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SUMMARY

DNA sequencing is the mainstay of biological and medical research. Modern sequenc-

ing machines can read millions of DNA fragments, sampling the underlying genomes at

high-throughput. Mapping the resulting reads to a reference genome is typically the first

step in sequencing data analysis. The problem has many variants as the reads can be short

or long with a low or high error rate for different sequencing technologies, and the ref-

erence can be a single genome or a graph representation of multiple genomes. There-

fore, it is crucial to develop efficient computational methods for these different problem

classes. Moreover, continually declining sequencing costs and increasing throughput pose

challenges to the previously developed methods and tools that cannot handle the growing

volume of sequencing data.

This dissertation seeks to advance the state-of-the-art in the established field of read

mapping by proposing more efficient and scalable read mapping methods as well as tack-

ling emerging new problem areas. Specifically, we design ultra-fast methods to map two

types of reads: short reads for high-throughput chromatin profiling and nanopore raw reads

for targeted sequencing in real-time. In tune with the characteristics of these types of reads,

our methods can scale to larger sequencing data sets or map more reads correctly com-

pared with the state-of-the-art mapping software. Furthermore, we propose two algorithms

for aligning sequences to graphs, which is the foundation of mapping reads to graph-based

reference genomes. One algorithm improves the time complexity of existing sequence to

graph alignment algorithms for linear or affine gap penalty. The other algorithm provides

good empirical performance in the case of the edit distance metric. Finally, we mathe-

matically formulate the problem of validating paired-end read constraints when mapping

sequences to graphs, and propose an exact algorithm that is also fast enough for practical

use.

xv



CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Background

DNA sequencing is the procedure to determine nucleotide sequences of DNA molecules

comprised of adenine (A), cytosine (C), guanine (G), and thymine (T). Reading the DNA

sequences was initially a laborious and expensive task. However, it gradually became an

automated and low-cost process with the extensive development of DNA sequencing tech-

nologies over the last few decades. The significantly dropped sequencing cost and increased

sequencing throughput have enabled the growth of the sequencing scale from a few kilo-

bases to the first human genome [1, 2], and even to all vertebrate species [3].

Despite tremendous progress in DNA sequencing technologies, the whole genome can-

not be sequenced perfectly from one end to the other. Instead, myriad DNA fragments

called reads much shorter than the whole genome are generated, and sequencing errors can

also be introduced in the reads during the sequencing process. These reads can be corrected

and then assembled to recover the whole genome. However, performing whole-genome se-

quencing (WGS) and obtaining high-quality genome assemblies is still costly. The reason

is that the genome needs to be sequenced with a relatively high depth so that enough reads

cover each genome position to overcome the sequencing errors when determining the nu-

cleotide at that position.

Due to the high cost of producing full-length genomes without errors, standard practice

leverages existing high-quality assemblies of an organism as the reference genome (e.g.,

human reference genome GRCh38) to analyze the sequencing data of other individuals

from the same species. This type of analysis is called genome resequencing, which is a cost-

efficient method to discover variants at population level. A classic example of large-scale

1



genome resequencing is the 1000 Genome Project [4], which has performed low-coverage

WGS of a few thousand individuals.

Resequencing data analysis is a distinct task from genome assembly. An essential step

in the resequencing data analysis is aligning the sequenced reads to a proper reference

genome, which is called read mapping. Then the read alignments can be processed to

identify genetic variants from the differences between the reads and the reference for later

downstream analyses. The read mapping process usually costs more time than other anal-

ysis steps, which makes it the bottleneck in many sequencing data processing pipelines.

From a computational perspective, the read mapping problem mainly has two inputs: a

set of reads and a reference. The methods to handle various types of reads and references

can differ significantly. Currently, multiple sequencing technologies are available, and they

generate reads with different lengths and error profiles [5]. Moreover, the single reference

genome is currently transitioning to a graph-based model, or a graph genome, which can

encode the genetic variants at a population scale and represent a set of genomes [6]. In the

following sections, we overview various types of reads, and reference genomes as input

data for the read mapping problems addressed in this dissertation.

1.1.1 Short read sequencing for chromatin profiling

Illumina sequencing, which uses a sequencing-by-synthesis approach, is currently the

mainstay of short-read sequencing, also named next-generation sequencing (NGS) technol-

ogy. It can generate short reads (<300 bp) with a low error rate (<0.1%) at high throughput.

For example, NovaSeq 6000, a state-of-the-art Illumina sequencing platform, can generate

up to 6,000 Gb data, i.e., around 20 billion reads, in a 44-hour run.

The standard workflow for Illumina short-read sequencing contains several steps. The

first step is to prepare a library for sequencing, during which the DNA sample is cut into

smaller DNA fragments, followed by ligation with sequencing adapters at the fragment

ends. The library is then loaded into the flow cell of the sequencing instrument and ampli-
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fied for sequencing. During the sequencing process, either one or both ends of the DNA

fragments is sequenced, yielding single-end and paired-end reads, respectively. Finally, the

reads are mapped to a reference, and the read alignments are used in various downstream

analyses to gain new biological insights.

In eukaryotic cells, DNA is complexed with histones to form nucleosomes, which

are the basic unit structures of chromatin. The nucleosomes can be depleted at certain

chromatin locations to interact with regulatory elements such as transcription factors to

promote or suppress gene expression, which leads to “open” or “accessible” chromatin

regions. Chromatin profiling techniques, such as ChIP-seq [7], ATAC-seq [8], and Hi-

C [9], have been widely used to study transcription factor binding [10], chromatin acces-

sibility [11], and higher-order chromatin organization [12, 13], respectively. Single-cell

ATAC-seq (scATAC-seq) further enables the profiling of cis-regulatory elements in indi-

vidual cells [14]. These chromatin profiling assays process the chromatin in various ways

to extract and enrich certain chromatin regions of interest and perform high-throughput

short-read sequencing. After read mapping, peak calling is usually performed to discover

the enriched regions with high coverage (or more mapped reads) for other downstream

analyses.

1.1.2 Nanopore long read targeted sequencing

Oxford Nanopore Technologies (ONT) sequencers produce millions of long reads with

>10 Kbp N50 in a single 48 to 72-hour run. These long reads can span repetitive regions

of a genome that are hard to resolve using short reads, thus enabling assemblies with high

continuity [15]. Direct RNA sequencing through nanopores can sequence full-length RNA

transcripts without amplification, which can significantly aid in de novo transcriptome anal-

ysis [16]. Without additional library preparation, amplification-free nanopore sequencing

also enables the detection of nucleotide modifications [17].

Nanopore sequencers work by measuring ionic current as a molecule passes through a

3



pore. Since different molecules in the pore modulate the current in specific ways, individ-

ual nucleotides can be inferred by the base calling of the raw current signal. For various

ONT pore versions (e.g., R7, R9), the current signal is mainly affected by five or six nu-

cleotides (i.e., k-mers where k = 5 or 6) occupying the pore at a given time point. These

current readings usually have a low signal-to-noise ratio, making it hard to identify the

corresponding k-mers. To tackle this problem, many base callers have been developed to

“translate” the raw signals to nucleotide sequences [18]. State-of-the-art base callers (e.g.,

ONT official base caller Guppy) can achieve around 90% accuracy. However, base call-

ing is computationally expensive and can last days on a high-end central processing unit

(CPU) or hours on a graphical processing unit (GPU), even for a relatively low throughput

run with only ∼20 Gbp data.

The ONT MinION is a portable device that typically yields up to 30 Gbp sequencing

data using a single flow cell at a low cost. Portability of the MinION sequencer allows se-

quencing to be performed in the field or the clinic, for example, surveillance for Ebola virus

in West Africa [19] and fast detection of SARS-CoV-2 with high sensitivity [20]. The Min-

ION device is compatible with recently released Flongle flow cells with even lower prices

while reducing the sequencing throughput to ∼2 Gbp for smaller analyses and tests. How-

ever, this throughput is usually too low for many applications requiring high sequencing

depth, making targeted sequencing necessary.

Targeted sequencing allows for enriched coverage of desired genomic regions, which

reduces sequencing costs and labor to achieve high coverage at regions of interest. Typical

targeted sequencing approaches do not work well with nanopore sequencing due to loss of

nucleotide modifications, high input requirements, low throughput, or long protocols [21].

On the other hand, the targeted sequencing protocol designed specifically for nanopore

sequencing [21] addressed some of these issues but still requires additional preparation

time and is limited by the maximum size and number of targeted regions.

Alternatively, targeted sequencing can be performed with the selective sequencing fea-
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ture of ONT sequencers in real time, assisted by computational methods [22, 23, 24]. This

is achieved by temporarily reversing the voltage across a nanopore, thereby rejecting an

undesired molecule and making the pore available for other molecules. Thus, if there is a

sufficiently fast computational method that can identify whether reads come from regions

of interest, one can quickly eject undesired reads and leave the pores for reads of inter-

est. As a result, undesired genomic regions are not sampled, and regions of interest are

enriched.

1.1.3 Graphical reference genomes

Recent advances in long-read sequencing technologies and assembly methods have en-

abled the production of human genome assemblies that meet or even exceed the quality

of the reference human genome [25, 26, 27]. As the set of available high-quality human

genome assemblies grows, it is important to shift from a single reference genome to a

new reference genome model that can support the representation and analysis of the vari-

ants from a collection of assembled haplotypes [6]. In this transition, pan-genomics has

emerged and extended rapidly as a new research subarea of computational biology [28].

The idea currently gaining momentum is to replace the single reference genome with a

graphical genome model, or a genome graph, which fully encodes the variations of indi-

vidual genomes in the population [29, 30]. Multiple recent studies have shown that read

mapping accuracy can be improved by using a graph-based genome as the reference [31,

32, 33].

Graph-based representations provide a natural mechanism for compact representation

of related sequences and variations among them. Typically, either the graph vertices or the

edges are associated with sequence labels so that concatenating the labels of the vertices

or edges along a specific walk in the graph spells a genome. Thus, mapping a read to

the graph is equivalent to finding a walk in the graph such that the read can be aligned to

the sequence represented by the walk, which requires new algorithms different from the
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methods for mapping reads to a linear reference genome.

Multiple different graph models are frequently used in bioinformatics (we defer their

introduction to Section 4.1). In this dissertation, we use a generic graph model called

sequence graph. It is a directed graph, and each vertex is labeled with either a character

or a string. We use this graph structure because it provides a good abstraction for solving

the alignment problem on various types of graphs used in bioinformatics. Commonly used

graphs can be converted into an equivalent sequence graph. In the context of solving the

alignment problem, equivalence implies that any sequence (i.e., concatenation of vertex

labels in a walk) in the first graph exists if and only if it exists in the second graph.

1.2 Objectives and overview

Although numerous efforts have been undertaken on improving methods for read mapping,

new read mapping methods are constantly needed for several reasons. First, the volume

of sequencing data keeps increasing as the sequencing cost continues to decrease, which

allows sequencing at deeper coverage. Thus, more efficient methods are needed to keep

computational resources and time spent on read mapping feasible as the sequencing data

set grows larger and larger. Besides, different sequencing technologies generate various

types of reads, which differ in lengths and error profiles. Method development efforts to

handle multiple types of reads are necessary since no universal solution is currently avail-

able. Moreover, the transition from a single genome reference to a graph-based genome

reference is currently underway. However, the algorithms designed to map reads to a linear

reference genome cannot be trivially extended to map reads to the graph genome, making

development of new methods a compelling necessity.

In this dissertation, we aim to develop efficient read mapping methods that can process

large sequencing data sets within a reasonable time and design algorithms to handle var-

ious input types of reads and references mentioned above. The rest of the dissertation is

structured as follows.
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In Chapter 2, we present Chromap, an ultrafast method for aligning and preprocessing

short reads generated by high throughput chromatin profiling assays. Chromap takes ad-

vantage of the observation that chromatin profiles are enriched only in a subset of the whole

genome to accelerate the read mapping process. Chromap is comparable to the state-of-art

tools in mapping accuracy and is over ten times faster than traditional workflows on bulk

ChIP-seq/Hi-C and scATAC-seq profiles.

In Chapter 3, we present Sigmap, a new streaming method that can map nanopore raw

reads for real-time selective sequencing. Rather than converting read signals to bases, we

propose to convert reference genomes to signals and entirely operate in the signal space.

We demonstrate the superior performance of Sigmap compared with other tools on both

simulated and real ONT long-read sequencing data.

In Chapter 4, we present an improved algorithm for the sequence-to-graph alignment

problem. Considering a query sequence of length m and a directed graph G(V,E) with

character-labeled vertices, we propose an algorithm that achieves O(|V | + m|E|) time

bound for both linear and affine gap penalty cases, superior to the best existing algorithms

in terms of time complexity.

In Chapter 5, we propose the graph wavefront algorithm (Gwfa) to find the optimal

global sequence to graph alignment with unit edit cost. Besides, we develop heuristics to

reduce alignment runtime and present methods to trace an optimal alignment walk in the

graph. We construct graphs for biologically important regions rich in polymorphism and

demonstrate the advantages of Gwfa empirically in terms of runtime and memory usage

compared with other graph alignment methods.

In Chapter 6, we provide the first mathematical formulation of the problem of validat-

ing paired-end distance constraints in graphs and propose an exact algorithm to solve it.

The proposed algorithm exploits sparsity in sequence graphs to build an index, which can

be queried quickly using a simple lookup during the read mapping process. We provide

formal arguments to shed light on why our indexing procedure is efficient and demonstrate
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the practical performance of our algorithm on various graphs. Finally, in Chapter 7, we

summarize the contributions made in this dissertation.
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CHAPTER 2

AN ULTRAFAST METHOD FOR SHORT READ MAPPING AND

PREPROCESSING

As the sequencing depth of chromatin studies continually grows deeper for sensitive profil-

ing of regulatory elements or chromatin spatial structures, aligning and preprocessing these

sequencing data have become the bottleneck for analysis. However, currently widely used

read mapping tools were developed in the last decade; thus, they are not fast enough to

process the growing volume of sequencing data.

In this chapter, we present an efficient short read mapping method named Chromap.

Taking advantage of the characteristics of chromatin profiles, Chromap can achieve an or-

der of magnitude speedup on a variety of chromatin profiling data compared with other

state-of-the-art mapping tools without losing accuracy. Besides read mapping, Chromap

also incorporates sequencing adapter trimming, duplicate removal, and scATAC-seq bar-

code correction, further improving the processing efficiency.

The rest of the chapter is organized as follows. In Section 2.1, we reviewed the standard

practice for mapping and processing short reads generated by chromatin profiling assays.

In Section 2.2, we present the Chromap methods. In Section 2.3, we provide details on

benchmarking the methods and show the performance of Chromap together with other

tools on processing different types of chromatin profiling data. And in Section 2.3, we

summarize our work.

2.1 Related work

Standard analysis workflows, such as those used by the ENCODE project [34], start with

read mapping by the popular short read aligner BWA-MEM [35] or Bowtie2 [36], along

with alignment sorting and deduplication by SAMtools [37] and Picard [38]. These steps
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are the common bottlenecks which may take hours or days to complete, compared to the

downstream analysis steps such as peak calling by MACS2 [39] which usually takes min-

utes. One reason for such inefficiency is that the comprehensive base-level alignment re-

sults for the purpose of variant calling are unnecessary for most chromatin biology studies.

Furthermore, alignment filtering, deduplication, and other preprocessing steps are handled

by different methods sequentially in a standard workflow, and each step requires parsing

from compressed files. Such repeated I/O significantly increases the running time.

Minimap2 [40] is an efficient read aligner based on the minimizer sketch [41]. It was

initially designed for long reads of high error rate and then extended for short accurate

reads. Although a few times faster than FM-index-based short-read aligners such as BWA-

MEM and Bowtie2, minimap2 more frequently misses short alignments that lack sufficient

minimizer seeds. This becomes a severe issue in mapping scATAC-seq data when a large

portion of the read sequence is used for barcoding and indexing, and the remaining genomic

sequence in a read can be as short as 50bp. Moreover, minimap2 has to slowly scrutinize

the alignment to resolve the high sequencing error rate inherent in the long reads even

when in the short-read mode, which could be unnecessary for the highly accurate Illumina

short-read sequencing data.

2.2 The Chromap Methods

2.2.1 Overview of Chromap and improvements to minimap2

Though both Chromap and minimap2 build the minimizer index and extract minimizers

from sequences as seeds to map the reads, they use distinct algorithms for seeding and for

identifying alignment candidates. Minimap2 applies an expensive chaining procedure on

the seeds to generate candidate mapping positions and then runs a slow dynamic program-

ming algorithm that supports affine-gap penalty to verify those candidates. This complex

procedure was initially designed for long reads and adapted for short reads later. It is

overkilling and inefficient for short reads. Chromap, on the other hand, takes advantage of
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Figure 2.1: Overview of Chromap. a Workflow of Chromap mapping a read-pair R1 and
R2. First, their minimizers are extracted and then queried in the candidate cache and the
minimizer index. The set of three minimizers of R1 is in the cache and the candidate
mapping start positions are returned by the cache. The set of two minimizers in R2 is not
in cache. So each of them is searched in the minimizer index and the occurrences of the
minimizers are used to derive the candidate mapping positions. Then all the candidates
are verified, which results in the final mapping. b Accuracy of methods on the simulated
data with different read lengths. c Consensus of read alignments from Chromap, BWA-
MEM, and Bowtie2 on bulk ChIP-seq data. d Overlapped peaks called from the alignments
reported by different methods on bulk ChIP-seq data.
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a light-weight candidate generation method, which is fast and sensitive to find candidate

mapping positions for short reads. The candidates are supplemented using the read-pair

information to improve mapping accuracy in repetitive regions, which minimap2 lacks. To

verify alignment candidates, Chromap uses an efficient method to compute the edit dis-

tances of the read and its candidate mapping regions. Note that Chromap is not only an

aligner like minimap2 but also an integrated tool that can pre-process the reads to remove

adapters and correct the barcodes, and post-process the mappings to remove duplicates.

The details of Chromap are described below.

2.2.2 Index construction and query

Double-strand minimizers of reference genomes are collected and indexed using a hash

table with minimizer sequences as keys and their sorted order of occurrences along the

reference as values (Figure 2.1a). When mapping a read, Chromap retrieves the genome

coordinates for each minimizer of the read. Due to the repetitive regions in the reference,

some minimizers have high frequency, which can cause false positive mappings and reduce

mapping speed significantly. Thus by default, we mask minimizers occurring > 500 times

on the reference during query.

2.2.3 Adapter removal

For ATAC-seq or scATAC-seq, when a read contains the adapter sequence at the 3’-end,

its fragment length can be shorter than the read length. To remove the adapters, for a pair

of reads, if a prefix of one read has ≤ 1 Hamming distance compared with a suffix of the

other read in the pair and the overlapped region is longer than a threshold lovp, we trim the

bases outside the overlap (Figure 2.2). We extract lovp/2 long seeds from one read, find

the hits of the seeds in the other reads and verify those hits. This algorithm accelerates the

trimming step and still guarantees finding overlaps within Hamming distance of 1.
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Figure Sx: adaptor detection and removal

A C G A T T G C C T G G A C
T T G A C T G G A C A C G A

R2

R1

Figure 2.2: An example of adapter removal This read pair has forward R1 TTGACTG-
GACACGA and backward R2 GTCCAGGCAATCGT (reverse-complement ACGATTGC-
CTGGAC denoted as R2T ). Suffix of R2T can be matched to the prefix of R1 with an
overlap size of 10 including 1 mismatch, indicating fragment length is shorter than read
length. Therefore, Chromap removes ACGA from R1 and R2T (TCGT in R2) as parts of
the adapter sequences.

2.2.4 Candidate generation

We define candidates for a read to be possible mapping start locations on the reference

genome, which are estimated by exact minimizer hits (i.e., anchors) between the read and

the reference. Formally, an anchor is a pair (x, y) where x denotes the minimizer start

position on the reference and y denotes the minimizer start position on the read. Then the

candidate can be estimated by this anchor as x − y. Co-linear anchors (i.e., chains) are

a set of anchors that appear in ascending order in both the read and reference, which can

be found by a dynamic programming algorithm [40] in quadratic time with respect to the

number of anchors. While this algorithm can robustly identify chains for noisy long reads

(> 1000 bp with 5%∼10% error rate), we present a more efficient algorithm that can gen-

erate candidates for short reads with a low error rate. We generate candidates using all the

anchors and then sort the candidates. During a linear scan on the sorted candidates, we

merge the same candidates or candidates that have smaller than error threshold difference

generated from multiple anchors. The error threshold is a user-defined parameter that con-

strains the edit distance between read and the genomic region. By allowing error threshold

in candidate merging, Chromap accommodates the insertions and deletions when generat-

ing the final candidates for a read. During the merging, Chromap records the multiplicity

for each candidate, which is also the number of supporting anchors, and filters the candi-

dates with fewer support than the user-defined threshold. For paired-end reads, chains were
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first generated for each end and then filtered by the fragment length constraint.

