47 research outputs found

    Validating Paired-End Read Alignments in Sequence Graphs

    Get PDF
    Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs enable incorporation of full genomic diversity within a population. However, transitioning from a simple string-based reference to graphs requires addressing many computational challenges, one of which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing is a commonly used sequencing platform in genomics, where the paired-end distance constraints allow disambiguation of repeats. Many recent works have explored provably good index-based and alignment-based strategies for mapping individual reads to graphs. However, validating distance constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary from a few minutes to a few hours using our algorithm, answering a million distance queries takes less than a second

    Efficient methods for read mapping

    Get PDF
    DNA sequencing is the mainstay of biological and medical research. Modern sequencing machines can read millions of DNA fragments, sampling the underlying genomes at high-throughput. Mapping the resulting reads to a reference genome is typically the first step in sequencing data analysis. The problem has many variants as the reads can be short or long with a low or high error rate for different sequencing technologies, and the reference can be a single genome or a graph representation of multiple genomes. Therefore, it is crucial to develop efficient computational methods for these different problem classes. Moreover, continually declining sequencing costs and increasing throughput pose challenges to the previously developed methods and tools that cannot handle the growing volume of sequencing data. This dissertation seeks to advance the state-of-the-art in the established field of read mapping by proposing more efficient and scalable read mapping methods as well as tackling emerging new problem areas. Specifically, we design ultra-fast methods to map two types of reads: short reads for high-throughput chromatin profiling and nanopore raw reads for targeted sequencing in real-time. In tune with the characteristics of these types of reads, our methods can scale to larger sequencing data sets or map more reads correctly compared with the state-of-the-art mapping software. Furthermore, we propose two algorithms for aligning sequences to graphs, which is the foundation of mapping reads to graph-based reference genomes. One algorithm improves the time complexity of existing sequence to graph alignment algorithms for linear or affine gap penalty. The other algorithm provides good empirical performance in the case of the edit distance metric. Finally, we mathematically formulate the problem of validating paired-end read constraints when mapping sequences to graphs, and propose an exact algorithm that is also fast enough for practical use.Ph.D

    Long read mapping at scale: Algorithms and applications

    Get PDF
    Capability to sequence DNA has been around for four decades now, providing ample time to explore its myriad applications and the concomitant development of bioinformatics methods to support them. Nevertheless, disruptive technological changes in sequencing often upend prevailing protocols and characteristics of what can be sequenced, necessitating a new direction of development for bioinformatics algorithms and software. We are now at the cusp of the next revolution in sequencing due to the development of long and ultra-long read sequencing technologies by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). Long reads are attractive because they narrow the scale gap between sizes of genomes and sizes of sequenced reads, with the promise of avoiding assembly errors and repeat resolution challenges that plague short read assemblers. However, long reads themselves sport error rates in the vicinity of 10-15%, compared to the high accuracy of short reads (< 1%). There is an urgent need to develop bioinformatics methods to fully realize the potential of long-read sequencers. Mapping and alignment of reads to a reference is typically the first step in genomics applications. Though long read technologies are still evolving, research efforts in bioinformatics have already produced many alignment-based and alignment-free read mapping algorithms. Yet, much work lays ahead in designing provably efficient algorithms, formally characterizing the quality of results, and developing methods that scale to larger input datasets and growing reference databases. While the current model to represent the reference as a collection of linear genomes is still favored due to its simplicity, mapping to graph-based representations, where the graph encodes genetic variations in a human population also becomes imperative. This dissertation work is focused on provably good and scalable algorithms for mapping long reads to both linear and graph references. We make the following contributions: 1. We develop fast and approximate algorithms for end-to-end and split mapping of long reads to reference genomes. Our work is the first to demonstrate scaling to the entire NCBI database, the collection of all curated and non-redundant genomes. 2. We generalize the mapping algorithm to accelerate the related problems of computing pairwise whole-genome comparisons. We shed light on two fundamental biological questions concerning genomic duplications and delineating microbial species boundaries. 3. We provide new complexity results for aligning reads to graphs under Hamming and edit distance models to classify the problem variants for which existence of a polynomial time solution is unlikely. In contrast to prior results that assume alphabets as a function of the problem size, we prove that the problem variants that allow edits in graph remain NP-complete for even constant-sized alphabets, thereby resolving computational complexity of the problem for DNA and protein sequence to graph alignments. 4. Finally, we propose a new parallel algorithm to optimally align long reads to large variation graphs derived from human genomes. It demonstrates near linear scaling on multi-core CPUs, resulting in run-time reduction from multiple days to three hours when aligning a long read set to an MHC human variation graph.Ph.D

