o r 
ad j. r 1

PR E S S
RM SE
(Mg h a 1)

L V IS  2003 M e tr ic s  U sed in  
R egression  M odel

VTF N a lp h a p

Yellow B irch (sp. is abseil from plots) 0.77 34.29 M ean o f R H 50 & M ean o f RH75 < 4 48 0.01 < 0.0001
Yellow Birch (sp. is present in plots) 0.17 56.56 M ean o f R H 50 1 361 0.01 < 0.0001
Yellow B irch (sp. fraction rf AGBM > 0.23) 0.14 48.45 M ean ofRHlOO 1 39 0.05 0.0185

A merican Beech (abseil) 0.67 41.51 M ean o fR H 50 1 27 0.01 < 0.0001
American Beech (present) 0.21 57.14 M ean o f R H 50 1 382 0.01 < 0.0001
American Beech (> 0.25) 0.20 56 23 M ean o f R H 50 & M ean  ofRHlOO < 2 227 0.01 < 0.0001

Sugar M aple (absent) 0.44 45.06 M ean o f R H75 1 120 0.01 < 0.0001
Sugar M aple (preset!) 0.22 59.52 M ean o f R H 50 & M ean  ofRHlOO < 2 289 0.01 < 0.0001
Sugar M aple p025) 0.54 56.11 M eans o f  RH25, R H50 & RH100 < 9 62 0.01 < 0.0001

R ed M aple (absent) 0.35 59.74 M ean o f RH50 1 87 0.01 < 0.0001
R ed  M aple (present) 0.24 55.93 M ean o f R H 50 1 322 0.01 < 0.0001
R ed  Maple (>0.23) 0.35 45.93 M ean o f R H 25 1 120 0.01 < 0.0001

Eastern H em lock (absent) 0.33 62 29 M ean o f R H 50 1 69 0.01 < 0.0001
Eastern H em lock (present) 0.26 55.31 M ean o fR H 5 0  & M ean  ofRHlOO < 2 340 0.01 < 0.0001
Eastern H em lock (> 023) 0.25 44.86 M ean o f R H 50 1 56 0.01 < 0.0001

Paper B irch (absent) 0.34 56.15 M ean o f R H 50 & M ean  ofRHlOO < 2 202 0.01 < 0.0001
Paper B irch (jpresetl) 0.25 54.04 M ean o f R H 75 1 207 0.01 < 0.0001
Paper Birch (>  025) 0.32 51.60 M ean o f R H 75 1 19 0.01 0.0069

R ed  Spruce (absent) 0.21 60.15 M ean o f R H 50 1 226 0.01 <0 .0001
R ed  Spruce (present) 0.32 52.18 M ean o f R H 25 1 183 0.01 < 0.0001
R ed  Spruce (>025) 0.55 42.03 M ean ofRHlOO 1 24 0.01 < 0.0001

W hite Ash (absent 0.25 53,64 M ean o f R H 50 1 278 0.01 < 0.0001
W hite A sh (present) 0.28 62.87 M ean o f RH50 1 131 0.01 < 0.0001
W hite A sh (> 023) 0.22 45.38 M ean o f RH 50 1 21 0.05 0.0338

W hite Pine (absent) 0.23 57.02 M ean o f RH 50 1 375 0.01 < 0.0001
W hite Pine (present) 0.75 33.37 M ean o f RH 50 1 34 0.01 < 0.0001

Pin Cherry (absent) 0.30 53.26 M ean o f R H 50 & M ean  ofRHlOO < 2 391 0.01 < 0.0001
Pin Cherry (present) 0.46 48.92 M ean o f RH 50 1 18 0.01 0.0019

Table 1.4 Species composition effects on plot-level relationdiips of AGBM with aggregated LVIS 2003 metrics.
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P re d ic te d  A G B M
AGBM  -  295 5 4  +  (14.297 * RH 50)

r* P R E S S
R M S E

N P

A G B M  — all plots 0.27 56.51 M g h a 1 409 < 0.0001

A G B M  - plots located within relatively unmanaged forest tracts 0.41 46.94 M g h a 1 158 < 0.0001

A G B M  - A m eiicanB eechis not present w ithinplots 0.67 41.51 M g h a 1 27 < 0.0001

A G B M  - Red Spruce fraction o f AGBM  within plots> 0 2 5 0.50 45.74 M g h a 1 24 0.0001

A G B M  - Y ellow Birch is not present within plots 0.74 36.99 M g h a 1 48 < 0 .0 0 0 1

A G B M  — White Pine is present within plots 0.75 33.37  M g h a 1 34 < 0 .0 0 0 1

A G B M  - Y ellow Birch is not present within plots sited in  unmanaged forest tracts 0.79 33.13 M g h a* 34 < 0.0001

P r e d ic te d  Q M S D r 1 P R E S S
R M S E

N P

Q M S D  - all plots 0.20 3.28 cm 409 < 0.0001

Q M S D  - plcts located within relatively unmanaged forest tracts 0.31 2.62 cm 158 < 0 .0 0 0 1

Q M S D  - A m ericanB eech isno t present within plots 0.37 2.77 cm 27 0.0008

Q M S D  - R ed Spruce fraction of AGBM within plots > 0.25 0.33 3.06 cm 24 0.0033

Q M S D  - Y ellow Birch is  not present within plots 0.31 2.97  cm 48 < 0.0001

Q M S D  - Y ellow B irch isn o t present within plots site d in  unmanaged forest tracts 0.55 2.17 cm 34 < 0 .0 0 0 1

Table 1.5 Relationships between predicted AGBM and QMSD and USFS NERS plot level 
forest measures. Predicted values of AGBM and QMSD were calculated using 2003 LVIS 
metrics and equations derived from 2003 footprint level regression models (Table 2). H ie  
influence o f selected aspects o f species composition and management hi s ta y  on the prediction 
relationships was examined through the restri chon o f {dot selection.
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Predicted AGBM 
AGBM = 0378 * RH100*

r2 PRESS
RMSE

N P

A G B M  - all plots 0.08 63.27 Mg ha'1 409 < 0.0001

A G B M  . plots located within relatively unmanaged forest tracts 0.22 54.25 Mg ha'1 158 < 0.0001

A G B M  - A m ericanB eech is not present w ithinplots 0.56 47.46 Mg ha-1 27 < 0.0001

A G B M  * R ed  Spruce fraction of AGBM within plots > 0.25 0.52 44.15 Mg haJ 24 < 0.0001

A G B M  • Y ellow B irch is not present within plots 0.16 67.68 Mg h a 1 48 < 0.0048

A G B M  - W hite Pine is  present within plots 0.31 57.38 Mg ha'1 34 0.0006

A G B M  - Y ellow B irch is not present within plots sited in  unmanaged forest tracts 0.35 61.73 Mg haJ 34 0.0002

Table 1.6 Relationships between predicted AGBM using a generalized model and USFS NERS 
{dot level estimated AGBM. Predicted values o f AGBM were calculated using 2003 LVIS metrics 
and a generalized regression model patterned after Lefsky et al. (2002a). The influence o f selected 
aspects o f  species composition and management history on the prediction relationships was 
examined through the restriction o f {dot selection.
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Figure 1.1 Location of Bartlett Experimental Forest, showing established plot network.
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Figure 1.2 Metrics derived from lidar waveforms. Adapted from Drake et al. 2002.
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Figure 1.3 Footprint-level scatter plots o f  1999 and 2003 LVIS height metrics vs. maximum 
canopy height Note overall trend in the 1999 LVIS height metrics towards underestimation o f  
maximum canopy height Dashed lines indicate 1:1 correspondence.
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Figure 1.4 Footprint-level scatter plots o f2003 LVIS metrics and forest measurements. 
Regression equations are found in Table 1.2.
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history on the prediction relationships was examined through the restriction of plot selection.
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Figure 1.7 Actual versus predicted scatter pi ots of AGBM using generalized equation. 
Generalized equation of Lefsky et al. (2002a) was applied to 2003 LVIS metrics.
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CHAPTER 2

REMOTE INVENTORY FOR A NORTHERN TEMPERATE FOREST 

INTEGRATING WAVEFORM LIDAR WITH HYPERSPECTRAL REMOTE

SENSING IMAGERY

Abstract

It has been suggested that attempts to use remote sensing to map the spatial and structural 

patterns of individual tree species abundances in heterogeneous forests, such as those 

found in northeastern North America, may benefit from the integration of hyperspectral 

or multi-spectral information with other active sensor data such as lidar. Towards this 

end, we describe the combined ability of individual waveform lidar metrics and 

hyperspectral data to correlate with three common forest measurements: basal area (BA), 

above-ground biomass (AGBM) and quadratic mean stem diameter (QMSD) and to also 

discriminate the distribution and abundance patterns of five common and often dominant
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tree species in a northern temperate mixed conifer and deciduous forest. Waveform lidar 

imagery was acquired in July 2003 over the 1000-ha. Bartlett Experimental Forest (BEF) 

in central New Hampshire (USA) using NASA’s airborne Laser Vegetation Imaging 

Sensor (LVIS). High spectral resolution imagery was likewise acquired in August 2003 

using NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Sensor data 

were analyzed with field data from over 400 plots of USDA Forest Service Northeastern 

Research Station (USFS NERS) 2001-2003 inventory.

Results suggest that the integrated data sets of hyperspectral and waveform lidar do 

improve the outcomes in evaluating BA, AGBM and QMSD for a given site over use of 

either data set alone. This level of improvement from use of integrated data doesn’t hold, 

however, for detection of the proportional abundance patterns created by the common 

and dominant tree species of this forest. Nonetheless, results of value to traditional forest 

inventory efforts can be obtained in these northern temperate forest tracts through 

separate analyses, as well as combined use of the two data sets. AVIRIS data alone, and 

in combination with LVIS data, does correlate well with certain compositional abundance 

patterns determined by species fraction of biomass. When further registered with QMSD 

data, derived from LVIS data sets, maps predicting species-level abundance patterns and 

coincident patterns of stem size can be created for several of the dominant tree species of 

this region. The results provide a unique species-based remote inventory of potential 

benefit to both forestry and conservation biology planning efforts.
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Keywords: waveform lidar, LIDAR, LVIS, laser altimetry, AVIRIS, high spectral 

resolution imagery, hyperspectral, biomass, basal area, quadratic mean stem diameter, 

canopy structure, height, tree species distribution

Introduction

In northeastern North America, the spatial variation in forest structure across large tracts 

of land is driven by a heterogeneous mix of deciduous and coniferous species and 

enhanced by the complexity of species interactions with ecological factors such as 

topography, soils and disturbance history. These temperate forests are recognized as 

important components of the global carbon cycle. Yet, a comprehensive understanding of 

the overall spatial patterns of structural variation seen in these large landscapes is still 

largely lacking. The integration of optical sensor data, such as that obtained from 

hyperspectral imaging spectroscopy, with the structural information readily obtained 

from active sensors, such as lidar, is believed to hold great promise for improving the 

accuracy of forest inventory and ecological modeling at a landscape scale. Images from 

lidar and optical sensors offer the possibility of combining very detailed information from 

both vertical and horizontal spatial planes (Hudak et al. 2002, Popescu et al. 2004, Lefsky 

et al. 1999, Treuhaft et al. 2002, McCombs et al. 2003). It has been suggested, as such, 

that each of these sensors brings complementary and potentially synergistic capabilities
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to land-cover classification and estimation of stand structure (Ackermann 1999, Dubayah 

et al. 2000, Lim et al. 2003).