2.2.5 Candidate cache

Chromap stores the raw candidates in a cache for frequent reads to avoid repeated candidate

generation for reads from peak regions. The cache is a hash table, where the key is a

vector of minimizers and the value is the vector of candidates generated from the set of

minimizers. The minimizers vector stores the M minimizers sequences mi and the M − 1

offsets between adjacent minimizers mi. Chromap uses the function h(m) = (m1 +mM)

mod N to quickly map the vector to the h(m)-th entry in the hash table of size N =

2, 000, 003. The advantage of this mapping function is that the identical reads from both

strands can access the same cached information. Furthermore, reads that are nearby in the

genome have a greater likelihood of generating the same minimizer vector, and they can

also share the same cache information.

Inspired by the count-min sketch [42], Chromap maintains a small count array of size

N ′ = 103 in each cache entry to identify the most frequent minimizer vector from hundreds

of different vectors mapped to the same cache entry, namely cache collidings. Chromap

uses the function f(m) = (m1 ⊕ mM) mod N ′ to map the vector to the f(m)-th entry

in the count table by computing the XOR of the minimizer codings, which has the same

advantage of ignoring the read strand. Chromap then updates the cache table if and only if

the count for the minimizer vector is more than 20% of the total count in the count array

and is the dominant minimizer vector (show up more than half times) among the vectors

mapped to the count array entry f(m). As a result, Chromap not only stores in cache the

candidates from frequent minimizer vectors, but also avoids unnecessary cache updates

from the background noises.
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2.2.6 Candidate supplement

Chromap supplements the candidates with read-pair information to recover the lost can-

didates due to the minimizer occurrence limit. For each read end, Chromap will pick its

mate’s candidate supported by the most number of anchors and use this mate’s candidate

as the estimation for the read coordinate. As a result, for each minimizer in the read end,

instead of extracting all the occurrences on the reference, Chromap applies a binary search

in the index entry to only select the occurrences within the range estimated read coordinate

determined by the fragment size distribution. Chromap then executes the same candidate

generation algorithm to supplement the candidates with the minimizer occurrences from

the binary searches.

2.2.7 Candidate verification

Since each read can have multiple candidate mapping positions, we implemented a banded

Myers’ bit-parallel algorithm [43] to pick the optimal candidate coordinate with minimum

edit distance to the reference genome. To further accelerate the verification step, we paral-

lelized the algorithm using SIMD instructions on the CPU to align the read with multiple

candidates on the reference simultaneously. We also modified the algorithm to efficiently

trace back the alignment so that accurate start and end mapping positions can be obtained.

2.2.8 Split mapping

When the edit distance exceeds the threshold during the candidate verification step, we

check if the length of the mapped read is greater than a certain length threshold. If the length

of the mapping passes the length filter, the mapping is kept with an estimated mapping score

as the mapped read length minus the edit distance. Note that for some of the Hi-C reads,

there can be a small region (< 20 bp) which cannot be mapped at the beginning of its 5’

end. To resolve this issue, when the mapping length is too short, the first 20 bp of the

read is excluded and a second round of mapping of the remaining region is performed.
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If a mapping generated in this way passes the length filter, the mapping is then extended

backward from its beginning to its maximum exact match. For paired-end data in split-

alignment mode, Chromap ignores the constraints from the read-pair, such as the fragment

length or strandness.

2.2.9 Deduplication

When the data set is small, all the mappings can be kept in the memory and sorted to

remove duplicates. For large data sets or limited memory, we provide a low memory mode.

It saves mappings in chunks temporarily on the disk and uses external sort to merge them

into the final mapping output in a low memory footprint. For scATAC-seq data, duplicates

can be removed at either bulk level or cell level (default) based on the users’ choice.

2.2.10 Barcode correction

Using the barcode whitelist provided by 10x Genomics, we correct barcodes that are not

on the whitelist. Prior to the correction, the barcodes are converted to their bit represen-

tations and the abundance of each barcode is computed efficiently using a hash table. For

barcodes outside the whitelist, all whitelisted barcodes within one Hamming distance from

the barcode to correct are extracted by a set of efficient bit operations. Using the quality

score of the mismatched base and the abundance of these whitelisted barcodes as a priori,

we compute the posterior probability of correcting the observed barcode to the whitelisted

barcodes. We make the correction if the highest probability of the observed barcode being

a real barcode is ≥ 90%. The correction step is performed as part of the read mapping

process which is in parallel of loading the next batch of reads.
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2.3 Results

2.3.1 Simulated and sequencing data for evaluation

In this work, we evaluated Chromap on various data sets including simulated whole genome

sequencing data, bulk ChIP-seq data, 10x Genomics scATAC-seq data, and Hi-C data

(Table 2.1). One million fragments were simulated from the human reference genome

GRCh38 using Mason [44] with average sequencing error rate 0.1% and read lengths 50bp,

100bp, and 150bp. The bulk CTCF ChIP-seq data on the human VCaP cell line were down-

loaded from ENCODE to test the tools on bulk sequencing data. The 10K PBMC scATAC-

seq data set is publicly available from 10x Genomics and used to evaluate the performance

of the tools on single cell data. To investigate the impact of alternating BWA-MEM with

Chromap on chromatin conformation analysis, we combined the two Hi-C data replicates

from a previous study [13].

Table 2.1: The statistics for the ChIP-seq, Hi-C and 10x Genomics scATAC-seq data sets.

Data set Number of read pairs Read length

ChIP-seq 37 million 101
Hi-C 1.4 billion 101
10x Genomics scATAC-seq 379 million 50

2.3.2 Evaluating performance for simulated and ChIP-seq data

Tools and parameters

We compared Chromap with five state-of-the-art short read aligners minimap2(v2.17),

STAR (v2.7.9a), Accel-Align (GitHub commit code 7217a9f), BWA-MEM (v0.7.17) and

Bowtie2 (v2.4.2). STAR is designed to align RNA-seq data which contains spliced align-

ments across introns, so we used the options “–alignIntronMax 1 –alignEndsType End-

ToEnd” to forbid spliced alignment. When testing on simulated data, we converted all the

alignments into PAF format and used the paftools to calculate the accuracy of alignments.

Using the bulk ChIP-seq data, we compared the consensus of alignments and peaks among
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the aligners after filtering the alignments with MAPQs less than 30 based on ENCODE

protocol (7 for Accel-Align). Accel-Align computes MAPQs in a different way, so we

compared the distribution of MAPQs from all the aligners in the simulated data and found

MAPQ 7 in Accel-Align was highly similar to MAPQ 30 in other aligners. All the methods

were tested in a multiprocessing environment with 8 threads. Accel-Align was tested with

option “-x” for the fast alignment-free mode.

Performance on simulated data

We compared Chromap with other chromatin profiling aligners, namely BWA-MEM,

Bowtie2, minimap2, STAR17 (no-splicing mode) and Accel-Align [45] on three simu-

lated whole genome sequencing data sets with various read lengths (Figure 2.3b). Except

for STAR, the accuracy of these aligners was similar on the 100bp and 150bp paired-end

data, about 98% for the five methods. On 50bp paired-end data, BWA-MEM, Bowtie2

and Chromap had similar accuracy of around 96%, while minimap2, STAR and Acce-

lAlign had worse performance at 94.1%∼95.6%. The comparison showed that Chromap

achieved comparable alignment accuracy to BWA-MEM and Bowtie2 for a wide range of

read lengths.

Performance on real ChIP-seq data

Next, we evaluated Chromap along with other aligners on real ChIP-seq data. On a CTCF

ChIP-seq data set from the ENCODE project, we first compared Chromap with BWA-

MEM and Bowtie2. Among the 68 million fragments reported by any of the three methods

(MAPQ≥ 30), Chromap aligned 3% fewer fragments than BWA-MEM and 1.2% more

than Bowtie2, and 99.8% of Chromap alignments were supported by either BWA-MEM or

Bowtie2 (Figure 2.1c).

We next investigated the effects of the alignment methods on peaks called by MACS2

and included minimap2, STAR, Accel-Align in the evaluation. Peaks from Chromap align-
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Figure 2.3: Chromap on the large data set. a. Comparison of Hi-C contact matrices at 25 kb
resolution and insulation scores for TADs analysis derived from Chromap and BWA-MEM
alignments. b. Cluster annotation and NMI of the PBMC 10x Genomics scATAC-seq
data based on the results of Chromap and CellRanger. c. Running time of Chromap and
workflows based on BWA-MEM on ChIP-seq, Hi-C, and 10x Genomics scATAC-seq data.

ment overlapped 99.8% with those from BWA-MEM and Bowtie2. While Chromap gener-

ated a comparable number of peaks as other methods, it created the fewest aligner-unique

peaks (Figure 2.1d, Figure 2.4). Annotation of the peaks with ChIPseeker [46] did not find

any aligner-specific bias in peaks from the alignment methods (Figure 2.5). In addition, the

differences of peak sets from the BWA-MEM, Bowtie2 and Chromap were significantly

smaller than those between data replicates (Figure 2.6).

Notably, Chromap only took less than 5 minutes to complete the mapping, sorting, and

deduplication process, while the second fastest workflow based on Accel-Align, SAMTools

and Picard required about 42 minutes. On the mapping step, Chromap (3.5min) was 75% to

24.5 times faster than other alignment methods, supporting the efficiency improvement of

Chromap (Table 2.2). We note that Chromap also reduced half an hour on the sorting and

deduplication steps, confirming the advantage of integrating alignment and preprocessing
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in chromatin profiling analysis.

Table 2.2: The computational cost of different methods on ChIP-Seq data. The preprocess-
ing steps include MAPQ filtering, sorting and deduping.

Method Time: alignment (min) preprossing (min) Memory (GB)

Chromap 3.5 1.5 18.4
Accel-Align 6 35 19.4
STAR 10 35 29.4
Minimap2 21 35 12.9
BWA-MEM 64 35 7.3
Bowtie2 86 35 3.5
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Figure 2.4: Intersections of peaks called from Accel-Align, STAR and minimap2 align-
ments respectively with the peaks called from BWA-MEM and Bowtie2 alignments on
bulk ChIP-seq data.

2.3.3 Evaluating performance for Hi-C data

Chromap supports split-alignment, thus is compatible with Hi-C analysis. We compared

Chromap and the standard 4D Nucleome Hi-C processing pipeline, which is based on

BWA-MEM and pairtools [47], on a large Hi-C data set for human cell line K562 by eval-

uating the downstream chromatin features such as chromatin compartments, topologically

associating domains (TADs), and chromatin loops. We filtered the alignments with MAPQ

0, which follows the default parameter settings in pairtools. Due to complexity introduced

by the ligation junction in a Hi-C experiment, direct comparison of alignment coordinates

would underestimate the consistency between the methods. Therefore, we compared the

contact maps derived from the alignments at various resolutions. We compared the overall
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Figure 2.5: Annotations of peaks called by MACS2 using BWA-MEM, Bowtie2, min-
imap2, STAR, Accel-Align and Chromap alignments on bulk ChIP-seq data.

distribution of chromatin contacts at 25 kb resolution by using the stratum-adjusted corre-

lation coefficients (SCC); the chromatin compartments measured by the first eigenvector

of the normalized contact matrices at 100 kb; the TAD boundary strength measured by the

insulation score at 25kb resolution; and the identified chromatin loops at 10 kb.

The chromatin compartments (measured by the first eigenvector) and TADs (measured

by the insulation score) called from the two aligners gave highly similar results, achieving

Pearson correlation coefficients of 0.995 and 0.998 respectively (Figure 2.3a, Figure 2.7).

Although there is some divergence on the chromatin loops called by the two aligners, CTCF

enrichment at the loop anchors supported these aligner-unique loops as genuine chromatin

interaction loops (Figure 2.8, Figure 2.9). On this large data set with about 1.4 billion read

fragments, Chromap spent 164 minutes to produce a processed alignment file in the pairs

format [47] ready for downstream analysis. It was 13 times faster than a standard workflow

with BWA-MEM and pairtools [47].

To confirm that the difference between Chromap alignments and BWA-MEM align-

ments was smaller than the difference between biological replicates, we computed SCCs by

using a Python implementation of HiCRep (https://pypi.org/project/hicreppy/, v0.0.6) [48]

between Chromap and BWA-MEM on the same replicate (Chromap R2 vs. BWA-MEM
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R2) or between two replicates (BWA-MEM R1 vs. BWA-MEM R2). Because the original

two replicates have disparate sequencing depths (R1: 1,048,612,352 vs. R2: 317,616,493),

we first down-sampled R1 to make it match the sequencing depth of R2. The resulting

SCC between Chromap R2 and BWA-MEM R2 was 0.998, which was significantly higher

than SCC between BWA-MEM R1 and BWA-MEM R2 (0.945). HiCRep was run at 25

kb resolution, and the smoothing factor and the maximum genomic distance were set to 5

and 2 Mb, respectively. For the following chromatin conformation analysis, we merged the

alignment results from the two replicates.

Both compartments and TADs were estimated using cooltools (https://pypi.org/project/

cooltools/, v0.3.2). For compartments, the eigenvalue decomposition was performed on

the 100 kb intra-chromosomal contact maps, and the first eigenvector (PC1) was used to

capture the “plaid” contact pattern. The original PC1 was oriented according to a K562

DNase-Seq track (ENCODE accession code: ENCFF338LXW) so that positive values

correspond to active genomic regions and negative values correspond to inactive regions.

The Pearson correlation of PC1 was 0.995 between Chromap and BWA (Figure 2.7). For

TADs, genome-wide insulation scores (IS) were calculated at 25 kb with the window size

setting to 1 Mb. The Pearson correlation of the IS scores was 0.998 between the results

from Chromap and BWA-MEM (Figure 2.3a). Finally, we identified chromatin loops using

HiCCUPS at 10 kb (https://pypi.org/project/hicpeaks/, v0.3.4). Among the 9,455 and 9,950

loops identified from Chromap and BWA-MEM respectively, we found 8,385 of them were

supported by both methods (Figure 2.8). Furthermore, we found loop anchor sites that were

uniquely identified by Chromap or BWA-MEM had a similar enrichment of CTCF binding

peaks (Figure 2.9), suggesting those aligner-specific anchors could be biologically mean-

ingful.
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Figure 2.7: Contact matrices at 100kb resolution and compartment consistency based on
Chromap and BWA-MEM.

Figure 2.8: Chromatin loops based on Chromap and BWA-MEM.

2.3.4 Evaluating performance for scATAC-seq data

Last but not least, we tested Chromap on a 10K PBMC scATAC-seq data set from 10x Ge-

nomics with about 758 million reads and compared the results with CellRanger v1.2.0 and

CellRanger v2.0.0, the official pipelines for processing scATAC-seq data developed by 10x

Genomics based on BWA-MEM. Released in May 2021, CellRanger v2.0.0 substantially

improves the computational efficiency over its predecessor along with other updates in pre-

processing steps, such as deduplication criteria. We used all three methods for alignment

and preprocessing followed by MAESTRO [49] for cell clustering and cell type annotation

(Figure 2.3b). We evaluated the consistency of cell type annotation using normalized mu-

tual information (NMI), and found Chromap and CellRanger v2.0.0 generated nearly iden-
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Figure 2.9: Average CTCF supports around Chromap-unique and BWA-unique loop anchor
site.

tical results with NMI more than 0.96, higher than the NMI between the two CellRanger

versions (Figure 2.3b, Table 2.3). The lower consistency between CellRanger v1.2.0 and

v2.0.0 suggested that alternating BWA-MEM and Chromap had less impact on the analysis

than changing other preprocessing strategies. The clustering profiles were also highly sim-

ilar between Chromap and CellRanger v2.0.0, no matter whether clustering was performed

using the peak-based approach in MAESTRO or the bin-based approach in ArchR [50]

(Table 2.4). On performance, Chromap generated the final alignment file in less than 30

minutes. It was 68 times faster than CellRanger v1.2.0 (33 hours) and 16 times faster than

CellRanger v2.0.0 (8 hours). On this data set, Chromap directly obtained the candidates for

about 120 million reads from the candidate cache of size 2 million entries which reduced

the alignment time by 4%. The memory usage of Chromap is around 21GB, of which the

candidate cache consumed about 1.7GB. Since the memory usage is dependent on the in-

dex file size, it is stable with respect to sequencing depth and regardless of applications to
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ChIP-seq, Hi-C, or scATAC-seq.

Table 2.3: The normalized mutual information (NMI) and adjusted rand index (ARI) of cell
type annotations and cell clusters from MAESTRO on 10K PBMC 10x Genomics scATAC-
seq data using Chromap and CellRanger v1.2.0 and v2.0.0. MAESTRO obtained 15, 16,
15 clusters from CellRanger v1.2.0, CellRanger v2.0.0 and Chromap results respectively.

Cluster

CellRanger v1.2.0 vs
CellRanger v2.0.0

CellRanger v1.2.0 vs
Chromap

CellRanger v2.0.0 vs
Chromap

NMI 0.822 0.832 0.932
ARI 0.677 0.701 0.914

Cell type

CellRanger v1.2.0 vs
CellRanger v2.0.0

CellRanger v1.2.0 vs
Chromap

CellRanger v2.0.0 vs
Chromap

NMI 0.922 0.933 0.964
ARI 0.963 0.969 0.983

Table 2.4: The normalized mutual information (NMI) and adjusted rand index (ARI) of cell
type annotations and cell clusters from ArchR on 10K PBMC 10x Genomics scATAC-seq
data. ArchR obtained 11, 12, 13 clusters from CellRanger v1.2.0, CellRanger v2.0.0 and
Chromap results respectively.

CellRanger v1.2.0 vs
CellRanger v2.0.0

CellRanger v1.2.0 vs
Chromap

CellRanger v2.0.0 vs
Chromap

NMI 0.865 0.881 0.899
ARI 0.896 0.905 0.928

We conducted comprehensive evaluations between Chromap and CellRanger on the

10K PBMC 10x Genomics scATAC-seq data to show that the clustering results were not

affected by replacing CellRanger with Chromap. We compared the consistency of the cell

type annotations or cell clusters using normalized mutual information (NMI) and adjusted

rand index (ARI) calculated by the Python package scikit-learn. We first computed the

baseline NMI and ARI between CellRanger v1.2.0 and CellRanger v2.0.0. Chromap vs

CellRanger v2.0.0 achieved a higher consistency score than the baseline score, suggesting

the results from Chromap were highly consistent with CellRanger and were more consistent

than CellRanger version changes (Table 2.3).

To confirm the difference in the consistency score was insignificant, we created two
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replicates of the data set by randomly sampling 95% of the read fragments in the data

set and applied CellRanger v2.0.0 to process these two replicates. The cluster-level NMI

between the two downsampled replicates (0.888) was lower to the NMI of the clusters

generated from CellRanger v2.0.0 and Chromap (0.932), supporting that the impact from

alternating CellRanger and Chromap is small.

In addition, we also applied a bin-based scATAC-seq analysis method ArchR on this

data set to evaluate the difference in the clustering caused by using Chromap and two Cell-

Ranger versions. Similar to the results on MAESTRO, we found alternating CellRanger

to Chromap had tiny effects on the clustering results generated by ArchR (Table 2.4).

Though CellRanger v1.2.0 is slow, it is easier to modify, and we were able to adapt it

to use Bowtie2 as the alignment method (CellRanger v1.2.0 Bt2). Therefore, we could ex-

amine the impact of alternating the alignment methods on cell clusters. In this case, we ran

Chromap with bulk level deduplication (Chromap bulkdedup) as the setting in CellRanger

v1.2.0. The NMI and ARI scores among CellRanger v1.2.0, CellRanger v1.2.0 Bt2 and

Chromap bulkdedup are all high (NMI> 0.9, ARI> 0.88, Table 2.5), suggesting that al-

ternating the alignment methods BWA-MEM, Bowtie2 and Chromap had little impact on

scATAC-seq analysis. CellRanger is a pipeline including data analysis steps after alignment

and preprocessing, we measured its running time until the last “WRITE ATAC BAM” step

in the log file.

Table 2.5: The normalized mutual information (NMI) and adjusted rand index (ARI)
of cell clusters from MAESTRO on 10K PBMC 10x Genomics scATAC-seq data using
Chromap bulkdedup and CellRanger v1.2.0 with BWA and Bowtie2 as aligners. MAE-
STRO obtained 15, 14, 15 clusters from BWA, Bowtie2 and Chromap results respectively.

CellRanger v1.2.0 vs
CellRanger v1.2.0 Bt2

CellRanger v1.2.0 vs
Chromap bulkdedup

CellRanger v1.2.0 Bt2 vs
Chromap bulkdedup

NMI 0.903 0.918 0.927
ARI 0.884 0.919 0.916
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2.4 Summary

In summary, Chromap implements an efficient and accurate alignment and processing

method for chromatin profiles. It is significantly faster than general-purpose aligners by

taking full advantage of the nature of chromatin studies, i.e., read coordinate locations

are more important for downstream analyses (Figure 2.3c). Chromap further improves

efficiency by integrating the adapter trimming, alignment deduplication, and barcode cor-

rection processing steps in the standard chromatin biology data workflows. With the de-

creasing cost of high throughput sequencing and increasing deeper sequencing coverage of

chromatin profiles, Chromap will continue to expedite biological findings from chromatin

studies in the future.
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CHAPTER 3

AN EFFICIENT METHOD FOR MAPPING NANOPORE RAW READS IN REAL

TIME

ONT sequencers can interact with computational methods to select desired molecules to

sequence. This is achieved by processing nanopore raw reads consisting of ionic current

readings measured during the sequencing process and ejecting undesired molecules from

the pore. To perform selective sequencing on ONT sequencing instruments in real time, ef-

ficient computational methods are required to map nanopore raw reads and decide whether

they are generated from the targeted genomic regions.