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden

    Work ow-based systematic design of high throughput genome annotation

    No full text
    The genus Eimeria belongs to the phylum Apicomplexa, which includes many obligate intra-cellular protozoan parasites of man and livestock. E. tenella is one of seven species that infect the domestic chicken and cause the intestinal disease coccidiosis which is economy important for poultry industry. E. tenella is highly pathogenic and is often used as a model species for the Eimeria biology studies. In this PhD thesis, a comprehensive annotation system named as \WAGA" (Workflow-based Automatically Genome Annotation) was built and applied to the E. tenella genome. InforSense KDE, and its BioSense plug-in (products of the InforSense Company), were the core softwares used to build the workflows. Workflows were made by integrating individual bioinformatics tools into a single platform. Each workflow was designed to provide a standalone service for a particular task. Three major workflows were developed based on the genomic resources currently available for E. tenella. These were of ESTs-based gene construction, HMM-based gene prediction and protein-based annotation. Finally, a combining workflow was built to sit above the individual ones to generate a set of automatic annotations using all of the available information. The overall system and its three major components were deployed as web servers that are fully tuneable and reusable for end users. WAGA does not require users to have programming skills or knowledge of the underlying algorithms or mechanisms of its low level components. E. tenella was the target genome here and all the results obtained were displayed by GBrowse. A sample of the results is selected for experimental validation. For evaluation purpose, WAGA was also applied to another Apicomplexa parasite, Plasmodium falciparum, the causative agent of human malaria, which has been extensively annotated. The results obtained were compared with gene predictions of PHAT, a gene finder designed for and used in the P. falciparum genome project

    Following the trail of cellular signatures : computational methods for the analysis of molecular high-throughput profiles