In recent years, hyperspectral remote sensing has been used to ascertain species-level 

abundance patterns in a variety of biomes (Roberts et al. 1998, Ustin and Xiao 2001, 

Plourde et al. in press). The advantage of hyperspectral remote sensing in detecting 

differences in species-level abundance patterns is found in the over-determined nature of 

spectral response (i.e. hundreds of narrow, contiguous spectral channels). Reducing the 

dimensionality of the data in order to discern the most meaningful spectral response has 

been the inherent challenge (Plourde et al. in press, Underwood et al. 2003, Williams and 

Hunt 2002, Haskett and Sood 1998). To complement the advantages provided by 

hyperspectral imagery in detailing species abundance patterns, waveform lidar imagery 

can provide direct measures of canopy height. Strong indirect relationships between 

canopy and sub-canopy lidar metrics and traditional forest measures, such as biomass, 

can also be established at a landscape scale (Dubayah et al. 2000, Lefsky et al. 2002).

Plourde et al. (in press) have noted that given the inherent spatial and temporal 

variability of northern temperate forests and attendant problems with classification, 

measures of species’ relative abundances across a forest landscape may provide a more 

functional representation of ground conditions than classification of discrete forest type 

classes.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By adding information on forest structure to such compositional data, the combination of 

remotely acquired detailed distribution patterns reflecting both species abundance and 

aspects of size could provide essential information to pressing issues of management and 

research.

Several studies (Plourde et al. in press, Ollinger and Smith 2005, Anderson et al. in 

revision) conducted at the Bartlett Experimental Forest (BEF) in north central New 

Hampshire (USA) have already separately assessed the validity of using airborne 

hyperspectral data for the classification of individual tree species, prediction of forest 

growth and mapping of abundance patterns, as well as the use of airborne waveform lidar 

to describe and predict various forest metrics. Here we describe the advantage conferred 

by combining structural information with spectral approaches to quantify individual 

species abundances and associated physical metrics in a heterogeneous temperate forest 

using integrated data from both sensor types.
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Methods

Study Area and Field Data L

Bartlett Experimental Forest (44.06°N, 71.3°W) is located within the White Mountain 

National Forest, a heavily forested and mountainous region in north central New 

Hampshire (Figure 2.1). Established by the USDA Forest Service in 1931, the BEF is a 

1052-ha field site for the study of secondary deciduous and coniferous forest dynamics 

and ecology. Major tree species include American beech (Fagus grandifolia Ehm.), red 

maple (Acer rubrum L.), eastern hemlock (Tsuga canadensis L. Carr.), sugar maple (Acer 

saccharum L.), yellow birch (Betula alleghaniensis Britt.), paper birch (Betula papyrifera 

Marsh.), red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.), with 

some localized small stands of eastern white pine (Pinus strobus L.). Arrayed in a regular 

grid across the BEF are over 400 intensively sampled 0.1 ha plots (see 

http://www.fs.fed.us/ne/durham/4155/bartlett.htm), measured in 2.54 cm diameter 

classes, most recently in 2001-03. All inventory plots have been geo-referenced to within 

3-meter positional accuracy. Plot elevations range from approximately 200 to 800 m.

Basal area (BA) and dry weight biomass (AGBM: bole, branch, and foliar) by species for 

each inventory plot was calculated using regionally developed allometric equations based 

on stem diameter measurements (Jenkins et al. 2004). Fraction of biomass by species per
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plot was calculated from the most recent BEF survey data. Stem diameters were also used 

to calculate quadratic mean stem diameter (QMSD). QMSD was calculated as [XD2/n] 1/2 

where D is the stem diameter and n is the number of stem diameters in the plot (Curtis & 

Marshall 2000). Two minimum values were used to calculate separate measures of 

QMSD. QMSDio calculated the average stem diameter using all trees with dbh measured 

as greater than 10 cm. QMSD5 calculated the average stem diameter using all stems with 

dbh measured as greater than 5 cm.

The descriptive statistics of the field data were calculated as follows: mean BA was 39.5 

m2ha_1 with a standard deviation of 10.1 m2ha_1; mean AGBM was 243 Mgha 'with a 

standard deviation of 64.8 Mgha'1; and mean QMSDio was 24.8 cm with a standard 

deviation of 3.44 cm. All data were stored in a geographic information system, referenced 

to NH State Plane feet (NAD83, GRS1980).

AVIRIS Data

On August 24, 2003, NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

was flown on the ER-2 platform (Green et al. 1998; see http://aviris.jpl.nasa.gov) and 

collected cloud-free data in a 11 km wide swath centered over the BEF. AVIRIS is a 

“whisk broom” scanner that captures upwelling spectral radiance in 224 contiguous 

spectral bands for wavelengths from 400 to 2500 nm with a lOnm nominal bandwidth. 

The ER-2 flies at approximately 20 km above sea level, resulting in a pixel size of about
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16-17 m. The AVIRIS imagery was delivered by NASA JPL as calibrated radiance data 

(gain*fxW/cm2/nm/steradian) and stored as 16-bit signed integers (IEEE) in BIP format.

In order to minimize a view-angle brightness gradient in the AVIRIS image, the mean 

and standard deviation of each column of raster data was normalized to the overall mean 

and standard deviation. The image was atmospherically corrected with ImSpec LLC’s 

Atmospheric Correction Now (ACORN) (v. 4.14) software (http://www.imspec.com) 

and geometrically corrected with a second order polynomial based on reference points 

collected from 1992 digital orthophotoquads (DOQ) with 1-m nominal spatial resolution 

acquired from the New Hampshire Geographically Referenced Analysis and Information 

Transfer System (NH GRANIT; http://www.granit.sr.unh.edu), registered to NH State 

Plane feet (NAD83, GRS1980).

The AVIRIS image was transformed with a forward minimum noise fraction transform 

(MNF) rotation (ENVI ® v. 3.6, Research Systems, Inc. 2002) to reduce data 

dimensionality. Twenty-four bands with eigenvalues above 2.5 were retained for 

analysis.

LVIS Data

Lidar data were acquired on July 19-26, 2003 over the BEF using NASA’s Laser 

Vegetation Imaging Sensor (Blair et al. 1999). Multiple flight lines were completed
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between Bartlett and West Thornton, N.H. LVIS is an airborne imaging laser altimeter 

that records the time and amplitude of a laser pulse reflected off target surfaces. The 

sensor digitizes the vertical distribution of intercepted surfaces between the first (top of 

the canopy) and the last (ground) return producing a waveform record. LVIS records 

circular footprints of variable size; 2003 footprints had a nominal radius of 10 m. 

Additional detail on LVIS capabilities can be found in Blair et al. (1999).

LVIS data for this site were beta released in September 2004 (see 

http://lvis.gsfc.nasa.gov). LVIS metrics used in this study were derived from the 

waveforms using an automated algorithm (M. Hofton, personal communication). Lidar 

canopy height (RH100) was calculated by identifying two locations within the waveform 

(1) where the signal initially increases above a mean noise level/threshold (the canopy 

top); and (2) at the center of the last Gaussian pulse (the ground return). The distance 

between these two locations was then calculated to derive the height metric (Figure 2.2). 

The height of median energy (RH50) was calculated by finding the median of the entire 

signal (i.e. above the mean noise level) from the waveform, including energy returned 

from both canopy and ground surfaces. The location of the median energy was then 

referenced to the center of the last Gaussian pulse to derive a height (Drake et al. 2002). 

Similarly RH25 and RH75 were calculated by finding the relative height (RH), relative to 

the ground elevation, at which 25% and 75%, respectively, of the waveform energy 

occurs (http://lvis.gsfc.nasa.gov).
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Integration of AVIRIS and LVIS Data

A roughly 6.9 km by 6.2 km region surrounding the Bartlett Experimental Forest was 

defined and used to establish a subset of the AVIRIS and LVIS imagery for further 

analysis. Individual LVIS circular footprints with a nominal resolution of 20 m were 

converted to raster format using an inverse distance weighted algorithm (power = 3) 

(ArcGIS v.8.3, ESRI2003). Pixel size was set at 15.8 m to match the nominal resolution 

of the AVIRIS data. AVIRIS and LVIS imagery were aligned geometrically to establish 

coincident pixels.

Values from each of the 24 AVIRIS MNF bands and 4 LVIS metrics were extracted and 

standardized (i.e. subtract the mean and divide by the standard deviation) from the 

locations of the USFS NERS inventory plots. Each plot (0.1 ha; roughly 30 by 30 m) 

encompassed portions of four to six pixels. Pixel data were aggregated and summarized 

as mean values.

Data Analysis

The relationships between the measured USFS NERS plot data (dependent variables) and 

the mean values of 28 standardized LVIS and AVIRIS MNF metrics (independent 

variables) were explored through stepwise mixed linear regression techniques. Analyses 

conducted using only LVIS metrics were explored through simple linear regression or
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two-term multiple regressions, limited to three pairs of less correlated LVIS metrics 

(RH25 & RH75; RH25 & RH100; and RH50 & RH100) as the independent variables. 

Statistical analyses were conducted using JMP IN® software (SAS Institute Inc. 2005). 

Dependent, independent variables and the regression residuals were tested for normality 

of their distributions using the Shapiro-Wilk W test (Shapiro and Wilk 1965) and normal 

quantile plots. For each regression, variables with clearly non-normal distributions were 

eliminated. An arcsine square root transform was used to improve the normality of the 

distribution of the species-level proportional abundance data. The critical value of P 

(alpha) was set at 0.05 for all analyses. Prediction error sum of squares root mean square 

errors (PRESS RMSE) were calculated for each forest metric. PRESS RMSE is 

computed as the square root sum of squares of the prediction residuals (Mark and 

Workman 1991, Hastie et al. 2001). As an out-of-sample validation technique, PRESS 

RMSE tests how well the current model would predict each of the points in the data set 

(in turn) if they were not included in the regression. Low values of PRESS RMSE usually 

indicate that the model is not overly sensitive to any single data point. In addition, the 

variance inflation factor (VIF) was assessed for models with multiple predictors. VIF 

indicates whether multi-collinearity between variables inflates the variance of estimates 

and renders the model unstable and of less applicability to new sets of data. Variables 

with VIF values under 10 are indicative of models with low multi-collinearity (Sail et al. 

2003). Regression results are summarized in Tables 2.1 - 2.3. Maps were analyzed and 

produced using ENVI® v. 4.2 (Research Systems, Inc. 2005), ERDAS Imagine® v. 8.7 

(ERDAS 2004), and ArcGIS ® v. 8.3 (ESRI 1999-2002) software.
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Results

BA, AGBM, QMSD

Overall relationships between inventory and combined sensor data were fair (Table 2.1): 

(BA: adj. r2 = 0.47; Press RMSE = 7.5 m2 h a 1); (AGBM: adj. r2 = 0.39; PRESS RMSE 

= 51.1 Mg ha"1); (QMSD10: adj. r2 = 0.33; PRESS RMSE = 2.86 cm). AGBM results 

(AGBM: adj. r2 = 0.55; PRESS RMSE = 41.0 Mg ha"1) improved notably when analysis 

was restricted to plots located in forest tracts not subject to any recent management 

activity. Best results were obtained using both AVIRIS and LVIS metrics in combination 

as compared to the use of either set of sensor data alone. Comparatively, AVIRIS 

variables alone explained more of the basal area variation seen within all plots, while 

LVIS variables alone explained more of the variation seen within the QMSDio data 

where stems greater than 10 cm dbh were used as a lower cutoff of measurement. 

