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ABSTRACT 

Assessing Synthetic Aperture Radar (SAR)-Derived Temporal Patterns and Digital Terrain Data 
for Palustrine Wetland Mapping 

 

Jaimee Pyron 

 

Palustrine wetland systems are important ecosystems and provide numerous ecosystems services 
to support society. Unfortunately, they remain under constant threat of devastation due to land 
use practices and global climate change, which underscores the need to identify, map, and 
monitor these landscape features. This study explores harmonic coefficients and seasonal median 
values derived from Sentinel-1 synthetic aperture radar (SAR) data, as well as digital elevation 
model (DEM)-derived terrain variables, to predict palustrine wetland locations in the Vermont 
counties of Bennington, Chittenden, and Essex. Support vector machine (SVM) and random 
forest (RF) machine learning models were used with various combinations of the three datasets: 
terrain, SAR seasonal medians, and SAR harmonic time series coefficients. For Bennington 
County, using the harmonic and terrain data with a RF model yielded the most accurate results, 
with an overall accuracy of 76%. The terrain data alone and RF model produced the highest 
overall accuracy in Chittenden County with an accuracy of 85%. In Essex County any 
combination of the three datasets and the RF model yielded the highest overall accuracy of 81%. 
Generally, this study documented better performance using the RF algorithm in comparison to 
SVM. Terrain variables were generally important for differentiating wetlands from uplands and 
waterbodies. However, Sentinel-1 data, represented as harmonic regression coefficients and 
seasonal medians, provided limited predictive power. Although Sentinel-1 SAR data were of 
limited value in the explored case studies, findings may not extrapolate to other SAR datasets 
using different polarizations, wavelengths, and/or spatial resolutions. 
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1. Introduction 
Wetlands are a prime example of the coupling of environmental and anthropogenic 

systems and how they can serve society. They are abundant across urban and rural landscapes, 

where they provide ecosystem services such as carbon sequestration, wildlife habitation, water 

retention from flooding, and recreation [1–3]. Of these wetland ecosystems, palustrine wetlands 

serve as a necessary part of the ecosystem. Palustrine wetlands are inland and vegetated, and 

include but are not limited to bogs, fens, marshes, or swamps and are dynamic ecosystems that 

bear economic and ecological importance [4–6].  

While these ecosystems are rich in resources, they are no longer rich in abundance when 

compared to how prevalent they have been historically—wetlands are disappearing at an 

astonishing rate as a direct result of land use practices associated with urbanization and 

agriculture alongside global climate change issues such as deforestation and sea level rise [2,7]. 

For this reason, they have become a recent topic of discussion and study across both the 

environmental and social sciences. At the same time, technologies have developed and evolved, 

offering advancing opportunities to map and monitor these landscape features. Nevertheless, 

identifying wetlands using remote sensing and surveying techniques have proven difficult as they 

often lack a single unifying feature (i.e., a characteristic spectral signature) and definitive 

boundaries [8,9]. Essentially, wetlands often have inherently fuzzy or gradational boundaries 

with surrounding uplands, resulting in inherent errors in “hard” boundaries and delineations. 

Further, the highly dynamic nature of wetlands (i.e., variety of site characteristics and seasonal 

variability in vegetation and moisture conditions) and technological limitations of satellite-based 

Earth observation has made mapping them an arduous task. Just a few of the potential limitations 

include data cost, sub-optimal weather conditions, image resolution, and satellite launch date. 

While wetland delineation datasets are maintained by the state and federal government, flaws 

exist in these datasets that emphasize the need for automated identification methods with 

increased accuracy and frequent updates—especially as climate and land use change continue 

[8,10,11].  

While there has been an increase in public interest and scientific research relating to 

wetlands in recent years, research has mainly focused on coastal environments, thus creating a 

need for further study of inland wetlands [8]. This is underscored in a study by Davidson [2] in 



which an analysis of 20th century data showed an estimated 69-75% loss of inland wetlands 

compared to a 46-50% loss of coastal wetlands due to human development, including a rise in 

global population, increased and intensive agriculture practices, and urban encroachment on 

natural lands [2]. This exemplifies the need for multi-temporal wetland studies, rather than 

evaluating a single date. Further, studying wet-land presence in a dense time series substantiates 

trends of long-term wetland loss while making models more robust by adding a temporal 

element, or potentially improving mapping accuracy by characterizing seasonal signatures and 

variabilities. Due to the seasonality of wetlands, such as annual changes in moisture levels and 

the presence of standing water, as well as their historic susceptibility to climate change, it is 

pertinent to consider time series analysis during wetland identification. Moreover, a long-term 

time series analysis allows climate scientists to forecast potential wetland variability, therefore 

helping policymakers enact regulatory measures to preserve these areas. 

To understand the importance of wetlands, the public must first understand to what extent 

they are disappearing in the United States. A national-level wetland inventory exists but has 

known flaws and gaps. The National Wetlands Inventory, or NWI, is a publicly available dataset 

provided by the US Fish and Wildlife Service (USFWS). These wetland areas are delineated 

primarily using interpretation of aerial orthophotography based on a classification system 

developed by Cowardin et al. [12] over 40 years ago. Cowardin et al. [12] differentiates five 

wetland types at the highest classification hierarchy (systems): marine, estuarine, riverine, 

lacustrine, and palustrine. These systems are further subdivided into subsystems based on 

hydrological, chemical, biological, and geomorphologic factors [12]. Palustrine wetlands 

specifically include non-tidal wetlands and tidal wetlands with a salinity less than 0.5% that are 

often characterized by their vegetation, including scrub/shrub, forests, emergent mosses, 

emergent lichen, and persistent emergent [12]. These areas are often bounded by other wetland 

systems or up-lands [12]. 