In this chapter, we present a new streaming method that can map nanopore raw signals

for real-time selective sequencing. Our method features a new way to index reference

genomes using k-d trees, a novel seed selection strategy, and a seed chaining algorithm

aware of the current signal characteristics. We implemented the method as a tool Sigmap.

Then we evaluated it on both simulated and real data, and compared it to the state-of-the-

art nanopore raw signal mapper Uncalled. Our results show that Sigmap yields comparable

performance on mapping yeast simulated raw signals, and better mapping accuracy on

mapping yeast real raw signals with a 4.4x speedup. Moreover, our method performed well

on mapping raw signals to genomes of size >100 Mbp and correctly mapped 11.49% more

real raw signals of green algae, which leads to a significantly higher F1-score (0.9354 vs.

0.8660).

The rest of the chapter is organized as follows. In Section 3.1, we introduce the related

work and its limitations on processing data for nanopore selective sequencing in real time.

In Section 3.2, we provide details on the Sigmap method. In Section 3.3, we evaluate the

performance of Sigmap and other tools that can map nanopore raw signal data. Finally, we

summarize our work in Section 3.4.
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3.1 Related work

Loose et al. [51] took advantage of the selective sequencing feature of the MinION se-

quencer and performed real-time targeted sequencing for amplicon enrichment. In their

work, they use dynamic time warping (DTW) to align raw signals to reference genomes

to decide whether reads are of interest. Since the time complexity of DTW is quadratic in

terms of sequence length, it only works on small genomes that are kilobase pairs long. To

address this issue, methods based on base calling followed by read mapping were proposed

[22, 23]. However, base callers are not optimized to work on small chunks of reads; thus,

they may generate sub-optimal read sequences, which makes mapping challenging [24].

As base calling is a computationally intensive process, enough compute power (e.g., suf-

ficiently powerful GPUs) to achieve real-time base calling may not always be available

outside laboratories.

To avoid these drawbacks, Uncalled [24] was developed to map raw signals in real

time without base calling. It builds an FM-index [52] for reference genomes, segments

the raw signals into events (collapsed current readings for each k-mer), and converts the

events into possible k-mers using the ONT pore model. High-probability k-mers are used

to query the index and extended. Since raw signals are noisy, Uncalled keeps track of all

possible positions of each k-mer as the mapping proceeds. After removing false positive

locations by a seed clustering method, the final mapping is reported if one of the locations

is sufficiently better than the others. The authors demonstrated successful use of Uncalled

on targeted sequencing of small genomes (<30 Mbp) and reported that it cannot work

properly on mapping raw signals to large genomes that have high repeat content.

3.2 Methods

Seed-and-extend is a widely applied strategy to map erroneous long reads [53, 54, 55, 40].

Typically, exact or approximate word matches between reads and reference genomes are
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extracted and then co-linear matches (a sequence of matches that occur in ascending or-

der in both reads and reference genomes) are identified to generate final alignments. Our

algorithm also follows the seed-and-extend strategy (see Figure 3.1 for an overview) but

is specifically designed to handle noisy raw signal data. Prior to mapping, the reference

genome is converted to events and an index of the reference is built once (Section 3.2.1). In

the mapping step, raw current signals are first segmented into events and normalized (Sec-

tion 3.2.2). Then seeds that are less likely to contain segmentation errors are selected from

the processed raw signal and used to query the index (Section 3.2.3). After collecting the

seed hits (anchors) on the reference, we designed and implemented a chaining algorithm

tailored towards the current signal characteristics to find co-linear anchors as chains (Sec-

tion 3.2.4). The chains are filtered by their scores to ignore sub-optimal mappings. To

do real-time selective sequencing, we presented a streaming version of the proposed algo-

rithm (Section 3.2.5). The details of each step are as follows.

3.2.1 Indexing

Different pore models are provided by ONT for various pore versions since current readings

are affected by different number of nucleotides occupying the pore at each sequencing time

point. In this probabilistic model, current readings for each k-mer are assumed to follow a

Gaussian distribution with known parameters. Thus using the pore model, one can estimate

the probability of a given event being any of the k-mers, or convert a nucleotide sequence

to an event sequence by simply substituting k-mers with their expected current readings.

Uncalled uses the prior strategy to generate high-probability k-mers from read events,

while our method leverages the latter to convert the reference to events. Note that in the first

case a full iteration on all the distributions is usually required to identify high-probability

k-mers that an event may correspond to, which can be slow when many events in the read

are processed simultaneously. But converting a k-mer to its expected current reading is a

direct translation once a hash table is built for the pore model using k-mers as keys and

31



𝑒!"

A T C G C T A G …

Reference genome and events

Index 0 20 40 60 80
60

80

100

120

Raw signal and events

Selected seeds: 𝑒#$ , 𝑒!$ , (𝑒%$ , 𝑒&$)

Chaining on reference

𝑒'" 𝑒%"

𝑒#" 𝑒(" 𝑒)" 𝑒&"

𝑒!"

𝑒#"

𝑒$"

𝑒%"

𝑒&"

𝑒'"

𝑒("

𝑒)"

Figure 3.1: Overview of the proposed algorithm. The reference genome is first converted
to a sequence of events es1, e

s
2, . . . (red lines) using the expected current value of each k-mer

in the pore model. For simplicity of illustration, we use 2-mers in this example. Now every
pair of consecutive events (esi , e

s
i+1) is a point in two-dimensional space, thus a spatial index

for these points (red triangles) can be created. For visualization purpose we set dimension
to 2, but higher dimensions may be used. In the mapping stage, raw signals (blue dots)
are first segmented into events er1, e

r
2, . . . (red lines). Then seeds are selected to query the

index with range search and hits on the reference are chained to get the mapping (in the
blue rectangle).
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expected current as values. Since the conversion is only done once for reference genomes,

we can save the overhead of applying pore models to read events to find high-probability

k-mers during the mapping stage.

Formally, let s = s1s2 . . . sn be a nucleotide sequence of length n over alpha-

bet Σ and its corresponding sequence of k-mers be K(s) = k1k2 . . . kn−k+1, where

ki = sisi+1 . . . si+k−1. The pore model is defined as f : Σk −→ R, which gives the ex-

pected current corresponding to a k-mer. We create the corresponding event sequence

as E(s) = es1e
s
2 . . . e

s
n−k+1, where esi = f(ki). This is translated to a set of points

P (s) = {psi = (esi , e
s
i+1, . . . , e

s
i+d−1), 1 ≤ i ≤ n − k − d + 2} in d-dimensional space.

Similarly, for each raw signal sequence r, we generate its events E(r) = er1e
r
2 . . . e

r
m

(described in Section 3.2.2). The reads are also translated to points P (r) = {pri =

(eri , e
r
i+1, . . . , e

r
i+d−1), 1 ≤ i ≤ m − d + 1} in d-dimensional space, some of which are

used as seeds in the mapping step. Therefore we need a data structure to organize points

of the reference sequence in d-dimensional space so that given a query point pr of the read,

we can efficiently retrieve points psi1 , p
s
i2
, . . . of the sequence near pr, i.e.,

∥∥∥pr − psij

∥∥∥
2
≤ ϵ

where ϵ is the threshold for this range search.

The k-d tree [56] is a data structure designed for partitioning space and organizing

points with a binary tree. The leaf nodes of the tree are points while every non-leaf node

implicitly divides a subspace into two parts by a hyperplane within that subspace. The

points on either side of this hyperplane are associated with the left/right subtrees, respec-

tively. In a balanced k-d tree, the time complexity of range search is O(dn1− 1
d ) in worst

case for a fixed range size [57]. But in practice, this typically takes O(log n + 2d) time,

where logarithmic time is spent in finding the nodes “near” the query point and O(2d) time

is spent to explore their neighborhoods. Therefore we use the k-d tree to organize points

generated from the reference to handle large number of queries efficiently during mapping

process. Note that construction of the index requires O(n log n) time when using an O(n)

median of medians algorithm [58], and the index only needs to be built once prior to map-
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ping. In the implementation, we used the highly-optimized k-d tree package nanoflann

(https://github.com/jlblancoc/nanoflann), which supports k-d tree construction and queries.

3.2.2 Signal pre-processing

There are two signal pre-processing steps: signal segmentation and normalization. For R9.4

pore, the DNA molecule transits through the pore with an average speed of 450 bp/s and

the electric current is sampled at 4 kHz, which means on average each k-mer has around

8 current samples. The purpose of signal segmentation is to collapse the current readings

of the same k-mer into an event. However, speed of the molecule passing through the pore

varies significantly. As a result, some k-mers may stay longer in the pore and generate

more current readings (stay errors) while some k-mers may have no recorded current as

the time they reside in the pore is too short (skip errors), which makes it hard to segment

signals accurately. Moreover, to process signals in real time, we need a fast segmentation

method.

Scrappie (https://github.com/nanoporetech/scrappie) is a base caller from ONT, which

has a segmentation step prior to fine-grained base calling. It uses t-test over rolling window

on the raw signal to detect where the current changes significantly, thereby segmenting the

signal. Similar to this method, we also use the Welch’s t-test to segment the signal. We

choose a fixed window size w and for raw current samples in every two adjacent windows

we compute the t-statistics t = (x̄1 − x̄2)/
√

(y21 + y22)/w where x̄i is the current sample

mean and yi is the current sample standard deviation in the window. Then all the local

maxima and minima are identified among the computed t-statistics along the sequence.

When a local extremum passes a significance threshold, its position is selected to segment

the signal. Due to the various molecule transiting speeds, t-statistics should be computed

using multiple window sizes. Local extrema are chosen as segmentation positions using the

smallest possible window size if the local extrema reach the significance threshold of that

window size. After the signal is segmented, the detected events are normalized to account
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for the shift or drift during sequencing.

3.2.3 Seeding

After reference genomes and raw signals are converted into events, the mapping problem

is as follows: given read events E(r) and reference events E(s), find consecutive events

Ei,j(s) = esie
s
i+1 . . . e

s
j in E(s) such that E(r) can be aligned to Ei,j(s) with high confi-

dence. Note that the mapping can be found by using subsequence dynamic time warping

(sDTW) [59]. But the time to compute DTW distance is quadratic in the length of events

sequences, which is too slow to compute for long reads in real time. Since the reads are

long, though they are erroneous, there are still many subsequences shared in a high con-

fidence mapping region of the read and the reference. Taking advantage of this fact, long

read aligners such as minimap2 [40] can efficiently map reads using the seed-and-extend

strategy and so does our method.

As the reference points are indexed for fast queries, we can use read points P (r) =

{pri = (eri , e
r
i+1, . . . , e

r
i+d−1), 1 ≤ i ≤ m − d + 1} as the seeds. Note that the number of

seeds (or points) needed to query the index is roughly the length of the event sequence.

For real-time mapping, the reads have to be mapped within their first few hundreds of

base pairs (events). Thankfully, searching for all the seeds can be completed in reasonable

time. However, more seeds also lead to more hits on the reference, thereby potentially

increasing the time spent in chaining the hits. For organisms like yeast, the number of hits

is limited by the small genome size and fewer repetitive regions. But for larger genomes

with more repetitive structures, the number of hits can increase significantly, which makes

the chaining step time consuming.

To address this problem, one can select seeds with a fixed step size l and only use a

subset of all the read points P (r) as seeds, Pl(r) = {pri = (eri , e
r
i+1, . . . , e

r
i+d−1), 1 ≤ i ≤

m − d + 1, i mod l = 0}. However, raw signals are noisy, which also makes the events

erroneous. Simply picking seeds with a fixed step size could miss some “error free” seeds
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(query points that have true hits in the index within a certain range) and reduce mapping

accuracy. This problem is even more serious when mapping reads in a streaming manner,

where the read is supposed to be mapped with only its first few hundreds of base pairs

sequenced.

As an alternative, if the quality of the seed can be measured by a score, then error-

free seeds can be preferred during seed selection procedure. Formally, we define a scoring

function g : Rd −→ R which computes the score for a given point in d-dimensional space.

Note that during sequencing, stay errors happen more frequently than skip errors. Affected

by the noise during sequencing, stay errors result in many current samples for the same

k-mer with large variance, which leads to over segmentation of the raw signal. If a seed

contains stay errors, range search can fail to find true hits of the seed.

We present a method to avoid seeds that are likely to contain stay errors. For a seed

(query point) pri = (eri , e
r
i+1, . . . , e

r
i+d−1), we define the seed scoring function as g(pri ) =∑i+d−1

j=i+1 |erj − erj−1|, which is the sum of the differences between every pair of consecutive

events in the seed. Then with step size l, top ⌈(m− d+ 1)/l⌉ seeds are selected based on

their scores. Note that seeds with more abrupt changes in their events are considered better

since the segmentation is more reliable in that case.

3.2.4 Chaining

The time for computing an optimal alignment between two sequences is quadratic in the

length of the sequences. To avoid this computational bottleneck for aligning long se-

quences, chaining approaches [40] have been proposed and used to efficiently find mapping

positions of long reads in large reference genomes.

Inspired by the chaining method of minimap2, we present a dynamic programming

algorithm to identify a set of co-linear anchoring point matches. Formally, each seed hit

(anchor) is a triple (u, v, h), which represents a read point pru matching a reference point

psv with distance h, i.e., ∥pru − psv∥2 = h. Given a list of anchors sorted by their position
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on the reference, the best chaining score up to the ith anchor can be computed using the

recurrence Di = max {max1≤j<i {Dj + αji − βji} , (1− hi/ϵ)d}, where αji = (1−hi/ϵ)∗

min {ui − uj, vi − vj, d} is the bonus for the seed hit and βji is the gap penalty. Let aji =

|(ui − uj)− (vi − vj)| denote the gap length and bji = |(ui − uj)/(vi − vj)| denote the

gap scale. The gap penalty βji is set to∞ when vi < vj (ith anchor is not co-linear with the

jth anchor), or gap length aji or gap scale bji is too large. Due to stay and skip errors, the

gap length and scale are usually unpredictable. Hence, we do not penalize the gap as long

as its length and scale are below certain thresholds. Instead, when computing the bonus αji

for seed hits, we scale it down by the factor (1− hi/ϵ).

Note that the time of the chaining algorithm is quadratic in the number of anchors,

which is slow. In practice, we use similar heuristics as in minimap2 chaining to reduce the

number of anchors to examine. When computing Di, we start the iteration from j = i− 1

and stop when no better chaining score is found after c iterations. For na anchors, this

heuristic reduces the average time to O(cna). The default c is set to the same value used

in minimap2 since it led to reasonable speed and accuracy on mapping reads to various

genomes empirically. There are theoretically faster chaining algorithms [60] but they are

usually not adapted to generic gap functions, or have large hidden constants in their time

complexity.

3.2.5 Streaming mapping

In nanopore real-time sequencing, the signal is returned in chunks, and each chunk by de-

fault is one second’s worth of signal and contains 4,000 current samples or roughly 450 bp.

We developed a streaming method to map raw signals by chunks. The signal preprocessing

and seeding are performed on each chunk individually. As for chaining, the anchors in the

good chains (chaining scores are at least half of the best score) generated using previous

chunks are kept and used in the chaining together with the anchors in the current chunk.

Each time after a chunk is processed, we compute the ratio between the best chaining score
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and the second best chaining score. If the ratio exceeds a certain threshold, we stop map-

ping more chunks and report the best chain as the mapping. By default, we set this ratio

to 1.4. If this ratio cannot exceed this threshold after mapping the first 30 chunks of the

read, the mapping process of this read will be stopped and the read will be reported as

unmapped. These parameters can be adjusted by users to increase mapping speed or lower

false positive rate based on the applications if necessary.

3.3 Experimental Results

We demonstrate empirically the advantages of our method on both simulated and real data

sets on two different genomes. The implementation of our proposed method is termed

Sigmap, which is available at https://github.com/haowenz/sigmap. We compare Sigmap

with Uncalled (v2.1).

3.3.1 Experimental setup

Benchmarking data sets

We used one simulated and two real data sets to test the methods. The number of reads,

N50 values, genome sizes and average coverage for these data sets are shown in Table 3.1.

Simulated raw signals of Saccharomyces cerevisiae (yeast) were generated using Deep-

Simulator [61] with its context-dependent model (-M 0) and sequencing coverage set to

20x (-K 20). For real data sets, 100,000 raw reads were randomly selected from nanopore

sequencing of S. cerevisiae using ONT R9.4 chemistry (available at NCBI under the study

PRJNA510813). The first run of Chlamydomonas reinhardtii (green algae) nanopore se-

quencing using ONT R9.4 chemistry was also used (under study PRJEB31789 on EMBL-

EBI) in the evaluation. Note that in real-time targeted sequencing applications, the regions

of interest are usually from ∼10 Mbp to ∼100 Mbp and the coverage of target regions is

around 20x [24, 62]. Thus in the evaluation, the yeast and green algae sequencing data were

used as their genome sizes are appropriate and their whole genome sequencing data are
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subsampled to the proper coverage for real-time targeted sequencing applications. Besides,

since Uncalled only supports R9.4 chemistry so far, we used R9.4 data in our evaluation.

But with some parameter tuning for both methods, they might also be able to work on R10

data with the R10 pore model (https://github.com/jts/nanopolish/tree/r10/etc/r10-models)

trained using Nanopolish [17].

Table 3.1: List of benchmarking data sets.

Data set Type Number of
reads N50 (bp) Reference genome Genome size

(Mbp)
Average
coverage

D1 Simulated 30,385 11,984 S. cerevisiae S288c 12.2 20x
D2 Real 100,000 8,348 S. cerevisiae S288c 12.2 58x
D3 Real 63,215 32,025 C. reinhardtii v5.5 111.1 12x

Hardware and software

For all experiments, we used a compute node with dual Intel Xeon Gold 6226 CPU (2.70

GHz) processors equipped with a total of 24 cores and 128GB main memory. We run

Sigmap and Uncalled with all the available cores.

The k-d tree index constructed by Sigmap has two important parameters: dimension

d and the maximum number of points associated with a leaf node, np. The empirical

performance of k-d trees is usually good in low-dimensional spaces (e.g., 2D or 3D) but

degrades in high-dimensional spaces as more tree branches need to be visited for each

query. For this application a low d such as 2 or 3 cannot be chosen, as querying points in

low-dimensional spaces usually results in too many hits, which can slow down mapping.

Thus we set d to 6 by default. Since the ONT R9.4 pore model lists the expected current

reading for each 6-mer, a point in the 6-dimensional space is analogous to an 11-mer, which

is also a reasonable k-mer size for read mapping on genomes from tens of Mbp to several

hundred Mbp. As for the other parameter, np controls the maximum number of points

associated with a leaf node (points are stored in leaf nodes of k-d trees). A larger np can

make the tree smaller but may cause more explorations of points during the search process
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and increase the query time. On the other hand, a smaller np may reduce the number of

points to inspect for a query but increase the tree size. By default, we set np to 20 and

studied how it can affect memory usage and mapping time on D2. Moreover, to study the

effect of seeding step size on mapping time, we evaluated Sigmap with various seeding

step sizes l from 2 to 6 on D3 while other parameters are set to the default. We set the

maximum amount of chunks to use for mapping a raw signal as 30 and the search radius ϵ

to 0.08 by default since they led to proper mapping accuracy and time. These parameters

can be adjusted by users according to their data and applications in practice.

To test Uncalled, we used default parameters for indexing reference genomes and map-

ping raw signals. Kovaka et al. [24] showed that masking repeats in genomes improved

the mapping speed and accuracy of Uncalled. In the evaluation, we used recommended

parameters and procedures stated in the Uncalled’s user documentation for C. reinhardtii

genome repeat masking.

Evaluation criteria

We followed a similar evaluation criteria previously used by Kovaka et al. [24]. Raw reads

that are mapped to their true mapping locations are true positives (TP). Reads that are

mapped by their raw signals but not to the correct locations are false positives (FP). Reads

that have true mapping locations but are not mapped by their raw signals are false negatives

(FN). Precision equals TP/(TP + FP ), recall equals TP/(TP + FN), and F1-score is

calculated by 2∗precision∗recall/(precision+recall). The percent of correctly mapped

reads is the portion of reads that are mapped to their true mapping locations.

For simulated data set D1, we evaluated the mapping accuracy against the ground truth

output by the simulator. For real data sets, we mapped the base-called read sequences

with the well-established long read aligner minimap2 [40] and used the read alignments as

ground truth to validate Sigmap and Uncalled. We excluded reads that are not mapped by

minimap2 in the evaluation.
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Moreover, we measured the mean mapping time of each read and the number of chunks

used to map a read. In practical applications, mapping results are needed in real time to

decide whether to eject a pore. Therefore, instead of cumulative mapping time, time spent

on individual reads is an important metric to show whether most of the reads can be mapped

fast enough for real-time decisions. To accurately measure the mapping time for individual

reads, the mapping start time and end time of each read were recorded and the wall time

for mapping each read was computed as the difference between these two values and then

reported. This way of timing the mapping process for individual reads avoids the effect

of loading index or the scalability of multi-thread implementation on measuring mapping

time, which is a fair way to compare the two methods.