Relatively similar amounts of AGBM variance and error were explained by stepwise 

linear regressions using AVIRIS and LVIS data separately.
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Species Abundance Proportional to AGBM

USFS NERS field measures of fractional AGBM (transformed as an arcsine square root 

value) specific to five tree species were compared to the mean values of standardized 

2003 AVIRIS MNF variables and LVIS metrics through stepwise mixed multiple 

regression (Table 2.2). Relationships were explored between ground measures and sensor 

data only in those plots where the given species being modeled was present (AGBM 

fraction > 0 or 0.01). Therefore the value of N varied from a low of 138 plots (red maple 

in unmanaged conditions) to a high of 379 plots (beech) amongst the five species studied. 

For four of five species, good linear relationships between the transformed species 

fraction of AGBM and varying combinations of AVIRIS and LVIS metrics were found 

(beech: adj. r2 = 0.65; red maple: adj. r2 = 0.61; eastern hemlock: adj. r2 = 0.57; sugar 

maple: adj. r2 = 0.51). PRESS RMSE errors were generally consistent, ranging from a 

low of 0.12 (hemlock) to a high of 0.16 (beech) across these four species. AVIRIS 

variables were the sole predictors for the beech and hemlock proportional relationships, 

while the other species were best modeled through a combination of AVIRIS and LVIS 

metrics. In each case, however, the AVIRIS variables explained almost all of the variance 

in the models. The information content represented, in particular, by the number of 

AVIRIS MNF variables needed to model species’ abundances proportional to AGBM 

was large and the individual AVIRIS MNF variables chosen as predictors varied between 

species. Both AVIRIS and LVIS metrics had poor relationships with species fraction of 

AGBM for yellow birch.
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QMSD under Varying Restrictions of Species Composition and Abundance

The use of species composition and abundance to select varying subsets of USFS NERS 

inventory plots for analyses tended to improve the relationships found with overall plot 

measures of QMSD for three of the species examined (Table 2.3). USFS NERS field 

measures of QMSDio and QMSD5 were compared to the mean values of LVIS metrics. In 

this instance, relationships were explored between the ground measures and the sensor 

data only in those plots where a given species was present at higher levels of abundance 

and in the case of the maples, situated in relatively unmanaged conditions. For each 

subset of plots examined, the adjusted r2 increased to over 0.4, while the associated error 

decreased to less than 2.25 cm.

Combined Analyses for Inventory

Three of the tree species (eastern hemlock, red maple, and sugar maple) with the 

strongest relationships to proportional patterns of abundance (Table 2.2 and Figure 2.3), 

also had overall QMSD relationships (Table 2.3 and Figure 2.3) that were strong enough 

at higher levels of species abundance to allow for the creation of combined 

abundance/size maps for these individual species within the forest as a whole. As a 

consequence, tree maps detailing the predicted abundance of individual species (Figures
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2.4 -  2.6) were coupled with predicted measures of average tree diameter (defined as 

QMSD) in areas of high abundance (Figures 2.7 -  2.9).

Discussion

Relationships with BA, AGBM, QMSD and Species Abundance Proportional to AGBM

While examples of data integration within the broad realm of remote sensing are 

relatively common, access to the unique combination of coincident airborne 

hyperspectral and waveform lidar data at a landscape scale is rare. The promise posed by 

this type of integration of data sets to meet operational requirements for forest inventory 

and ecological modeling at varying scales has been noted repeatedly within the remote 

sensing literature (Ackermann 1999, Dubayah et al. 2000, Drake 2001, Hudak et al. 2002, 

Popescu et al. 2004, Lefsky et al. 2002, Truehaft et al. 2002, 2003 McCombs et al. 2003, 

Ollinger and Smith 2005, and Lim et al. 2003).

Integration of data from multiple sources attempts to gain more knowledge about an 

observed phenomenon than can be acquired from the data sources independently, and 

ideally, should serve to increase the reliability of the interpretation (McCombs et al.

2003, Pohl and Van Genderen 1998). By these standards, the integration of airborne
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hyperspectral and waveform lidar over the Bartlett Experimental Forest achieved these 

objectives as seen in the increase in the coeffiecients of determination and reduction in 

the measures of error for each of the relationships with traditional forest inventory 

measures (i.e. BA, AGBM, and QMSD; Table 1). This improvement is seen despite 

relatively low r2 values overall. While these improvements were modest, they were 

achieved with only a limited number of structural metrics from the LVIS sensor. Data 

relative to canopy closure from LVIS metrics determined via measures of ground and 

canopy energy, in particular, were unavailable for this study. Relationships established 

between sensor data and plot metrics in forests tracts with relatively little recent active 

management were even stronger, generally increasing the coefficients of determination, 

especially for AGBM, and universally reducing error. The low to fair r2 results also 

reflect some limitations of the USFS NERS data set in sampling low biomass areas 

within the experimental forest. Only 11 of 406 sampled plots have biomass estimates 

under 100 Mgha'1. While BEF actually has relatively little acreage in early successional 

status, expansion of field data to represent the full range of conditions present at BEF 

could potentially improve both the fit and error estimates of these relationships.

Hyyppa et al. (2000) and Hyyppa and Hyyppa (2001) have previously reported that a 

typical standwise forest inventory is carried out with a 15% error concerning main forest 

attributes, calculated as the percentage value of the standard error of regression (i.e. 

RMSE) divided by the mean value of the stand attribute data. Foster and Townsend 

(2004) also point out that forest inventory data used for validation are prone to error and 

may be only about 80% accurate. By these approximate guidelines, 15%-20% errors for
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field-measured AGBM at BEF range from 36.5 Mgha'1 to 48.6 Mgha'1. Similarly, 15%- 

20% errors for field-measured BA range from 5.9 m2h a 1 to 7.9 m2ha~\ Lastly, 15%-20% 

errors for field-measured QMSDio range from 3.7 cm to 5.0 cm. The lowest PRESS 

RMSE values reported for predicted AGBM and BA in this study (Table 2.1) are within 

this error range. The lowest PRESS RMSE values reported for predicted QMSDio using 

both AVIRIS MNF and LVIS metrics in this study (Table 2.1) exceed those standards by 

over 4 percentage points.

By the same standards for data integration described above, the integration of airborne 

hyperspectral and waveform lidar used to examine patterns of species abundance 

proportional to biomass within the BEF did not achieve much, if any, improvement in the 

relationships with five common tree species over the use of AVIRIS data alone. 

Presumably, the lack of sufficiently contrasting height attributes across these five species 

reduced the contribution of LVIS in distinguishing species level patterns. Data were 

insufficient in this study to add results for red spruce and white pine. Both of these 

conifers, however, as mature components in the canopy of a northern temperate forest 

can present emergent and/or distinct structural attributes that may be more uniquely 

detected by LVIS waveforms and thus, worth further study at another site.

The scatter plots reflecting predicted versus actual abundance patterns for hemlock and 

sugar maple each tend to over-estimate at low abundance levels and under-estimate at 

high abundance levels (Figure 2.3). Part of the error in these relationships results from the 

close proximity of species to one another relative to the pixel size of the instruments used
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to detect them. Individual pixels of the size referenced here for both AVIRIS and LVIS 

often include fine scale mixtures of species. Furthermore, in this study, the AVIRIS and 

LVIS metrics used in the regressions were mean values calculated from the aggregation 

of four to six pixels associated with a USFS NERS plot, further increasing the potential 

for error from admixed species compositions.

Four of five tree species examined had coefficients of determination above 0.5, 

suggesting good relationships with the AVIRIS MNF and LVIS metrics, alone (in the 

case of beech and hemlock) or in combination. In previous work using spectral mixture 

analysis (SMA), Plourde et al. (in press) noted that predictions of American beech 

abundance (r2 = 0.36; RMSE = 0.18; N = 200) derived from 2001 AVIRIS data were less 

reliable overall than predictions of sugar maple (r2 = 0.49; RMSE = 0.09; N=150). Using 

different techniques in this study, those relationships were reversed (r2 = 0.65 and 0.51 

respectively) with beech (Figure 2.10) showing a much stronger correlation with the 

sensor data.

Relationships with QMSD under Varying Restrictions of Species Composition 

and Abundance

Species composition did influence the strength of the relationships with mean QMSD for 

three species under limited conditions. At higher levels of abundance, particularly in 

areas of the forest that have not seen recent management, relationships between QMSD
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and LVIS metrics for eastern hemlock, red maple and sugar maple improved in both fit 

and reduction of error. PRESS RMSE values were determined to be less than 2.25 cm for 

each of the species studied under these restrictions. Reported as a percentage of the mean 

value for QMSD across all 406 plots, this measure of error is 11% or less for both 

QMSDio (24.8 cm: 9%) and QMSD5 (19.9 cm: 11%) values.

Combined Analyses for Inventory

As Plourde et al. (in press) recently discussed, estimation and mapping of species 

abundances represents an important approach that may be more suitable to the purposes 

of forest inventory than discrete type classification in heterogeneous forests such as those 

found at Bartlett. Analyses conducted in this study uncovered information from both 

AVIRIS and LVIS metrics, alone and in combination, useful to the remote inventory of 

several, often dominant, tree species for this region; most notably for Eastern hemlock, 

red maple and sugar maple. These three tree species, having the strongest relationships to 

proportional patterns of abundance (Table 2.2), also had associated QMSD relationships 

with the highest coefficients of determination seen in this study and low error (Table 2.3). 

The maps resulting from use of these regression models, have value, at a local level, for 

forest inventory and planning efforts.

Increasingly over the past several years, reports of operational or near-operational use of 

newer forms of remote sensing for forest inventory are being published in the scientific

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



literature (Hyyppa and Hyyppa 2001). Much of this perspective is emanating from 

Scandanavia and Canada in regions dominated by coniferous forests (Holmgren 2003, 

Naesset 2002). While the derivation of biophysical parameters from a wide range of 

sensors at regional to global scales is still a matter of intensive research, this study adds 

to the argument that the inventory of traditional forest parameters, inclusive of mixed 

coniferous and deciduous conditions, at local to landscape scales, can be accomplished 

remotely.

Conclusions

Results here suggest that the integrated data sets of hyperspectral and waveform lidar do 

improve the outcomes in evaluating BA, AGBM and QMSD for a given site over use of 

either data set alone. This echoes similar findings reported in Popescu et al. (2004) for 

fused small footprint lidar and multispectral data sets used to estimate common forest 

parameters. This level of improvement doesn’t hold, however, for detection of the 

proportional composition patterns created by the common and dominant tree species of 

this northern forest.