Previously mapped wetlands in the NWI dataset are not regularly updated, meaning they 

may not be representative of the wetland’s current size and spatial extent. Aside from these 

administrative errors, the NWI suffers from errors within the dataset itself. It is known to have a 

low commission but high omission error, meaning that while it does not often incorrectly include 

non-wetlands in the dataset (i.e., commission error), existing wetlands are missed (i.e., omission 
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error). Sharpe et al. [13] also documented that the NWI generally has low levels of both 

classification commission and omission of wetlands greater than 0.40 hectares, implying that it 

does not accurately portray smaller wetlands. Tiner [14] reiterates this point by addressing the 

issue of the target mapping unit, or tmu. The tmu is the smallest wetland consistently mapped, 

although not necessarily the smallest wetland present [14]. This highlights a need to further 

improve classifications, as smaller palustrine wetlands hold economic and environmental 

importance but are consistently and knowingly overlooked and unmapped. Maintaining an 

accurate and up-to-date inventory of wetlands is critical in a time of global climate and land use 

change. For example, Wilkins et al. [15] noted that an awareness of wetlands positively related to 

concern for their loss.  

Evaluating wetlands using remote sensing techniques often includes the use of optical, 

synthetic aperture radar (SAR), and/or terrain data. Traditionally, remote sensing techniques 

have relied on optical imagery with bands in the visible, near infrared (NIR), and shortwave 

infrared (SWIR) spectral ranges for wetland classification analysis, although such data have 

limited availability due to low temporal resolution and cloud contamination [8]. Studies using 

optical imagery for wetland identification have recorded accuracies above 80% from 

WorldView-2 commercial imagery, although this data source may not be viable for large-area 

studies or those with a budgetary constraint [16]. Amani et al. [17] obtained a lower overall 

accuracy of 71% using Landsat-8 Operational Land Imager (OLI) imagery, a widely used free 

alternative. This low accuracy highlights the unsuitability of only optical imagery for wetland 

classification and the need for an open-source solution for future wetland mapping. While the 

normalized difference water index (NDWI) suggests that the green and near infrared bands are 

best for identifying waterbodies, this may not extrapolate to wetlands in general. Corcoran et al. 

[18] found that the blue and red bands were the most important input bands for classifying 

wetlands. Also, standing water is not consistently present in palustrine wetlands; instead, the 

spectral response is more associated with vegetation that has adapted to moist soil conditions 

with seasonal or sporadic inundation. This variability, coupled with the temporal and 

atmospheric limitations of optical imagery, supports a need for further research focused on 

wetland mapping using SAR data.  



 While research suggests that optical imagery alone is insufficient for wetland 

identification and delineation, evidence suggests that the combined use of alternate or multiple 

datasets enhances results [18–20]. Sentinel-1 SAR imagery is an open-source alternative that can 

be used regardless of weather conditions. SAR is a type of active satellite technology that creates 

a finer spatial resolution image by mimicking the motion of a longer antenna, hence synthetic 

aperture [21]. SAR sensors operate in the microwave portion of the electromagnetic spectrum 

and use longer wavelengths than passive, multispectral sensors. These wavelengths are cloud 

penetrating, allowing for repeat data collection on a regular basis, regardless of atmospheric 

conditions [21]. Aside from this, SAR is unique from traditional satellite imagery in that it is 

side-looking, meaning that the microwave pulses are emitted and received at an angle in order to 

measure the backscatters time of travel back at the sensor [21]. C-band SAR, which is 

implemented in the Sentinel-1, is advantageous when identifying wetlands under suboptimal 

atmospheric conditions, as it operates at a wavelength range between 7.5 and 3.75 centimeters, 

making it cloud-penetrable [21,22]. 

Polarization states are determined by the way in which the microwave signals are 

transmitted and received, and there is debate surrounding the optimal polarization for wetland 

identification. Recent studies have recognized HH-polarization as ideal for wetland mapping, but 

it is only available for polar and subpolar regions [17,23]. Baghdadi et al. [24] suggest that cross 

polarization has been identified as providing the best separation between individual wetlands, 

which is more widely available than HH-polarization. SAR has been noted as being particularly 

apt for identifying waterbodies, as Corcoran et al. [18] document in a multi-sensor, multi-

temporal wetland study that SAR specifically improved accuracy when differentiating between 

wetlands and uplands. This can be largely attributed to SAR being situated in the microwave 

region of the electromagnetic spectrum, and subsequently the influence of terrain roughness and 

the dielectric constant on the microwave backscatter [21,25]. Rough surfaces generate higher 

backscatter due to a phenomenon known as volume backscattering, which ultimately sends more 

backscatter to the sensor, resulting in a strong signal [21]. Still waterbodies lack surface 

roughness and result in specular reflectance, where little energy is scattered back toward the 

sensor, resulting in a lower backscatter coefficient [21,25]. Essentially, backscatter coefficients 

are dependent on hydrological processes and tend to exhibit a strong correlation to seasonality 

due to changes in specular reflectance associated with varying inundation extents and soil 
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moisture levels [26]. Issues with SAR wetland classifications arise with the presence of 

vegetation, as vegetated waterbodies suffer most from the issue of double bounce [22,27]. This 

differs from the typical specular reflection seen in most waterbodies, which returns a signal after 

a single bounce, in that the incoming radar pulses make contact with several objects before 

returning a signal [22,27]. While SAR has disadvantages, such as a reputation as being difficult 

to interpret and signals that are made complex by the presence of vegetation in wetlands, using 

complimentary data and certain modelling techniques have made it a viable option for 

identifying wetlands.  