3.3.2 Comparison with Uncalled

We evaluated the performance of Sigmap and Uncalled on data sets D1-D3. The results

on yeast genome are shown in Table 3.2. On the simulated data set D1, Sigmap achieved

higher percentage of correctly mapped reads, precision and F1-score while Uncalled has

higher recall and faster speed. Since simulated data might not be as noisy as real data,

the events were likely to be detected and converted to corresponding k-mers more reliably,

which reduced the number of high-probability k-mers to explore in Uncalled and made it

faster. On yeast real data set D2, 93,544 of the 100,000 reads were mapped by minimap2

and used in the evaluation. Sigmap achieved higher percent of correctly mapped reads,

precision, recall and F1-score. Notably, its speed of mapping a raw signal on average was

4.4 times faster than Uncalled.

Table 3.2: Performance comparison between Sigmap and Uncalled on yeast genome.

Data
set Method

Correctly
mapped

reads (%)
TP FP FN Precision

(%)
Recall

(%) F1-score
Mean time

per read
(ms)

D1 Sigmap 97.66 29675 7 661 99.98 97.82 0.9889 59
Uncalled 97.47 29615 722 47 97.62 99.84 0.9872 18.3

D2 Sigmap 87.54 81892 964 10683 98.84 88.46 0.9336 68.3
Uncalled 87.37 81725 1054 10765 98.73 88.36 0.9326 303.1

41



Next, we tested Sigmap and Uncalled on the green algae real data set D3, where min-

imap2 mapped 60,313 out of 63,215 reads. Table 3.3 shows the evaluation results. We

denote Sigmap run with seeding step size 3 by Sigmap (l3), etc. Since the green algae

genome is much larger than the yeast genome and has more repetitive regions, genome

repeat masking was performed as suggested when using Uncalled to map raw signals. Af-

ter repeat masking, both mapping accuracy and mean time to map a read improved. But

Sigmap significantly outperformed Uncalled with or without repeat masking on the per-

centage of correctly mapped reads, recall, and F1-score, while achieving comparable pre-

cision. Moreover, compared with Uncalled with and without masking respectively, Sigmap

using default parameters was 1.3 and 1.2 times faster on mapping reads, and Sigmap using

seeding step size 6 was 2.6 and 2.3 times faster. Though the mapping accuracy of Sigmap

degraded when increasing the seeding step size, it was overall better compared to Uncalled.

The reason for this observation is that using larger seeding step size reduces the number of

picked seeds that go into chaining, which would reduce chaining time and thereby reducing

mapping time. But picking fewer seeds also reduced the mapping accuracy since the true

mapping location would have fewer supported seeds making it harder to distinguish from

other false mapping locations.

Table 3.3: Performance comparison between Sigmap and Uncalled on green algae genome.
Data set D3 was used for the tests.

Method
Correctly
mapped

reads (%)
TP FP FN Precision

(%)
Recall

(%) F1-score
Mean time

per read
(ms)

Sigmap 87.86 52989 1694 5628 96.90 90.40 0.9354 509.1
Sigmap (l3) 86.21 51998 1973 6338 96.34 89.14 0.9260 373
Sigmap (l4) 83.51 50370 2542 7397 95.20 87.20 0.9102 314.8
Sigmap (l5) 80.69 48669 3107 8532 94.00 85.08 0.8932 279.6
Sigmap (l6) 77.20 46564 3781 9962 92.49 82.38 0.8714 261.2
Uncalled 72.18 43534 883 15896 98.01 73.25 0.8384 677
Uncalled (mask) 76.37 46060 881 13372 98.12 77.50 0.8660 596.5

The mapping time distributions of Uncalled and Sigmap on D2 and D3 are shown

in Figure 3.2. We observed that overall Sigmap achieved much shorter mapping time on
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Figure 3.2: Boxplots showing the mapping time distributions of Uncalled and Sigmap on
mapping real reads in D2 and D3. Center lines denote the median, box limits are the
quartiles and the whiskers extended from the boxes represent 5% and 95% confidence
intervals.
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mapping yeast real raw reads compared with Uncalled. We noticed the speedup of map-

ping reads on green algae genome is not as significant as the speedup of mapping yeast

reads. One reason is that the size of green algae genome is as around 9 times larger as the

size of yeast genome. Given the fact that in practice the time of k-d tree queries is usually

logarithmic in the number of points (explained in Section 3.2.1), which is roughly the size

of the genome, the query time is supposed to increase accordingly. In addition, the green

algae genome has more repetitive regions than the yeast genome and thus the number of

signal chunks needed to map algae reads confidently on average is expected to be greater

than that to map yeast reads. In the evaluation, we studied the number of chunks needed for

Sigmap to map yeast and green algae reads correctly and present the results in Figure 3.3.

We observe that using the same number of chunks, a smaller fraction of green algae reads

were correctly mapped compared with yeast reads. This also indicates overall more chunks

were needed to map green algae reads confidently, which increased the mapping time.

Besides mapping speed, we investigated the index size of Sigmap and Uncalled, which

contributes to most of the memory usage in real-time signal mapping. Note that Uncalled

mainly relies on an FM-index of the reference sequence which is a compressed full text

index, hence expected to be space-efficient. The index size of the yeast genome and the

green algae genome built by Uncalled is 21MB and 186MB respectively. Using default

parameters, Sigmap built a 417MB index for the yeast genome and a 3.2GB index for the

green algae genome, which are larger than the indices built by Uncalled but can still be

accommodated on typically used computing systems.

As discussed in Section 3.3.1, increasing the maximum number of points associated

with a leaf node, np, can trade off mapping speed for smaller index. We studied how mean

time to map reads and index size vary with different np = 10, 20, 50, 100, 200 on D2 and

showed the results in Figure 3.4. We observed that the mean mapping time increased and

the index size decreased as np increased and when np = 200, the index size can be reduced

by a half while the average time to map a read increased by about two times. Similarly, the
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of points allowed in a leaf node of the k-d tree.
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index size of green algae genome can be reduced to 1.8GB when setting np = 200.

Note that the space complexity of the k-d tree is linear in the number of points and

the reason that Sigmap index size is large can be partly attributed to the implementation.

Therefore, another possible way to reduce the index size without sacrificing mapping speed

is to implement a memory efficient k-d tree customized for this application rather than using

a generic k-d tree library, which is a useful direction for future work.

3.4 Summary

Mapping nanopore raw signals in real time is challenging under limited computing re-

sources. Most mapping methods require base calling, which is computationally expensive.

Uncalled is an efficient method that does not require base calling, but hits performance

limitations on large genomes with higher repeat content. In this chapter, we introduced a

new nanopore raw signal mapping method and implemented it as a tool Sigmap. On small

genomes like yeast, while Sigmap has comparable performance with Uncalled on mapping

simulated data, Sigmap is 4.4× faster than Uncalled on mapping yeast real raw signals and

has the potential to support real-time signal mapping for high-yield run ONT sequencing

devices with more pores (e.g., GridION), which previous mapping methods without base

calling might not be able to achieve. Sigmap also has good performance on genomes of size

>100 Mbp such as green algae, where Uncalled could not identify many correct mappings.

The method avoids any conversion of signals to sequences and fully works in signal space,

which holds promise for completely base-calling-free nanopore sequencing data analysis.

47



CHAPTER 4

AN IMPROVED ALGORITHM FOR SEQUENCE ALIGNMENT TO GRAPH

GENOMES

As graph-based reference genomes are gaining momentum, new methods are needed to

map reads to graph genomes. Decades of progress toward designing provably good algo-

rithms for the classic sequence to sequence alignment problems serves as the foundation

for mapping tools currently used in genomics. Similar efforts are necessary for sequence

to graph alignment.

In this chapter, we present an improved algorithm for the sequence to graph alignment

problem. Specifically, we propose an algorithm that achieves O(|V | +m|E|) time bound

to align a query sequence of length m to a directed graph G(V,E) with character-labeled

vertices for both linear and affine gap penalty cases, which is superior to the best existing

algorithms. A vital attribute of the proposed algorithm is that it achieves the same time

and space complexity as required for the easier problem of sequence alignment to acyclic

graphs [63, 64], under both scoring models.

The rest of the chapter is organized as follows. In Section 4.1, we provide an overview

of the related work on sequence to graph alignment. In Section 4.2 and Section 4.3, we

formulate the sequence to graph alignment problem variants and design an algorithm to

solve them. Then we summarize our work in Section 4.4.

4.1 Related work

Aligning sequences to graphs is becoming increasingly important in the context of several

applications in computational biology, including variant calling [65, 66, 67, 32], genome

assembly [68, 69, 70], long read error-correction [71, 72, 73], RNA-seq data analysis [74,

75], and more recently, antimicrobial resistance profiling [76]. Much of this has been driven
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by the growing ease and ubiquity of sequencing at personal, population, and environmental-

scale, leading to significant growth in availability of datasets. Graph based representations

provide a natural mechanism for compact representation of related sequences and vari-

ations among them. Some of the most useful graph based data structures are de-Bruijn

graphs [77], variation graphs [78], string graphs [79], and partial order graphs [80].

To address the growing list of biological applications that require aligning sequences

to a graph, several heuristics [81, 82, 83, 84, 32] and a few provably good algorithms [85,

86, 87] have been developed in recent years. In addition, sequence to graph alignment

has been studied much earlier in the string literature through its counterpart, approximate

pattern matching to hypertext [63]. Since then, important complexity results and algorithms

have been obtained for different variants of this problem [88, 64, 89]. Many versions

of the classic sequence to sequence alignment problem were considered in the literature,

e.g., different alignment modes – local/global, scoring functions – linear/affine/arbitrary

gap penalty, and so on [90]. The list further proliferates when considering a graph-based

reference. This is because the nature of the problem changes depending on whether the

input graphs are cyclic or acyclic [64]. Table 4.1 provides an overview of these sequence

to graph alignment methods and our algorithm.

Linear gap penalty Affine gap penalty
Edit distance Arbitrary costs

Amir et al. [88] O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|)) -

Navarro [64] O(m(|V |+ |E|)) - -

HybridSpades [68] O(m(|V | log(m|V |) + |E|)) O(m(|V | log(m|V |) + |E|)) -

V-ALIGN [87] O(m|V ||E|) O(m|V ||E|) O(m|V ||E|)
Rautiainen and
Marschall [86]

O(|V |+m|E|) O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|))

This work O(|V |+m|E|) O(|V |+m|E|) O(|V |+m|E|)

Table 4.1: Comparison of run-time complexity achieved by different algorithms for the
sequence to graph alignment problem when changes are allowed in the query sequence
alone.
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4.2 Preliminaries

Let Σ denote an alphabet, and x and y be two strings over Σ. We use x[i] to denote the

ith character of x, and |x| to denote its length. Let x[i, j] (1 ≤ i ≤ j ≤ |x|) denote

x[i]x[i + 1] . . . x[j], the substring of x beginning at the ith position and ending at the jth

position. Concatenation of x and y is denoted as xy.

Definition 4.1. Char-labeled Sequence Graph: A char-labeled sequence graph G(V,E, σ)

is a directed graph with vertices V and edges E. Function σ : V → Σ labels each vertex

v ∈ V with σ(v), one character in the alphabet Σ.

Naturally, walk w = vi, vi+1, . . . , vj in G(V,E, σ) spells the sequence σ(vi)

σ(vi+1) . . . σ(vj). Given a query sequence q, we seek its best matching walk sequence

in the graph. Alignment problems are formulated such that the distance between the com-

puted walk and the query sequence is minimized. Typically, an alignment is scored using

either a linear or an affine gap penalty function. The cost of a gap is proportional to its

length, when using a linear gap penalty function. An affine gap penalty function imposes

an additional constant cost to initiate a gap.

4.3 Methods

The sequence to graph alignment problem is polynomially solvable when changes are al-

lowed on the query sequence alone [88, 64]. Here, we improve upon the state-of-the-art

by presenting an algorithm with O(|V |+m|E|) run-time. Our algorithm matches the run-

time complexity achieved previously by Rautiainen and Marschall [86] for edit distance,

while improving that for linear and affine gap penalty functions. In addition, it is simpler

to implement because it only uses elementary queue data structures. Note that edit distance

is a special case of linear gap penalty when cost per unit length of the gap is 1, and substi-

tution penalty is also 1. We first present our algorithm for the case of a linear gap penalty

function, and subsequently show its generalization to affine gap penalty.
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4.3.1 Linear Gap Penalty

Alignment Graph

In the literature on the classic sequence to sequence alignment problem, the problem is

either formulated as a dynamic programming problem or an equivalent graph shortest-path

problem in an appropriately constructed edge-weighted edit graph or alignment graph [91].

However, formulating the sequence to graph alignment problem as a dynamic programming

recursion, while easy for directed acyclic graphs through the use of topological ordering,

is difficult for general graphs due to the possibility of cycles. As it turns out, formulation

as a shortest-path problem in an alignment graph is still rather convenient, even for graphs

with cycles [88, 86]. The alignment graph, described below, is constructed using the given

query sequence, the sequence graph and the scoring parameters.

The alignment graph is a weighted directed graph which is constructed such that each

valid alignment of the query sequence to the sequence graph corresponds to a path from

source vertex s to sink vertex t in the alignment graph, and vice versa (Figure 4.1). The

alignment cost is equal to the corresponding path distance from the source to the sink. Note

that the alignment graph is a multi-layer graph containing m ‘copies’ of the sequence graph,

one in each layer. A column of dummy vertices is required in addition to accommodate the

possibility of deleting a prefix of the query sequence. Edges that emanate from a vertex

are equivalent to the choices available while solving the alignment problem. A formal

definition of the alignment graph follows:

Definition 4.2. Alignment graph: Given a query sequence q, a sequence graph G(V,E, σ),

linear gap penalty parameters ∆del,∆ins, and a substitution cost parameter ∆sub, the cor-

responding alignment graph is a weighted directed graph Ga(Va, Ea, ωa), where Va =(
{1, . . . ,m} × (V ∪ {δ})

)
∪ {s, t} is the vertex set, and ωa : Ea → R≥0 is the weight
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Figure 4.1: An example to illustrate the construction of an alignment graph from a given
sequence graph and a query sequence. Multiple colors are used to show weighted edges of
different categories in the alignment graph. The red, blue and green edges are weighted as
insertion, deletion and substitution costs respectively.

function defined as

ωa(x, y) =



∆i,v x = (i− 1, u), y = (i, v) 1 < i ≤ m & (u, v) ∈ E

∆ins x = (i, u), y = (i, v) 1 ≤ i ≤ m & (u, v) ∈ E

∆del x = (i− 1, v), y = (i, v) 1 < i ≤ m & (v, v) /∈ E

min(∆del,∆i,v) x = (i− 1, v), y = (i, v) 1 < i ≤ m & (v, v) ∈ E

for source and sink vertices:

∆1,v x = s, y = (1, v) v ∈ V

∆del x = s, y = (1, δ)

0 x = (m, v), y = t v ∈ V ∪ {δ}

for dummy vertices:

∆del x = (i− 1, δ), y = (i, δ) 1 < i ≤ m

∆i,v x = (i− 1, δ), y = (i, v) 1 < i ≤ m & v ∈ V

Edges (x, y) ∈ Ea are defined implicitly, as those pairs (x, y) for which ωa is defined above.

∆i,v = ∆sub if q[i] ̸= σ(v), v ∈ V , and 0 otherwise. ∆sub denotes the cost of substituting
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q[i] with σ(v).

Existing definitions of the alignment graph [88, 86] did not include the dummy vertices,

and were incomplete. Using the alignment graph, we reformulate the problem of computing

an optimal alignment to finding the shortest path in the alignment graph. Even though the

alignment graph defined by Amir et al. [88] has minor differences, proof in their work can

be easily adapted to state the following claim:

Lemma 4.1 (Amir et al. [88]). Shortest distance from the source vertex s to the sink vertex t

in the alignment graph Ga(Va, Ea, ωa) equals cost of optimal alignment between the query

q and the sequence graph G(V,E, σ).

One way of solving the above shortest path problem is to directly apply Dijkstra’s algo-

rithm [88, 68]. However, it results in an O
(
m|V | log(m|V |) +m|E|

)
time algorithm. We

next show how to solve the problem in O(|V |+m|E|) time.

Proposed Algorithm

While searching for a shortest path from the source to the sink vertex, we compute the

shortest distances from the source to intermediate vertices Va\{s, t} in the alignment graph.

An edge from a vertex in layer i is either directed to a vertex in the same layer or to a vertex

in the next layer. As a result, the shortest distances to nodes in a layer can be computed once

the distances for the previous layer are known. This also makes it feasible to solve for the

layers 1 to m, one by one [64]. We use a two-stage strategy to achieve linear O(|V |+ |E|)

run-time per layer. Before describing the details, we give an outline of the algorithm and

its two stages.

Any path from the source vertex to a vertex v in a layer must extend a path ending in the

previous layer using either a deletion or a substitution cost weighted edge. Afterwards, a

path that ends in the same layer but not at v can be further extended to v using the insertion

cost weighted edges if it results in the shortest path to the source. Roughly speaking, the
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first stage executes the former task, while the second takes care of the latter. The two stages

together are invoked m times during the algorithm until the optimal distances are known

for the last layer (Algorithm 4.1). Input to the first stage InitializeDistance is an array of

the shortest distances of the vertices in previous layer sorted in non-decreasing order. This

stage computes the ‘tentative’ distances of all vertices in the current layer because it ignores

the insertion cost weighted edges during the computation. It outputs the sorted tentative

distances as an input to the second stage PropagateInsertion. The PropagateInsertion stage

returns the optimal distances of all vertices in the current layer while maintaining the sorted

order for a subsequent iteration.

Algorithm 4.1: Algorithm for sequence to graph alignment
Result: The length of shortest path from s to t

1 PreviousLayer = [s];
2 s.distance = 0;
3 for i = 1 to m do /* Do the computation layer by layer */
4 CurrentLayer = [(i, v1), (i, v2), . . . , (i, vn), (i, k)];
5 x.distance =∞ ∀x ∈ CurrentLayer;
6 InitializeDistance(PreviousLayer,CurrentLayer);
7 PropagateInsertion(CurrentLayer);
8 PreviousLayer = CurrentLayer;
9 return Min(PreviousLayer.distance);

The following are two important aspects of our algorithm. First, we are able to

maintain the sorted order of vertices by spending O(|V |) time per layer during the

first stage (Lemma 4.2). Secondly, we propagate insertion costs through the edges in

O(|V |+ |E|) time per layer during the second stage by eluding the need for standard prior-

ity queue implementations (Lemmas 4.3-4.5). Both of these features exploit characteristics

specific to the alignment graphs.

The InitializeDistance stage We compute tentative distances for each vertex in the cur-

rent layer by using shortest distances computed for the previous layer (Algorithm 4.2).

Because all deletion and substitution cost weighted edges are directed from the previous
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Algorithm 4.2: Algorithm to initialize and sort layer before insertion propagation
Result: A sorted layer CurrentLayer with distances initialized using

PreviousLayer
1 Function InitializeDistance(PreviousLayer, CurrentLayer)
2 foreach x ∈ PreviousLayer do
3 foreach y ∈ x.neighbor & y ∈ CurrentLayer do
4 if y.distance > x.distance+ ωa(x, y) then
5 y.distance = x.distance+ ωa(x, y);
6 Sort(CurrentLayer);

layer towards the current, this only requires a straightforward linear O(|V | + |E|) time

traversal (line 2-line 5). In addition, we are required to maintain the current layer as per

sorted order of distances. Note that vertices in the previous layer are already available in

sorted order of their shortest distances from s. A vertex v in the previous layer can assign

only three possible distance values (v.distance, v.distance+∆sub, or v.distance+∆del)

to a neighbor in the current layer. By maintaining three separate lists for each of the three

possibilities, we can create the three lists in sorted order and merge them in O(|V |) time.

The relative order of vertices in the current layer can be easily determined in linear time

by tracking the positions of their distance values in the merged list. As a result, the cur-

rent layer can be obtained in sorted form in O(|V |) time and O(|V |) space, leading to the

following claim.

Lemma 4.2. Time and space complexity of the sorting procedure in Algorithm 4.2 is

O(|V |).

The PropagateInsertion Stage Note that the tentative distance computed for a vertex is

sub-optimal if its shortest path from the source vertex traverses any insertion cost weighted

edge in the current layer. One approach to compute optimal distance values is to process

vertices in their sorted distance order (minimum first) and update the neighbor vertices,

similar to Dijkstra’s algorithm. When processing vertex v, the distance of its neighbor

should be adjusted such that it is no more than v.distance +∆ins. Selecting vertices with

minimum scores can be achieved using a standard priority queue implementation (e.g., Fi-
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bonacci heap); however, it would require O(|E|+ |V | log |V |) time per layer. A key prop-

erty that can be leveraged here is that all edges being considered in this stage have uniform

weights (∆ins). Therefore, we propose a simpler and faster algorithm using two First-In-

First-Out queues (Algorithm 4.3). The first queue q1 is initialized with sorted vertices in

the current layer, and the second queue q2 is initialized as empty (line 4). The minimum

distance vertex is always dequeued from either of the two queues (line 8). As and when

distance of a vertex is updated by its neighbor, it is enqueued to q2 (line 15). Following lem-

mas establish the correctness and an O(|E| + |V |) time bound for the PropagateInsertion

stage in the algorithm.