Nonetheless, results of value to traditional forest inventory efforts can be obtained in 

these northern temperate forest tracts through separate analyses, as well as combined use
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of the two data sets. AVIRIS data alone, and in combination with LVIS data, does 

correlate well with compositional abundance patterns determined by species fraction of 

biomass. When further registered with QMSD data, derived from LVIS data alone, maps 

predicting species-level abundance patterns and coincident patterns of stem size and/or 

height can be created for several of the dominant tree species of this region.
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Forest M etric adj.
r1

Press RMSE N Num ber of AVIRIS M NF 2003 
and LVIS 2003 Model Predictors

VIF A lpha P

BA 0.47 731 ml ha-1 406 7 AVIRIS MNF and 1 LVIS < 3 0.05 <0.0001

AGBM 039 51.10 M g ha-* 406 7 AVIRIS MNF and 1 LVIS < 2 0.05 <0X1001

QMSD 033 2.86 cm 406 8 AVIRIS MNF and 2 LVIS < 3 0.05 <0X1001

BA - (unmanaged) 0.45 7.02 m2h a '1 158 4 AVIRIS M N F and 1 LVIS < 2 0.05 <0.0001

AGBM - (unmanaged) 0 35 41.03 M g h a 1 158 2 AVIRIS MNF and 1 LVIS < 2 0.05 <0.0001

QMSD - (unmanaged) 032 2.61 cm 158 2 AVIRIS M NF and 1 LVIS < 2 0X15 <0.0001

Forest M etric adj.
r3

Press RMSE N Number of AVIRIS MNF 2003 
Model Predictors

VIF Alpha p

BA 03 9 8.08 m ^ a 1 406 11 AVIRIS MNF < 3 0.05 <0X1001

AGBM 0 30 55.27 M g h a 1 406 13 AVIRIS MNF < 2 0.05 <0X1001

QMSD 0.17 3.18 cm 406 10 AVIRIS MNF < 2 0.05 <0.0001

BA - (unmanaged) 0.40 7 3 6 m 1ha» 158 3 AVIRIS MNF < 2 0.05 <0X1001

AGBM - (unmanaged) 0.45 4 5 2 7  M g h a 1 158 4 AVIRIS MNF < 2 0.05 <0.0001

QMSD -  (unmanaged) 0.19 2.84 cm 158 3 AVIRIS MNF < 2 0.05 <0.0001

Forest M etric adj.
r1

P r ess RMSE N Num ber of LVIS 2003 Model 
Predictors

V IF Alpha P

BA 0.16 9 3 5 m J ha> 406 1 LVIS (RH25) 1 0.05 <0.0001

AGBM 0 3 7 5532 M g ha-1 406 1 LVIS (RH50) 1 0.05 <0.0001

QMSD 0.25 3.00 cm 406 2 LVIS (RH25 and RH75) < 2 0X15 <0.0001

BA- (unmanaged) 0.25 8.05 mI h a 1 158 1 LVIS (RH50) 1 0.05 <0.0001

AGBM- (unmanaged) 036 48.75 M g haJ 158 1 LVIS (RH50) 1 0.05 <0.0001

QMSD -  (unmanaged) 039 3.00 cm 158 1 LVIS (RH100) 1 0X15 <0.0001

Table 2.1 Relationships between 2003 AVIRIS MNF and LVIS metrics and selected measures of forest structure
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Forest Metrics adj.
r1

Press
RMSE

N Number of AVIRIS 
MNF 2003 & LVIS 
2003 Model Predictors

VIF Alpha P

Arcsine Square Root of American Beech AGBM Fraction 0.65 0.16 379 7 AVIRIS MNF < 2 0.05 <0.0001

Arcsine Square Root of Red Maple AGBMFraction 
(Red Maple AGBM fraction > 0.01 in unmanaged forest) 0.61 0.13 133

5 AVIRIS MNF & 1 
LVIS < 2 0.05 <0.0001

Arcsine SqoareRoot of Red Maple AGBM Fraction 
(Red Maple AGBM fraction > 0.01 in unmanaged forest) 0.52 0.14 138

5 AVIRIS MNF
< 2 0.05 <01X101

Arcsine Square Root - Eastern Hemlock AGBMFraction 0.57 0.12 337 8 AVIRIS MNF <2 0.05 <0.0001

Arcsine Square Root of Sugar Maple AGBM Fraction 
(Sugar Maple AGBMfraction > 0.01) 0.51 0.14 256

10 AVIRIS MNF &  1 
LVIS < 2 0.05 <0.0001

Arcsine Square Root of Sugar Maple AGBM Fraction 
(Sugar Maple AGBMfraction > 0.01) 0.49 0.14 256 10 AVIRIS MNF < 2 0.05 <0.0001

Arcsine Square Root of Yellow Birch AGBMFraction 025 0.14 353 8 AVIRIS & 1 LVIS < 2 0.05 <0.0001

Table 12. Relationships between 2003 AVIRIS MNF and LVIS metrics and species composition proportional to AGBM
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Forest Metric r2 or 
adj. 
r2

Press
KMSE
(cm)

N LVIS 2003
Model
Predictors

VIF Alpha P

QMxD ji
(Eastern Hemlock AGBMfraction > 03) 0.46 1.93 38 R H 25& R H 75 <2 0.05 <0.0001

QMSD,,
(Red Maple AGBMfraction > 033  in unman aged forest) 0.43 222 55 RH100 1 OIK < 0.0001

QMSD;
(Sugar Maple AGBMfraction > 0.1 in unmanaged forest) 0.40 135 27 RH75 1 0.05 0.0004

Table 2.3 Relationships between 2003 LVIS metrics and QMSD
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Figure 2.1 Location of Bartlett Experimental Forest, showing established plot network.
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Figure 2.2 Metrics derived from lidar waveforms. Adapted from Drake et al. 2002.
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Figure 2 3  Scatter plots of predicted abundance patterns and QMSD relationships for selected species. 
Restrictions on plot selections and resulting regression models are found in Tables 2JZ and 23 .
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Figure 2.4 Predicted areas of eastern hemlock predominance (AGBM fraction > 0.2) in BEF. Blade shading is 
predicted to encompass more than 30% hemlock AGBM. Lighter gragr shading is  predicted to encompass from 
20% to 30% hemlock AGBM. The model generated the following parameters: adj.r2 = 0.57; Press RMSE = 0.12; 
p < .0001; N=337 for points where hemlock AGBM > 0, using 8 AVIRIS variables as predictors. The model is 
derived from stepwise regression of 25 standardized LVIS and AVIRIS MNF metrics obtained from nights 
conducted in 2003. An overlay of TJSFS NERS plot data indicating hemlock abundance (dark red squares > 0.3; 
pale red squares < 0.3 and > 0.2) measured in 2001-2003 is also presented.
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P reik teO
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less than 20%
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Figure 2.5 Predicted areas of red maple predominance in the BEF. Black shading is predicted to encompass 
more than 30% red maple AGBM. Gray shading is predicted to encompass from 20% to 30% red maple 
AGBM. The model generated die following parameters: adj. r2 = 0.61; Press RMSE = 0.13; p < .0001; N=138 
for points where red maple AGBM > 0.01 in relatively unmanaged conditions, using 5 AVIRIS variables and 1 
LVIS metric as predictors. The model is derived from stepwise regression of 24 LVIS and AVIRIS MNF 
metrics obtained from flights conducted in 2003. An overlay of USFS NERS plot data indicating red maple 
abundance (dark red squares > 0.30; pale red squares < 0.3 and > 0.2) measured in 2001-2003 is also presented.
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Figure 2.6 Predicted areas of sugar maple predominance in BEF. Black shading is predicted to encompass
more than 30% sugar maple AGBM. Gray shading is predicted to encompass from 20% to 30% sugar 
maple AGBM. H ie model generated the following parameters: adj. r2 = 0.51; Press RMSE = 0.14; p < .0001 
N=256 for points where sugar maple AGBM > 0.01, using 10 AVIRIS variables and 1 LVIS metric as 
predictors. The model is derived from stepwise regression of 26 LVIS and AVIRIS M NF metrics obtained 
from flights conducted in 2003. An overlay of USFS NERS plot data indicating sugar maple abundance 
(dark red squares > 0.30; pale red squares < 0.3 and > 0.2) measured in 2001-2003 is also presented.
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Remote Inventory (AVIRIS and LVIS) of Eastern Hemlock
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figure 2.7 Two prediction m odels are combined in this map. Levels of predicted quadratic mean stem  
diameter (QMSD; cm) are shown within regions of the BEF that are predicted to encompass more than 
30% Eastern Hem lock AGBM. The abundance model is derived from  stepwise regression o f 25  LVIS and 
AVIRIS MNF m etrics obtained from  flights conducted in 2003. The model predicting eastern hemlock 
abundance generated the following parameters: adj. r2 -  0.57; Press RM SE = 0.12; p <  0.0001; N=337 for 
points where Eastern Hemlock AGBM  > 0, using 8 AVIRIS variables as predictors. The model predicting 
QMSD (stems > 10 cm) generated the following parameters: adj. r2 = 0.46; Press RM SE = 1.93 cm; p <  
.0001; N= 38 for points where Eastern Hemlock AG BM  fraction >  0.30, using 2 LVIS metric as predictors.
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Figure 2.8 Two prediction models are combined in this map. L evels of predicted quadratic 
mean stem diameter (QMSD; cm) are shown within regions of the BEF that are predicted to 
encompass more than 30% red maple AGBM. The abundance model is derived from stepwise 
regression of 24 LVIS and AVIRIS MNF metrics obtained from flights conducted in 2003. The 
model predicting red maple abundance generated the following parameters: adj. r2 = 0.61; Press 
RMSE = 0.13; p < 0.0001; N=138 for points where red maple AGBM > 0.01 in relatively 
unmanaged conditions, using 5 AVIRIS variables and 1 LVIS metric as predictors. The model 
predicting QMSD (stems > 10 cm) generated the following parameters: adj. r2 = 0.43; Press 
RMSE = 2.22 cm; p < .0004; N= 55 for points where red maple AGBM fraction > 0.33, using 1 
LVIS metric as a predictor.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Remote Inventory (AVIRIS and LVIS) of Sugar Maple '

Predicted
QMSD
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Figure 2.9 Two prediction models: are combined in this map. Levels of predicted quadratic 
mean stem diameter (QMSD; cm) are shown within regions of the Bartlett Experimental 
Forest that are predicted to encompass more than 20% sugar maple AGBM. The 
abundance model is derived from stepwise regression of 26 LVIS and AVIRIS MNF 
metrics obtained from flights conducted in 2003. The model predicting suagr maple 
abundance generated the following parameters: adj. r2 = 0.51; Press RMSE = 0.14; p < 
0.0001; N=256 for points where sugar maple AGBM > 0.01, using 10 AVIRIS variables 
and 1 LVIS metric as predictors. The model predicting QMSD (stems > 5 cm) generated 
the following parameters: adj. r2 = 0.40; Press RMSE = 1.85 cm; p < .0004; N= 27 for 
points where sugar maple AGBM fraction > 0.1, using 1 LVIS metric as a predictor.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ar
cs

in
e 

sq
rt 

of 
be

ec
h 

AG
BM

 
-fr

ac
tio

n

1 .2 -

0.9-
0 .8 -

0.7-

■■■0.3-
0 2 -

0.1

sqrt of beech AGBM fractionPredicted arcsine

Figure 2.10 Scatter plot of predicted abundance pattern for 
American beech. Regression model is found in Table 2.2.
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CHAPTER 3

THE USE OF WAVEFORM LIDAR AND HYPERSPECTRAL SENSORS TO ASSESS 

THE SPATIAL, COMPOSITIONAL, AND STRUCTURAL PATTERNS 

ASSOCIATED WITH RECENT AND REPEAT DISTURBANCE

Abstract

Waveform lidar imagery was acquired on September 26, 1999 over the 1000-ha. Bartlett 

Experimental Forest (BEF) in central New Hampshire (USA) using NASA’s airborne 

Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an 

extensive ice storm damaged millions of acres of forestland in northeastern North 

America. Lidar measurements of the amplitude and intensity of ground returns appeared 

to readily detect areas of moderate to severe ice storm damage within the BEF and 

revealed environmental patterning associated with the worst damage. Southern through 

eastern aspects on side slopes were particularly susceptible to higher levels of damage in
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this forest, in large part overlapping tracts of forest that had also suffered the highest 

levels of wind damage from the 1938 hurricane. The highest levels of sugar maple (Acer 

saccharum) basal area and biomass within the BEF, determined through analysis of 

1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral 

imagery and ongoing inventory of USFS Northeastern Research Station (NERS) field 

plots, are located within the same tracts of forest. Site susceptibility to repeated natural 

disturbance of intermediate severity occurring over a period of decades may be 

influencing the species composition of these tracts. The percentage of sugar maple coarse 

woody debris (CWD), adjusted to represent the amount of dead wood of 3 in. (7.6 cm.) 

diameter size or greater fallen throughout BEF since the 1998 ice storm, is only 4% of the 

total despite sugar maple comprising 11% of the total biomass of BEF. We found log 

normal agreement between field measurements of coarse woody debris greater than 7.6 

cm dbh and the LVIS metrics of mean canopy height (r2= 0.57; p = 0.000) in areas that 

had been subjected to moderate-to-severe ice storm damage.

Keywords: lidar, LIDAR, LVIS, laser altimetry, AVIRIS, high resolution spectral 

imagery, hyperspectral, end member analysis, canopy, structure, height, biomass, ground 

energy, ice storm, hurricane, site susceptibility to natural disturbance; coarse woody 

debris, sugar maple, Acer saccharum
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Introduction

In regions prone to catastrophic wind events, it has been suggested by Foster et al. (1998) 

that persistent landscape-scale variation in site susceptibility can strongly influence 

patterns of forest damage and may, as a consequence of the frequency and intensity of 

disturbance, also control such ecological characteristics as canopy structure, the spatial 

pattern and traits of successional and old-growth forests, and primary production. It has 

also been increasingly recognized that in addition to major wind events, ice storm 

damage is a significant factor in the structuring of forests; under certain conditions, 

reaching levels of biomass and basal area damage that rival or even exceed the magnitude 

of damage seen with major hurricanes (Hooper et al. 2001). Factors controlling the 

pattern of forest damage from such disturbances include gradients of wind velocity, 

topographic exposure, site condition, composition, structure and history (Foster et al. 

1998).

For parts of northern New England, two of the most significant, wide-ranging natural 

disturbances of the past century were the September 1938 hurricane and the January 1998 

ice storm. These storms occurred 60 years apart and impacted some of the same 

landscape, particularly in north-central New Hampshire. Information on the characteristic 

distribution and legacies of these natural disturbances over time and space has been 

reported and simulated in the northeast from a few well-studied sites (Boose et al. 1994,
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Foster 1988a, 1988b, Foster & Boose 1992, Peart et al.1992, Rhoads et al. 2002), but the 

demand for agencies charged with forest management to remotely and repeatedly 

document the spatial extent and magnitude of such events on a broader scale has been 

increasing over time (Schwarz et al. 2003, Millward and Kraft 2004). Knowledge of the 

variability found within these patterns is also important to efforts to accurately model 

carbon balances worldwide.

Waveform-recording lidar (hereinafter lidar) can readily detect the spatial patterns of 

large, infrequent disturbance (Boutet and Weishampel 2003). As a remote sensing tool 

with excellent ability to characterize various aspects of forest structure and light 

patterning, as well as elevation (Dubayah et al. 2000, Parker et al. 2001), it can be used to 

reveal environmental controls on patterns that are specific to particular types of 

disturbance. Relationships between lidar metrics and the magnitude of coarse woody 

debris (CWD) found in forested areas subjected to recent disturbance have not been 

previously studied. But such findings, especially when combined with compositional data 

revealed through spectral imagery, could increase the possibilities to remotely map and 

quantify the overall impacts resultant from site susceptibility to repeated natural 

disturbance events.

In New England, severe damage from the 1938 hurricane has been characteristically, but 

not exclusively, reported on south-to-east facing slopes (Boose et al. 1994, Foster 1988a, 

Peart et al. 1992). Similarly, Lafon et al. (1999) described ice storm impacts from two 

successive storms in Virginia where the heaviest forest damage occurred on mountain
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slopes facing south and east, while Millward and Kraft (2004) reported that damage from 

the January 1998 ice storm in the Adirondacks was concentrated at locations with a 

landscape orientation facing eastward and ranging between northwest and southeast.

They also reported impacts concentrated at elevations ranging from 200 to 600 m.

Rhoads et al. (2002) have documented the effect of the January 1998 ice storm on the 

northern hardwood canopy at Hubbard Brook. They reported that damage in the 60 to 

120 year old south-facing watersheds was greatest in trees >30 cm diameter at breast 

height and at elevations above 600 m. Of the dominant tree species within that northern 

hardwood forest, beech was the most damaged, sugar maple was the most resistant, and 

yellow birch was intermediate.

Canham et al. (2001) have noted that periodic storms of intermediate severity allow 

interspecific differences in canopy tree survival to play a strong role in succession, with 

forests becoming progressively wind-firm and less susceptible to wind disturbance in the 

absence of catastrophic events. Their findings in mature northern hardwood forests report 

that yellow birch and sugar maple have the lowest levels of windthrow; accounting in 

part for their relatively high abundance in old-growth forests (Woods and Cogbill 1994). 

While the return intervals for extreme catastrophic disturbance of northern temperate 

forests may be measured over centuries, historical records also suggest that storms with 

winds or ice sufficient to damage a significant fraction of canopy trees in a stand occur at 

frequencies measured in decades to scores of years (Canham et al. 2001).
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Ruffner and Abrams (2003) provide further data on the return time between such 

moderate-to-severe natural disturbances and comparable links between disturbance 

frequency and compositional status of northeastern hemlock-northern hardwoods forests. 

Disturbance intensity was directly related to site elevation and exposure, decreasing from 

the upland to riparian sites. Upland sites (stand age approximately 350 years) experienced 

medium-intensity disturbances (>20% canopy damage) nearly every 30 years with four 

decades exhibiting heavy (severe) disturbances (>40% canopy damage), resulting in 

higher importance of early successional taxa on uplands. The side slope site (stand age 

350 years) experienced medium-intensity disturbances every decade with only one severe 

intensity disturbance. The riparian site (stand age 250 years) was impacted by medium- 

intensity disturbances every 80 years with no severe disturbances in the last 250 years, 

resulting in the dominance of these sites by later successional hemlock and beech. 

Recruitment patterns were affected by disturbance intensity, with successional hardwood 

species such as yellow birch and red maple recruiting only after medium-to-heavy 

intensity disturbances, and later successional hemlock and beech recruiting successfully 

with low-intensity disturbances.

Significant canopy damage was inflicted on the Bartlett Experimental Forest in north- 

central New Hampshire (USA) by both the 1938 hurricane and the 1998 ice storm (Forest 

Service records, M.L. Smith, personal communication). Airborne remote sensors 

collecting both spectral and physical attribute data were flown over Bartlett relatively 

close to the timeframe of the 1998 storm. The close juxtaposition of the heaviest damage 

from both storm events over the same tracts of northern temperate mixed deciduous
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forest at Bartlett provides an opportunity to look for emergent structural properties that 

may result from repeat exposure to storms of intermediate severity using the tools of 

remote sensing. It is the intent of this paper to assess the use of waveform lidar and 

hyperspectral sensor data to locate the spatial, compositional and structural patterns that 

emerge as the legacies of repeat disturbances at this specific site within the White 

Mountain National Forest.

Methods

Site

Over the past seventy years, the USFS Northeastern Research Station (NERS) has 

assembled a large volume of field data (e.g. Leak 1982, 1996, 1999, Leak and Smith 

1996, 1997, Leak and Sendak 2002, Smith et al. 2002) on a variety of ecosystem 

processes and forest metrics within the 1052-hectare Bartlett Experimental Forest (BEF) 

located within the White Mountain National Forest in the central White Mountains 

(Figure 3.1 and Table 3.1). The landscape of this site reflects an extensive history of 

experimental forest management and varied natural disturbance regimes. Deciduous and 

coniferous forest types including northern hardwood [e.g. sugar maple (Acer saccharum 

Marsh), beech (Fagus grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britton),
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red spruce-balsam fir (Picea rubens Sarg.-Abies balsamea (L.) Miller), eastern hemlock 

(Tsuga canadensis (L.) Carr.), and red oak-white pine (Quercus rubra L - Pinus strobus 

L.)] are represented on a site ranging in elevation from 200 m to 850 m. Slopes vary from 

flat terrain to nearly vertical (rock cliff) conditions. The forest reflects a range of 

successional sequences, forest patch sizes, and structural distributions. Clear-cutting, 

group and individual tree selection, basal area and shelter-wood cuttings have been 

undertaken on approximately 55% of the forest. Forest ages in managed stands range 

from more than 70 to less than 5 years old. Half of the forest serves as an unmanaged, 

natural control, characterized by natural forest disturbance regimes, with ages ranging 

upwards of 100 years (Leak and Smith 1996).

Aspect

For this study, aspect (Figure 3.2) was determined using a digital elevation model derived 

from the bilinear interpolation of a USGS national elevation data set. (Ingraham 2004). 

Eight classes, each encompassing a range of 45° plus an additional class for flat terrain 

were established using tools within the spatial analyst extension of ArcGIS (v. 8.3) (ESRI 

1999-2002). Eastern through southern aspects specifically range from 67.5° - 202.5°.
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USFS NERS Inventory Plots

The USFS NERS originally established a regular grid of approximately 500 permanent 

research plots at Bartlett Experimental Forest in 1931-1932 (Figure 3.1). Re-sampling of 

over 400 of these 0.1 ha square plots was undertaken by the USFS NERS in the 2001- 

2003 field seasons. Measurements tally species and dbh in 1-inch (2.54 cm) dbh classes 

for trees greater than 1.5 inches (.ca 4 cm.) in size. Stem diameters were used to calculate 

basal area. Estimates of total standing aboveground biomass (AGBM) were calculated 

from the field DBH data at footprint and larger scales using established allometric 

equations specific to the northeastern region and inclusive of bole, branch and foliar 

biomass (Hocker and Early 1983, Tritton and Hornbeck 1981, Young et al. 1980, and 

Whittaker et al. 1974). These equations were applied to the field data to calculate total 

standing (aboveground) biomass for each stem (live and dead) and then summed to 

provide the biomass of all stems within a plot. The relative fraction of basal area and 

biomass attributed to each tree species was calculated for each of the inventoried plots. 