Terrain variables, often derived from digital elevation models, are also used in wetland 

classification. Maxwell et al. [10] used terrain-derived variables such as slope, surface curvature, 

and profile curvature, to detect wetland probability using a random forest (RF) machine learning 

classifier [10]. Notably, this study found that terrain variable importance differs based on 

geographic region [10]. Coupling these terrain-derived variables with SAR and optical imagery 

in multi-sensor and multi-frequency studies can yield robust results wherein the respective 

disadvantages of each dataset are partially offset by the complimentary data [18,28]. Banks et al. 

[29] used RADARSAT-2, DEM, and DSM data to classify shallow water, marsh, swamp, water, 

forest, and non-forested areas. By fusing SAR, DEM, and DSM data, the researchers were able 

to achieve user’s and producer’s accuracies in excess of 90% for each land cover class [29]. One 

notable limitation of terrain data is the temporal aspect; however, this is not typically an issue as 

topography is slow to change, but it could be relevant for quickly changing hydrologic features, 

such as temporary wetlands. 

 The use of time series data derived from multi-data collections in wetland remote sensing 

research can allow characterization of seasonal patterns and changes in moisture levels and 

vegetation. The Landsat data archive is well suited for time series analysis, as the first satellite 

launched in 1972, allowing for over 40 years of landscape change analysis. However, such 

lengthy archives are rare, again hindering studies that use solely optical data [30]. SAR and high-

resolution digital elevation models have only become freely available in recent years (i.e., over 

the last decade), limiting the ability to use these datasets in dense time series analyses to 

characterize non-static relationships and landscape change. However, a shorter time series 



covering only a few consecutive years is generally adequate for investigating seasonal patterns, 

which is of interest here.  

Seasonal variations can be captured using SAR data, as cloud penetration allows for 

uninterrupted data collection at a defined and consistent return interval. Schlaffer et al. [26] 

demonstrated the use of parameters derived from a harmonic time series of SAR backscatter 

coefficients over two hydrological years [26]. They were able to extract seasonal signatures and 

use unsupervised classification to identify wetlands in Zambia [26]. In the case of intermittent 

wetlands, there may only be a few days or weeks when site conditions allow them to be 

differentiated from surrounding uplands, in which case having more frequent image collection 

dates increases the chances of detection [31,32].  

The objectives of this study are to (1) assess measures derived from a time series of 

Sentinel-1 C-band SAR for mapping palustrine wetlands and differentiating them from uplands 

and water bodies, (2) compare harmonic regression and seasonal aggregating techniques for 

summarizing a SAR time series for palustrine wetland mapping, and (3) assess DEM-derived 

variables for palustrine wetland mapping. This study makes use of wetland data available for the 

state of Vermont. Palustrine wetland mapping across three counties in the state were investigated 

as separate case studies. 

 

2. Materials and Methods 

2.1 Study Area 
The study area is comprised of nine major biophysical regions characterized by valley, 

highland, and piedmont regions (Figure 1). This research was formatted as a case study within 

three counties in the state of Vermont, USA: Chittenden, Bennington, and Essex. Vermont is 

located in the northeastern United States and borders Canada to the north, New Hampshire to the 

east, Massachusetts to the south, and New York to the west. Vermont is primarily forested with 

numerous lakes throughout the state resulting from recent glacial activity [33,34]. These counties 

were chosen based on a combination of diverse physical and social influencing factors. The state 

has 14 counties and a total population estimated at 624,000 [35]. Chittenden County is the most 

populated county in Vermont with an estimated population of 164,000 and the county seat, 
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Burlington, is notably the most populated city in the state [35]. Chittenden lies in the 

northwestern part of the state bordering Lake Champlain to the west. Bennington County has an 

estimated population of 35,000 and lies in the southernmost part of the state, bordering New 

York and Massachusetts [35]. Green Mountain National Forest encompasses most of 

Bennington, lending to its mountainous terrain. Essex County has an estimated population of 

6,000, the lowest of any county in Vermont and the entirety of New England. Essex County was 

chosen as it is a rural county with both a small population and low population density, which 

provides a contrast to Chittenden and Bennington. Notably, Vermont was chosen because of the 

quality of the state-made VSWI dataset as well as the thorough wetland regulations within the 

state. 

 



2.2 Data 
This study used Sentinel-1 SAR imagery and the Vermont Significant Wetlands 

Inventory, or VSWI, dataset. Sentinel-1 SAR is comprised of a constellation of two satellites (1A 

and 1B) that were launched on April 3, 2014 and April 25, 2016, respectively [25]. The Sentinel-

1 specifications used for this study are provided in Table 1. SAR GRD data were collected and 

preprocessed approximately every 6 days for the full calendar years of 2017 through 2019 using 

Google Earth Engine (GEE). Notably, GRD is a multi-look product that has been focused to 

ground range, as opposed to the traditional single-look, slanted format [21]. Ground range 

measurements are a correction of the original slanted coordinates recorded by the satellite that 

have been projected onto an ellipsoidal model of the Earth, which allows the data to be 

visualized in a projected map space [21,25]. While this conversion results in the loss of phase 

information and reduced spatial resolution, it provides square pixels and reduced radar speckle 

[21]. The Sentinel-1 products used were collected in VV and VH dual polarized modes, meaning 

that the former is vertically transmitted and vertically received, wherein the latter is vertically 

transmitted and horizontally received. Specifically, data were collected in Sentinel-1’s 

Interferometric Wide mode at 25-meter spatial resolution, where each pixel value represents a 

backscatter coefficient for each unit of ground area in decibels. The decibel is a normalized value 

that represents the observed strength, or amplitude, of the backscatter signal [21,25]. This 

reading indicates whether the incident microwaves are being reflected toward the sensor or away 

from it. Preliminary data collection indicated that VH-polarized and VV-polarized images were 

collected on 159 dates in Bennington County, 163 dates in Chittenden County, and 166 dates in 

Essex County throughout the 2017 to 2019 calendar years. An example of these SAR images in 

Essex County is shown in Figure 2. 

 

Table 1. Sentinel-1 SAR specifications [21] 

Specification Value 
Mode Interferometric Wide 

Product GRD 
Wavelength 5.6 cm 

Frequency (GHz) 5.405  
Resolution 25 m 

Polarizations VV, VH 
Incidence Angle Range 29.1° - 46.0° 

Revisit Time Range 6-12 days 
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Figure 2. Example Sentinel-1 SAR data for Essex County. (a) VV Polarization and (b) VH 

Polarization. Lighter shades indicate higher backscatter. 

 



County contains 266 acres of Class I wetlands and 22,123 acres of Class II wetlands (Figures 3 

and 4) [38]. While this does not directly affect the analysis, it helps gauge the abundance of 

wetlands in the study areas. Furthermore, the dataset includes a few lacustrine and riverine 

wetlands that were manually examined and removed since the study focuses on palustrine 

wetlands. This was accomplished using manual image interpretation of multiple Landsat 8 

Operational Land Imager (OLI) images using the dates shown in Table 2. Multiple Landsat 

images are needed to cover the entire study area and account for potential cloud cover. 

 

Bennington Chittenden Essex 

October 2, 2017 October 2, 2017 October 4, 2017 

October 27, 2017 October 27, 2017 October 27, 2017 

November 28, 2017 November 28, 2017 November 11, 2017 

 

Table 2. Dates of Landsat image collection for manual interpretation. 

 

 

Figure 2. Locations of Bennington, Chittenden, and Essex counties and their Class I and Class II 

wetland coverage. 
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Figure 3. Example Class I and Class II wetlands in the three counties of interest. 

 

2.3 Exploratory Data Analysis 
Prior to conducting the classification, the data were subject to exploratory data analysis. 

This included simple data visualization using boxplots, as well as implementing the Kruskal-

Wallis test. The Kruskal-Wallis test is a non-parametric test that relies on ranks and assesses 

whether there are differences between three or more classes in regard to the values of a 

continuous variable and is a non-parametric alternative to analyses of variance (ANOVA). For 

this study, Kruskal-Wallis was used to test the differences in predictor variable values between 

the mapped groups, i.e. upland, wetland, and waterbodies. This requires using p-values, and 

although not all encompassing, they are a useful tool for statistical analyses [39]. 

 



2,4 Harmonic Time Series Analysis 
Due to the seasonal nature of this study, a non-linear harmonic time series analysis was 

implemented. Two sets of sampled pixel backscatter coefficients, one for VV polarization and 

one for VH polarization, were used as the predictor variables. At a conceptual level, seasonal 

oscillations of a time series can be described using Equation 1, and simplified to Equation 2, 

below: 

y = m + acos(ωt) + bsin(ωt), (1) 

y = m + ccos(ωt − φ), (2) 

In these equations m represents the mean of the series, c represents amplitude, φ 

represents phase angle, t represents time, and ω represents the oscillation frequency [40]. 

Harmonic time series are sinusoidal in nature and the appropriate number of wavelengths fitted 

to the model can be determined through trial-and-error while considering the implications on the 

resulting temporal resolution [40]. For this study, the amplitude and phase angle for VV 

backscatter and VH backscatter were estimated, resulting in four total variables for use in the 

classification models. This model is ideal for SAR data, as radar is cloud-penetrable and 

sensitive to changes in moisture content, therefore lending to its suitability for seasonal analysis. 

The time series allows for visualization, characterization, or quantification of the effects 

of seasonality. With well over 100 images collected over a 3-year time frame in each county, this 

study can be characterized as making use of a dense time series. An example is shown in Figure 

4 of the VV and VH backscatters in Essex county. Dense time series analyses are a relatively 

new technique for analyzing SAR data, as they require a large number of data points collected 

over time and have only been made more possible in recent years due to the Sentinel-1 mission’s 

frequent return interval, once every 6-12 days [26]. The open-source R programming language 

and software environment can perform time series analysis using both its baseline functions and 

the forecast package [41,42]. 
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Figure 4. Example palustrine wetland time series for (a) VH and (b) VV polarization 

 

The terrain variables were derived from the Shuttle Radar Topography Mission (SRTM) 

digital elevation models (DEMs) at 30-meter spatial resolution using ArcGIS Pro and the 

ArcGIS Geomorphometry and Gradient Metrics toolbox [43]. A total of six terrain variables, 

shown in Table 3, were included in this study: slope, slope position, roughness, plan curvature, 

profile curvature, and topographic wetness index. Slope is the gradient of topographic change or 

the first derivative of the elevation surface. Slope position is calculated by subtracting the mean 

(a) 

(b) 



of the elevation values within a moving window from the center cell elevation value. High values 

indicate higher topographic positions, such as ridges, while low values indicate lower positions, 

such as valleys [44,45]. Roughness is estimated as the variance in elevation measurements within 

a local window. [46]. Plan and profile curvatures refer to the curvature perpendicular to and in 

the direction of maximum slope, respectively [47,48]. Compound topographic wetness index is a 

measure of steady state moisture that takes into account the amount of contributing area to each 

cell, as approximated with flow accumulation, and the topographic slope at the cell. Cells with a 

larger contributing area and a shallower slope would be expected to have a larger moisture 

content in comparison to cells with a smaller contributing area and/or steeper slope [49]. For 

slope position and roughness, a circular window with a radius of 9 cells was used. 