    Get PDF
    Over the last three decades, high-throughput techniques, such as next-generation sequencing, microarrays, or mass spectrometry, have revolutionized biomedical research by enabling scientists to generate detailed molecular profiles of biological samples on a large scale. These profiles are usually complex, high-dimensional, and often prone to technical noise, which makes a manual inspection practically impossible. Hence, powerful computational methods are required that enable the analysis and exploration of these data sets and thereby help researchers to gain novel insights into the underlying biology. In this thesis, we present a comprehensive collection of algorithms, tools, and databases for the integrative analysis of molecular high-throughput profiles. We developed these tools with two primary goals in mind. The detection of deregulated biological processes in complex diseases, like cancer, and the identification of driving factors within those processes. Our first contribution in this context are several major extensions of the GeneTrail web service that make it one of the most comprehensive toolboxes for the analysis of deregulated biological processes and signaling pathways. GeneTrail offers a collection of powerful enrichment and network analysis algorithms that can be used to examine genomic, epigenomic, transcriptomic, miRNomic, and proteomic data sets. In addition to approaches for the analysis of individual -omics types, our framework also provides functionality for the integrative analysis of multi-omics data sets, the investigation of time-resolved expression profiles, and the exploration of single-cell experiments. Besides the analysis of deregulated biological processes, we also focus on the identification of driving factors within those processes, in particular, miRNAs and transcriptional regulators. For miRNAs, we created the miRNA pathway dictionary database miRPathDB, which compiles links between miRNAs, target genes, and target pathways. Furthermore, it provides a variety of tools that help to study associations between them. For the analysis of transcriptional regulators, we developed REGGAE, a novel algorithm for the identification of key regulators that have a significant impact on deregulated genes, e.g., genes that show large expression differences in a comparison between disease and control samples. To analyze the influence of transcriptional regulators on deregulated biological processes,, we also created the RegulatorTrail web service. In addition to REGGAE, this tool suite compiles a range of powerful algorithms that can be used to identify key regulators in transcriptomic, proteomic, and epigenomic data sets. Moreover, we evaluate the capabilities of our tool suite through several case studies that highlight the versatility and potential of our framework. In particular, we used our tools to conducted a detailed analysis of a Wilms' tumor data set. Here, we could identify a circuitry of regulatory mechanisms, including new potential biomarkers, that might contribute to the blastemal subtype's increased malignancy, which could potentially lead to new therapeutic strategies for Wilms' tumors. In summary, we present and evaluate a comprehensive framework of powerful algorithms, tools, and databases to analyze molecular high-throughput profiles. The provided methods are of broad interest to the scientific community and can help to elucidate complex pathogenic mechanisms.Heutzutage werden molekulare Hochdurchsatzmessverfahren, wie Hochdurchsatzsequenzierung, Microarrays, oder Massenspektrometrie, regelmäßig angewendet, um Zellen im großen Stil und auf verschiedenen molekularen Ebenen zu charakterisieren. Die dabei generierten Datensätze sind in der Regel hochdimensional und oft verrauscht. Daher werden leistungsfähige computergestützte Anwendungen benötigt, um deren Analyse zu ermöglichen. In dieser Arbeit präsentieren wir eine Reihe von effektiven Algorithmen, Programmen, und Datenbaken für die Analyse von molekularen Hochdurchsetzdatensätzen. Diese Ansätze wurden entwickelt, um deregulierte biologische Prozesse zu untersuchen und in diesen wichtige Schlüsselmoleküle zu identifizieren. Zusätzlich wurden eine Reihe von Analysen durchgeführt um die verschiedenen Methoden zu evaluieren. Zu diesem Zweck haben wir insbesondere eine Wilmstumor Studie durchgeführt, in der wir verschiedene regulatorische Mechanismen und dazugehörige Biomarker identifizieren konnten, die für die erhöhte Malignität von Wilmstumoren mit blastemreichen Subtyp verantwortlich sein könnten. Diese Erkenntnisse könnten in der Zukunft zu einer verbesserten Behandlung dieser Tumore führen. Diese Ergebnisse zeigen eindrucksvoll, dass unsere Ansätze in der Lage sind, verschiedene molekulare Hochdurchsatzmessungen auszuwerten und dabei helfen können pathogene Mechanismen im Zusammenhang mit Krebs oder anderen komplexen Krankheiten aufzuklären