Algorithm 4.3: Algorithm to propagate insertions in the same layer
Result: A sorted layer CurrentLayer with optimal distance values

1 Function PropagateInsertion(CurrentLayer)
2 x.resolved = false ∀x ∈ CurrentLayer;
3 Queue q1 = ∅, q2 = ∅;
4 q1.Enqueue(CurrentLayer);
5 CurrentLayer = [ ];
6 while q1 ̸= ∅ or q2 ̸= ∅ do
7 qmin = q1.Front() < q2.Front() ? q1 : q2;
8 x = qmin.Dequeue();
9 if x.resolved = false then

10 x.resolved = true;
11 CurrentLayer.Append(x);
12 foreach y ∈ x.neighbor & y.layer = x.layer do
13 if y.distance > x.distance+∆ins then
14 y.distance = x.distance+∆ins;
15 q2.Enqueue(y);

Lemma 4.3. In each iteration at line 8, Algorithm 4.3 dequeues a vertex with the minimum

overall distance in q1 and q2.

Proof. The queue q1 always maintains its non-decreasing sorted order at the beginning of

each loop iteration (line 6) in Algorithm 4.3 as we never enqueue new elements into q1. We

prove by contradiction that q2 also maintains the order. Maintaining this invariant would

immediately imply the above claim. Let i be the first iteration where q2 lost the order.
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Clearly i > 1. Because i is the first such iteration, new vertices (say y1, y2, . . . , yk) must

have been enqueued to q2 in the previous iteration (line 15), and the vertex (say x) which

caused these additions must have been dequeued (line 8). Note that the distance of all the

new vertices, the yi’s, equals x.distance+∆ins. Therefore, the vertex prior to y1 (say ypre)

must have a distance higher than y1. However, this leads to a contradiction because if we

consider the iteration when ypre was enqueued to q2, the distance of the vertex that caused

addition of ypre could not be higher than the distance of the vertex x.

Lemma 4.4. Once a vertex is dequeued in Algorithm 4.3, its computed distance equals the

shortest distance from the source vertex.

Proof. Lemma 4.3 establishes that Algorithm 4.3 processes all vertices that belong to the

current layer in sorted order. Therefore, it mimics the choices made by Dijkstra’s algo-

rithm [58].

Lemma 4.5. Algorithm 4.3 uses O(|V |+ |E|) time and O(|V |) space to compute shortest

distances in a layer.

Proof. Each vertex in the current layer enqueues its updated neighbor vertices into q2 at

most once. Note that distance of a vertex can be updated at most once, therefore the max-

imum number of enqueue operations into q2 is |V |. In addition, enqueue operations are

never performed in q1. Accordingly, the number of outer loop iterations (line 6) is bounded

by O(|V |). The inner loop (line 12) is executed at most once per vertex, therefore the

amortized run-time of the inner loop is O(|V |+ |E|).

The above claims yield an O(m(|V | + |E|)) time algorithm for aligning the query

sequence to sequence graph. Assuming a constant alphabet, we can further tighten the

bound to O(|V |+m|E|) by using a simple preprocessing step suggested in [86]. This step

transforms the sequence graph by merging all vertices with 0 in-degree into ≤ |Σ| vertices.

As a result, the preprocessing ensures that the count of vertices in the new graph is no more
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than |E|+ |Σ| without affecting the correctness. Summary of the above claims is presented

as a following theorem:

Theorem 4.1. Algorithm algorithm 4.1 computes the optimal cost of aligning a query se-

quence of length m to graph G(V,E, σ) in O(|V |+m|E|) time and O(|V |) space using a

linear gap penalty cost function.

It is natural to wonder whether there exist faster algorithms for solving the sequence to

graph alignment problem. As noted in [86], the sequence to sequence alignment problem

is a special case of the sequence to graph alignment problem because a sequence can be

represented as a directed chain graph with character labels. As a result, existence of either

O(m1−ϵ|E|) or O(m|E|1−ϵ), ϵ > 0 time algorithm for solving the sequence to graph align-

ment problem is unlikely because it would also yield a strongly sub-quadratic algorithm for

solving the sequence to sequence alignment problem, further contradicting SETH [92].

4.3.2 Affine Gap Penalty

Supporting affine gap penalty functions in the dynamic programming algorithm for se-

quence to sequence alignment is typically done by using three rather than one scoring

matrix [93]. Similarly, the alignment graph can be extended to contain three sub-graphs

with substitution, deletion, and insertion cost weighted edges respectively [86]. The edge

weights are adjusted for the affine gap penalty model such that a cost for opening a gap is

penalized whenever a path leaves the match sub-graph to either the insertion or the deletion

sub-graph (Figure 4.2). The properties that were leveraged to design faster algorithm for

linear gap penalty functions continue to hold in the new alignment graph. In particular, the

sorting still requires linear time during the InitializeDistance stage, and insertion propaga-

tion is still executed over uniformly weighted edges in the insertion sub-graph. As a result,

the two-stage algorithm can be extended to operate using affine gap penalty function in the

same time and space complexity as with the linear gap penalty function.
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Figure 4.2: An example to illustrate the construction of an alignment graph for sequence
to graph alignment using affine gap penalty. The alignment graph now contains three sub-
graphs separated by the gray dash lines. The deletion and insertion weighted edges in the
alignment graph for linear gap penalty are shifted to deletion sub-graph and insertion sub-
graph, respectively. Their weights are also changed to the gap extension penalty. Besides,
more edges are added to connect the sub-graphs with each other. For simplicity, we use the
highlighted vertex as an example to illustrate how to open a gap and extend it. The weight
of magenta colored edges is the sum of gap open penalty and gap extension penalty, and
the weight of the black colored edges is 0.
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4.4 Summary

In this chapter, we provide a faster polynomial time sequence to graph alignment algorithm

that generalizes to linear gap penalty and affine gap penalty functions. The proposed al-

gorithms use elementary data structures, therefore are simple to implement. Overall, the

theoretical results presented in this work enhance the fundamental understanding of the

problem, and will aid the development of faster tools for mapping to graphs. The align-

ment problem for sequence graphs is a rich area with several unsolved problems. For the

intractable problem variants, development of faster exact and approximate algorithms are

fertile grounds for future research. In addition, working towards robust indexing schemes

and heuristics that scale to large input graphs and different sequencing technologies re-

mains an important direction.
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CHAPTER 5

FAST SEQUENCE TO GRAPH ALIGNMENT USING GRAPH WAVEFRONT

ALGORITHM

Though the sequence to graph alignment algorithm we present in the previous chapter is op-

timal up to subpolynomial factors under SETH [92], it still needs to process the alignment

graph layer by layer and visit all the nodes in each layer, which can be slow in practice.

This motivates the design of algorithms that can skip some computation in practice when

the sequence is highly similar to some walk in the graph.

In this chapter, we propose the graph wavefront alignment algorithm (Gwfa), a new

method for aligning a sequence to a sequence graph. Although the worst-case time com-

plexity of Gwfa is the same as the existing algorithms, it is designed to run faster for closely

matching sequences, and its runtime in practice often increases only moderately with the

edit distance of the optimal alignment. On four real datasets, Gwfa is up to four orders of

magnitude faster than other exact sequence-to-graph alignment algorithms. We also pro-

pose a graph pruning heuristic on top of Gwfa, which can achieve an additional ∼10-fold

speedup on large graphs.

The rest of this chapter is organized as follows. In Section 5.1, we review the efforts

on accelerating sequence to graph alignment. In Section 5.2, we generalize the previous

sequence to character-labeled sequence graph alignment algorithm to work on segment-

labeled sequence graphs and then present the Gwfa algorithm together with heuristics to

further accelerate it. In Section 5.3, we constructed sequence graphs and evaluated the per-

formance of Gwfa and other sequence to graph alignment methods. Finally, we summarize

this work in Section 5.4.
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5.1 Related work

The design of the algorithm in this chapter is heavily motivated by the diagonal alignment

algorithms for aligning two sequences. Thus, we first reviewed the related literature on

pairwise sequence alignment, one of the most fundamental problems in bioinformatics.

Two sequences of length N can be aligned by dynamic programming (DP) [94] in O(N2)

time. This quadratic runtime is unaffordable for long sequences, motivating the develop-

ment of diagonal alignment algorithms [95, 96, 97]. These methods only compute part of

the DP matrix within a certain band, thereby reducing the runtime to O(ND) where D is

the minimum edit distance between the sequences being aligned. Recently, such methods

have been further generalized to work with arbitrary cost linear or affine gap penalty [98,

99, 100, 101], and named wavefront alignment (WFA) as they progressively compute the

partial alignments for increasing alignment scores until the best alignment is found. Com-

pared with the standard DP alignment algorithm, these diagonal alignment methods have

shown superior performance in practice when the two sequences to align are similar to each

other.

As discussed in the previous chapter, aligning sequences to the graph-based structure

is the foundation for mapping reads to graph-based reference genomes. This fundamental

problem and its variants have been studied by multiple previous works [80, 102, 103, 104,

105]. Besides, this problem has been investigated even earlier in the string literature as

approximate pattern matching to hypertext [63, 88, 64]. A summary of these results can be

found in previous work [105].

Although several sequence to graph alignment algorithms have been proposed, and

some of them are optimal up to subpolynomial improvements on runtime under the

Strong Exponential Time Hypothesis [92], they are computationally intensive taking

O(|V |+ |q||E|) time, where |V | and |E| are the numbers of vertices and edges in the graph

and |q| is the query length. This motivated the development of GraphAligner [106] and
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Astarix [107, 108], which introduced heuristics to accelerate sequence to graph alignment.

GraphAligner has implemented a dynamic banded sequence to graph alignment algorithm,

which computes cells in the DP matrix with values less than the minimum cost plus a fixed

threshold. As the optimal alignment may not be found within the confines of the band, this

approach may report suboptimal alignments. Astarix reformulates the sequence to graph

alignment as a shortest path problem and uses the A* algorithm to search for it. The A*

search algorithm is an extension of Dijkstra’s algorithm, and uses a heuristic function to

estimate the distance from the vertex currently being explored to the target vertex for prun-

ing the search space. Though the heuristics still guarantee finding the optimal alignment,

extra computation cost is needed to process the query or the graph, which can be avoided.

5.2 Methods

Let Σ denote an alphabet, and x and y be strings over Σ. We use x[i] to denote the i-th

character of x, |x| to denote its length, and xy to denote the concatenation of x and y. Let

x[i, j] (1 ≤ i ≤ j ≤ |x|) denote x[i]x[i + 1] . . . x[j], the substring of x beginning at the

i-th position and ending at the j-th position. We assume a constant sized alphabet for DNA

sequences, i.e., Σ = {A,C,G, T}.

Definition 5.1 (Sequence graph). A sequence graph G(V,E, σ) is a directed graph with

vertices V and edges E. Function σ : V → Σ∗ labels each vertex v ∈ V with a string σ(v)

over the alphabet Σ.

This definition encompasses commonly used graphs (e.g., de Bruijn graphs, variation

graphs) as shown by Jain et al. [105]. To simplify notation, we may directly use v to denote

σ(v) and thus |v| = |σ(v)| and v[i] = σ(v)[i].

Let wj1,jn = vj1vj2 . . . vjn (n ≥ 1) denote a walk that starts from vertex vj1 and ends

at vertex vjn in G. It spells the sequence σ(wj1,jn) = σ(vj1)σ(vj2) . . . σ(vjn). Let d(x, y)

denote the edit distance between strings x and y. Then we formulate the problem of optimal

sequence to graph alignment as the following.
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Definition 5.2 (Optimal global sequence to graph alignment). Given a query sequence q,

a sequence graph G(V,E, σ), a start vertex vs ∈ V and an end vertex ve ∈ V that is

reachable from vs, find a walk ws,e such that ∀w′
s,e, d(σ(w), q) ≤ d(σ(w′), q).

This formulation is similar to the global pairwise sequence alignment problem, where

the gaps at the beginning or the end of either the query or the target sequence (the walk in

the graph) are penalized. Besides, the formulation can be slightly changed to allow gaps

at the start or the end of the walk in the sequence graph or perform alignment extension

without specifying an end vertex (see Section A.1). These alternative formulations are

frequently used to compute the base-level alignments in seed-and-extend methods for read

mapping to linear or graphical genomes [35, 40, 106, 109] when the alignment candidate

regions are known as a prior from the seeding step.

5.2.1 Sequence to graph alignment algorithm

Rautiainen et al. [104] generalized the standard DP for pairwise sequence alignment to

formulate a recurrence for the sequence to graph alignment problem. Though there can be

cyclic dependencies in their proposed recurrence, they proved that there is only one unique

solution for the optimal alignment cost. Moreover, the recurrence can be solved in O(|V |+

|q||E|) time by Navarro’s algorithm [64]. Note that their problem formulations operate

on character labeled vertices, without loss of generality. However, directly allowing string

labels results in more compact graph representation as the vertices of sequence graphs are

usually labeled with strings (long segments of sequences) in practice (e.g., GFA format at

https://github.com/GFA-spec/GFA-spec). Therefore, we first generalize the DP algorithm

and propose the following recurrence for sequence alignment to string-labeled sequence

graphs.

Let Hi,v,j denote the minimum edit distance between a query prefix that ends at its i-th

position and a walk sequence that ends at j-th position of (the string at) vertex v, where
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0 ≤ i ≤ |q|, v ∈ V , and 0 ≤ j ≤ |v|. It can be calculated as:

Hi,v,j = min



Hi−1,v,j + 1, i ≥ 1

Hi,v,j−1 + 1, j ≥ 1

Hi−1,v,j−1 +∆i,v,j, i ≥ 1, j ≥ 1

Hi,u,|u|, j = 0,∀u, (u, v) ∈ E

(5.1)

where ∆i,v,j = 0 if q[i] = v[j] or 1 otherwise. When searching for optimal global sequence

to graph alignment with start vertex vs and end vertex ve, the initial condition is H0,vs,0 = 0,

and the minimum cost is H|q|,ve,|ve|.

In previous work, Jain et al. [105] have shown that a string labeled sequence graph can

be converted to an equivalent character labeled sequence graph by splitting the vertex with

a string label into a chain of character labeled vertices to compute sequence-to-graph align-

ment. Similarly, we argue that a character labeled graph can be converted to an equivalent

string labeled graph by compacting each chain of character labeled vertices into a single

vertex with string label that is the concatenation of the individual character labels, while

the in-edges of the first vertex in the chain and the out-edges of the last vertex are reflected

in how the new vertex is connected. Given these transformations, the proposed recurrence

for sequence alignment to a string labeled graph is essentially equivalent to the recurrence

for sequence alignment to a character labeled graph. Therefore, the algorithm proposed

by Navarro [64] can also be adapted to solve the recurrence in Equation 5.1, which we

show in Section A.2.

5.2.2 Diagonal recurrence

We use (i, v, j) to denote a DP-cell in H , where 0 ≤ i ≤ |q|, v ∈ V , and 0 ≤ j ≤ |v|. Note

that the three-dimensional DP matrix H can be regarded as a set of |V | two-dimensional DP

matrices {Hv|v ∈ V } along the vertex dimension. And Hv contains DP-cells {(i, v, j)|0 ≤
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i ≤ |q|, 0 ≤ j ≤ |v|}. Let (v, k) denote a diagonal in Hv. A DP cell (i, u, j) is on diagonal

(v, k) if and only if u = v and k = i − j. Therefore, DP cell (k + j, v, j) is always on

diagonal (v, k). Define

H̃d,v,k =

 max{j | Hk+j,v,j = d}, if ∃j s.t. Hk+j,v,j = d

∞, otherwise

which is the furthest offset on diagonal (v, k) among DP cells with edit distance d. Impor-

tantly, if H̃d,v,k = j, it is always true that Hk+j,v,j = d, but conversely, if Hk+j,v,j = d, we

only have j ≤ H̃d,v,k because multiple cells on diagonal (v, k) may have the same distance

d.

Following the WFA formulation, we calculate H̃d,v,k by rewriting Equation 5.1 into its

diagonal recurrence as Equation 5.2:

J̃d,v,k =max



H̃d−1,v,k−1

H̃d−1,v,k+1 + 1

H̃d−1,v,k + 1

0, ∃u, (u, v) ∈ E, H̃d,u,k−|u| = |u|

H̃d,v,k =j + LCP (q[k + j + 1, |q|], v[j + 1, |v|]) , j = J̃d,v,k

(5.2)

Here LCP(x, y) gives the length of the longest common prefix between two strings x and y.

The initial condition is J̃0,vs,0 = 0 for global sequence to graph alignment problem, and we

aim to find the minimum edit distance d̂ such that H̃d̂,ve,|q|−|ve| = |ve|, i.e. H|q|,ve,|ve| = d̂.

Essentially, the first three cases for J̃d,v,k in Equation 5.2 are equivalent to running the

wavefront algorithm within a vertex. The last case corresponds to the last case in Equa-

tion 5.1. To see the connection, we note that H̃d,u,i−|u| = |u| implies Hi,u,|u| = d and

H̃d,v,i = 0 implies Hi,v,0 = d. When u is a predecessor of v, we carry the computation at

the last position of u onto the 0th position of v. The LCP(·, ·) term extends along exact
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matches such that we can find the furthest cell in accordance with the definition of H̃d,v,k.

To explain the implementation of Equation 5.2 in the next section, we further define

d-wave Wd = {(i, v, j)|Hi,v,j = d}, which consists of DP cells with the value d. Then

(k + H̃d,v,k, v, H̃d,v,k) ∈ Wd is at the front of the d-wave along diagonal (v, k), and it is

called a graph wavefront. The d-wavefront is Fd = {(k+j, v, j) | j = H̃d,v,k <∞,−|v| ≤

k ≤ |q|, v ∈ V }.

5.2.3 Graph wavefront algorithm

Our method for computing optimal global sequence to graph alignment using the diagonal

formulation is presented in Algorithm 5.1. We assume there is a walk from the start vertex

vs to the end vertex ve. The algorithm progressively increases the edit distance d. In each

iteration, it finds the d-wavefront Fd with Algorithm 5.2. It then uses Algorithm 5.3 to col-

lect cells in the (d+1)-wave that are adjacent to Fd. This process is repeated until the whole

query is aligned to a walk with the last character of ve as the end (line 8 in Algorithm 5.1).

Algorithm 5.1: Graph wavefront algorithm to find the optimal global sequence to
graph alignment

Input: Query sequence q, sequence graph G = (V,E, σ), start vertex vs ∈ V and end vertex
ve ∈ V .

1 function GWFEDITDIST(q,G, vs, ve) begin
2 ke ← |q| − |ve|
3 H̃vs,0 ← 0
4 Q← [(vs, 0)]
5 d← 0
6 while true do
7 GWFEXTEND(q,G,Q, H̃)

8 if H̃ve,ke
= |ve| then

9 return d
10 d← d+ 1

11 GWFEXPAND(q,G,Q, H̃)

Specifically, in the iteration for distance d, the part of d-wave adjacent to Fd−1 is first

extended along each diagonal (v, k) through exact matches (lines 5–8 of Algorithm 5.2).

If the end of vertex v is reached, lines 11–14 in Algorithm 5.2 traverse v’s neighbors

and prepare potential extensions in them. This extension step finds the d-wavefront Fd.
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Then lines 8 and 9 in Algorithm 5.1 check Fd and return the optimal alignment cost when

(|q|, ve, |ve|) ∈ Fd. If (|q|, ve, |ve|) /∈ Fd, Algorithm 5.3 next finds the set of DP cells

adjacent to Fd. These cells are part of the (d+1)-wave. They will be extended in the next

iteration. We keep track of the graph wavefront in the alignment process by a set and a

queue. The set stores the offsets (i.e., H̃) and allows the access of any offset with its diago-

nal in constant time. This graph wavefront set can be implemented with an array of which

the size is the number of diagonals and a special sign to mark the existence of an element

in the set. The queue keeps track of the diagonals on which the graph wavefront can be

further updated or used to update the graph wavefront on other diagonals. Thus, only the

graph wavefront on the diagonals in the queue instead of all the diagonals are processed in

each iteration.

Algorithm 5.2: Graph wavefront extension algorithm
Input: Query sequence q, sequence graph G = (V,E, σ), queue Q to keep track of diagonals and

graph wavefront set H̃ .

1 function GWFEXTEND(q,G,Q, H̃) begin
2 Q′ ← [ ]
3 while Q is not empty do
4 (v, k)← Q.pop()

5 j ← H̃v,k

6 i← k + j
7 l← LCP(q[i+ 1, |q|], v[j + 1, |v|])
8 H̃v,k ← j + l
9 Q′.push(v, k)

10 if H̃v,k = |v| then
11 for (v, u) ∈ E do
12 if H̃u,k+|v| /∈ H̃ then
13 H̃u,k+|v| ← 0
14 Q.push(u, k + |v|)
15 Q← Q′

To analyze the runtime of our proposed algorithm, we compute the time spent on up-

dating the graph wavefront and exploring neighbors. After one round of extension and

expansion, the graph wavefront on the diagonals in the queue advances at least one DP-cell

forward if it has not reached the end. Once the graph wavefront has already reached the

last cell on a diagonal, it cannot be updated using the graph wavefront on other diagonals.
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Algorithm 5.3: Graph wavefront expansion algorithm
Input: Query sequence q, sequence graph G = (V,E, σ), queue Q to keep track of diagonals and

graph wavefront set H̃ .