 

Variable Description 

Slope (°) Surface gradient, measured in degrees 

Slope Position Second derivative of slope 

Roughness 
Elevation difference between adjacent 

DEM cells 

Plan Curvature Curvature perpendicular to slope 

Profile Curvature Curvature in direction of slope 

Compound Topographic 

Wetness Index (CTWI) 

Steady state, topographically 

grounded wetness index 

 

Table 3. DEM-derived terrain variables 

 

2.5 Machine Learning Models 
Wetland classification was conducted with two machine learning techniques: support 

vector machine (SVM) and random forest (RF). Support vector machine is a binary classifier that 

focuses on the identification of boundaries between two classes using a hyperplane and the 

training samples, or support vectors, that are used to define it. In order to model nonlinear 

boundaries, the data can be projected into a higher dimensional feature space where boundaries 
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may be more linear separable. This is known as the “kernel trick”. Also, methods have been 

developed to allow for multi-class classification and not just binary separation [50].  

Random forest is an ensemble decision tree classifier that uses a “majority-wins” system 

on many individual decision trees [51]. Each tree in the ensemble uses a subset of the available 

training samples, selected using bagging (i.e., random sampling with re-placement) as opposed to 

the entire set. Also, only a random subset of predictor variables is available for splitting at each 

decision node. The goal of using a subset of the training samples in each tree and a random 

subset of training samples at each node is to reduce the correlation between trees in the model, 

which can result in improved model generalization due to reduced correlation between the trees 

[52,53]. SVM and RF are both non-parametric, meaning they do not make strong assumptions 

about the data, most importantly regarding its normality. Further, they have become standard 

methods for classification in remote sensing [53]. 

Each machine learning technique has the same inputs, tested over 6 separate experiments, 

shown in Table 4. Differentiated categories include palustrine wetlands, uplands, and remaining 

waterbodies. This categorization is common in studies that attempt to identify palustrine 

wetlands using machine learning, as the backscatter coefficient of uplands and the remaining 

wetlands can be markedly different [18]. However, further segmentation could lead to confusion 

among similar classes [17]. Random samples were collected for each classification type, with 

75% of the data used for training and 25% of the data used for validation. With 600 data points 

for each county, or 200 samples per class, this resulted in 450 samples used for training and 150 

used for model validation. The boundaries from the VSWI wetlands dataset were used to 

delineate the palustrine wetlands, the VSWI water classes dataset was used to delineate other 

waterbodies, and all excluded areas were used to sample uplands.  

In order to optimize algorithm hyperparameters, I used 5-fold cross validation in which 

the data were split into five, non-overlapping partitions. Models were then trained using four 

folds and withholding the remaining fold for validation. Training is implemented five times, each 

time holding out one of the five folds. The hyperparameters providing the best performances are 

determined based on the best average performance, as measured using Kappa, on the withheld 

data.  



Once models were optimized, the best tested hyperparameters were then used to train the 

final model. This final model was then used to predict the withheld validation data. Specifically, 

individual classification accuracies were assessed through a confusion matrix and measures of 

overall accuracy and Kappa. Comparative classification performance was assessed using 

McNemar’s test, a non-parametric test for nominal data. All machine learning analyses, 

hyperparameter tuning, and model assessment were performed using the R open-source software 

and the caret package [41,54]. 

 

 SAR Harmonic SAR Median Terrain-Derived 

Model 1 X   

Model 2  X  

Model 3   X 

Model 4  X X 

Model 5 X  X 

Model 6 X X X 

 

Table 4. Datasets used for each model 

 

3. Results 

3.1 Bennington County 
 The exploratory data analysis produced insight into the individual variable distribution 

and importance of using boxplots and the Kruskal-Wallis test. The distribution of the VV and 

VH harmonic coefficients are shown in Figure 5. The boxplots show numerous outliers amongst 

the VV amplitude and VH amplitude values, whereas the VV Phase and VH Phase boxplots 

visually show less variation between classes. This is illustrated in Table 4, as both VV amplitude 

and VH amplitude have a statistically significant p-value of less than 0.05, whereas VV phase 

and VH phase do not reach the threshold for statistical significance. 
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Figure 5. Boxplots of distribution for (a) VV Amplitude, (b) VV Phase, (c) VH Amplitude, and 

(d) VH Phase by mapped class. 

 

Variable p-value 

VV Amplitude 0.00 

VV Phase 0.51 

VH Amplitude 0.02 

VH Phase 0.36 

Table 4. Resulting p-values from Kruskal-Wallis test for VV Amplitude, VV Phase, VH 

Amplitude, and VH Phase. 

