10 research outputs found

    Assessing Synthetic Aperture Radar (SAR)-Derived Temporal Patterns and Digital Terrain Data for Palustrine Wetland Mapping

    Get PDF
    Palustrine wetland systems are important ecosystems and provide numerous ecosystems services to support society. Unfortunately, they remain under constant threat of devastation due to land use practices and global climate change, which underscores the need to identify, map, and monitor these landscape features. This study explores harmonic coefficients and seasonal median values derived from Sentinel-1 synthetic aperture radar (SAR) data, as well as digital elevation model (DEM)-derived terrain variables, to predict palustrine wetland locations in the Vermont counties of Bennington, Chittenden, and Essex. Support vector machine (SVM) and random forest (RF) machine learning models were used with various combinations of the three datasets: terrain, SAR seasonal medians, and SAR harmonic time series coefficients. For Bennington County, using the harmonic and terrain data with a RF model yielded the most accurate results, with an overall accuracy of 76%. The terrain data alone and RF model produced the highest overall accuracy in Chittenden County with an accuracy of 85%. In Essex County any combination of the three datasets and the RF model yielded the highest overall accuracy of 81%. Generally, this study documented better performance using the RF algorithm in comparison to SVM. Terrain variables were generally important for differentiating wetlands from uplands and waterbodies. However, Sentinel-1 data, represented as harmonic regression coefficients and seasonal medians, provided limited predictive power. Although Sentinel-1 SAR data were of limited value in the explored case studies, findings may not extrapolate to other SAR datasets using different polarizations, wavelengths, and/or spatial resolutions

    Land use induced land cover changes and future scenarios in extent of Miombo woodland and Dambo ecosystems in the Copperbelt province of Zambia

    Get PDF
    The pattern of Miombo woodland conversion to other land uses and the attendant impacts on vital Miombo ecosystems such as dambos is not well understood. Using the Copperbelt province of Zambia as a case study, we assessed the spatio-temporal patterns of Miombo woodland and dambo conversion to other land uses between 1984 and 2016 and predicted the changes to 2050. The effects of land use land cover change (LULCC) on the extent of Miombo woodlands and dambos was determined by intersecting layers of croplands, settlements, plantations, grasslands and barelands on woodland and dambo pixels. Prediction of future LULCC was done using the land change modeller (LCM) in TerrSet. It was observed that in the period between 1984 and 2016, woodlands decreased by 17.9% while dambos increased by 4.9%. The two classes were predicted to lose 26.4% and 2.0%, respectively, by 2050. Conversion to cropland was the highest contributor to woodland loss, accounting for 57.5% of total loss by 2016, and projected to reach 67.6% by 2050. Similarly, establishment of cropland was shown to result into 53.5% (2016) and 58.9% (2050) of loss of dambos. Expansion of croplands caused a decline in woodlands and dambos. Therefore, sustainable agriculture should be adopted.Government of the Republic of Zambia and Southern African Science Service Centre on Climate Change Adaptive Land-use (SASSCAL).http://www.wileyonlinelibrary.com/journal/ajehj2023Plant Production and Soil Scienc

    Mapping Wetlands in Zambia Using Seasonal Backscatter Signatures Derived from ENVISAT ASAR Time Series

    No full text
    Wetlands are considered a challenging environment for mapping approaches based on Synthetic Aperture Radar (SAR) data due to their often complex internal structures and the diverse backscattering mechanisms caused by vegetation, soil moisture and flood dynamics contributing to the resulting imagery. In this study, a time series of >100 SAR images acquired by ENVISAT during a time period of ca. two years over the Kafue River basin in Zambia was compared to water heights derived from radar altimetry and surface soil moisture from a reanalysis dataset. The backscatter time series were analyzed using a harmonic model to characterize the seasonality in C-band backscatter caused by the interaction of flood and soil moisture dynamics. As a result, characteristic seasonal signatures could be derived for permanent water bodies, seasonal open water, persistently flooded vegetation and seasonally flooded vegetation. Furthermore, the analysis showed that the influence of local incidence angle could be accounted for by a linear shift in backscatter averaged over time, even in wetland areas where the dominant scattering mechanism can change depending on the season. The retrieved harmonic model parameters were then used in an unsupervised classification to detect wetland backscattering classes at the regional scale. A total area of 7800 km2 corresponding to 7.6% of the study area was classified as either one of the wetland backscattering classes. The results demonstrate the value of seasonality parameters extracted from C-band SAR time series for wetland mapping

    Mapping Wetlands in Zambia Using Seasonal Backscatter Signatures Derived from ENVISAT ASAR Time Series