1 function GWFEXPAND(q,G,Q, H̃) begin
2 H̃ ′ ← ∅
3 Q′ ← [ ]
4 while Q is not empty do
5 (v, k)← Q.pop()

6 i← k + H̃v,k

7 if i < |q| then
8 if H̃ ′

v,k+1 /∈ H̃ ′ then
9 if H̃v,k+1 /∈ H̃ or H̃v,k+1 < H̃v,k then

10 H̃ ′
v,k+1 ← H̃v,k

11 Q′.push(v, k + 1)

12 else
13 H̃ ′

v,k+1 ← max{H̃ ′
v,k+1, H̃v,k}

14 if H̃v,k < |v| then
15 if H̃ ′

v,k−1 /∈ H̃ ′ then
16 if H̃v,k−1 /∈ H̃ or H̃v,k−1 < H̃v,k + 1 then
17 H̃ ′

v,k−1 ← H̃v,k + 1

18 Q′.push(v, k − 1)

19 else
20 H̃ ′

v,k−1 ← max{H̃ ′
v,k−1, H̃v,k + 1}

21 if i < |q| and H̃v,k < |v| then
22 if H̃ ′

v,k /∈ H̃ ′ then
23 H̃ ′

v,k ← H̃v,k + 1

24 Q′.push(v, k)

25 else
26 H̃ ′

v,k ← max{H̃ ′
v,k, H̃v,k + 1}

27 for (v, k) ∈ Q′ do
28 H̃v,k ← H̃ ′

v,k

29 Q← Q′
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Thus the number of updates on each diagonal is bounded by the length of the diagonal,

which means the total number of updates is bounded by the total length of the diagonals as

O(|q|
∑

v∈V |v|).

Next, we compute the time spent on neighbor exploration (lines 10-14 in Algo-

rithm 5.2). As mentioned above, on each diagonal, the graph wavefront only reaches

the end of the diagonal once. So the neighbors of each vertex are explored only once

in the extension step when the graph wavefront reaches the end of the diagonal of the

vertex. We divide all diagonals into |q| sets, K1, . . . , K|q|, where Ki contains diagonals

{(v, i − |v|)|v ∈ V }. As Ki has one diagonal for each vertex, the cost to explore the

neighbors of vertices that have corresponding diagonals in Ki is O(|E|). Thus the to-

tal time spent on neighbor exploration is O(|q||E|). Therefore, the overall runtime is

O(|q|(
∑

v∈V |v| + |E|)). Since exact and approximate sequence matching to graphs are

equally hard [110], our proposed algorithm is optimal up to subpolynomial factors under

SETH [92]. The memory usage is O(|q||V | +
∑

v∈V |v|) since both the size of the queue

to keep track of the diagonals and the graph wavefront set size are bounded by the total

number of diagonals.

Note that Algorithm 5.1 and Algorithm 5.2 can also be slightly adapted to solve other

sequence to graph alignment problem variants, which we show in Section A.1.

5.2.4 Graph wavefront pruning

The size of the d-wave increases with edit distance d. While some promising compo-

nents on the d-wavefront Fd are advancing towards the solution, many other components

on Fd significantly fall behind those promising ones. Based on this observation, we pro-

pose a graph wavefront pruning heuristic (Algorithm 5.4) to eliminate those unpromising

graph wavefront components, thereby accelerating the alignment process. This algorithm

is similar to the wavefront reduction heuristic used by WFA, and it may miss the optimal

alignment.
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The pruning algorithm first finds the maximum sum of aligned query length and aligned

graph walk length amax from all the DP-cells in the graph wavefront. Then each graph

wavefront is rechecked to see whether it is left behind too much. If its sum of aligned

query length and aligned graph walk length is too short compared with amax, the graph

wavefront will be dropped. Since promising graph wavefronts usually start to appear after

several iterations, the check is only performed when the offsets of the graph wavefront are

already large enough to avoid overhead. The pruning can be performed before the graph

wavefront expansion step (between line 10 and 11 in Algorithm 5.1), which would reduce

the size of the graph wavefront set to expand.

Algorithm 5.4: Graph wavefront pruning algorithm
Input: Max allowed difference adiff from the max sum of aligned query length and aligned graph

walk length, queue Q to keep track of diagonals, graph wavefront set H̃ , and aligned graph
walk length set W̃ .

1 function GWFPRUNE(adiff , Q, H̃, W̃ ) begin
2 amax ← 0
3 for (v, k) ∈ Q do
4 i← k + H̃v,k

5 a← i+ W̃v,k

6 amax ← max(amax, a)

7 if amax > adiff then
8 H̃ ′ ← ∅
9 Q′ ← [ ]

10 while Q is not empty do
11 (v, k)← Q.pop()

12 i← k + H̃v,k

13 a← i+ W̃v,k

14 if amax − a < adiff then
15 H̃ ′

v,k ← H̃v,k

16 Q′.push(v, k)

17 for (v, k) ∈ Q′ do
18 H̃v,k ← H̃ ′

v,k

19 Q← Q′

5.2.5 Graph alignment walk traceback

We further present Algorithm 5.5 and Algorithm 5.6 to compute the optimal alignment

walk in the graph. We slightly modified Algorithm 5.1 and Algorithm 5.2 to save traceback
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information during the graph extension process (Section A.3). Then the alignment walk

can be computed with the traceback information. Algorithm 5.5 is used to record the trace-

back information when exploring the neighbors of the vertices. It saves information of the

previous vertex that leads to the extension to the current vertex. After the minimum edit

distance is found, we can start from the last vertex in the alignment walk and iteratively

trace vertices recorded in the extension process (Algorithm 5.6).

Algorithm 5.5: Method to add a piece of traceback information during the align-
ment

Input: Traceback information array T , the vertex v to record traceback information, the previous
traceback information index t in T and a hash map M to avoid duplicate traceback
information.

1 function GWFPUSHTRACE(v, t, T,M) begin
2 if Mv,t /∈M then
3 Mv,t ← T.size()
4 T.push(v, t)

5 return Mv,t

Algorithm 5.6: Graph alignment walk traceback algorithm
Input: Traceback information array T and the walk end index te in T .

1 function GWFTRACEBACK(te, T ) begin
2 W ← [ ]
3 t← te
4 while t ≥ 0 and T [t].v ≥ 0 do
5 W.push(T [t].v)
6 t← T [t].t

7 Reverse W
8 return W

5.3 Results

We implemented our proposed method and termed it Gwfa, made available at https://github.

com/lh3/gwfa. In the following sections, we establish benchmark datasets and demonstrate

the advantages of Gwfa empirically compared with other methods.
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5.3.1 Experimental setup

Benchmark data sets

To evaluate the performance of Gwfa, we obtained four sequence graphs around comple-

ment component 4 (C4), leukocyte receptor complex (LRC), and major histocompatibility

complex (MHC) loci in the human genome (Table 5.1).

Table 5.1: List of benchmark sequence graphs.

Graph Type Region Total segment
length (bp) # vertices # edges

G1 Cyclic C4 42,036 1,531 2,073
G2 Cyclic LRC 1,294,511 48,097 67,008
G3 Cyclic MHC 5,951,398 232,508 320,009
G4 Acyclic MHC 5,476,947 1,144 1,608

These three loci play crucial biological roles and are enriched with polymorphisms.

The numerous variations at these loci increases the complexity of the graphs which poses a

great challenge to alignment. As a result, these loci are often used to benchmark graphical

genome tools [111, 112, 29, 113]. Specifically, MHC is one of the most critical regions

for infection and autoimmunity in the human genome and is crucial in adaptive and innate

immune responses [114]. MHC haplotypes are highly polymorphic, i.e., various alleles are

present across individuals in the population. C4 genes are located in MHC and encode pro-

teins involved in the complement system. The LRC locus contains many genetic variations

and comprises genes that can regulate immune responses [115].

To construct G1, G2 and G3, we used ODGI [113] to extract the subgraphs around

the C4 (chr6:31,972,057–32,055,418 on GRCh38), LRC (chr19:54,528,888–55,595,686)

and MHC (chr6:29,000,000–34,000,000) loci from the PGGB human pangenome graphs

released by the Human Pangenome Reference Consortium (HPRC). The PGGB graph was

built from GRCh38, CHM13 [27], and the phased contig assemblies of 44 diploid individ-

uals. These altogether encode variations from 90 human haplotypes. To construct G4, we

used gfatools (https://github.com/lh3/gfatools) to extract the MHC region from the mini-
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graph graph [29] built from the same set of assemblies. G4 contains fewer vertices because

the minigraph graph only encodes ≥50 bp structural variations, while the PGGB graph ad-

ditionally encodes SNPs and short INDELs in all input samples. The details and command

lines to build these sequence graphs can be found in Section A.4.

As HG002, HG005, and NA19240 diploid assemblies were excluded when building

the human pangenome graphs, these six haplotypes provide ideal query sequences for the

alignment evaluation. We ran “minimap2 -x asm20” to align the C4, LRC, and MHC

regions of GRCh38 to HG002, HG005, and NA19240 haplotypes, and retrieved the cor-

responding regions from the six haplotypes. We excluded LRC on the HG002 maternal

haplotype because it was not fully assembled.

Hardware and software

We ran all experiments on a compute node with dual Intel Xeon Gold 6226 CPU (2.70

GHz) processors equipped with 128 GB main memory. The time and memory usage of

each run was measured.

We ran Gwfa both in its exact mode and approximate mode with the pruning heuristic,

which is controlled by the adiff parameter. We set this parameter to 20,000 for the G1–G3

dataset and 30,000 for the G4 dataset. Setting adiff to 20,000 for the G4 dataset would

miss the optimal alignment. We also evaluated Gwfa with traceback to output the walk

corresponding to the optimal alignment identified.

Sequence-to-graph alignment can be formulated as a shortest path problem [105]. In

this work, we implemented this idea on top of Dijkstra’s algorithm. We also generalized

Navarro’s algorithm for string-labeled graphs and provided an efficient implementation

(Algorithm A.3). Both implementations are available at https://github.com/haowenz/sgat.

They serve as a baseline and help to verify the correctness of our graph wavefront algorithm

implementation.

For further comparative evaluation, we considered GraphAligner [106] and As-
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tarix [107], two recently developed tools for accelerating sequence to graph alignment.

Like Gwfa, both of these can also work with cyclic sequence graphs. GraphAligner imple-

ments the bit-parallel algorithm [104], which guarantees to finding an optimal alignment,

as well as a seed-and-extend heuristic method, which is fast in practice. We included both

in our evaluation (see Section A.5 for more details about running the tools). Astarix could

in theory find minimum edit distance with option ‘align-optimal -G 1’. However, Astarix

either reported errors or could not finish any of the experiments and was thus excluded.

To investigate the performance gap between aligning a query to a target sequence and

a sequence graph, we also ran Edlib [116] and WFA2 [99] to align the C4 regions of

HG002, HG005, and NA19240 to the GRCh38 C4 region. The parameters for running

these tools are listed in Section A.6. We compared these two tools with the sequence to

graph alignment tools mentioned above on aligning queries to a linear sequence graph built

from the GRCh38 C4 region (Section A.7).

5.3.2 Runtime comparison

Table 5.2 shows the runtime of each method. When aligning queries to G1, Gwfa and

Gwfa-pruning were several orders of magnitude faster than all other sequence to graph

alignment algorithms. This is expected since G1 is built from 90 human haplotypes and

encodes all their variants, which leads to relatively small edit distances for all the align-

ments. Both Gwfa and Gwfa-pruning were able to skip the exploration of many DP-cells,

which made them significantly faster than other methods. Due to the same reason, our

Dijkstra’s algorithm implementation was faster than other methods except for Gwfa and

Gwfa-pruning on aligning queries to G1. In addition, all the methods were able to report

optimal alignments between the queries and sequence graph G1.

On the G2 dataset, Gwfa-pruning was 9 times to 5 orders of magnitude faster than

other methods. Gwfa in its exact mode was even faster than the GraphAligner heuristic

on the three query sequences with relatively small edit distances. While the GraphAligner
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Table 5.2: Runtimes (in seconds) of the methods to align queries to real sequence graphs.
Dijkstra’s algorithm and generalized Navarro’s algorithm cannot finish in 24 hours when
mapping queries to the MHC graphs. The LRC region of HG002.2 was not fully assembled.
The GraphAligner heuristic would fragment the alignment into multiple pieces when its
runtime is marked with ∗.

Haplotype
Edit

distance Gwfa
Gwfa

pruning
Dijkstra’s
algorithm

Navarro’s
algorithm

GraphAligner
bitvector

GraphAligner
heuristic

Alignments to G1
HG002.1 22 <0.01 <0.01 0.14 17.40 4.23 1.31
HG002.2 22 <0.01 <0.01 0.14 17.40 4.24 0.18
HG005.1 21 <0.01 <0.01 0.10 17.40 4.24 0.18
HG005.2 19 <0.01 <0.01 0.07 17.40 4.24 0.19
NA19240.1 19 <0.01 <0.01 0.07 15.90 3.87 0.16
NA19240.2 20 <0.01 <0.01 0.06 15.90 3.85 0.16

Alignments to G2
HG002.1 65 1.20 0.13 760.13 10,285.00 1,186.55 14.12
HG005.1 81 1.87 0.15 1189.67 10,146.00 1,161.97 12.99
HG005.2 174 5.42 0.24 3340.85 10,045.00 1,140.04 5.99
NA19240.1 452 13.91 0.62 9,944.00 10,184.00 1,134.08 ∗5.58
NA19240.2 469 10.73 0.51 6,476.00 9,702.00 1,110.03 9.80

Alignments to G3
HG002.1 331 45.52 5.40 - - 19,389.98 24.25
HG002.2 268 16.29 1.76 - - 17,594.77 29.24
HG005.1 300 23.78 0.91 - - 17,754.32 26.48
HG005.2 298 20.90 0.69 - - 19,229.14 22.31
NA19240.1 743 68.84 2.07 - - 17,679.07 ∗32.06
NA19240.2 885 132.38 2.06 - - 18,215.37 30.39

Alignments to G4
HG002.1 43,280 868.94 7.70 - - 15,008.00 ∗31.35
HG002.2 34,790 453.07 4.39 - - 14,733.00 ∗29.42
HG005.1 42,124 849.21 6.97 - - 15,059.50 ∗315.57
HG005.2 41,271 824.15 6.75 - - 15,061.50 ∗28.68
NA19240.1 42,677 709.35 7.43 - - 15,017.50 ∗29.63
NA19240.2 31,564 346.96 2.90 - - 15,109.50 ∗31.39
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heuristic was faster on the other two queries, it fragmented the alignment of the NA19240.1

haplotype and failed to report the expected alignment.

On the much larger G3 dataset, both Dijkstra’s and Navarro’s algorithms could not

finish in 24 hours. Gwfa-pruning was the fastest. Gwfa in its exact mode generally has

comparable performance to the GraphAligner in its heuristic mode. GraphAligner heuristic

again fragmented the alignment of the NA19240.1 haplotype.

As G4 only encodes large variants, the edit distances of alignments on G4 are much

larger than those on other datasets. Thus, the speed of Gwfa decreased. Although the

GraphAligner heuristic was faster than Gwfa, it failed to report complete alignments for all

query sequences. The Gwfa pruning heuristic was the fastest and could report the optimal

distances.

When the optimal alignment walk was traced, there was only a mild increase in runtime

for Gwfa or Gwfa-pruning. When aligning queries to G1, the runtime with alignment walk

traceback was still less than 0.01s. On average, the runtime increased by 13.6% and 3.8%

for Gwfa and Gwfa-pruning to trace the optimal alignment walk on G2, and 14.5% and

7.8% on G3 respectively. For alignment traceback on G4, the runtime increased less than

2% for Gwfa with or without pruning mainly because G4 has fewer vertices and edges than

other graphs.

5.3.3 Memory usage

Table 5.3 shows the memory usage of the tools. When aligning queries to sequence graphs,

Gwfa-pruning used 2-83 times less memory than other methods. Besides, compared with

other methods, Gwfa without pruning also used comparable or less memory. The alignment

walk traceback process of Gwfa and Gwfa-pruning on G1 needs an extra 6.8% memory on

average. The average memory usage increased by 49.1% and 15.8% for Gwfa and Gwfa-

pruning to trace back the alignment walk on G2, and 75.2% and 18.9% on G3, respectively,

as the problem size is larger. Nevertheless, Gwfa-pruning still used the least memory to

77



align any queries to G2 or G3 and trace the alignment. For alignments on G4, the memory

usage of Gwfa with or without pruning only increased by less than 3% on average. This is

because G4 has fewer vertices than the other graphs, which results in a smaller traceback

stack size. The results consistently point to small memory footprint needed by our proposed

methods.

Table 5.3: Memory usage (MB) of the methods to align queries to real sequence graphs.
Dijkstra’s algorithm and generalized Navarro’s algorithm cannot finish in 24 hours when
mapping queries to the MHC graphs. The LRC region of HG002.2 was not fully assembled.
The GraphAligner heuristic would fragment the alignment into multiple pieces when its
runtime is marked with ∗.

Haplotype
Edit

distance Gwfa
Gwfa

pruning
Dijkstra’s
algorithm

Navarro’s
algorithm

GraphAligner
bitvector

GraphAligner
heuristic

Alignments to G1
HG002.1 22 3.3 2.7 191.1 165.4 7.0 53.6
HG002.2 22 3.5 2.5 190.8 165.4 7.0 51.1
HG005.1 21 3.5 2.5 186.4 165.4 7.0 51.2
HG005.2 19 2.2 2.2 184.1 165.4 7.0 51.5
NA19240.1 19 2.2 2.2 184.1 165.4 7.0 50.2
NA19240.2 20 2.7 2.5 184.1 165.4 7.0 48.0

Alignments on G2
HG002.1 65 211.4 37.4 2,364.4 213.3 164.9 476.0
HG005.1 81 214.9 37.4 3,463.8 213.3 164.6 459.3
HG005.2 174 212.4 37.4 8,691.5 213.3 164.6 503.5
NA19240.1 452 230.6 42.9 23,995.3 213.3 164.7 ∗455.8
NA19240.2 469 244.6 37.4 19,185.0 213.3 164.5 446.3

Alignments on G3
HG002.1 331 975.7 442.9 - - 769.4 1251.9
HG002.2 268 824.9 224.8 - - 769.0 1388.5
HG005.1 300 912.6 178.1 - - 769.2 1587.6
HG005.2 298 946.7 158.0 - - 769.2 1232.8
NA19240.1 743 960.0 235.6 - - 769.2 ∗1352.6
NA19240.2 885 934.6 220.8 - - 769.4 1566.3

Alignments on G4
HG002.1 43,280 439.1 32.8 - - 889.6 ∗1,122.8
HG002.2 34,790 400.0 27.0 - - 889.2 ∗1,041.0
HG005.1 42,124 421.2 27.1 - - 889.4 ∗1,063.1
HG005.2 41,271 441.2 32.5 - - 889.4 ∗971.7
NA19240.1 42,677 425.7 37.0 - - 889.4 ∗1,012.6
NA19240.2 31,564 397.8 36.8 - - 889.7 ∗1,113.4
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5.4 Summary

Sequence-to-graph alignment is the foundation of various pan-genomics applications.

However, it is computationally expensive when the sequence is long or the graph is large,

as the worst-case runtime is the product of these. Previous algorithms could not fully lever-

age the similarity information between the sequence and its optimal alignment walk in

the graph to reduce runtime while preserving optimality. In this work we proposed Gwfa,

a novel sequence-to-graph alignment algorithm, and a heuristic to accelerate the align-

ment further. We demonstrated empirically the superior performance of Gwfa over other

sequence-to-graph alignment algorithms on various input queries and graphs.
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CHAPTER 6

VALIDATING PAIRED-END READ MAPPINGS IN GRAPH GENOMES

Paired-end Illumina sequencing is a commonly used sequencing platform in genomics,

where the paired-end distance constraints allow the disambiguation of repeats. Many re-

cent works have explored provably good index-based and alignment-based strategies for

mapping individual reads to graphs. However, validating distance constraints efficiently

over graphs is not trivial, and existing sequence to graph mappers rely on heuristics.

In this chapter, we introduce a mathematical formulation of the problem and provide

a new algorithm to solve it exactly. We take advantage of the high sparsity of reference

graphs and use sparse matrix-matrix multiplications (SpGEMM) to build an index that can

be queried efficiently by a mapping algorithm for validating the distance constraints. The

algorithm’s effectiveness is demonstrated using real reference graphs, including a human

MHC variation graph and a pan-genome de-Bruijn graph built using genomes of 20 B. an-

thracis strains. While the one-time indexing time can vary from a few minutes to a few

hours using our algorithm, answering a million distance queries takes less than a second.

The rest of this chapter is organized as follows. In Section 6.1, we reviewed several

heuristics developed for mapping paired-end reads to graphs. In Section 6.2, we formulated

the paired-end read mapping validation problem and discuss the limitation of a few trivial

solutions to this problem. In Section 6.4, we present our index-based algorithm and analyze

the complexity of it. In Section 6.5, we test our proposed algorithm on real reference

graphs, and demonstrate the algorithm is fast in practice. We then summarize this work

in Section 6.6.
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6.1 Related work

Designing provably good algorithms for approximate sequence matching to graphs, using

both index-based and alignment-based approaches, remains an active research area. A few

recent works have investigated extending Burrows-Wheeler-Transform-based indexing to

sequence DAGs [85] and de-Bruijn graphs [117, 118, 119]. Similarly, there exist stud-

ies that have explored extension of the classic sequence-to-sequence alignment routines to

graphs [120, 103, 64, 86]. In the previous two chapters, we also proposed two sequence to

graph alignment algorithms. However, a general string to graph pattern matching formula-

tion is only good for mapping single-end reads or single-molecule sequencing reads, and

does not account for pairing information.