 

Exploratory data analysis was also performed on the terrain variables of profile curvature, 

slope, plan curvature, slope position, roughness, and TWI. The boxplot distributions are shown 

in Figure 6 and the resulting p-values from the Kruskal-Wallis test are shown in Table 5. 



Visually, outliers are present in each of the land cover classes across all terrain variables. 

However, the p-values for all terrain variables except plan curvature are still below 0.05, 

therefore meeting the threshold for statistical significance. 

 

Figure 6. Boxplots of distribution for (a) Profile Curvature, (b) Slope, (c) Plan Curvature, (d) 

Slope Position, (e) Roughness, and (f) TWI by mapped class. 

 

Variable p-value 

Profile Curvature 0.00 

Slope 0.00 

Plan Curvature 0.06 

Position 0.00 

Roughness 0.00 

TWI 0.00 

 

Table 5. Resulting p-values from Kruskal-Wallis test for terrain variables. 
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 Finally, the random forest and support vector machine models were run for the six model 

combinations: harmonic only, median only, terrain only, harmonic and terrain, median and 

terrain, and all variables. The overall accuracies and Kappa statistics for those models are shown 

in Table 6. Regarding the random forest model, the harmonic and terrain model had the highest 

accuracies with an overall accuracy and Kappa statistics of 0.76 and 0.64, respectively. Of the 

models that only took one type of variable, the terrain variables outperformed the others with an 

overall accuracy of 0.75 and a Kappa statistic of 0.63. The harmonic model had the poorest 

performance with an overall accuracy of 0.37 and a Kappa statistic of 0.06. In addition to 

traditional accuracy metrics, the F1 score, precision, and recall for the palustrine wetland class 

are shown in Figure 7. It is worth noting that the hydro and upland classes consistently had a 

higher F1 score than the wetland class. The SVM models had slightly lower accuracies across the 

board, except for any model where the median values were involved. The harmonic and terrain 

model as well as the median and terrain model had the highest SVM accuracies, with an overall 

accuracy of 0.73 and a Kappa statistic of 0.59. Of the models that only used one group of 

variables, the terrain only model once again outperformed the others with an overall accuracy of 

0.71 and a Kappa statistic of 0.57. Figure 8 shows F1 score, precision, and recall for the wetland 

class and SVM models. 

 

Model RF OA RF Kappa SVM OA SVM Kappa 

Harmonic only 0.37 0.06 0.35 0.02 

Medians only 0.55 0.33 0.59 0.38 

Terrain only 0.75 0.63 0.71 0.57 

Harmonic and Terrain 0.76 0.64 0.73 0.59 

Median and Terrain 0.73 0.60 0.73 0.59 

All Variables 0.74 0.61 0.72 0.58 

  

Table 6. Overall accuracy (OA) and Kappa statistics for random forest (RF) and support vector 

machine (SVM) classifications. 



 

 

Figure 7. Random forest F1 score, precision, and recall by class when using (a) SAR harmonic 

variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, (e) median 

and terrain variables, and (f) all variables. 
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Figure 8. Support vector machine F1 score, precision, and recall by class when using (a) SAR 

har-monic variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, 

(e) median and terrain variables, and (f) all variables 

 

3.2 Chittenden County 
       The distribution of the VV and VH harmonic coefficients for Chittenden county are shown 

in Figure 9. Visually, outliers can be seen in all land cover types in the VV amplitude dataset and 

for the hydrological class for the VH amplitude dataset. This set also has less variation between 

the classes, as visually interpreted in the boxplots and shown by the p-values in Table 8. None of 

the harmonic variables reach statistical significance when analyzed in Chittenden county, with 

VH amplitude notably being just above the 0.05 threshold at a value of 0.06. This is later 

reflected in model performance, but these values were still modeled to show a comparison across 

all three counties. 



 

Figure 9. Boxplots of distribution for (a) VV Amplitude, (b) VV Phase, (c) VH Amplitude, and 

(d) VH Phase by mapped class. 

 

Variable p-value 

VV Amplitude 0.62 

VV Phase 0.47 

VH Amplitude 0.06 

VH Phase 0.85 

 

Table 7. Resulting p-values from Kruskal-Wallis test for harmonic variables. 

 

       Like Bennington county, the boxplots for Chittenden are shown in Figure 10 with outliers 

for each land cover type in each model. The Kruskal-Wallis p-values for these varied, as shown 

in Table 8. Profile curvature and plan curvature were not statistically significant, with p-values of 
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0.34 and 0.87, respectively. The other four variables had low enough values to reach a level of 

statistical significance. While plan curvature had not reached the threshold for statistical 

significance previously in Bennington county, profile curvature had. This is worth noting as one 

of the differences in the performance of these measures across different geographical regions. 

 

 

Figure 10. Boxplots of distribution for (a) Profile Curvature, (b) Slope, (c) Plan Curvature, (d) 

Position, (e) Roughness, and (f) TWI by mapped class. 

 

Variable p-value 

Profile Curvature 0.34 

Slope 0.00 

Plan Curvature 0.87 

Position 0.02 

Roughness 0.00 

TWI 0.00 

Table 8. Resulting p-values from Kruskal-Wallis test for terrain variables. 

 



      The random forest and support vector machine models were run for the six model 

combinations. The overall accuracies and Kappa statistics for those models are shown in Table 9. 

Referencing the random forest model, the terrain variables outperformed all of the other models 

with an overall accuracy of 0.85 and a Kappa statistic of 0.78. The harmonic model performed 

the worst with an overall accuracy of 0.33 and a Kappa statistic of 0.01. In addition to traditional 

accuracy metrics, the F1 score, precision, and recall for the wetland class are shown in Figure 11. 