All inventory plots have been geo-referenced to within 3-meter positional accuracy. 

These data provide a comprehensive ground inventory of standing biomass and species 

composition of the Bartlett Experimental Forest (Table 3.1).
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Lidar Data

Lidar data was acquired on September 26, 1999 over the BEF using NASA’s Laser 

Vegetation Imaging Sensor (Blair et al. 1999). Nine flight lines were completed between 

Bartlett and West Thornton, N.H. (M. Hofton, personal comm.). LVIS is an airborne 

imaging laser altimeter that records the time and amplitude of a laser pulse reflected off 

target surfaces. The sensor digitizes the vertical distribution of intercepted surfaces 

between the first (top of the canopy) and the last (ground) return producing a waveform 

record. LVIS records circular footprints of variable size; 1999 footprints had a nominal 

radius of 12.5 m. Additional detail on LVIS capabilities can be found in Blair et al. 

(1999).

LVIS metrics used in this study were derived from the waveforms using an automated 

algorithm (Hyde et al. 2005). Lidar canopy height (LHT) was calculated by identifying 

two locations within the waveform where (1) the signal initially increases above a mean 

noise level/threshold (the canopy top) and (2) at the center of the last Gaussian pulse (the 

ground return). The distance between these two locations was then calculated to derive 

the height metric (Figure 3.3) The height of median energy (HOME) was calculated by 

finding the median of the entire signal (i.e. above the mean noise level) from the 

waveform, including energy returned from both canopy and ground surfaces. The 

location of the median energy was then referenced to the center of the last Gaussian pulse 

to derive a height (Drake et al. 2002). The ground energy return metric (GRND) was
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determined by taking the total intensity (i.e. number of digitizer counts) contained in all 

approximately 30 cm vertical bins contained in the last Gaussian peak (Hofton et al. 

2000); (Figure 3.3). Canopy energy (CAN_E) is calculated as the total intensity of the 

entire waveform minus the ground return energy (GRND).

Coarse Woody Debris

Line-intercept sampling (Warren and Olsen 1964, Beers and Miller 1976, Husch et al. 

2003) was utilized to collect coarse woody debris data on 190 transects within the Bartlett 

Experimental Forest in 2004. Each transect was approximately 100 meters in length 

originating at the primary comer of a USFS NERS permanent inventory plot. Dead wood 

greater than 3 inches (7.62 cm.) was recorded. Measurements included log length, end of 

log diameters, and orientation of fall. Logs were identified to species or 

hardwood/softwood categories where possible.

Logs were assigned to one of eight decay classes in the field with decay class I containing 

the most recently fallen debris. Decay classes were established based on methods used by 

C. Cogbill (personal correspondence to A. Fast) and Pyle and Brown (1998 and 1999). 

The range in years since mortality encompassed within any given decay class of fallen 

logs was classified based on analysis of an ongoing tree silvics study established at BEF 

in 1963 and 1964 (Leak and Solomon 1975, Solomon 1977a, Solomon 1977b). All trees 

within 48  one-third acre plots were identified, tagged, and mapped; plots were
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inventoried every 2-6 years: 1967, 1969, 1972, 1974, 1980, 1985, 1989,1991, 1995, 2000 

and 2004. This data allowed a range of time each log has been on the ground to be 

determined. Logs were assigned to decay classes in 2004 and cross-tabulated with time 

since mortality. The cumulative percentage of logs of a given age within any decay class 

was subsequently calculated (Fast 2005). For example, decay class I and II encompass 

hardwood logs that have been on the ground for anywhere from 1 to 13 years with 89% 

of the logs in decay class I having been on the ground for six years or less and 44% of the 

logs from decay class II having been on the ground for six years or less (Fast 2005).

For this study, log volume per acre figures were adjusted to reflect the amount of CWD 

on the ground that had fallen within the six-year time frame since the occurrence of the 

1998 ice storm.

Initial volume calculations follow the equations provided below:

Volume per log was calculated as Vr0t = D2 / [bo + (bi/H)] (Honer 1967) where:

VTot = Total volume in ft3

D = diameter outside bark (inches) measured at breast height (4.5. ft)

H = total height (ft)

bo and bi are species specific regression coefficients derived from Honer (1967).

Volume per acre was calculated as 43,560 ft2/(w; x T) ft2 (Tritton 1980) where:
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T = transect length (330 ft. or 100.58 meters) 

Sj = sample*

P i  = projections (feet or meters)

W; = Pj + Pj (effective plot width for Sj)

AVIRIS

Sugar maple (Acer saccharum) abundance classification was derived from high spectral 

resolution imagery (Figure 3.4). Image data were acquired using NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS records data in 224 

contiguous spectral bands covering the spectral range of 0.4-2.4 pm with a spectral 

resolution of 10 nm. The spatial resolution of AVIRIS data is 20 m with a full scene 

covering 10 x 10 km. (Vane and Goetz 1988). Cloud-free AVIRIS imagery was obtained 

for the entire White Mountain National Forest in New Hampshire in August 1997. A 

subset of this image data set was created to include only BEF. This image was then 

atmospherically corrected using ATREM 3.1 (Gao et al. 1992) and geometrically 

corrected with ERDAS Imagine v. 8.5. Wavelength channels were evaluated in the 

AVIRIS image using the ENVI™ (v. 3.6) animation tool, and those with strong water 

absorption features and low signal-to-noise were excluded from further analysis. The 

AVIRIS image was then transformed with a minimum noise fraction (MNF) transform 

rotation to reduce data dimensionality in preparation for spectral unmixing.
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Inventory data collected for more than 400 plots in Bartlett Experimental Forest in the 

early 1990s provided the basis for estimates of sugar maple abundance. Regions of 

interest (ROIs) were created in the AVIRIS image using relative sugar maple abundance 

calculated from basal area for 163 of the plots. The endmembers from these ROIs were 

then applied to a mixture tuned matched filtering (MTMF™) algorithm (Research 

Systems, Inc. 2002) to map six classes of sugar maple abundance: 1 to 10%; 11 to 20%; 

21 to 30%; 31 to 40%; 41 to 50%; and greater than 50%.

Data Analysis 

Sugar Maple Abundance and LVIS Metrics

USFS NERS inventory plot data for the Bartlett Experimental Forest was used to 

examine relationships between sugar maple abundance, aspect and 1999 LVIS measures 

of ground return energy. In comparison to the 0.1 ha square USFS NERS inventory plots, 

the 1999 LVIS circular footprints are 0.049 hectares in size. Given the variable overlap of 

LVIS flight lines during the 1999 flight over Bartlett, any given USFS NERS plot 

contained the center points of from one to ten lidar footprints. For each of these plots, 

mean values were calculated for the 1999 LVIS metrics (e.g. elevation and ground return
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energy) derived from footprints with center points located within the bounds of USFS 

NERS plots. Analysis was restricted to 145 plots where sugar maple was present 

at elevations above 325 m with mean tree height exceeding 19 m. Plots were then 

aggregated by aspect and mean values on sugar maple abundance and mean ground 

energy generated for each group.

Coarse Woody Debris and LVIS Metrics

For this analysis, the CWD data for Bartlett was adjusted to use log volume 

measurements per acre that reflect the fraction of volume derived from logs that were 

considered to be six years or less in age since mortality. This six year period corresponds 

to the time frame between CWD data collection and the last major natural disturbance 

within this forest; the ice storm of January 1998. A 20 meter by 100 meter polygon 

(hereinafter called the CWD plot) originating from the USFS Northeastern Research 

Station (NERS) primary plot comer was used to encompass each CWD transect and to 

define an area from which the center points of the 1999 LVIS footprints that fall within 

the plot could be extracted.

Given the variable overlap of LVIS flight lines during the 1999 flight over Bartlett, any 

given CWD plot contained the center points from between one to eighteen lidar footprints 

(Figure 3.5). For each of the 190 CWD transects, mean values and their squares were 

calculated for the LVIS 1999 metrics (LHT, HOME, GRND, CANJE) derived from
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footprints with center points located within the bounds of the CWD plots. The CWD 

metrics of volume per log per acre within the most recent six year mortality class were 

also aggregated and summed for each CWD transect.

To find relationships specific to those areas of Bartlett that contain mature, northern 

hardwood forest with open or damaged canopy, three restrictions were imposed on the 

dataset. Sites were chosen where the LVIS measure of the intensity of ground return 

energy was relatively high (mean ground energy > 2250), mean elevation exceeded 325 

m and where LVIS canopy height reflected the height of mid-successional forest (mean 

height > 19 m; Figure 3.6). The latter restrictions removed from consideration those sites 

at Bartlett that have been subject to recent forest management and gave emphasis to 

sloped forest tracts comprised largely of northern hardwood species. Eighteen CWD plots 

met these restrictions (Figure 3.6).

The relationships between the measured CWD data (dependent variables) and the mean 

values of 4 LVIS (LHT, HOME, GRND_E and CAN_E) (independent variables) were 

explored through stepwise mixed linear regression techniques. Statistical analyses were 

conducted using JMP IN® software (SAS Institute Inc. 2005). Dependent, independent 

variables and the regression residuals were tested for normality of their distributions 

using the Shapiro-Wilk W test (Shapiro and Wilk 1965) and normal quantile plots. A 

natural log transform was used to improve the normality of the distribution. The critical 

value of P (alpha) was set at 0.05. Prediction error sum of squares root mean square 

errors (PRESS RMSE) were calculated for each forest metric. PRESS RMSE is
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computed as the square root sum of squares of the prediction residuals (Mark and 

Workman 1991, Hastie et al. 2001). As an out-of sample validation technique, Press 

RMSE tests how well the current model would predict each of the points in the data set 

(in turn) if they were not included in the regression. Low values of PRESS RMSE usually 

indicate that the model is not overly sensitive to any single data point. Regression results 

are summarized in Figure 3.9. Maps were analyzed and produced using ENVI® v. 4.2 

(Research Systems, Inc. 2005), Imagine® v. 8.7 (ERDAS 2004), and ArcGIS ® v. 8.3 

(ESRI, 1999-2002) software.

Results

Sugar Maple Abundance and LVIS Metrics

A strong association between areas supporting greater than 30% basal area of sugar 

maple with the higher values of 1999 LVIS ground energy metrics is visually apparent in 

Figure 3.7. The overlap is particularly striking on forest tracts with southern through 

eastern aspects. USFS NERS field data (Figure 3.8) also indicates that plots located on 

southeastern aspects at Bartlett support a higher abundance of sugar maple and higher 

levels of measured ground return energy. Analysis of variance of 1999 LVIS mean 

ground energy metrics versus aspect was significant (p < 0.000) for all 411 plots sampled
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by the Forest Service, as well as for the smaller subsets of 277 plots where sugar maple 

was present and 145 plots restricted to mature forests above elevations of 325 m. The 

distribution of sugar maple abundance was non-normal and Kruskal-Wallis analysis of 

sugar maple abundance versus aspect was significant at p < 0.007 (N=145) and p < 0.000 

(N=277 and 411). Sugar maple CWD from decay classes I and II is virtually non-existent 

within these same areas with only 8 logs out of 437 (2%) logs found within those two 

decay classes in the forest as a whole (Figure 3.7). Sugar maple CWD from decay 

classes I-III accounted for only 4% of the downed logs within the forest.

Coarse Woody Debris and LVIS metrics

The restrictions described above resulted in the selection of eighteen plots in the western 

half of Bartlett. Of these, seventeen are largely hardwood sites, with beech predominant 

as CWD (Table 3.2). Sixteen of these eighteen plots are located on southern, southeastern 

or eastern aspects (Figure 3.7). All transects were located within the area of Bartlett that 

suffered the heaviest amounts of damage from the 1998 ice storm. Under these 

restrictions, the relationship between the log value of the sum of CWD log volumes 

(adjusted to reflect a per acre figure for logs that have fallen within the past six years) per 

CWD transect with the mean canopy height of aggregated 1999 LVIS height metrics was 

good (R2 = 0.58; p= 0.003; Figure 9). The PRESS RMSE error of 0.44 was 9% of the 

mean distribution value (5.12) of the natural log of the CWD values.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Discussion

If the premise described by Foster et al. (1998) of persistent landscape-scale variation in 

site susceptibility is correct, then spatial, compositional and structural patterns should 

emerge as the legacies of such repeat events. Two of the largest impact disturbances at 

Bartlett over the past century have been the hurricane of September 1938 and the ice 

storm of January 1998. Unpublished data (M.L. Smith personal communication; Forest 

Service records) on moderate-to-severe tree damage sustained from both events largely 

overlap over the western end of the experimental forest (Figure 3.7). These same areas 

generally support higher levels of northern hardwood species compared to lower 

elevation sites at Bartlett (Plourde et al. in press), with sugar maple reaching some of the 

highest levels of basal area and biomass within the entire forest on these sites. These side 

slope sites are located generally above 350 meters in elevation and coincide with some of 

the only east- and southeast-facing aspects on the landscape at Bartlett.

LVIS ground energy metrics have utility in mapping the spatial pattern of damaged forest 

canopy, particularly in unmanaged tracts. Relatively high values of ground energy are 

recorded as larger numbers of photons reach the ground in areas where canopy cover has 

been damaged and opened to greater light penetration. At Bartlett, only areas of recent 

active forest management and tracts of forest subject to the most damage from the 1998 

ice storm were revealed by these higher values of measured ground energy. Once
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restricted to reflect only largely unmanaged forest conditions at higher elevations (above 

325 m), the overall correspondence of high ground energy metrics with both southern 

through eastern aspects and the distribution of higher levels of sugar maple biomass and 

basal area at Bartlett is striking. The pattern suggests the possibility that repeat 

disturbance events on southern through eastern aspects have helped shape the hardwood 

composition of these forests.

Where natural disturbances or environmental conditions have increased the openness of 

the canopy within this older, largely unmanaged forest, a relationship between CWD and 

LVIS structural metrics can be established. In this situation, LVIS metrics are likely 

recording a structural configuration of the canopy that has been shaped by the same 

disturbance events that also largely define the amount of CWD on the ground. Although 

the canopy configuration of older trees is certainly not the result of just one disturbance 

event, the relationship between LVIS metrics and CWD improves if the CWD totals are 

adjusted to levels that correspond with the timeframe of the most recent significant 

natural disturbance. At Bartlett, the 1998 ice storm has both significantly impacted 

canopy configuration and contributed to the current levels of CWD. The 1999 LVIS 

flight captured the damage within 2 years of the January 1998 storm and before salvage 

operations were undertaken within sections of the experimental forest. CWD data 

collected even six years later appears to correlate well.

In general, the relationship found between the LVIS metrics and CWD followed the well- 

established ecological pattern of taller trees (and hence often larger trees) corresponding
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with larger amounts of CWD. This trend became more noticeable as tree height began to 

exceed the mean value (~ 23 m) seen in the forest as a whole (Table 1). Rhoads et al. 

(2002) discuss two factors, amount of decay and surface area of crown, as possible 

determinants in the differential susceptibility to damage seen between larger and smaller 

trees. Decay can weaken the mechanical properties of the wood in older (and often 

larger) trees while larger crowns accumulate heavier loads of ice or wind stress; both 

factors increasing the likelihood of damage from ice or wind events. Hagen and Whitman 

(2001) have similarly noted that differences in volumes of downed dead wood among 

comparable forest types in Maine were being driven by the density of large living trees, 

with large-diameter living trees creating an ecological cascade of structure.

Conclusions

LVIS metrics obtained within two years following the January 1998 ice storm provided 

two notable findings for the forest at Bartlett: (1) Higher amplitude values of LVIS 

ground return metrics provided a spatial record of higher levels of canopy damage within 

older, unmanaged forest tracts; and (2) Within those largely unmanaged forest tracts 

identified as having open and/or damaged canopy, LVIS height metrics can be used to 

establish a statistical relationship with CWD data. Future replication or expansion of the
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dataset may allow prediction of such variables for other similar forest tracts within the 

region.

The general patterns from natural disturbances of intermediate severity reported 

elsewhere in New Hampshire (Foster 1988a, Rhoades et al. 2002, Peart et al. 1992) are 

upheld at Bartlett, with damage from hurricane and ice storm being particularly evident 

on south to east facing slopes, higher elevations of the forest showing greater levels of 

damage, and coarse woody debris being dominated by beech, red spruce, and other 

hardwoods with little contribution from sugar maple.

A previously unreported factor influencing the abundance of higher levels of sugar maple 

within the Bartlett Experimental Forest appears to be landscape scale adaptation to sites 

subject to moderate-to-severe natural disturbances every few decades. The general 

resistance of sugar maple to the levels of canopy damage and associated levels of CWD 

seen in contrast to other associated northern hardwood species appears to support to this 

response.

The ability to examine the spatial, compositional and structural patterns revealed by 

waveform lidar and hyperspectral data in conjunction with other physical landscape 

patterns may allow information on the characteristic distribution of these events in time 

and space to be more broadly recognized on the landscape. Determination and recording 

of such spatial patterning is critical as ecologists increasingly recognize that the legacies 

of natural disturbance and land-use continue to influence ecosystem structure and
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function for decades or even centuries into the future (Foster et al. 1998, Foster et al.

2003).
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D ata Sources and Types N Plot or 
Footprint 
Size 
(ha)

Mean of Maximum
Canopy Height
(standard deviation! 
(m)

Mean QMSD 
[standard 
deviation] 
(cm)

Mean AGBM
[standard
deviation]
(Mg ha-1)

Mean BA 
(standard 
deviation] 
(m’ ha-1)

LVIS 1999 Footprints within BEF 52279 0.049 1 2 9  [4-7|

If SFS NERS Inventory Plots at BEF 413 0.1 2 4 9  [3.7] 2 42 .4  163.7] 39.5 [10.3]

Table 3.1 Measures of Forest Structure for Bartlett Experimental Forest
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Tnnseci
Name

# o f LVIS 
fbo^rmts

# k>gf >
3 a .
diameter

%eeie*
(BE “American Beech; RS= Red Spruce; SM = SlngarMajle; 
EH= Eaitern Hemlock; YB = YeUrw Back; WB “ Pafer Birch; 
RM = Red Maple; BF = Babel* Hr; ST = Staged M afk)

M en
LVIS
HeigM
(m.)

Sum o f CWD 
Volume fa hen finee 
U N  Ice Storm 
< # /* )

7D-e 5 13 6 unknown; 2 SM; 2 RM; 1 YB; 1 WB, 1 ST 23.62 133.65

12Itw 8 21 10 ST, 3 BE. 3 SM. 3 unknown; 1 RS; 1 VB 23.11 164.05

lEC-n 5 12 7 BE;2YB;2 ST; 1 unknown 2536 17297

llF-w 4 13 6 BE, 4 unknown; 1 SM; 1 EM; 1 YB 2398 19439

12T-W 4 17 7 YB; 2 BE, 1 EH; 1 SM; 1 ST; 5 unknown 25.77 21433

18Uw 5 13 9 BE; 1 YB, 1 WA; 1 ST, 1 unknown 25.42 214.78

lON-e 9 28 19 BE; 3 RM; 2 YB; 1 SM; 1 ST; 2 unknown 24.81 228.74

7F-w 5 21 9 BE; 10 unknown; 2 YB 24.10 231.66

lOUw 3 16 7 BE;2 EH; 2 ST; 1 YB; 1 WB;3 unknown 2338 245.18

llP-e 5 21 17 BE; 3 Unknown; ISM 2326 25921

9F-w 6 22 13 BE; 7 unknown; 2 SM 26.17 331.78

8H-w 7 35 17BE;9unknown;6SM ;2RS;l YB 25 43 449.30

14J-e 7 22 16 BE; 5 unknown, 1 YB 2685 462.81

lOP-w 3 26 14 BE; 4 SM ;4 unknown; 2WB;1RS;1YB 22.78 .49557

12F-e 5 17 3 BE; 3 YB; 2 RM;2 WB; 2 RS; 1 EH; 1 SM; 1 ST; 2 unknown 25.71 54620

4F-e 6 22 15BE;5unknown;l RM;1 WB 2822 67339

9 « 1 29 17 RS; 6 EH, 6 unknown 28.77 833.08

12X-W 1 20 11 BE; 3 WB; 4 unknown, 1 SM; 1 BF 2997 1157.84

Table 3.2 Detail of CWD and associated 1999 LVIS data for selected transects at Bartlett Experimental Forest.
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Hgure 3.1 Location of Bartlett Experimental Forest, showing established plot network.
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Figure 3.2 Bartlett Experimental Forest. Selected Aspects and Elevations 
Elevation grades from 300 (gray) -  850 m (black) in 50 meter classes 
East = yellow; Southeast = green; South = blue
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Figure 3.3 Metrics derived from lidar waveforms. Adapted from Drake et al. 2002.
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Figure 3.4 Sugar Maple (Acer saccharum) basal area > 30% (slate blue shading) derived 
from 1997 AVIRIS imagery and fraction of sugar maple biomass > 0 3  (dark blue squares) 
derived from 2001 -2003 USFS NERS inventory.
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Figure 3.5 Selected examples of CWD transects (the intercepts of individual logs/branches 
with transects are shown as black points) and 1999 LVIS footprints (25 meter diameter blue 
circles) within 100 m by 20 mpolygons originated from USFS NERS plot primary comers.
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Figure 3.6 Locations of 18 CWD transects (Wade polygons). Transects were selected by 
restricting analyses to only those sites where the aggregated 1999 LVIS ground energy 
metrics were relatively high (mean ground energy > 2250), LVIS mean elevation was greater 
than 325 m, and LVIS minimum canopy height was above 19 m (62 ft.) for the forest as a 
whole. These restrictions select for those areas of Bartlett that contain predominately mature 
northern hardwood forest with open or damaged canopy, thus allowing LVIS photons to 
reach the ground at higher levels. The transects selected are all located within the area of 
Bartlett that suffered the greatest damage from the January 1998 ice storm.
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Figure 3.7 Sugar mapl e abundance (basal area > 30%; slate blue shading) derived from 1997 
AVIRIS imagery and 1999 LVIS ground energy returns (GRND E > 2250 in mature forest 
(LHT > 19 m) above elevations of 325 m; red footprints) overlaid on southern through eastern 
aspects (south = light blue; southeast = green; east = yellow). USFS NERS records of inventory 
plots with basal area damage > 20 % from the 1938 hurricane are designated by black squares. 
Selected CWD transects designated by black rectangles. Sugar maple coarse woody debris 
from decay classes I and n  shown as solid Wade stars (N= 8 logs o f467; 2 %).
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Figure 3.8 USFS NERS inventory plot data for the Bartlett Experimental Forest were used to 
examine relation^iips between sugar maple abundance, aspect and 1999 LVIS measures o f ground 
return energy. Analysis examined all sampled plots (N=411), the subset of [dots where sugar maple 
was present (N=277), and the subset of {dots where sugar maple was present at elevations above 
325 m and mean tree height exceeded 19 m (N=l 45). Plots were aggregated by aspect with mean 
values of sugar maple abundance and mean ground energy generated for each group.
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Figure 3.9 Scatter plot of the natural log of the sum of CWD log volumes 
(adjusted to reflect a per acre figure for logs that have fallen within the last six 
years) per CWD transect with the mean canopy height of aggregated 1999 LVIS 
metrics. Simple linear regressi on generated the foil owing results: r2 = 0.58, 
PRESS RMSE 0.44, N = 18, p = 0.003. CWD transects were restricted by 
choosing only sites where the LVIS ground energy metrics were relatively high 
(mean ground energy > 2250), mean elevation exceeded 325 m, and LVIS 
minimum canopy height was greater than 19 m. for the forest as a whole.
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CHAPTER 4

CONCLUSIONS

The capability of waveform lidar, used singly and through integration with high- 

resolution spectral data, to describe and predict various aspects of the heterogeneous 

structure of a northern temperate forest has been explored in this dissertation. A 

remarkable confluence of multiple remote sensing and field data sets specific to the 

Bartlett Experimental Forest has allowed examination of such relationships at varying 

scales and with varying aggregations of data.

The heterogeneity inherent in the northern temperate mixed conifer-deciduous forests 

exemplified by Bartlett has been long recognized. Over a dozen tree species are known to 

comprise the forest at Bartlett, with three quarters of those species able to reach levels of 

relative abundance exceeding 50% at varying places within the forest. The historical 

approach to forest management for this region, emphasizing small-scale partial cuttings
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combined with the impacts seen from ice and windstorms of intermediate severity, adds 

to this complexity. The dense nature of mature forest cover is also a challenge to remote 

sensing efforts here.

Bartlett was originally chosen as a research site for waveform lidar as part of a larger 

NASA effort to assess LVIS in a wide variety of biomes; adding it to one of only a few 

sites worldwide where calibration and validation studies carefully geo-locate individual 

footprint-level field plots with coincident individual LVIS footprints. Waveform lidar did 

successfully correlate with maximum canopy height and other common forest metrics at 

the smallest scale of the LVIS footprint at Bartlett. These results augment a growing 

literature that demonstrates that lidar can recover certain measurements of forest structure 

with a high degree of accuracy relative to field measurements.

Nonetheless, the mixed hardwood-conifer conditions inherent to this forest confounded 

relationships examined at the slightly larger (and less precisely geo-located) scale 

provided by the pre-existing plot grid of the USFS NERS permanent inventory for 

Bartlett. Stratification based on land-use or species composition and/or integration of 

multiple sensor data (AVIRIS and LVIS), however, did provide the means to establish 

reasonable regression relationships at this scale.

The integration of waveform lidar with hyperspectral data did clearly enhance the ability 

to remotely describe a number of common measures of forest structure. Improvements of 

8-9 % across all forest conditions were seen in the coefficients of determination for
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measures of AGBM, BA, and QMSD through the use of the integrated data. Estimates of 

error dropped by 5-8% for the same measures. It is plausible that the predictive nature of 

these relationships could be improved further with the use of waveform lidar amplitude 

metrics such as ground energy and canopy energy (and the resultant relative measure of 

canopy closure derived from them) that were not employed in this study. There may be 

some cross-product relationships between lidar cover and height metrics that deserve 

further research. It could also be valuable to explore integrated LVIS-AVIRIS 

relationships with an expanded and more precisely geo-registered series of footprint-level 

plots.

Restrictions on plot selection set by land-use were explored as a means to improve both 

the descriptive and predictive power of the regression analyses. Geo-location error, in 

combination with the abrupt changes in height found in tracts subject to recent partial 

cuttings, in particular, weakened regression relationships between the LVIS sensor and 

ground data. These results indicate that the stratification of data based on broad patterns 

of management history (recently managed versus unmanaged conditions) can be used as a 

tool to sharpen the predictive relationships explored through regression analyses. This 

gain, obtained by isolating tracts (and plots) of forest with no recent management actions 

within the analyses, carried over to relationships established using integrated data from 

waveform lidar and hyperspectral sensors. Notably, AGBM coefficients of determination 

improved by 25% or more, while corresponding error levels decreased by over 25%, 

using integrated data sets stratified to reflect an absence of recent forest management
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when compared to results obtained using data from a single sensor (AVIRIS or LVIS) 

applied across all forest conditions.

Species composition was another factor of importance at Bartlett. The predominance of 

certain structurally distinctive conifers, such as red spruce or white pine and/or (at BEF) 

the closely associated absence of the dense cover and more homogeneous canopy 

structure of the northern hardwood species of beech or yellow birch resulted in stronger 

relationships between measures of AGBM and the LVIS height metrics. The recognized 

ability of AVIRIS to predict levels of species-specific abundance was evident even in the 

mixed conditions of this forest for four of the dominant trees species. Of these northern 

hardwoods species (beech, red maple, sugar maple and hemlock), only red maple 

benefited notably from the integration of LVIS metrics into the analyses. The strength of 

AVIRIS data was apparent in this regard, explaining nearly all of the variance for the 

other three species and most of the variance in the red maple relationship. AVIRIS data 

allowed species-specific patterns of abundance to be predicted that could be ultimately 

matched with other measures of forest structure better predicted through LVIS metrics 

(e.g. height, QMSD) or through the use of integrated LVIS and AVIRIS data (e.g. 

AGBM, BA).

It is this use of hyperspectral and waveform lidar data, in tandem, to create maps 

predicting species abundance patterns (derived primarily from AVIRIS data) augmented 

with coincident patterns of stem size or height (derived primarily from LVIS data) for 

several of the dominant tree species of this region that may be one of the most useful
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outcomes of this research. Remotely derived maps for large tracts of land reflecting 

species-specific abundance and size data have a wide range of potential application in 

forestry and conservation planning. Landscape patterns could be explored to identify 

remnant areas of structural complexity and their attendant biodiversity in these northern 

forests. The ability to model such spatial patterns on a landscape scale could also be a 

more sensitive means of monitoring changes seen in the dynamics of individual species 

populations brought on by global warming and other environmental change over time. 

While these relationships were only established for a small number of species in this 

study, additional field data, especially for conifer species such as red spruce and white 

pine, may allow other predictive relationships to be uncovered.

It has been a long-standing objective of remote sensing working within forest ecosystems 

to provide results that are the near equivalent of ground-based forest inventory efforts. 

The results here, in actuality, provide a level of detail on the spatial dynamics and 

variability seen in forest structure not readily accessed through typical approaches to 

forest sampling. Lessons learned about the accuracy gained in prediction (fit and error) 

when land-use and/or species composition patterns were used to stratify the initial data 

set are important here, bringing estimates of error closer to those generally expected from 

field sampling efforts. These techniques, did, in various manners specific to this forest 

setting, compensate for situations where less precise horizontal geo-location data were 

available. This is evident in the comparison (below) of the strongest descriptive 

relationships found in the analyses of AGBM (or a species-specific fraction of AGBM) at 

Bartlett.
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AGBM using only LVIS data (footprint level): 

r2 = 0.61; PRESS RMSE = 58.03 Mg ha 1

AGBM using integrated AVIRIS and LVIS data - unmanaged forest (plot level): 

r2 = 0.55; PRESS RMSE = 41.03 Mg h a 1

Species abundance (fraction of AGBM) using only AVIRIS data (plot level):

American Beech: r2 = 0.65; PRESS RMSE = 0.16 

Eastern Hemlock: r2 = 0.57; PRESS RMSE = 0.12

Species abundance (fraction of AGBM) using integrated AVIRIS and LVIS data (plot 

level):

Red Maple: r2 = 0.61; PRESS RMSE = 0.13

This dissertation also explored the use of a broader set of 1999 LVIS metrics, inclusive of 

canopy energy and ground energy variables, to look at questions of spatial patterning due 

to natural disturbance. Examination of higher amplitude values of 1999 LVIS ground 

return metrics, obtained within two years of the January 1998 ice storm, suggested that 

this variable appears to provide a spatial record of higher levels of canopy damage within 

older, unmanaged forest tracts. Analyses using USFS NERS plot compositional 

abundance data, 1997 AVIRIS data, 1999 LVIS metrics, unpublished Forest Service 

records of the 1938 hurricane damage, and a 2004 coarse woody debris data (CWD) set

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



provide evidence that southeastern aspects at Bartlett, in particular, exhibit site 

susceptibility to repeated disturbance caused by storms of intermediate severity over 

time. This susceptibility corresponds to portions of the landscape that currently retain 

notably higher levels of sugar maple abundance. Viewed through extended passages of 

time, this susceptibility may, perhaps, factor as one of the forces maintaining this 

compositional pattern.

LVIS height metrics were used here to explore a statistical relationship with extensive 

coarse woody debris data in areas hardest hit by the 1998 ice storm. To our knowledge, 

this is a new application of LVIS data, directly drawing on its strength to measure height 

accurately, and indirectly exploring a recognized relationship between tree volume (and 

it’s relatively strong correlation with canopy height) and the corresponding volume of 

CWD. The fact that a statistical relationship between levels of CWD and LVIS height 

metrics could be established in those areas of Bartlett that were most recently subject to 

levels of moderate to severe disturbance offers the possibility to forest managers that 

predictions of amounts of CWD created in the aftermath of large storm events might be 

modeled based on knowledge of overall height spatial patterns provided by imaging 

sensor data such as lidar.

The generality of relationships on all of these measures of forest structure established at 

Bartlett should be explored at Hubbard Brook Experimental Forest in West Thornton, 

N.H. and vice versa. It is a rare opportunity to have extensive ground and multiple remote 

sensor data sets at such comparable sites within roughly 50 km of one another. The
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adaptation and application of a generalized biomass equation proposed by Lefsky et al. 

(2002) to two different levels of data in this study allowed some assessment of its’ 

potential in these forests. At the footprint scale, even with the substitution of another 

metric and exclusion of cover metrics, the results were only slightly weaker than those 

seen in the best-fit model of coincident ground AGBM measures and LVIS metrics. 

Establishing and refining such predictive and generalized multi-sensor relationships 

within the Northern Forest stretching from New York through Maine and into forests of 

maritime Canada should remain a priority.
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