Paired-end sequencing provides information about the relative orientation and genomic

distance between the two reads in a pair. When reads originate from repetitive regions,

this information is valuable for pruning large number of false candidates [121]. Popular

short read mapping tools for linear references, e.g., BWA-mem [122] and Bowtie2 [36],

therefore, enforce these constraints in a read pair to guide the selection of the true mapping

locus. Using a linear reference, calculating gap between two mapping locations is just a

simple subtraction operation. However, it still remains unclear how to efficiently validate

the constraints using large non-linear graph-based references and read sets.

Several sequence to graph aligners have been developed in recent years to map reads

to variation graphs [123, 32, 111, 124, 125, 126, 127], de-Bruijn graphs [84, 83, 82] and

splicing graphs [74, 128]. Readers are referred to review articles, e.g., [129, 31] for an

expanded list of the tools. Among these tools, Graph-Aligner [126], vg [32], deBGA [82],

HISAT2 [124] and HLA-PRG [123] support paired-end read mapping. However, all of

these use heuristics to measure the observed insert size between the two reads in a pair,

mainly due to lack of associated provably-good graph-based algorithms. A popular heuris-

tic adopted by the tools is to do the computation while assuming a linear ordering of vertices
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(e.g., topological order). However, it can produce misleading results in complex variation-

rich graph regions.

6.2 Problem Formulation

Sequence graph is typically defined as a directed graph with either string or character la-

beled vertices because converting one form into the other is straightforward. In this chap-

ter, we focus on the char-labeled sequence graph defined as Definition 4.1. In addition,

commonly used graph formats, such as de-Bruijn graphs, bi-directional de-Bruijn graphs,

overlap graphs or variation graphs can be converted into sequence graphs with at most a

constant factor increase in vertex or edge set sizes. While single-end read alignments can

be judged by their alignment scores alone, a valid paired-end read alignment over a se-

quence graph should satisfy the expected paired-end distance constraints and orientation.

As insert size can vary within a range, let d1 and d2 denote the minimum and maximum

allowed values of the inner distance between the reads within a pair (see Figure 6.1).

Paired-end read

inner distance

distance constraint

Sequence graph

C A

T
G

T

A A

C T
G

T
C

A

Figure 6.1: Visualizing distance constraints while mapping paired-end reads to sequence
graphs.

Definition 6.1. Paired-end Validation Problem: Suppose two reads r1, r2 in a pair are in-

dependently mapped to a sequence graph G(V,E) using their positive and negative strands

respectively. Let v1 be the vertex where a walk to which r1 (+ve strand) is mapped ends,

and v2 be the vertex where a walk to which r2 (-ve strand) is mapped starts; then we refer
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to this pair of walks as a valid paired-end read mapping if and only if there exists a walk

from v1 to v2 of length d ∈ [d1, d2].

The above problem definition is based on the assumption that a fragment, from which

a read pair is sequenced, can align to any (cyclic or acyclic) path in the input sequence

graph. In this work, we focus on designing an efficient algorithm that can quickly answer

the above path queries for any two given vertices in the graph. Typically, there are multiple

mapping candidates to evaluate for each read pair, especially if a read is sequenced from

repetitive regions of a genome. In addition, a typical read set in a genomic study may

contain millions or billions of reads. Therefore, validating the distance queries quickly

using an appropriate indexing scheme is desirable.

6.3 Related Problems in Graph Theory

Computing all-pairs shortest paths in G(V,E) may help to identify true-positives or true-

negatives, but only for those vertex pairs whose shortest distance ≥ d1. No conclusion can

be drawn when the shortest distance between two vertices is < d1, as a valid walk need

not be the shortest path. In addition, computing all-pairs shortest paths is expensive, and

may not provide the desired scalability [58]. If d1 = d2, the formulated problem becomes

a special case of the exact-path length problem [130], with all edge weights set to 1. The

exact-path length problem determines if a path of a specified distance exists between two

vertices in a weighted graph. An extension of this problem, referred to as the gap-filling

problem [131], has been explored in the context of genome assembly using paired-end or

mate pair read sets. Although the exact-path length problem has been shown to be NP-

complete [130], we will demonstrate a simple and practical polynomial-time algorithm for

our problem with unweighted edges. Finally, if d1 = 0 and d2 = |V |, then our problem

is equivalent to determining transitive closure of a graph [132]. In our case, however, we

expect d2 ≪ |V |.

Our approach is based on an indexing strategy where we pre-compute a boolean index
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matrix, which has a 1 for each vertex pair that satisfies the distance constraints (Section 6.4).

Computing the index requires polynomial operations, and paired-end distance queries can

be computed quickly using index lookups during the read mapping process. Before de-

scribing the algorithm, we first discuss a trivial pseudo-polynomial time algorithm to solve

the paired-end distance validation problem. It is based on a well-known algorithm used to

solve the intractable subset-sum problem.

A Pseudo-polynomial Time Algorithm

The problem of validating distance constraints between two vertices can be solved using

dynamic programming. Assume s ∈ V is the source vertex from where we need to query

walks of length d ∈ [d1, d2]. For a vertex v ∈ V , let a(v, l) be a boolean value which is true

if and only if there is a walk of length l from source s to v. Then, the following recurrence

solves the problem:

a(v, 0) = 1 if v = s and 0 otherwise,

a(v, l) =
∨

(u,v)∈E

a(u, l − 1)

Solving the above recurrence requires filling a |V |×d2 table in column-wise order. The

distance constraint from the source vertex s to t ∈ V is satisfied if and only if a(t, l) = 1

for any l ∈ [d1, d2]. Note that it is sufficient to store two columns in memory to fill the

table, and an additional column to track the final result. The algorithm is summarized as a

lemma below.

Lemma 6.1. There exists an O(d2|E|) time and O(|V |) space algorithm that decides exis-

tence of a walk of length d ∈ [d1, d2] from one vertex to another in G(V,E).

The time complexity of the above algorithm is significantly high, as it requires O(d2|E|)

time to validate distance constraints from a fixed source vertex. With some optimizations

however, the above algorithm can be accelerated. As observed by Salmela et al. [131] in
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the context of gap-filling problem, we expect d2 ≪ |V |, therefore, it should be possible to

compute a sub-graph containing vertices within≤ d2/2 distance from v1 or v2, before solv-

ing the recurrence. While this strategy was shown to be effective for gap-filling between

assembled contigs, the count of vertex pairs to evaluate during read mapping process is

expected to be significantly higher for large read sets. Reference genomes (e.g., GRCh38

for human genome) or graphs are static, or evolve slowly, in genomic analyses. As such, it

is desirable to use an index-based strategy, where we pay a one-time cost to build an index,

and validate the paired-end distance constraints quickly.

6.4 An Index-based Polynomial-time Algorithm

In the following, we describe our index construction and querying algorithm. Given a se-

quence graph in the form of a boolean adjacency matrix, the index construction procedure

uses boolean matrix additions and multiplications. As we will note later, the worst-case

time of building our index is polynomial in the input size, but still computationally pro-

hibitive to handle real data instances. Subsequently, we will show how to exploit sparsity

in graphs to accelerate the computation. The construction algorithm relies on the following

boolean matrix operations.

Definition 6.2. Boolean matrix operations: Let A and B be two boolean n × n matrices.

The standard boolean matrix operations are evaluated in the following way:

Addition C = A ∨B Cij = Aij ∨Bij

Multiplication C = A ·B Cij =
n∨

k=1

Aik ∧Bkj

Power C = Ak C = A · A · . . . A︸ ︷︷ ︸
k times

The boolean matrix addition and multiplication can also be performed using the stan-

dard matrix addition and multiplication, respectively. This is done by adjusting the non-
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zero values in output matrix to 1. Next, we define index matrix T , built using the adjacency

matrix of the input graph and the distance parameters d1 and d2. Lemma 6.2 and 6.3 include

its correctness proof and worst-case construction time complexity.

Definition 6.3. Let Adj be the |V | × |V |-sized boolean adjacency matrix associated with

graph G(V,E). Define index matrix T = Adjd1 · (Adj ∨ I)d2−d1 , where I is an identity

matrix.

Lemma 6.2. T [i, j] = 1 if and only if there exists a walk of length d ∈ [d1, d2] from vertex

vi to vertex vj .

Proof. Note that Adjk[i, j] = 1 if and only if there is a walk of length k from vertex vi to vj .

To validate the paired-end distance constraints, we require Adjd1 ∨Adjd1+1 ∨ . . . ∨Adjd2 .

d2∨
i=d1

Adji = Adjd1 · (
d2−d1∨
i=0

Adji)

= Adjd1 · (Adj ∨ I)d2−d1

Lemma 6.3. If multiplying two square matrices of dimension |V | × |V | requires O(|V |ω)

time, ω ∈ R, then computing the index matrix requires O(|V |ω · log(d2)) time and O(|V |2)

space.

Proof. Matrix addition uses O(|V |2) operations. Computing Ak requires O(|V |ω log k)

operations. Therefore, computing the index matrix requires O(|V |2 + |V |ω(1 + log d1 +

log(d2 − d1))) operations. As ω ≥ 2 and d2 ≥ d1, this simplifies to O(|V |ω · log(d2))

time.

The current best algorithm to compute general matrix multiplication requires O(|V |2.37)

time [133]. Using the general matrix storage format, querying for the distance constraints

86



between a vertex pair requires a simple O(1) lookup. However, general matrix multiplica-

tion solvers require at least quadratic time and space (in terms of |V |), which does not scale

to real graph instances. We next propose an alternate approach to build the index matrix

that exploits sparsity in sequence graphs.

6.4.1 Exploiting Sparsity in Sequence Graphs

Typically, sequence graphs representing variation or assembly graphs have large diameter

and high sparsity, with edge to vertex ratio close to 1 [78]. As d2 ≪ |V | in practice, we also

expect our final index matrix to be sparse. As a result, we propose using SpGEMM (sparse

matrix-matrix multiplication) operations to build the index. Below, we briefly recall the

algorithm and matrix storage format used for SpGEMM. Subsequently, we shed light on the

construction time and size of the index using this approach. We borrow standard notations

typically used to discuss SpGEMM algorithms. Let nnz(A) denote number of non-zero

values in matrix A. During boolean matrix multiplication A · B, let bitops(AB) indicate

the count of non-zero bitwise-AND operations (i.e., 1 ∧ 1), assuming Definition 6.2.

Working with Sparse Matrices

Storage: During SpGEMM, the input and output matrices are stored in a sparse format,

such that the space is primarily used for non-zeros. Compressed Sparse Row (CSR) is a

classic data structure for this purpose [134]. In CSR format, a boolean matrix An×n can be

represented by using two arrays: the first array ptr of size n+1 contains row pointers, and

the second array cols of size O(nnz(A)) contains column indices of each non-zero entry

in A, starting from the first row to the last. The row pointers are essentially offsets within

the second array, such that the range
[
cols[ptr[i]], cols[ptr[i + 1]]

)
lists column indices in

row i. By default, CSR format does not require the indices of a row to be sorted. However,

the sorted order will be useful in our index storage to enable fast querying. Therefore, we

use ‘sorted-CSR’ format in our application.
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Remark 6.1. Storing a matrix An×n in sorted-CSR format requires Θ(n+nnz(A)) space.

Remark 6.2. Given a sequence graph G(V,E) as an array of edge tuples, transforming

its adjacency information into sorted-CSR format takes Θ(|V | + |E|) time using count

sort [135].

Multiplication (SpGEMM): SpGEMM algorithms limit their operation count to just non-

zero multiplications and additions required to compute the product, as the remaining entries

are guaranteed to be 0. Most of the sequential and high-performance parallel algorithms for

SpGEMM, including in MATLAB [136], are based on Gustavson’s algorithm [135]. The

algorithm can take input matrices A and B in sorted-CSR format and produce the output

matrix C = A · B in the same format. In this algorithm, a row of matrix C, i.e., C[i, :] is

computed as a linear combination of the rows κ of B for which A[i, κ] ̸= 0. The complexity

result from Gustavson’s work is listed as the following lemma.

Lemma 6.4. The time complexity to multiply two sparse matrices An×n and Bn×n using

Gustavson’s algorithm is Θ(n+ nnz(A) + bitops(AB)).

Indexing Time and Storage Complexity

Computing the index (Definition 6.3) requires several SpGEMM operations. As such, it is

hard to derive a tight bound on the complexity, as runtime and index size depend on non-

zero structure of the input sequence graph. However, it is important to get an insight into

how the different parameters, e.g., |V |, d1, d2 may affect them. To address this, we derive a

practically useful lower-bound on the complexity.

Consider the chain graph G′(V ′, E ′) associated with a longest path in G(V,E), V ′ ⊂

V,E ′ ⊂ E. We claim that the time needed to index G(V,E) is either the same or worse than

indexing its chain G′(V ′, E ′) (Lemma 6.5). Subsequently, we compute the time complexity

for indexing the chain using our SpGEMM-based algorithm. The rationale for analyzing

the chain graph is (a) non-zero structure of a chain is simple and well-defined for computing
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time complexity, and (b) sequence graphs are expected to have ‘near-linear’ topology in

practice, therefore the derived lower-bounds will be a useful indication of the true costs.

Lemma 6.5. The time requirement for indexing a graph G(V,E) using SpGEMM is either

the same or higher than indexing the chain graph G′(V ′, E ′) associated with its longest

path.

Proof. Note that G′ is a sub-graph of G, which will also reflect in their adjacency

matrices. The above lemma is based on the following simple observation. Suppose

A,B,A′, B′, δ1, δ2 are boolean square matrices, such that, A = A′ ∨ δ1 and B = B′ ∨ δ2.

Then, using Gustavson’s algorithm, multiplying A and B requires at least as much time

as required for multiplying A′ and B′. In addition, the product (A · B) is of the form

(A′ ·B′)∨ δ3, where δ3 is a boolean matrix. For each SpGEMM executed while computing

the index, we can use this argument to support the claim.

Lemma 6.6. Computing the index for G(V,E) using SpGEMM requires Ω(|V ′|((d2 −

d1)
2 + log d1)) time.

Proof. Let Adj′ be the adjacency matrix associated with G′(V ′, E ′). To prove the above

claim, it is useful to visualize the structure of Adj′ (Figure 6.2). Define a constant k ≪ |V ′|.

For simplicity, assume d1 and d2 − d1 are powers of 2. Throughout the index compu-

tation, the time required by Gustavson’s SpGEMM algorithm is dictated by bitops. Fol-

lowing Lemma 6.4, multiplying Adj′k to Adj′k requires Θ(|V ′|) time. In addition, mul-

tiplying (Adj′ ∨ I)k with (Adj′ ∨ I)k requires Θ(|V ′|(k2)) time. Therefore, we need

Θ(|V ′|(1 + 1 + . . .+ 1︸ ︷︷ ︸
log d1 times

)) time to compute Adj′d1 , and Θ(|V ′|(1+22+42+. . .+(d2−d1)2))

time to compute (Adj′∨I)d2−d1 . The final multiplication between Adj′d1 and (Adj′∨I)d2−d1

uses Θ(|V ′|(d2 − d1)) time. All these operations add up to Θ(|V ′|((d2 − d1)
2 + log d1))

time. This argument, and Lemma 6.5 suffice to support the claim.

Remark 6.3. The index size is dictated by count of non-zeros in the final output matrix.
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Using similar arguments as above, it can be shown that the index storage for graph G(V,E)

requires Ω(|V ′|(d2 − d1 + 1)) space.

Adj'

1 hop k hops

≤ k hops

G'(V',E')

(Adj') k

(Adj' ⋁ I) k
(Adj' ⋁ I) q(Adj')  .

p

≥ p,  ≤ p+q hops

(chain graph)

(adjacency matrix)

Figure 6.2: Visualizing non-zero structure of adjacency matrix of a chain graph. We also
show how the structure changes after exponentiation. This is useful to count bitops during
SpGEMM.

Querying the Index

Querying for a value in a sorted-CSR formatted index is trivial. The lookup procedure for

T [i, j] requires a binary search among the non-zeros of row i. Let maxRownnz(T ) be the

maximum row size, i.e., maximum number of non-zero entries in a row of index matrix T .

After computing the index, deciding the existence of a path of length d ∈ [d1, d2] between

two vertices in G(V,E) requires O(logmaxRownnz(T )) time.

6.5 Results

We implemented our algorithm, referred to here as PairG, in C++. The source code is avail-

able at https://github.com/ParBLiSS/PairG. We conducted our evaluation using an Intel
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Xeon CPU E5-2680 v4, equipped with 28 physical cores and 256 GB main memory. In our

implementation, we utilize KokkosKernels [137], an open-source parallel library for basic

linear algebra (BLAS) routines. This library does not provide explicit support for boolean

matrix operations, so we used integer matrix operations instead, while rounding the non-

zero output values to one. We leveraged multi-threading support in KokkosKernels, and

allowed it to use 28 threads during execution. Our benchmark data sets, summarized be-

low, consist of cyclic and acyclic graphs built using publicly available real data. We tested

indexing and querying performance using PairG for various values of distance constraints.

These choices were motivated by the typical insert sizes used for Illumina paired-end se-

quencing. We demonstrate that PairG can index graphs with more than a million vertices

in a reasonable time. Once the index is built, it can answer a million distance constraint

queries in a fraction of a second.

6.5.1 Datasets

We generated seven sequence graphs, four acyclic (G1-G4) and three cyclic (G5-G7)

(see Table 6.2). The first four sequence graphs are variation graphs built using human

genome segments (GRCh37) and variant files from the 1000 Genomes Project (Phase

3) [4]. We used vg [32] for building these graphs. The human genomic regions con-

sidered in our evaluation are mitochondrial DNA (mtDNA), BRCA1 gene, the killer

cell immunoglobulin-like receptors (LRC KIR), and the major histocompatibility com-

plex (MHC). The sizes of these regions range from 16.6 kilobases (mtDNA) to 5.0

megabases (MHC) in the human genome. De Bruijn Graph (DBG) is another popular

format to represent ‘pan-genome’ of a species. DBG is also a good candidate structure

to test our algorithm on more complex graphs. We built DBGs with k-mer length 25 us-

ing whole-genome sequences of one (G5), five (G6), and twenty (G7) B. anthracis strains,

using SplitMEM [138]. Strain ids and sizes of these genomes are listed in Table 6.1.

We tested PairG using three different ranges of distance constraints, associated with
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Table 6.1: List of 20 Bacillus anthracis strains used to build the sequence graphs G5-G7.
We used the first strain in G5, the first five strains in G6, and all the 20 strains in G7.

Strain id Assembly id Size (Mbp)
Ames GCA 000007845.1 5.23
delta Sterne GCA 000742695.1 5.23
Cvac02 GCA 000747335.1 5.23
Parent1 GCA 001683095.1 5.23
PR09-1 GCA 001683255.1 5.23
Sterne GCA 000008165.1 5.23
CNEVA-9066 GCA 000167235.1 5.49
A1055 GCA 000167255.1 5.37
A0174 GCA 000182055.1 5.29
Sen2Col2 GCA 000359425.1 5.17
SVA11 GCA 000583105.1 5.49
95014 GCA 000585275.1 5.34
Smith 1013 GCA 000742315.1 5.29
2000031021 GCA 000742655.1 5.33
PAK-1 GCA 000832425.1 5.40
Pasteur GCA 000832585.1 5.23
PR06 GCA 001683195.1 5.23
55-VNIIVViM GCA 001835485.1 5.35
Sterne 34F2 GCA 002005265.1 5.39
UT308 GCA 003345105.1 5.37

Table 6.2: Directed sequence graphs used for evaluation. In these graphs, each vertex is
labeled with a DNA nucleotide. Four acyclic graphs are derived from segments of human
genome and variant files from the 1000 Genomes Project (Phase 3). Three cyclic graphs are
de Bruijn graphs built using whole-genome sequences of Bacillus anthracis strains, with
k-mer length 25.

Id Graph # vertices # edges Type
G1 mitochondrial-DNA 21,038 26,842

acyclicG2 BRCA1 83,268 85,422
G3 LRC KIR 1,108,769 1,154,046
G4 MHC 5,138,913 5,318,639
G5 B. anthracis (1 strain) 5,174,432 5,175,000

cyclicG6 B. anthracis (5 strains) 10,360,296 10,363,334
G7 B. anthracis (20 strains) 11,237,067 11,253,437
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three insert-size configurations. Assuming a typical sequencing scenario of insert-size con-

figuration as 300 bp and read length 100 bp, the inner distance between paired-end reads

should equal 100 bp (i.e., insert size minus twice the read length). To allow for sufficient

variability, we tested PairG using d1 = 0, d2 = 250. Similarly, for insert-size configurations

of 500 bp and 700 bp, we tested PairG using inner distance limits (d1 = 150, d2 = 450)

and (d1 = 350, d2 = 650), respectively. There may be insert size configurations where

allowing read overlaps may also be necessary; this can be handled trivially by computing a

second matrix with desirable limit on the overlap length.

6.5.2 Index construction

We report wall-clock time, memory-usage, and index size (nnz) using various graphs and

distance constraints in Table 6.3. We note large variation in performance for various graph

sizes and complexity. Time, memory, and index size increase almost linearly with increas-

ing graph size. This is also expected based on our theoretical analysis (Section 6.4.1). The

specified range of distance constraints [d1, d2] can also affect performance. The index size

for graphs G1-G5 remains almost uniform for the three different constraints. This should be

because the first five graphs have linear chain-like topology, where the performance should

be dictated by the gap (d2 − d1) according to our analysis. The graphs G1-G4 were built

by augmenting the variations (substitutions, indels) on the reference sequence, and the fifth

graph uses a single strain. On the other hand, index size varies with distance constraints

for the last two graphs, especially G7. We expect G7 to have significantly more branching

due to complex structural variations and repeats. Another important contributing factor is

that DBGs collapse repetitive k-mers into a single vertex, causing large deviation from the

linear topology. As a result, it takes time ranging from 1.3 hours to 17 hours for graph G7.

For larger graphs, we expect the index size (nnz) to increase with graph size. In sorted-

CSR storage format, we use 4 bytes for each non-zero, which can become prohibitively

large at the scale of complete human genome. However, we expect substantial room for
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Table 6.3: Performance measured in terms of wall-clock time and memory-usage for build-
ing index matrix using all input graphs and different distance constraints. nnz represents
number of non-zero elements in the index matrix, to indicate its size. Our implementation
uses 4 bytes to store each non-zero of a matrix in memory.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time Mem nnz Time Mem nnz Time Mem nnz
G1 0.2s 0.1G 6.8M 0.4s 0.2G 7.8M 0.4s 0.2G 7.6M
G2 0.4s 0.3G 21M 0.9s 0.5G 26M 0.9s 0.5G 26M
G3 5.6s 3.8G 0.3B 12s 6.2G 0.3B 12s 6.2G 0.3B
G4 25s 17G 1.3B 53s 28G 1.6B 53s 28G 1.6B
G5 25s 17G 1.3B 54s 28G 1.6B 54s 28G 1.7B
G6 52s 35G 2.8B 2m 60G 3.6B 2m 60G 4.2B
G7 1.3h 56G 4.6B 7.2h 118G 8.9B 17.2h 129G 14B

compressing the final index, and plan to explore it in the future. Memory-usage of a matrix

operation (addition or multiplication) is dictated by the size of the associated input and

output matrices. As a result, memory required for the index construction appears to increase

proportionally with the index size (Table 6.3).

6.5.3 Querying Performance

While indexing is a one-time routine for a sequence graph, we would need to query the

index numerous times during the mapping process. Querying for a vertex pair requires a

simple and fast lookup in the index (Section 6.4.1). As read mapping locations are expected

to be uniformly distributed over the graph, we tested the querying performance by generat-

ing a million random vertex pairs (u, v), u, v ∈ [1, |V |]. For all the seven graphs, querying

a million vertex pairs finished in less than a second (Table 6.4). Even though the majority

of randomly generated queries result in a ‘no’ answer, this aspect has insignificant effect

on the query performance. Our results implicate that distance constraints can be validated

exactly without additional overhead on the mapping time, which is similar to the case of

mapping reads to a reference sequence.

We also compared our index-based algorithm using a breadth first search (BFS)-based

heuristic. Using this heuristic, we answer a query of a pair of vertices (u, v) as true if and
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Table 6.4: Time to execute a million queries using all the graphs and distance constraints.
Each query is a random pair of vertices in the graph.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time (sec)
G1 0.1 0.1 0.1
G2 0.2 0.2 0.2
G3 0.4 0.4 0.5
G4 0.5 0.5 0.5
G5 0.4 0.5 0.5
G6 0.4 0.5 0.5
G7 0.5 0.5 0.6

only if v is reachable within d2 distance from u. Accordingly, BFS initiated from vertex u

is terminated if we find vertex v, or after we have explored all vertices up to depth d2. This

heuristic does not require a pre-computed index. However, we find that querying time using

our index-based algorithm is faster by two to three orders of magnitude. For the randomly

generated query set, fraction of results that agree between the two approaches varied from

98% to 100%. The above heuristic yields incorrect result for a vertex pair (u, v) when all

the possible paths that connect u to v have length < d1.

6.6 Summary

In this chapter, we formulated the Paired-end Validation Problem, required for paired-end

read mapping on sequence graphs. We proposed the first provably good and practically

useful exact algorithm for solving this problem. The proposed algorithm builds on top of

existing SpGEMM algorithms, to exploit the sparsity and large diameter characteristics of

sequence graphs. Our experiments indicate that index construction time is affected by the

size and topology of the sequence graph, as well as the desired distance constraints. The

querying time is less than a second for answering a million distance queries using all test

cases.
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CHAPTER 7

CONCLUSIONS

The advancement of sequencing technologies poses concomitant challenges to the devel-

opment of computational methods for sequencing data processing. In this dissertation, we

present efficient methods that can significantly reduce the runtime of read mapping, an es-

sential step in sequencing data analysis, and expand its applications to newer technologies

and reference protocols. The methods presented in the dissertation can take various types

of reads as input and map them to either linear or graph-based reference genomes.

Specifically, we first developed Chromap to map short reads generated by chromatin

profiling protocols. We demonstrated the empirically superior performance of Chromap on

mapping ChIP-seq, Hi-C, and scATAC-seq profiles compared with other general-purpose

aligners. Chromap also incorporates other short read preprocessing steps such as adapter

trimming, alignment deduplication, and barcode correction, which ease users’ burden in

installing and tuning multiple tools to process chromatin profiling data.

Subsequently, we developed Sigmap to map nanopore raw reads for real-time targeted

sequencing. Unlike other mapping methods that convert raw reads to sequences, Sigmap

is the first method that fully works in signal space, which is promising for completely

base-calling-free nanopore sequencing data analysis. The faster mapping speed might also

support real-time targeted sequencing on ONT sequencing devices with more pores and

higher sequencing throughput.

Furthermore, we designed two algorithms to align sequences to sequence graphs, which

is the key for mapping reads to graph-based reference genomes. When arbitrary score

linear/affine gap functions are used, we proposed an algorithm that improves the existent

sequence to graph alignment algorithms on time complexity. Moreover, we developed a

method termed Gwfa (Graph wave front alignment) to find the optimal global sequence-
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to-graph alignment with unit edit cost and present heuristics to accelerate the alignment

process further. We showed that Gwfa was orders of magnitude faster than other sequence-

to-graph alignment algorithms on various input query sequences and graphs built from

highly polymorphic regions that play essential roles in the human immune systems.

Finally, we presented the first mathematical formulation of the paired-end read mapping

validation problem and proposed an exact algorithm to solve it. The method is designed

to leverage the high sparsity of reference genome graphs and build an index that can be

queried efficiently by mapping algorithms to validate distance constraints. We showed that

our algorithm could validate a million paired-end read distance constraints on real reference

genome graphs in less than a second, which is effective for practical usage.

We believe open-source tools would greatly facilitate biological and medical research.

Thus, we implemented the methods presented in this dissertation and made them available

as open-source software with the following links:

• Chromap: https://github.com/haowenz/chromap

• Sigmap: https://github.com/haowenz/sigmap

• SGA, Gwfa: https://github.com/haowenz/SGA, https://github.com/lh3/gwfa

• PairG: https://github.com/ParBLiSS/PairG
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APPENDIX A

FAST SEQUENCE TO GRAPH ALIGNMENT USING GRAPH WAVEFRONT

ALGORITHM

A.1 Sequence to graph alignment problem variants

We extend the definition of a walk in the sequence graph by associating a start off-

set so and an end offset eo with the start vertex vj1 and end vertex vjn in the walk

w, respectively. And we use wj1,jn(so, eo) to denote a walk that skips a prefix and a

suffix in the start vertex and end vertex respectively, which spells σ(wj1,jn(so, eo)) =

σ(vj1)[so, |vj1|]σ(vj2)[1, |vj2|] . . . σ(vjn)[1, eo].

Definition A.1 (Optimal global sequence to graph extension). Given a query sequence q,

a sequence graph G(V,E, σ) and a start vertex vs ∈ V , find an end vertex ve and a walk

ws,e(1, ·) such that ∀w′
s,·(1, ·), d(σ(w), q) ≤ d(σ(w′), q).

This formulation is similar to the global extension (or prefix, SHW) problem for pair-

wise sequence alignment. Gaps at the end of the target sequence (or the walk in the se-

quence graph) are not penalized. We can slightly modify our proposed algorithms to solve

this problem variant in Algorithm A.1 and Algorithm A.2.

Definition A.2 (Optimal semi-global sequence to graph extension). Given a query se-

quence q, a sequence graph G(V,E, σ) and a start vertex vs ∈ V , find an end vertex ve

with an end offset eo and a walk ws,e(so, eo) such that ∀w′
s,.(., .), d(σ(w), q) ≤ d(σ(w′), q).

This formulation is similar to the semi-global extension (or infix, HW) problem for

pairwise sequence alignment. Gaps at the start and the end of the target sequence (or the

walk in the sequence graph) are not penalized. This problem can be solved by setting

H̃vs,js = 0 for 0 ≤ js ≤ |σ(vs)| and push all these diagonals into the queue on line 4

of Algorithm A.1.
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Algorithm A.1: Graph wavefront algorithm to find the optimal global sequence
to graph extension

Input: Query sequence q, sequence graph G = (V,E, σ), start vertex vs ∈ V .

1 function GWFEDITDIST(q,G, vs, ve) begin
2 ke ← |q| − |σ(ve)|
3 H̃vs,0 ← 0
4 Q← [(vs, 0)]
5 d← 0
6 terminate← false
7 while true do
8 GWFEXTEND(q,G,Q, H̃, terminate)
9 if terminate then

10 return d
11 d← d+ 1

12 GWFEXPAND(q,G,Q, H̃)

Algorithm A.2: Graph wavefront extension algorithm
Input: Query sequence q, sequence graph G = (V,E, σ), queue Q to keep track of

diagonals, graph wavefront set H̃ .

1 function GWFEXTEND(q,G,Q, H̃, terminate) begin
2 Q′ ← [ ]
3 while Q is not empty do
4 (v, k)← Q.pop()

5 j ← H̃v,k

6 i← k + j
7 l← LCP (q[i+ 1, |q|], σ(v)[j + 1, |σ(v)|])
8 H̃v,k ← j + l
9 Q′.push(v, k)

10 i← i+ l
11 if i = |q| then
12 terminate← true
13 return
14 if H̃v,k = |σ(v)| then
15 for (v, u) ∈ E do
16 if H̃u,k+|σ(v)| /∈ H̃ then
17 H̃u,k+|σ(v)| ← 0
18 Q.push(u, k + |σ(v)|)
19 Q← Q′

100



A.2 Generalized Navarro’s algorithm

We present the generalized Navarro’s algorithm that can find sequence alignments to a

segment-labeled graph in Algorithm A.3.

Algorithm A.3: Generalized Navarro’s algorithm to find the optimal global se-
quence to graph alignment

Input: Query sequence q, sequence graph G = (V,E, σ), start vertex vs ∈ V and
end vertex ve ∈ V .

1 function NAVARROALGORITHM(q,G, vs, ve) begin
2 C0,vs,0 = 0
3 for i← 0 to |q| do
4 for v ∈ V do
5 if i ≥ 1 then
6 for j ← 1 to |σ(v)| do
7 Ci,v,j ← min{Ci−1,v,j + 1, Ci−1,v,j−1 +∆i,v,j}
8 for (v, u) ∈ E do
9 Ci,u,0 ← min{Ci,u,0, Ci,v,|σ(v)|}

10 for v ∈ V do
11 PROPAGATE(v, Ci)
12 return C|q|,ve,|σ(|ve|)|
13 function PROPAGATE(v, Ci) begin
14 for j ← 1 to |σ(v)| do
15 if Ci,v,j > Ci,v,j−1 + 1 then
16 Ci,v,j ← Ci,v,j−1 + 1
17 else
18 break
19 for (v, u) ∈ E do
20 if Ci,u,0 > Ci,v,|σ(v)| + 1 then
21 Ci,u,0 ← Ci,v,|σ(v)| + 1
22 PROPAGATE(u,Ci)

A.3 Sequence to graph alignment traceback

We show how to adapt our proposed algorithm to trace the optimal alignment walk in Al-

gorithm A.4 and Algorithm A.5.
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Algorithm A.4: Graph wavefront algorithm to find the optimal global sequence
to graph alignment and trace back the alignment walk

Input: Query sequence q, sequence graph G = (V,E, σ), start vertex vs ∈ V and
end vertex ve ∈ V .

1 function GWFEDITDIST(q,G, vs, ve) begin
2 ke ← |q| − |σ(ve)|
3 H̃vs,0 ← 0

4 T̃vs,0 ← −1
5 Q← [(vs, 0)]
6 d← 0
7 T ← [ ]
8 M ← ∅
9 while true do

10 GWFEXTEND(q,G,Q, H̃, T̃ , T,M)

11 if H̃ve,ke ≥ |σ(ve)| then
12 break
13 d← d+ 1

14 GWFEXPAND(q,G,Q, H̃)

15 GWFTRACEBACK(T̃d,ve,|σ(ve)|, T )
16 return d

Algorithm A.5: Graph wavefront extension algorithm that saves traceback infor-
mation

Input: Query sequence q, sequence graph G = (V,E, σ), queue Q to keep track of
diagonals, graph wavefront set H̃ , traceback information T̃ , T,M .

1 function GWFEXTEND(q,G, H̃, T̃ , T,M)) begin
2 Q′ ← [ ]
3 while Q is not empty do
4 (v, k)← Q.pop()

5 j ← H̃v,k

6 i← k + j
7 l← LCP (q[i+ 1, |q|], σ(v)[j + 1, |σ(v)|])
8 H̃v,k ← j + l
9 Q′.push(v, k)

10 if H̃v,k = |σ(v)| then
11 for (v, u) ∈ E do
12 if H̃u,k+|σ(v)| /∈ H̃ then
13 H̃u,k+|σ(v)| ← 0

14 T̃u,k+|σ(v)| ← GWFPUSHTRACE(u, T̃v,k, T,M)
15 Q.push(u, k + |σ(v)|)
16 Q← Q′
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A.4 Details on sequence graph construction

The scripts to construct the sequence graphs and retrieve the query sequences are avail-

able at https://github.com/haowenz/gwfa evaluation. We also made the queries and graphs

available on Zenodo with doi 10.5281/zenodo.6622036 for download.

A.5 Versions and parameters to run sequence to graph alignment tools

GraphAligner v1.0.15 was used as GraphAligner-heuristic, and “-x vg” was the pa-

rameter. The PaperExperiments branch from GraphAligner GitHub repo (https://github.

com/maickrau/GraphAligner/tree/PaperExperiments) was used as GraphAligner-bitvector,

which was also used in the evaluation in the GraphAlinger bit-vector algorithm [104].

A.6 Versions and parameters of the pairwise sequence alignment tools

For Edlib, we used version 1.2.7 and parameters ‘-m SHW’. For WFA2, version 2.1 was

used, and the parameters were set using the code as follows.

wavefront_aligner_attr_t attributes =

wavefront_aligner_attr_default;

attributes.heuristic.strategy = wf_heuristic_none;

attributes.distance_metric = edit;

attributes.alignment_scope = compute_score;

attributes.alignment_form.span = alignment_endsfree;

attributes.alignment_form.pattern_begin_free = 0;

attributes.alignment_form.pattern_end_free = 0;

attributes.alignment_form.text_begin_free = 0;

attributes.alignment_form.text_end_free = min(text_ks->seq.l,

pattern_ks->seq.l / 2;
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A.7 Comparison with pairwise sequence alignment tools

To investigate the performance gap between aligning a query to a target sequence and a se-

quence graph, we constructed a linear graph with one vertex, and the C4 region of GRCh38

is the vertex segment. Note that the total segment length of the linear graph is much larger

than G1, though they both represent the C4 region. This is because a large segmental du-

plication is collapsed as a cycle in G1, which reduces its total segment length. Table A.1

shows the runtime of the methods to align the queries to the linear genome or the sequence

graphs.

We observed that running Gwfa and Gwfa-pruning to align the C4 regions of HG002

and HG005 to the linear C4 sequence graph was as fast as running WFA2 and even faster

than running Edlib to perform pairwise sequence alignment of the C4 regions, which means

our implementation is efficient. However, Gwfa and Gwfa-pruning were slower than Edlib

and WFA2 on aligning C4 regions of NA19240 haplotypes and GRCh38. This was caused

by a structural variant in the C4 regions of NA19240 haplotypes, which leads to a high

edit distance and a large graph wavefront set. Since the range of graph wavefront sets in

general cannot be easily maintained by only one interval as how the range of wavefront

set for pairwise sequence alignment is represented, Gwfa as a sequence to graph alignment

method would cost more computing time on this special use case.

Besides, when aligning queries to the linear C4 sequence graph, Gwfa and Gwfa-

pruning were orders of magnitude faster than other sequence to graph alignment algorithms,

except for the case when aligning NA19240 C4 regions to the linear C4 sequence graph.

Though GraphAligner heuristic was faster than Gwfa or Gwfa-prunning in this case, the

alignments reported by GraphAligner heuristic were broken into several pieces with alter-

native alignments due to the repeats in the C4 region. In constrast, all the other sequence

to graph alignment methods were able to report the optimal alignments.

Table A.2 shows the memory usage of the tools. Gwfa-pruning used the least amount
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of memory except the case when aligning the C4 regions of NA19240 haplotypes. The

reason is the same as the reason for the longer runtime, which is the high edit distance of

the alignments between the C4 regions of these two haplotypes and GRCh38.

Table A.1: Runtime (in seconds) of the methods to align queries to the linear sequence
graphs.

Haplotype
Edit

distance Edlib WFA2 Gwfa
Gwfa-

pruning
Dijkstra’s
algorithm

Navarro’s
algorithm

GraphAligner
bitvector

GraphAligner
heuristic

HG002.1 89 0.03 <0.01 <0.01 <0.01 3.06 24.84 3.56 0.57
HG002.2 90 0.03 <0.01 <0.01 <0.01 3.08 24.82 3.56 0.15
HG005.1 24 0.01 <0.01 <0.01 <0.01 0.54 24.85 3.73 0.22
HG005.2 86 0.01 <0.01 <0.01 <0.01 2.97 24.85 3.73 0.13
NA19240.1 6,454 0.15 0.15 0.73 0.81 633.76 23.37 3.43 0.20
NA19240.2 6,673 0.16 0.16 0.78 0.83 740.73 23.28 3.41 0.18

Table A.2: Memory usage (MB) of the methods to align queries to the linear sequence
graphs.

Haplotype
Edit

distance Edlib WFA2 Gwfa
Gwfa-

pruning
Dijkstra’s
algorithm

Navarro’s
algorithm

GraphAligner
bitvector

GraphAligner
heuristic

HG002.1 89 3.9 3.4 2.0 1.5 459.3 164.6 77.2 44.0
HG002.2 90 3.9 3.4 2.0 1.5 460.0 164.6 77.2 43.8
HG005.1 24 3.9 3.4 1.3 1.3 244.7 164.6 77.1 41.8
HG005.2 86 3.9 3.4 2.0 1.5 453.6 164.6 77.1 44.3
NA19240.1 6,454 3.9 3.4 9.3 9.3 26,912.3 164.6 77.1 36.6
NA19240.2 6,673 3.9 3.4 9.3 9.3 32,344.7 164.6 77.1 38.1
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“Using minimum path cover to boost dynamic programming on DAGs: Co-linear
chaining extended,” in International Conference on Research in Computational
Molecular Biology, Springer, 2018, pp. 105–121.

[76] W. P. Rowe and M. D. Winn, “Indexed variation graphs for efficient and accurate
resistome profiling,” Bioinformatics, vol. 1, p. 8, 2018.

[77] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path approach to DNA
fragment assembly,” Proceedings of the National Academy of Sciences, vol. 98,
no. 17, pp. 9748–9753, 2001.

111



[78] A. M. Novak et al., “Genome graphs,” bioRxiv, p. 101 378, 2017.

[79] E. W. Myers, “The fragment assembly string graph,” Bioinformatics, vol. 21,
no. suppl 2, pp. ii79–ii85, 2005.

[80] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial
order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452–464, 2002.

[81] L. Huang, V. Popic, and S. Batzoglou, “Short read alignment with populations of
genomes,” Bioinformatics, vol. 29, no. 13, pp. i361–i370, 2013.

[82] B. Liu, H. Guo, M. Brudno, and Y. Wang, “Debga: Read alignment with de bruijn
graph-based seed and extension,” Bioinformatics, vol. 32, no. 21, pp. 3224–3232,
2016.

[83] A. Limasset, B. Cazaux, E. Rivals, and P. Peterlongo, “Read mapping on de bruijn
graphs,” BMC bioinformatics, vol. 17, no. 1, p. 237, 2016.

[84] M. Heydari, G. Miclotte, Y. Van de Peer, and J. Fostier, “Browniealigner: Accurate
alignment of illumina sequencing data to de bruijn graphs,” BMC bioinformatics,
vol. 19, no. 1, p. 311, 2018.
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