The SVM models had slightly lower accuracies across the board, except with the harmonic only 

model. The model that included all variables and the terrain only model had the highest of the 

SVM accuracies, with overall accuracies of 0.77 and a Kappa statistic of 0.65. Notably, the 

harmonic model had the lowest accuracy with an overall accuracy of 0.37 and a Kappa statistic 

of 0.06. Figure 12 shows F1 score, precision, and recall for the wetland class and SVM models. 

 

Model RF OA RF Kappa SVM OA SVM Kappa 

Harmonic only 0.33 0.01 0.37 0.06 

Medians only 0.57 0.35 0.59 0.38 

Terrain only 0.85 0.78 0.77 0.65 

Harmonic and Terrain 0.83 0.75 0.71 0.56 

Median and Terrain 0.84 0.76 0.80 0.70 

All Variables 0.83 0.74 0.77 0.65 

 

Table 9. Overall accuracy (OA) and Kappa statistics for random forest (RF) and support vector 

machine (SVM) classifications. 
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Figure 11. Random forest F1 score, precision, and recall by class when using(a) SAR harmonic 

variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, (e) median 

and terrain variables, and (f) all variables. 

 

 



Figure 12. Support vector machine F1 score, precision, and recall by class when using (a) SAR 

harmonic variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, 

(e) median and terrain variables, and (f) all variables. 

 

3.2 Essex County 
The distribution of the VV and VH harmonic coefficients for Essex county are provided 

in Figure 13. Visually, outliers can be seen in all land cover types in the VV amplitude and VH 

amplitude datasets. While there are some visual variations between the classes in each 

coefficient, the VH phase angle boxplots are strikingly similar. This is statistically evident in 

Table 10, as the VH phase angle p-value is 0.92. VH amplitude also does not meet the threshold 

for statistical significance at 0.13, however, both VV phase angle and VV amplitude have 

statistically significant p-values. This is an improvement from Bennington county, where none of 

the harmonic variables reach statistical significance 
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Figure 13. Boxplots of distribution for (a) VV Amplitude, (b) VV Phase, (c) VH Amplitude, and 

(d) VH Phase by mapped class. 

 

Variable p-value 

VV Amplitude 0.00 

VV Phase 0.00 

VH Amplitude 0.13 

VH Phase 0.92 

 

Table 10. Resulting p-values from Kruskal-Wallis test for harmonic variables. 

 

The boxplots for Essex county show in Figure 14 show consistent outliers for each land 

cover type in each model, particularly a low value in the hydrological land cover type. The 

Kruskal-Wallis p-values for these varied, as shown in Table 11. Profile curvature and plan 

curvature were not statistically significant, with p-values of 0.74 and 0.72, respectively. 

However, the other four variables had low enough values to reach a level of statistical 

significance. This is a similar case to the previous Chittenden County, where both profile 

curvature and plan curvature presented as statistically insignificant. This is worth noting as one 

of the similarities in the performance of these measures across different geographical regions. 



 

Figure 14. Boxplots of distribution for (a) Profile Curvature, (b) Slope, (c) Plan Curvature, (d) 

Position, (e) Roughness, and (f) TWI by mapped class. 

 

Variable p-value 

Profile Curvature 0.74 

Slope 0.00 

Plan Curvature 0.73 

Position 0.00 

Roughness 0.00 

TWI 0.00 

 

Table 11. Resulting p-values from Kruskal-Wallis test for terrain variables. 

 

The random forest and support vector machine models were run for the six model 

combinations in Essex County. The overall accuracies and Kappa statistics for those models are 

shown in Table 12. Referencing the random forest model, all three combined models had the 

highest accuracies, with overall accuracies of 0.81 and Kappa statistics of 0.71. Of the models 



 

 
29 

 

that only took one type of variable, the terrain variables outperformed the others with an overall 

accuracy of 0.85 and a Kappa statistic of 0.78. The harmonic model performed the worst, as in 

other counties, with an overall accuracy of 0.45 and a Kappa statistic of 0.17. The F1 score, 

precision, and recall are shown in Figure 15. Once again, the SVM models had slightly lower 

accuracies in most models. The model that included the median and terrain variables had the 

highest of the SVM accuracies, with an overall accuracy of 0.81 and Kappa statistic of 0.72. Of 

the models that only took one dataset, the terrain only model again had the highest with an 

overall accuracy of 0.74 and a Kappa statistic of 0.60. Figure 16 shows the F1 score, precision, 

and recall for the SVM models. 

 

 

Figure 15. Random forest F1 score, precision, and recall by class when using (a) SAR harmonic 

variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, (e) median 

and terrain variables, and (f) all variables. 



 

Figure 16. Support vector machine F1 score, precision, and recall by class when using (a) SAR 

harmonic variables, (b) SAR medians, (c) terrain variables, (d) harmonic and terrain variables, 

(e) median and terrain variables, and (f) all variables. 

 

Model RF OA RF Kappa SVM OA SVM Kappa 

Harmonic only 0.45 0.17 0.39 0.09 

Medians only 0.73 0.60 0.69 0.54 

Terrain only 0.77 0.65 0.74 0.60 

Harmonic and Terrain 0.81 0.71 0.59 0.60 

Median and Terrain 0.81 0.72 0.81 0.72 

All Variables 0.81 0.71 0.79 0.69 

 

Table 12. Overall accuracy (OA) and Kappa statistics for random forest (RF) and support vector 

machine (SVM) classifications 

 



 

 
31 

 

4. Discussion 
 The exploratory data analysis provided insight into the significance of the predictor 

variables. Slope, slope position, roughness, and TWI had the lowest p-values among terrain 

variables across the board. The VV amplitude, VV phase angle, VH amplitude, and VH phase 

angle variables had inconsistent significance values across the board. Results suggest that the 

exploratory data analysis is limited in that it only considers p-values, as it is just one of many 

measures that can support a hypothesis [39]. Many variables had insignificant p-values but still 

had sufficient classification metrics, while others had statistically significant p-values but were 

unable to accurately classify the data. An example of the former is the terrain variables in 

Chittenden county, which had the highest overall accuracy and Kappa statistic for the terrain 

classification, yet two of the six variables did not reach statistical significance. In most cases 

higher accuracies were associated with terrain values—they consistently had the highest 

accuracies across the board when comparing only one variable. The reason for this should be 

investigated further in future studies but could potentially be connected to the aforementioned 

glacial activity in Vermont that heavily shapes its wetland landscapes.  

 Interestingly the SAR data was of little value for this study. The SAR medians 

consistently outperformed the SAR harmonic data, indicating that a harmonic time series may 

not be appropriate for this dataset. This also indicates that there may be a strong difference in 

backscatter coefficients across the four seasons. Notably, the SAR imagery in this study was 

subject to the preprocessing techniques of Google Earth Engine, therefore making it harder to 

make adjustments to these initial values and a limitation of this study. In future research, it would 

be recommended to smooth the SAR data to reduce radar speckle. Other studies had noted an 

increase in accuracy when incorporating SAR data into optical and/or terrain datasets, however 

they did not assess SAR medians or SAR harmonic coefficients separately [18]. An additional 

consideration is the specifications of this particular satellite. For instance, a sensor with higher 

spatial resolution may present more accuracy when detecting smaller wetlands, or perhaps the X-

band, which tends to be more sensitive than the larger C-band, could better detect the presence of 

water. Furthermore, this study is limited in that only VV and VH polarizations were used. This is 

due to the fact that these are the only polarizations collected over this area, however there is 

information content in HV and HH polarization that could be used in the model, as HH in 

particular has been noted as being effective for identifying waterbodies [17,23]. While the terrain 



dataset yielded the highest classification results, it’s worth noting that it did not have the seasonal 

dimension to it that the SAR data had. While for some measures, such as slope, there would not 

be much notable seasonal change, for other variables, such as TWI, these values could change 

greatly. This study also sought to explore the use and potential issues surrounding VSWI dataset. 

One potential issue with this data set is that it is modelled, rather than collected at the ground 

level. While this likely serves as a quicker and more cost-effective method of mapping wetlands, 

it also restricts this study to the accuracy of the modelled data. Lastly, when considering the 

VSWI dataset, it is possible that there is a mismatch in the spatial resolutions of that data and the 

SAR data. This is illustrated in Figure 17, as it shows how sometimes an entire wetland only 

spans one or two cells. This reiterates the need for higher quality, open access SAR data. 

 

Figure 17. Essex county palustrine wetlands overlayed on a VH SAR image, highlighting three 

particularly small wetland areas 

 

 Additionally, the study would benefit from being performed over a larger area in order to 

obtain a larger sample size. There were 600 total samples per county with 200 per class—this 
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number was limited simply by the sheer number of points that could be collected within the 

palustrine wetlands. One potential option would be to have a statewide study, however that 

would fail to account for the unique geographic landscapes across Vermont. These are 

potentially worth maintaining considering the differences in p-values for the same variable 

across different counties. Another option would be to break the study up by its physiographic 

regions outlined in Figure 1 as opposed to counties. This may provide a larger area to collect 

more sample points, while still taking into consideration these unique landscapes. From a 

regulatory standpoint, this study adds to the inventory of literature that highlights the need for 

continuously updated, accurate, and transparent wetland data. The data and methods provided in 

this study are completely open source, meaning they can be conducted free of charge by any 

individual or organization, however the accuracy metrics from the results need to become more 

robust before using this methodology at a government level. Wetlands are a necessary part of our 

ecosystems and communities, and being able to accurately identify their locations to assess loss 

is paramount. Overall, this study serves as a primer for expanding the use of SAR and terrain 

variables for the identification of palustrine wetlands. 

 

5. Conclusion 
In considering the effects and implications of this study it is necessary to consider the original 

goals of this study were to (1) assess measures derived from a time series of Sentinel-1 C-band 

SAR for mapping palustrine wetlands and differentiating them from uplands and water bodies, 

(2) compare harmonic regression and seasonal aggregating techniques for summarizing a SAR 

time series for palustrine wetland mapping, and (3) assess DEM-derived variables for palustrine 

wetland mapping. The results from this study provided insight into the usefulness of SAR and 

DEM data for wetland mapping and the respective conclusions include the following: 

1. SAR variables derived from a harmonic time series could not accurately identify 

wetlands alone—only when combined with terrain variables could they achieve moderate 

classification accuracies. 

2. Seasonal aggregation in the form of seasonal medians provided better classifications 

accuracies than seasonal time series variables when used as the sole predictor variables. 



3. DEM-derived terrain variables provided the highest accuracy of all three datasets, not 

including the combined dataset models. The terrain variables coupled with the SAR 

datasets consistently yielded higher accuracies than the SAR datasets alone. 
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