    Cross-species network and transcript transfer

    Get PDF
    Metabolic processes, signal transduction, gene regulation, as well as gene and protein expression are largely controlled by biological networks. High-throughput experiments allow the measurement of a wide range of cellular states and interactions. However, networks are often not known in detail for specific biological systems and conditions. Gene and protein annotations are often transferred from model organisms to the species of interest. Therefore, the question arises whether biological networks can be transferred between species or whether they are specific for individual contexts. In this thesis, the following aspects are investigated: (i) the conservation and (ii) the cross-species transfer of eukaryotic protein-interaction and gene regulatory (transcription factor- target) networks, as well as (iii) the conservation of alternatively spliced variants. In the simplest case, interactions can be transferred between species, based solely on the sequence similarity of the orthologous genes. However, such a transfer often results either in the transfer of only a few interactions (medium/high sequence similarity threshold) or in the transfer of many speculative interactions (low sequence similarity threshold). Thus, advanced network transfer approaches also consider the annotations of orthologous genes involved in the interaction transfer, as well as features derived from the network structure, in order to enable a reliable interaction transfer, even between phylogenetically very distant species. In this work, such an approach for the transfer of protein interactions is presented (COIN). COIN uses a sophisticated machine-learning model in order to label transferred interactions as either correctly transferred (conserved) or as incorrectly transferred (not conserved). The comparison and the cross-species transfer of regulatory networks is more difficult than the transfer of protein interaction networks, as a huge fraction of the known regulations is only described in the (not machine-readable) scientific literature. In addition, compared to protein interactions, only a few conserved regulations are known, and regulatory elements appear to be strongly context-specific. In this work, the cross-species analysis of regulatory interaction networks is enabled with software tools and databases for global (ConReg) and thousands of context-specific (CroCo) regulatory interactions that are derived and integrated from the scientific literature, binding site predictions and experimental data. Genes and their protein products are the main players in biological networks. However, to date, the aspect is neglected that a gene can encode different proteins. These alternative proteins can differ strongly from each other with respect to their molecular structure, function and their role in networks. The identification of conserved and species-specific splice variants and the integration of variants in network models will allow a more complete cross-species transfer and comparison of biological networks. With ISAR we support the cross-species transfer and comparison of alternative variants by introducing a gene-structure aware (i.e. exon-intron structure aware) multiple sequence alignment approach for variants from orthologous and paralogous genes. The methods presented here and the appropriate databases allow the cross-species transfer of biological networks, the comparison of thousands of context-specific networks, and the cross-species comparison of alternatively spliced variants. Thus, they can be used as a starting point for the understanding of regulatory and signaling mechanisms in many biological systems.In biologischen Systemen werden Stoffwechselprozesse, Signalübertragungen sowie die Regulation von Gen- und Proteinexpression maßgeblich durch biologische Netzwerke gesteuert. Hochdurchsatz-Experimente ermöglichen die Messung einer Vielzahl von zellulären Zuständen und Wechselwirkungen. Allerdings sind für die meisten Systeme und Kontexte biologische Netzwerke nach wie vor unbekannt. Gen- und Proteinannotationen werden häufig von Modellorganismen übernommen. Demnach stellt sich die Frage, ob auch biologische Netzwerke und damit die systemischen Eigenschaften ähnlich sind und übertragen werden können. In dieser Arbeit wird: (i) Die Konservierung und (ii) die artenübergreifende Übertragung von eukaryotischen Protein-Interaktions- und regulatorischen (Transkriptionsfaktor-Zielgen) Netzwerken, sowie (iii) die Konservierung von Spleißvarianten untersucht. Interaktionen können im einfachsten Fall nur auf Basis der Sequenzähnlichkeit zwischen orthologen Genen übertragen werden. Allerdings führt eine solche Übertragung oft dazu, dass nur sehr wenige Interaktionen übertragen werden können (hoher bis mittlerer Sequenzschwellwert) oder dass ein Großteil der übertragenden Interaktionen sehr spekulativ ist (niedriger Sequenzschwellwert). Verbesserte Methoden berücksichtigen deswegen zusätzlich noch die Annotationen der Orthologen, Eigenschaften der Interaktionspartner sowie die Netzwerkstruktur und können somit auch Interaktionen auf phylogenetisch weit entfernte Arten (zuverlässig) übertragen. In dieser Arbeit wird ein solcher Ansatz für die Übertragung von Protein-Interaktionen vorgestellt (COIN). COIN verwendet Verfahren des maschinellen Lernens, um Interaktionen als richtig (konserviert) oder als falsch übertragend (nicht konserviert) zu klassifizieren. Der Vergleich und die artenübergreifende Übertragung von regulatorischen Interaktionen ist im Vergleich zu Protein-Interaktionen schwieriger, da ein Großteil der bekannten Regulationen nur in der (nicht maschinenlesbaren) wissenschaftlichen Literatur beschrieben ist. Zudem sind im Vergleich zu Protein-Interaktionen nur wenige konservierte Regulationen bekannt und regulatorische Elemente scheinen stark kontextabhängig zu sein. In dieser Arbeit wird die artenübergreifende Analyse von regulatorischen Netzwerken mit Softwarewerkzeugen und Datenbanken für globale (ConReg) und kontextspezifische (CroCo) regulatorische Interaktionen ermöglicht. Regulationen wurden dafür aus Vorhersagen, experimentellen Daten und aus der wissenschaftlichen Literatur abgeleitet und integriert. Grundbaustein für viele biologische Netzwerke sind Gene und deren Proteinprodukte. Bisherige Netzwerkmodelle vernachlässigen allerdings meist den Aspekt, dass ein Gen verschiedene Proteine kodieren kann, die sich von der Funktion, der Proteinstruktur und der Rolle in Netzwerken stark voneinander unterscheiden können. Die Identifizierung von konservierten und artspezifischen Proteinprodukten und deren Integration in Netzwerkmodelle würde einen vollständigeren Übertrag und Vergleich von Netzwerken ermöglichen. In dieser Arbeit wird der artenübergreifende Vergleich von Proteinprodukten mit einem multiplen Sequenzalignmentverfahren für alternative Varianten von paralogen und orthologen Genen unterstützt, unter Berücksichtigung der bekannten Exon-Intron-Grenzen (ISAR). Die in dieser Arbeit vorgestellten Verfahren, Datenbanken und Softwarewerkzeuge ermöglichen die Übertragung von biologischen Netzwerken, den Vergleich von tausenden kontextspezifischen Netzwerken und den artenübergreifenden Vergleich von alternativen Varianten. Sie können damit die Ausgangsbasis für ein Verständnis von Kommunikations- und Regulationsmechanismen in vielen biologischen Systemen bilden

    Towards the understanding of transcriptional and translational regulatory complexity

    Get PDF
    Considering the same genome within every cell, the observed phenotypic diversity can only arise from highly regulated mechanisms beyond the encoded DNA sequence. We investigated several mechanisms of protein biosynthesis and analyzed DNA methylation patterns, alternative translation sites, and genomic mutations. As chromatin states are determined by epigenetic modifications and nucleosome occupancy,we conducted a structural superimposition approach between DNA methyltransferase 1 (DNMT1) and the nucleosome, which suggests that DNA methylation is dependent on accessibility of DNMT1 to nucleosome–bound DNA. Considering translation, alternative non–AUG translation initiation was observed. We developed reliable prediction models to detect these alternative start sites in a given mRNA sequence. Our tool PreTIS provides initiation confidences for all frame–independent non–cognate and AUG starts. Despite these innate factors, specific sequence variations can additionally affect a phenotype. We conduced a genome–wide analysis with millions of mutations and found an accumulation of SNPs next to transcription starts that could relate to a gene–specific regulatory signal. We also report similar conservation of canonical and alternative translation sites, highlighting the relevance of alternative mechanisms. Finally, our tool MutaNET automates variation analysis by scoring the impact of individual mutations on cell function while also integrating a gene regulatory network.Da sich in jeder Zelle die gleiche genomische Information befindet, kann die vorliegende phänotypische Vielfalt nur durch hochregulierte Mechanismen jenseits der kodierten DNA– Sequenz erklärt werden. Wir untersuchten Mechanismen der Proteinbiosynthese und analysierten DNA–Methylierungsmuster, alternative Translation und genomische Mutationen. Da die Chromatinorganisation von epigenetischen Modifikationen und Nukleosompositionen bestimmt wird, führten wir ein strukturelles Alignment zwischen DNA–Methyltransferase 1 (DNMT1) und Nukleosom durch. Dieses lässt vermuten, dass DNA–Methylierung von einer Zugänglichkeit der DNMT1 zur nukleosomalen DNA abhängt. Hinsichtlich der Translation haben wir verlässliche Vorhersagemodelle entwickelt, um alternative Starts zu identifizieren. Anhand einer mRNA–Sequenz bestimmt unser Tool PreTIS die Initiationskonfidenzen aller alternativen nicht–AUG und AUG Starts. Auch können sich Sequenzvarianten auf den Phänotyp auswirken. In einer genomweiten Untersuchung von mehreren Millionen Mutationen fanden wir eine Anreicherung von SNPs nahe des Transkriptionsstarts,welche auf ein genspezifisches regulatorisches Signal hindeuten könnte. Außerdem beobachteten wir eine ähnliche Konservierung von kanonischen und alternativen Translationsstarts, was die Relevanz alternativer Mechanismen belegt. Auch bewertet unser Tool MutaNET mit Hilfe von Scores und eines Genregulationsnetzwerkes automatisch den Einfluss einzelner Mutationen auf die Zellfunktion

    Correction to: RNA Bioinformatics.

    Get PDF
    n/

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here
    corecore