    Get PDF
    Wetlands are considered a challenging environment for mapping approaches based on Synthetic Aperture Radar (SAR) data due to their often complex internal structures and the diverse backscattering mechanisms caused by vegetation, soil moisture and flood dynamics contributing to the resulting imagery. In this study, a time series of >100 SAR images acquired by ENVISAT during a time period of ca. two years over the Kafue River basin in Zambia was compared to water heights derived from radar altimetry and surface soil moisture from a reanalysis dataset. The backscatter time series were analyzed using a harmonic model to characterize the seasonality in C-band backscatter caused by the interaction of flood and soil moisture dynamics. As a result, characteristic seasonal signatures could be derived for permanent water bodies, seasonal open water, persistently flooded vegetation and seasonally flooded vegetation. Furthermore, the analysis showed that the influence of local incidence angle could be accounted for by a linear shift in backscatter averaged over time, even in wetland areas where the dominant scattering mechanism can change depending on the season. The retrieved harmonic model parameters were then used in an unsupervised classification to detect wetland backscattering classes at the regional scale. A total area of 7800 km2 corresponding to 7.6% of the study area was classified as either one of the wetland backscattering classes. The results demonstrate the value of seasonality parameters extracted from C-band SAR time series for wetland mapping

    Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data

    Get PDF
    The C-band Sentinel-1 satellite constellation enables the continuous monitoring of the Earth's surface within short revisit times. Thus, it provides Synthetic Aperture Radar (SAR) time series data that can be used to detect changes over time regardless of daylight or weather conditions. Within this study, a time series classification approach is developed for the extraction of the flood extent with a focus on temporary flooded vegetation (TFV). This method is based on Sentinel-1 data, as well as auxiliary land cover information, and combines a pixel-based and an object-oriented approach. Multi-temporal characteristics and patterns are applied to generate novel times series features, which represent a basis for the developed approach. The method is tested on a study area in Namibia characterized by a large flood event in April 2017. Sentinel-1 times series were used for the period between September 2016 and July 2017. It is shown that the supplement of TFV areas to the temporary open water areas prevents the underestimation of the flood area, allowing the derivation of the entire flood extent. Furthermore, a quantitative evaluation of the generated flood mask was carried out using optical Sentinel-2 images, whereby it was shown that overall accuracy increased by 27% after the inclusion of the TFV

    Temporal data fusion approaches to remote sensing-based wetland classification

    Get PDF
    This thesis investigates the ecology of wetlands and associated classification in prairie and boreal environments of Alberta, Canada, using remote sensing technology to enhance classification of wetlands in the province. Objectives of the thesis are divided into two case studies, 1) examining how satellite borne Synthetic Aperture Radar (SAR), optical (RapidEye & SPOT) can be used to evaluate surface water trends in a prairie pothole environment (Shepard Slough); and 2) investigating a data fusion methodology combining SAR, optical and Lidar data to characterize wetland vegetation and surface water attributes in a boreal environment (Utikuma Regional Study Area (URSA)). Surface water extent and hydroperiod products were derived from SAR data, and validated using optical imagery with high accuracies (76-97% overall) for both case studies. High resolution Lidar Digital Elevation Models (DEM), Digital Surface Models (DSM), and Canopy Height Model (CHM) products provided the means for data fusion to extract riparian vegetation communities and surface water; producing model accuracies of (R2 0.90) for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to field and optical validation data. Integration of Alberta and Canadian wetland classifications systems used to classify and determine economic value of wetlands into the methodology produced thematic maps relevant for policy and decision makers for potential wetland monitoring and policy development.Funding for this thesis was provided by the NSERC CREATE AMETHYST Program, and the Government of Alberta (Economic Development and Trade, Environment and Parks), Campus Alberta Innovates Program

    Spatio-temporal and structural analysis of vegetation dynamics of Lowveld Savanna in South Africa

    Get PDF
    Savanna vegetation structure parameters are important for assessing the biomes status under various disturbance scenarios. Despite free availability remote sensing data, the use of optical remote sensing data for savanna vegetation structure mapping is limited by sparse and heterogeneous distribution of vegetation canopy. Cloud and aerosol contamination lead to inconsistency in the availability of time series data necessary for continuous vegetation monitoring, especially in the tropics. Long- and medium wavelength microwave data such as synthetic aperture radar (SAR), with their low sensitivity to clouds and atmospheric aerosols, and high temporal and spatial resolution solves these problems. Studies utilising remote sensing data for vegetation monitoring on the other hand, lack quality reference data. This study explores the potential of high-resolution TLS-derived vegetation structure variables as reference to multi-temporal SAR datasets in savanna vegetation monitoring. The overall objectives of this study are: (i) to evaluate the potential of high-resolution TLS-data in extraction of savanna vegetation structure variables; (ii) to estimate landscape-wide aboveground biomass (AGB) and assess changes over four years using multi-temporal L-band SAR within a Lowveld savanna in Kruger National Park; and (iii) to assess interactions between C-band SAR with various savanna vegetation structure variables. Field inventories and TLS campaign were carried out in the wet and dry seasons of 2015 respectively, and provided reference data upon which AGB, CC and cover classes were modelled. L-band SAR modelled AGB was used for change analysis over 4 years, while multitemporal C-band SAR data was used to assess backscatter response to seasonal changes in CC and AGB abundant classes and cover classes. From the AGB change analysis, on average 36 ha of the study area (91 ha) experienced a loss in AGB above 5 t/ha over 4 years. A high backscatter intensity is observed on high abundance AGB, CC classes and large trees as opposed to low CC and AGB abundance classes and small trees. There is high response to all structure variables, with C-band VV showing best polarization in savanna vegetation mapping. Moisture availability in the wet season increases backscatter response from both canopy and background classes

    Detection of temporarily flooded vegetation using time series of dual polarised C-band synthetic aperture radar data

    Get PDF
    The intense research of the last decades in the field of flood monitoring has shown that microwave sensors provide valuable information about the spatial and temporal flood extent. The new generation of satellites, such as the Sentinel-1 (S-1) constellation, provide a unique, temporally high-resolution detection of the earth's surface and its environmental changes. This opens up new possibilities for accurate and rapid flood monitoring that can support operational applications. Due to the observation of the earth's surface from space, large-scale flood events and their spatiotemporal changes can be monitored. This requires the adaptation of existing or the development of new algorithms, which on the one hand enable precise and computationally efficient flood detection and on the other hand can process a large amounts of data. In order to capture the entire extent of the flood area, it is essential to detect temporary flooded vegetation (TFV) areas in addition to the open water areas. The disregard of temporary flooded vegetation areas can lead to severe underestimation of the extent and volume of the flood. Under certain system and environmental conditions, Synthetic Aperture Radar (SAR) can be utilized to extract information from under the vegetation cover. Due to multiple backscattering of the SAR signal between the water surface and the vegetation, the flooded vegetation areas are mostly characterized by increased backscatter values. Using this information in combination with a continuous monitoring of the earth's surface by the S-1 satellites, characteristic time series-based patterns for temporary flooded vegetation can be identified. This combination of information provides the foundation for the time series approach presented here. This work provides a comprehensive overview of the relevant sensor and environmental parameters and their impact on the SAR signal regarding temporary open water (TOW) and TFV areas. In addition, existing methods for the derivation of flooded vegetation are reviewed and their benefits, limitations, methodological trends and potential research needs for this area are identified and assessed. The focus of the work lies in the development of a SAR and time series-based approach for the improved extraction of flooded areas by the supplementation of TFV and on the provision of a precise and rapid method for the detection of the entire flood extent. The approach developed in this thesis allows for the precise extraction of large-scale flood areas using dual-polarized C-band time series data and additional information such as topography and urban areas. The time series features include the characteristic variations (decrease and/or increase of backscatter values) on the flood date for the flood-related classes compared to the whole time series. These features are generated individually for each available polarization (VV, VH) and their ratios (VV/VH, VV-VH, VV+VV). The generation of the time series features was performed by Z-transform for each image element, taking into account the backscatter values on the flood date and the mean value and standard deviation of the backscatter values from the nonflood dates. This allowed the comparison of backscatter intensity changes between the image elements. The time series features constitute the foundation for the hierarchical threshold method for deriving flood-related classes. Using the Random Forest algorithm, the importance of the time series data for the individual flood-related classes was analyzed and evaluated. The results showed that the dual-polarized time series features are particularly relevant for the derivation of TFV. However, this may differ depending on the vegetation type and other environmental conditions. The analyses based on S-1 data in Namibia, Greece/Turkey and China during large-scale floods show the effectiveness of the method presented here in terms of classification accuracy. Theiv supplementary integration of temporary flooded vegetation areas and the use of additional information resulted in a significant improvement in the detection of the entire flood extent. It could be shown that a comparably high classification accuracy (~ 80%) was achieved for the flood extent in each of study areas. The transferability of the approach due to the application of a single time series feature regarding the derivation of open water areas could be confirmed for all study areas. Considering the seasonal component by using time series data, the seasonal variability of the backscatter signal for vegetation can be detected. This allows for an improved differentiation between flooded and non-flooded vegetation areas. Simultaneously, changes in the backscatter signal can be assigned to changes in the environmental conditions, since on the one hand a time series of the same image element is considered and on the other hand the sensor parameters do not change due to the same acquisition geometry. Overall, the proposed time series approach allows for a considerable improvement in the derivation of the entire flood extent by supplementing the TOW areas with the TFV areas

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore