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SUMMARY

Capability to sequence DNA has been around for four decades now, providing ample

time to explore its myriad applications and the concomitant development of bioinformatics

methods to support them. Nevertheless, disruptive technological changes in sequencing of-

ten upend prevailing protocols and characteristics of what can be sequenced, necessitating

a new direction of development for bioinformatics algorithms and software. We are now at

the cusp of the next revolution in sequencing due to the development of long and ultra-long

read sequencing technologies by Pacific Biosciences (PacBio) and Oxford Nanopore Tech-

nologies (ONT). Long reads are attractive because they narrow the scale gap between sizes

of genomes and sizes of sequenced reads, with the promise of avoiding assembly errors

and repeat resolution challenges that plague short read assemblers. However, long reads

themselves sport error rates in the vicinity of 10-15%, compared to the high accuracy of

short reads (< 1%). There is an urgent need to develop bioinformatics methods to fully

realize the potential of long-read sequencers.

Mapping and alignment of reads to a reference is typically the first step in genomics

applications. Though long read technologies are still evolving, research efforts in bioin-

formatics have already produced many alignment-based and alignment-free read mapping

algorithms. Yet, much work lays ahead in designing provably efficient algorithms, for-

mally characterizing the quality of results, and developing methods that scale to larger

input datasets and growing reference databases. While the current model to represent the

reference as a collection of linear genomes is still favored due to its simplicity, mapping

to graph-based representations, where the graph encodes genetic variations in a human

population also becomes imperative.

This dissertation work is focused on provably good and scalable algorithms for mapping

long reads to both linear and graph references. We make the following contributions:

1. We develop fast and approximate algorithms for end-to-end and split mapping of

xvii



long reads to reference genomes. Our work is the first to demonstrate scaling to the

entire NCBI database, the collection of all curated and non-redundant genomes.

2. We generalize the mapping algorithm to accelerate the related problems of comput-

ing pairwise whole-genome comparisons. We shed light on two fundamental bio-

logical questions concerning genomic duplications and delineating microbial species

boundaries.

3. We provide new complexity results for aligning reads to graphs under Hamming

and edit distance models to classify the problem variants for which existence of a

polynomial time solution is unlikely. In contrast to prior results that assume alphabets

as a function of the problem size, we prove that the problem variants that allow edits

in graph remain NP-complete for even constant-sized alphabets, thereby resolving

computational complexity of the problem for DNA and protein sequence to graph

alignments.

4. Finally, we propose a new parallel algorithm to optimally align long reads to large

variation graphs derived from human genomes. It demonstrates near linear scaling on

multi-core CPUs, resulting in run-time reduction from multiple days to three hours

when aligning a long read set to an MHC human variation graph.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Background

1.1.1 DNA Sequencing

DNA sequencing refers to the process of determining the order of nucleotides in a DNA

molecule, each nucleotide of which is an adenine (A), guanine (G), cytosine (C), or thymine

(T). Genome sequencing is the process of determining the entire DNA that constitutes the

‘code’ of a living organism for its growth, function, and reproduction. Ability to sequence

DNA has been instrumental in numerous discoveries that underpin biomedical advances,

including the sequencing and assembly of the first human genome [1, 2]. Over the past

four decades, DNA sequencing technologies have evolved from an expensive, laborious

and limited throughput process to a low-cost, automatic, and high throughput process [3].

A classic example is the invention of high-throughput short read sequencing just over a

decade ago, exemplified by Illumina sequencers that can now provide close to a trillion

base pairs per experiment, at costs so low to make sub $1000 human genome sequencing

a reality today. While it is desirable to sequence the complete genome from end to end,

current technologies can only sequence many small fragments of DNA (called reads), and

also make errors in the form of substitutions, insertions or deletions. Due to the challenges

posed by such characteristics, biologists and clinicians rely on fast and accurate bioinfor-

matics software for their analyses to answer a wide range of biological and biomedical

questions.
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1.1.2 Long Read Sequencing

Emerging single-molecule (or long read) sequencing technologies from Pacific Biosciences

(PacBio) and Oxford Nanopore Technologies (ONT) represent a breakthrough in genomics,

shifting the sequencing paradigm. These technologies offer reads that are orders of magni-

tude longer than the Illumina-like short reads. Length of the long reads typically averages

above 10 Kbp, and the average can exceed 100 Kbp depending upon the sequencing proto-

col and the quality of input DNA sample [4]. Long reads are attractive because they narrow

the scale gap between sizes of genomes and sizes of sequenced reads, with the promise

of avoiding assembly errors and repeat resolution challenges that plague short read assem-

blers. However, long reads themselves sport error rates in the vicinity of 10 − 15%, com-

pared to the high accuracy of short reads (< 1%). Multiple sequencing protocols are avail-

able that allow making different trade-offs between read lengths, accuracy and throughput

(e.g., circular consensus sequencing (CCS) protocol by PacBio and 1D2 protocol by ONT).

Besides their long lengths, other advantages include (i) single-molecule sequencing with-

out an intermediary amplification step, (ii) ability to sequence DNA in real-time (sequence

data from nanopore devices is available just minutes after introducing the sample [5]), and

(iii) near random distribution of errors within reads allowing the use of redundancy to un-

cover true sequence. Finally, superior portability and low cost of MinION sequencer from

ONT makes long reads particularly suitable for certain applications (e.g., rapid diagnostics

for epidemics [6, 7] and forensic genomics).

The properties of long reads in terms of their length and error characteristics exhibit

a stark contrast from the output of its predecessor technologies, thus necessitating new

computational approaches. Judging by the progress achieved in short read sequencing, one

can expect continued developments in long read sequencing in terms of read lengths, error

rates, ease of use and lowering costs, thus facilitating their adoption in a wider range of

biological applications.

2



read
ref

Figure 1.1: ONT’s MinION (left) and PacBio’s Sequel (right) long read sequencing in-
struments (Image credits: Oxford Nanopore and Pacific Biosciences). Included below is a
small snapshot of an E. coli nanopore read segment aligned to its reference genome.

1.1.3 Read Mapping and Scalability

Mapping reads onto reference sequences is typically the first computational task during

high-throughput sequencing data analyses. From a fundamental mathematical perspec-

tive, an exact algorithm for read mapping has long been available. The problem can be

solved optimally by designing appropriate variants of the Smith-Waterman alignment algo-

rithm [8]. For each readR and a reference genomeG, this takesO(|R|·|G|) time, infeasible

in practice when large read sets are mapped to reference genome(s). Hence, mapping algo-

rithms rely on heuristics to identify potential mapping locations, either through seed-and-

extend approaches (with exact matches of a fixed length or maximal common substrings

as seeds), or through alignment-free approaches. Yet, mapping raw sequences remains a

bottleneck for many applications. While the early commercially available long read instru-

ments offered limited throughput, the currently available instruments, e.g., ONT’s Prome-

thION, can deliver tera-bases of sequence data in real time. In parallel, reference databases

are continually growing in size, with the latest release of non-redundant NCBI RefSeq

database already exceeding a tera-base in size.
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Desirable characteristics of a read mapper include: (i) efficiency of the algorithm, (ii)

avoiding false positive locations, (iii) high sensitivity (i.e., not missing true mapping loca-

tions), (iv) scalability to large data sets and reference genome databases, and (v) mathemat-

ically characterizing the algorithmic run-time and quality expectations. It is hard to simul-

taneously achieve all of these objectives; typically, high accuracy comes at the cost of sac-

rificing run-time efficiency and scalability. Efficient algorithms, combined with nanopore

sequencing, could enable real-time genomic analysis of patients, pathogens, cancers, and

microbiomes.

1.1.4 Graph-based References

Currently the read mapping problem is commonly perceived with respect to a linear refer-

ence genome or a collection of genomes. However, graph-based data structures are heavily

relied upon for various bioinformatics applications. Examples include assembly graphs [9,

10] for computing genome assembly, splicing graphs [11] to model splicing variants of

genes, partial order graphs [12] to represent a multiple sequence alignment, and more re-

cently, variation graphs [13, 14] for a pan-genome representation. As genome sequencing

is becoming ubiquitous, availability of data across multiple individuals and populations

is driving the growing importance of graph-based reference representations. This is be-

cause graphs provide a natural mechanism for compact representation of related sequences

and variations among them. Accordingly, biological applications such as variant calling,

genome assembly, read error-correction, and RNA-seq data analysis, all benefit from pat-

tern matching of sequences to a graph-based reference [15, 16, 17, 18].

Figure 1.2: Portion of a variation graph built using BRCA1 gene and variant files from
1000 Genomes project [19].
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The possibility of an alignment to span through multiple branches in a graph naturally

makes read mapping to graph a harder problem than mapping to a linear sequence. More-

over, the nature of the problem changes depending on whether the graphs are cyclic or

acyclic [20]. Continued improvements in sequence to sequence alignment algorithms were

pivotal to establish it as a fundamental routine for quantifying evolutionary distance in bi-

ology [21]. Similarly, fast and accurate sequence to graph aligners are required to fully

realize the potential of graph-based reference representations. Typical expectations from

an ideal read to graph mapper are similar to the ones described for read to genome(s) map-

pers, along with the additional requirements of being compatible and robust to real-world

genomic graphs, and supporting a clinician-friendly interpretation of the output whenever

an alignment spans multiple branches. In contrast to the classic sequence to sequence align-

ment problem where decades of progress has been made towards designing algorithms and

optimized software implementations, research on the sequence to graph alignment problem

is still in its infancy.

1.2 Related Works

1.2.1 Long Read Mapping

Read mapping problems can be solved exactly by designing appropriate variants of the

Smith-Waterman (SW) alignment algorithm [8]. Although having a guarantee on optimal-

ity of the output is attractive, this routine is computationally prohibitive when mapping

reads obtained from a high-throughput sequencer to large reference genomes.

Short read sequencing technology has been around for long, and is fairly mature in

terms of its read characteristics. Accordingly, efficient mapping algorithms are particularly

well studied for it, and popular software such as Burrows-Wheeler Aligner (BWA) [22] and

Bowtie [23] are available. Due to high sequencing accuracy (error rate < 1%) in the short

reads, it is usually possible to find long maximal exact matches with the reference, which

are then used as candidate mapping locations to validate the mapping. However, frequent
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errors in long reads (error rate 10-15%) make a long exact substring match unlikely. This

aspect makes the identification of their true mapping locations a challenging problem, es-

pecially when a read is drawn from a repetitive segment of a genome, or a region marked

by complex structural variations. Existing tools mitigate this by taking advantage of their

long lengths. As such, a common paradigm adopted for long read mapping is to identify

the most promising clusters or chains of short exact matches to quickly narrow down the

search space. Following is an overview of the heuristics used by existing algorithms.

BLASR [24] and BWA-mem [25] (via option -x pacbio or -x ont2d) were among

the first tools that were leveraged for solving the long read mapping problem, both of which

use an FM-index [26] to compute maximal exact matches between the read and the refer-

ence. This step is followed by clustering or chaining these matches (or seeds), ranking

them by using an appropriate scoring function, and computing a base-to-base alignment

of the best scoring clusters. The two tools achieve high accuracy, but are much slower to

deal with the high throughput of long read sequencers. One reason for limited scalability

is that both the tools identify and evaluate exact matches starting from all the offsets in the

read. GraphMap [27] uses spaced-seeds to find the candidate mappings, and obtains better

trade-off between computational speed and accuracy.

Even though the reference genome is typically chosen from the same species, it is still

from a different organism than the organism which is sequenced by the reads. This factor

contributes to additional differences in the reads with respect to the reference genome due

to the existence of many single nucleotide and structural variants unique to an individual

genome. As lengths of long-read sequences continue to increase, percentage of reads that

span structural variants (e.g., long insertions and deletions), and therefore do not map end-

to-end to reference, becomes significant. To achieve better mapping accuracy for reads that

span such variations, a few tools (e.g., KART [28], NGMLR [29], LAMSA [30]) opt for

individually mapping consecutive sub-segments of a read, which are later grouped if they

map co-linearly to the reference. NGMLR also uses a convex scoring scheme to effectively
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differentiate the indels occurring from SVs and sequencing errors.

Alternate similarity metrics such as cosine similarity have been evaluated that better

suit high error-rates in long reads. COSINE [31] considers the distributions of short k-

mers (k = 3–4) to compute the read mappings. Meta-aligner [32] improves mapping

accuracy by leveraging reference genome statistics (e.g., repetitiveness) on top of existing

mapping algorithms. Typically, the length of exact matches is short in the context of long

reads, therefore a few tools (e.g., rHAT [33] and minimap2 [34]) utilize fixed k-mer lookup

table for indexing the reference, or a combination of lookup table and an FM-index (e.g.,

in Kart [28] and lordFAST [35]), to achieve better computational speed. Because memory

footprint of indexing all k-mers is much higher than succinct indices, minimap2 [34] uses

minimizer-based sampling [36] which substantially speeds up the mapping process while

keeping a check on memory usage. Due to its well-engineered chaining score function for

long reads, including the fast SIMD-based banded alignment support [37], it is currently

the most widely used tool. Further attempts have been made to extend minimap2 for low-

memory mobile computing devices for portable sequencing [38], and distributed memory

systems to achieve better scalability [39].

One class of algorithms for fast, approximate mapping relies on MinHash-based lo-

cality sensitive hashing scheme, originally developed for finding similarities between web

documents. Broder [40] proved that an unbiased estimate of the Jaccard similarity coeffi-

cient between two sets can be computed efficiently using a subset of hashed elements called

a sketch. These ideas have been used to develop alternative mapping for long reads, such

as MHAP [41], BALAUR [42] and VATRAM [43].

1.2.2 Whole Genome Comparisons

There exist other problems amenable to solutions developed in the context of long reads,

in particular the computation of i) pairwise genome homology map [44], and ii) evolu-

tionary distances [45]. Sequence mapping is also a building block for conducting whole-
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genome comparisons. While long reads sport high error rates, genome sequences for both

prokaryotic and eukaryotic organisms undergo mutations over time. Mapping algorithms

designed to tolerate high error rates in long reads can also advance the state-of-the-art for

fast alignment-free comparative analyses between genome sequences, while allowing for

plenty of divergence due to evolutionary events.

As high-throughput sequencing costs are continuously plunging, scientific efforts are

being made to improve our understanding of genetic evolution in humans and other living

organisms using whole-genome sequencing and assembly. There are currently many in-

ternational genome sequencing efforts such as Genomic Encyclopedia of Bacteria and Ar-

chaea (GEBA) led by the U.S. Department of Energy Joint Genome Institute [46], 100,000

Genomes Project [47], among others [48, 49, 50, 51]. As a result of ubiquitous sequencing,

the number of genomes available in public databases has expanded tremendously.

Homology Detection

Algorithms for inferring homology between DNA sequences have undergone continuous

advances for more than three decades, mainly in the direction of achieving better accuracy

to compare distant genomes, as well as better compute efficiency to scale with growing

data [52, 53]. Similar to read mapping, majority of the existing genome alignment tools

use seed-and-extend heuristics. Exact matches are again computed either using a hash

table of k-mers [54, 55, 56, 57], or suffix trees and its variants [58, 59, 60, 61, 62]. A

third category includes cross-correlation based algorithms [63]. Homology detection is

also useful to identify intra- and inter-chromosomal duplications in the human genome that

are known to have implications in genome evolution, its stability and diseases [64, 65, 66].

Accordingly, UCSC genome browser also maintains them as a public database, plus a few

specialized tools have been developed to compute such duplications [67, 68, 69, 70].
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Whole-genome Distance Estimation

Whole-genome sequencing in microbiology is becoming a new norm for taxonomic clas-

sification and identification of prokaryotic organisms, replacing prior tedious laboratory

techniques [71, 72]. The whole-genome average nucleotide identity (ANI) is a standard

similarity metric in microbiology for taxonomic analysis [71, 73, 74, 75, 76]. In the

biological literature, ANI is defined as the average alignment identity of all orthologous

genes shared between any two genomes [71]. Existing approaches for computing the ANI

score require computing sequence alignments to obtain the alignment identities [73, 75, 77,

78]. In this application, computing alignment consumes majority of the runtime. A recent

survey of ANI methods [79] reported speedups of up to 4.7x by using Usearch [80] and

MUMmer [81], which is also accompanied by lower accuracy among moderately related

genomes in the 75-90% ANI range. Ondov et al. [82] provide the first proof-of-concept

implementation for fast estimation of ANI using MinHash. It is multiple orders of magni-

tude faster than alignment-based ANI computation, but a straight-forward adoption of the

MinHash technique to the problem of computing ANI has limited utility for incomplete

draft genomes [83].

1.2.3 Mapping to Graph-based References

When mapping a read to a directed labeled graph, we seek its best matching path in the

graph (Figure 1.3). This problem is relevant in the context of many biological applications,

a few of which are listed below:

1. Genotyping: A graph-based reference serves as a better alternative for highly poly-

morphic regions of the human genome such as the major histocompatibility com-

plex (MHC) [15]. Recent biological studies have demonstrated superior genotyping

accuracy in variant-rich regions of the human genome by replacing the reference

sequence with a variation graph, i.e., a reference sequence augmented with known
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genetic variations [16, 84, 85, 86]. Similarly, using graph-based reference to index

similar antimicrobial resistance genes has been fruitful in improving resistance typ-

ing in microbial environments [87].

2. Long read error correction: State-of-the-art hybrid long read error correction tools [88,

89, 18] utilize mapping of raw long read sequences to a de Bruijn graph built using

Illumina reads. Here the alignment path in the de Bruijn graph is used as a corrected

version of the long read.

3. Genome assembly: Hybrid genome assembly tools [17, 90, 91] leverage long reads

to provide long range information in de Bruijn graphs, and resolve the branches that

cannot be resolved by the short reads alone. This is again executed using approximate

pattern matching of long reads to graphs. In addition, long read to graph alignments

have been leveraged for haplotype-aware genome assembly [92]. On the contrary,

non-hybrid genome assembly pipelines [93, 94] use read alignment to partial order

graphs [12], which is a commonly used heuristic to generate a consensus sequence.

4. RNA-seq analysis: Splicing graphs provide a compact representation of a transcrip-

tome [11]. Long RNA reads can be sufficiently long to capture full-length cDNA

copies of RNA molecules. Alignments of reads to such graphs is useful to identify

and quantify novel isoforms [95, 96, 97, 98].

In the context of bioinformatics, pattern matching against a non-linear reference is rel-

atively a new phenomenon, but similar problems have existed since 1960s. A related prob-

lem of string pattern matching to a regular expression has been studied extensively for lex-

ical analysis in compiler design [99, 100]. Note that regular expressions can be represented

as finite-state automata. The biological application of pattern matching sequences against

regular expressions was subsequently explored during 1980s, in the context of locating spe-

cific patterns (e.g., repeats, activation sites) using an approximate regular expression search

in sequence databases [101, 102, 103].
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Figure 1.3: An example of an alignment of a sequence along a path in a graph, while
accounting for sequence errors (denoted in red).

The formulation of aligning sequences against sequence-labeled directed graphs was

studied in a different context about 25 years ago as a search problem in hypertext (synony-

mous to string labeled graphs) [104], because it was postulated that graphs could represent

complex structures (e.g., text documents with hyperlinks). Accordingly, the sequence to

graph alignment problem has been studied in string literature in the form of approximate

pattern matching to hypertext [104, 105, 106].

For a directed acyclic labeled graph (DAG), existence of a topological order implies that

the classic dynamic-programming based alignment algorithms for sequence to sequence

alignment can be easily extended. It yields an O(m(|V | + |E|)) time algorithm, where

m denotes the sequence length, and G(V,E) denotes a character labeled directed graph,

respectively [20]. The alignment routine to DAGs is often referred to as partial order align-

ment in bioinformatics [12].

The problem becomes challenging for general graphs. Amir et al. [107] make an inter-

esting observation in this context. An alignment also specifies the set of changes to match

the two sequences. Unlike the traditional sequence-to-sequence alignment, the problem

variants that permit changes on read or graph or both represent distinct problems. This

asymmetry occurs because the input graph can contain cycles, therefore, it is possible that

a change in a graph label affects an alignment multiple times, whereas a change in the se-

quence only affects the alignment at a single position. Amir et al. prove that solving the

alignment problem while allowing changes on the graph is an NP-complete problem, via
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proofs that assume alphabets of size ≥ |V |. In contrast, the problem variant that allows

changes to the query sequence alone is polynomially solvable [20, 107]. The best known

sequential algorithm to compute optimal alignment score in either acyclic or cyclic graphs

requires O(|V |+m|E|) time and O(|V |) space [108, 109].

We next survey the existing tools for long read alignment to variation graphs, a require-

ment for the genotyping application, using long reads and graph-based references. Several

seed-and-extend based heuristic algorithms that have been recently developed for solving

the alignment problem to variation graphs [16, 110, 111, 112, 113, 114] have mainly fo-

cused on short read mapping. Typically, such algorithms employ an index-based approach

to quickly narrow down the search space during the alignment process. In particular, sub-

strings that span all possible alternatives in the graph are indexed using classic string data

structures (e.g., FM-index) or hash tables [115, 116]. Due to the exponentially growing

potential number of paths as a function of the number of variants, existing heuristics do

not translate into a practical solution for dense variant-rich graph regions or aligning long

reads [117]. In fact, how to efficiently seed and execute chaining heuristics that are typi-

cally used for mapping long reads still remains an open problem in the context of graphs.

A nice feature of the exact quadratic time sequence to graph alignment algorithms is

that they guarantee optimal output irrespective of graph topology and error-rate in the in-

put reads. Several prior works [114, 115, 118, 119] assume variation graph is a labeled

DAG. Due to the quadratic time complexity of an exact algorithm however, the sequence to

DAG alignment problem becomes compute-intensive on real input data sets. The variation

graphs associated with some of the most diverse regions (e.g., MHC, LRC segments) in the

human genome contain vertices and edges in the order of millions. As a consequence, a

naive sequential algorithm would require multiple days or months to align high throughput

long read sets. There have been a few attempts recently to accelerate the exact alignment

procedure. Graphaligner [120] uses bit-level parallelism to compute edit distance between

input reads and DAGs. GSSW (part of vg [16]) extends Farrar’s SIMD algorithm [121] to
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DAGs. The alignment routine can be used as a stand-alone read mapper, or as part of a

heuristic-based mapping algorithm.

1.3 Research Objectives

There is an urgent need to develop and improve bioinformatics methods to fully realize

the potential of long-read sequencers, and the research community is seized of this ef-

fort. Though the technologies are still in their nascent stages, research efforts have already

produced several tools for solving the mapping problems. Yet, simultaneously ensuring

practical utility while maintaining theoretical guarantees on output quality remains open.

Exact alignment algorithms that have been known for long do not directly scale to data

sets of biological interest. To address this challenge, we develop new provably good and

fast algorithms for mapping long reads. This is achieved by designing novel formulations

to characterize the read mapping targets and leveraging extensive parallelism available in

general purpose processors. We not only bridge the gap between theory and practice, but

also deliver better performance than heuristics-based algorithms in many scenarios. In what

follows, we summarize our contributions in the context of the reviewed literature.

Existing long read to reference genome(s) mappers are based on heuristics, and lack

rigorous mathematical characterization of both algorithmic run-times and quality expecta-

tions, including in many cases a formal definition of the problem itself. In Chapter 2, we

develop a new alignment-free algorithm Mashmap for end-to-end mapping of long reads

that scales to large reference databases (e.g., Refseq), with sufficient theoretical guarantees

on sensitivity and practical validation on the quality of results reported. We formulate the

read mapping problem using Jaccard similarity as a proxy, and provide a novel MinHash-

based mechanism to solve the mapping problem. In contrast to the existing MinHash-based

mapping approaches [41, 42], our Jaccard estimation technique uses MinHash sketch size

as a function of read length. This aspect is advantageous because, unlike short-read se-

quencing, long read technologies can generate highly variable read lengths (e.g., 102-106

13



bases). For mapping PacBio reads to the human reference genome, Mashmap is two or-

ders of magnitude faster than BWA-mem [25] and BLASR [24], and delivers competitive

performance with respect to state-of-the-art software minimap2 [34].

In Chapter 3, we extend the Mashmap algorithm to compute gapped alignments, and

refer to it as Mashmap2. Its utility is evaluated in the context of split-read mapping of

ultra-long nanopore reads and performing whole-genome comparisons. Even though there

are several whole-genome alignment tools, current approaches still remain computation-

ally intensive. For instance, Nucmer [62, 81] and LAST [122], two widely used genome-

to-genome aligners, require 10 or more CPU hours to align a human genome assembly

to a human reference genome. The alignment-free technique makes Mashmap2 fast and

memory-efficient, while providing sensitivity guarantees based on the user-specified mini-

mum alignment length and identity thresholds of the desired local alignments. In practice,

Mashmap2 can provide an approximate correspondence between regions of the two input

genomes within a few minutes. We demonstrate its utility in identifying all 1 Kbp or longer

duplications in the human genome.

In Chapter 4, we present the utility of our alignment-free mapping framework to com-

pute whole-genome Average Nucleotide Identity (ANI) among prokaryotic genomes. Ex-

isting ANI solvers either rely on time-consuming alignment routines or sacrifice accuracy.

Accordingly, it is nearly impossible to calculate ANI values among the available microbial

genomes to date, in the order of a hundred thousand, using existing approaches. To remedy

this, we develop a scalable ANI solver FastANI, by replacing sequence alignment routine

with Mashmap. Our evaluation shows that the proposed method FastANI is up to three

orders of magnitude faster than the associated alignment-based methods, without affect-

ing output accuracy. We choose to demonstrate the scalability of FastANI by addressing a

fundamental microbiology question of whether prokaryotes form clearly discrete clusters

(species), or, a continuum of genetic diversity is observed instead. We provide robust em-

pirical evidence in favor of clear demarcation of species using a large-scale computational
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analysis of all 90K prokaryotic genomes available in the NCBI database.

The next two chapters address long read mapping to graphs. We provide new com-

plexity results and algorithms that improve fundamental understanding of this problem,

including novel ways of solving it. While performing the classic sequence to sequence

alignment [8], the decision to allow edits in either one or both of the two sequences does

not affect their optimal alignment score. Amir et al. [107] show that this symmetry is lost

when aligning a read to a directed labeled graph G(V,E). In Chapter 5, we prove that

the problem variants that allow changes in graphs either standalone or in conjunction with

changes in the read are NP-complete under both Hamming and edit distance models for

constant-sized alphabets.

In Chapter 6, we develop a new practical algorithm for mapping long reads to a vari-

ation graph. A sequential O(m(|V | + |E|)) time algorithm [20] for sequence alignment

to DAGs is known for long, where m denotes the read length, and V and E denote the

vertex and edge sets of the graph, respectively. However, the algorithm is too impractical

to handle large data sets of biological interest. To resolve this bottleneck, we present the

first parallel sequence to graph alignment algorithm PaSGAL that takes full advantage of

SIMD-based multi-core architectures. We demonstrate, for the first time, the feasibility of

solving the long read to graph mapping problem optimally at the scale of real-world data

instances. The results support utility of the algorithm for accurate genotyping using long

reads in variation-rich regions of the human genome. Chapter 7 contains conclusions, and

a few interesting open problems for future research.
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CHAPTER 2

AN APPROXIMATE ALGORITHM FOR MAPPING LONG READS

In this chapter, we present a new approximate algorithm for mapping long reads that scales

to large reference databases. We propose a problem formulation that mathematically char-

acterizes desired mapping targets by linking the Jaccard coefficient between the k-mer

spectra of the read and its mapping region to sequence error rate. The problem is solved

using an efficient algorithm by estimating the Jaccard coefficient through a combination of

MinHash and winnowing techniques. On the quality side, we provide probabilistic bounds

on sensitivity. We present techniques for choosing algorithmic parameters as a function of

error rate and sequence lengths that guarantees the desired statistical significance, making

the algorithm robust to future improvements in the long read sequencing technologies.

While this chapter addresses end-to-end mapping of long reads, its generalization to

split-read mapping is discussed later in the next chapter. The proposed algorithm is eval-

uated using PacBio and ONT data sets, and the scalability is demonstrated by mapping

long metagenomic reads to the entire RefSeq database containing 838 Gbp of sequence

and > 60, 000 genomes. We report significant performance gains with respect to BWA-

mem [25] and BLASR [24], and much lower memory usage compared to minimap2 [34].

2.1 Preliminaries

Read Error Model: We assume errors occur independently at the read positions, and use

a Poisson error model as in previous works [125, 82]. Whilst these assumptions may not

reflect the true nature of alignment errors, these are reasonable for designing a practical and

provably-good algorithm. Let ε ∈ [0, 1] be the per-base error rate. The expected number

of errors in a k-mer is k · ε, and the probability of no errors within each k-mer, assumed

This chapter interpolates material from papers by the author [123, 124]
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independent, is e−εk. We assume the statement is valid irrespective of error type.

Jaccard Similarity: Assuming X ,Y are the sets of k-mers in sequences X and Y respec-

tively, their Jaccard similarity [126] is defined as J(X, Y ) = |X ∩Y|/|X ∪Y|. The Poisson

error model is used to compute the relationship between Jaccard similarity and alignment

error rate [82]. We approximate the length of a read alignment to be the read length. Let

A be a read derived from Bi, where Bi denotes the length |A| substring of reference B

starting at position i. If c and n denote the number of error-free and total k-mers in A,

respectively, then the expected value of c/n, termed k-mer survival probability, is e−εk.

This equation assumes k is large enough such that k-mers in A or Bi are unique. Because

|A| = |Bi|, J(A,Bi), abbreviated as J , equals c/(2n − c). Using the two equations, we

derive the following functions G and F to estimate J and ε:

G(ε, k) =
1

2eεk − 1
and F(J, k) =

−1

k
× log

(
2J

1 + J

)
, (2.1)

where G(ε, k) serves as an estimate of the Jaccard similarity given an error rate, andF(J, k)

estimates the converse. F(J, k) can be shown as the maximum likelihood estimator (MLE)

for error-rate (proved below). Using Jensen’s inequality, we also get E(J) ≥ G(ε, k).

Claim: Given Jaccard similarity J , F(J, k) = −1
k
× log

(
2J
1+J

)
is an MLE for error-rate ε.

Proof: Denote the probability of a k-mer being error-free as θ, where θ equals e−εk. The

count of error-free k-mers follows a binomial distribution with parameters θ, n:

P (c ; θ, n) =

(
n

c

)
θc(1− θ)(n−c)

Therefore, likelihood function L(J, n; θ) is given by:

L(J, n; θ) =

(
n

c

)
θc(1− θ)n−c, where c =

2J · n
1 + J
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To compute θmle that maximizes likelihood L, we set dL
dθ

= 0, therefore,

(
n

c

)(
c · θc−1mle(1− θmle)

n−c − (n− c)θcmle(1− θmle)n−c−1
)

= 0

⇒ c · (1− θmle)− (n− c)θmle = 0

⇒ θmle =
c

n

⇒ e−εmlek =
c

n

⇒ e−εmlek =
2J

1 + J

⇒ εmle =
−1

k
× log

(
2J

1 + J

)

MinHash Approximation: The MinHash algorithm is a fast and space-efficient approxi-

mation technique to compute an unbiased estimate of Jaccard similarity [40], without ex-

plicitly computing the underlying set intersection and union. It relies on a following simple

fact: Given a random permutation to the universe of elements, the chance that the smallest

items in the two sets under the permutation are same is precisely the Jaccard similarity.

Let s be a fixed parameter. Assuming universe U is the totally ordered set of all possible

items, and Ω : U → U is a permutation chosen uniformly at random, Broder [40] proved

that P
(

min
x∈A

Ω(x) = min
x∈Bi

Ω(x)
)

= J(A,Bi), and that

|S(A ∪ Bi) ∩ S(A) ∩ S(Bi)| / |S(A ∪ Bi)| (2.2)

is an unbiased estimate of J(A,Bi), where S(A) (called the sketch of A) is the set of

the smallest s hashed items in A, i.e., S(A) = mins{Ω(x) : x ∈ A}. Typically, the

denominator |S(A ∪ Bi)| is referred as the MinHash sketch size and the numerator as the

count of shared sketch elements. This estimate is unbiased provided S(A) is a simple

random sample of A. Increasing the sketch size improves the accuracy of the estimate
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Figure 2.1: Probability distributions of count of shared sketch elements for a read with
15% alignment error (ε = 0.15) and k-mer size of 16, with varying sketch sizes. Estimated
Jaccard similarity computed using Equation 2.1 is 0.0475.

Figure 2.2: Illustration of the winnowing method on a sequence of hashed k-mers in A.
W (A) represents the minimizers sampled from the sequence with window size w = 5.

because the estimator has an expected error of 1√
s
.

Assuming s is fixed and the true Jaccard similarity j = J(A,Bi) is known, the count

of shared sketch elements between S(A) and S(Bi) follows a hypergeometric distribution.

Since s is much smaller than |A|, it can be approximated by the binomial distribution.

p
(
|S(A ∪ Bi) ∩ S(A) ∩ S(Bi)| = x|s, j

)
=

(
s

x

)
jx(1− j)s−x (2.3)

As an example, Figure 2.1 illustrates this distribution for a read with known Jaccard

similarity j = G(ε = 0.15, k = 16) (using Equation 2.1) and sketch size s varying from

200 to 500.
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Winnowing: Winnowing (also known as minimizer sampling [36]) is a local fingerprint-

ing algorithm, proposed to measure similarity between documents by using a subset of

hashed words [127]. Unlike MinHash sketching, it bounds the maximum positional gap

between any two consecutive selected hashes. It works by sampling the smallest hashed

item in every consecutive fixed size sliding window (Figure 2.2). Formal description of this

algorithm in the context of genomic sequences follows.

Let A0 denote the set of all k-mer tuples 〈ki, i〉 in sequence A, i denoting the k-mer

position. Let w be the window-size used for winnowing, andKj be the set of w consecutive

k-mer tuples starting at position j in A, i.e., Kj = {〈ki, i〉 : j ≤ i < j+w}. Assume Ω is a

hash function defined as a random permutation. Then, the set of minimizers sampled by the

winnowing algorithm in sequence A is W (A) = { min
〈k,i〉∈Kj

〈Ω(k), i〉 : 0 ≤ j ≤ |A0| − w},

where

min(〈k1, i1〉, 〈k2, i2〉) =


〈k1, i1〉 k1 < k2 or (k1 = k2 and i1 > i2);

〈k2, i2〉 otherwise;

Schleimer et al. [127] prove that the expected set count of minimizers selected from a

random sequence A is 2|A0|/w. Moreover, W (A) can be computed efficiently in O(|A|)

time and O(w) space using a double-ended queue, as sequence A is read in a streaming

fashion [128].

2.2 Problem Formulation

Given a read A and the maximum per base error rate εmax, our goal is to identify target

positions in reference B where A aligns with ≤ εmax per-base error rate. This problem

can be exactly solved in O(|A| · |B|) time by designing a suitable quadratic time alignment

algorithm. When mapping to a large database of reference sequences, solving this problem

exactly is computationally prohibitive. Hence, we define an approximate version of this

problem using the Jaccard coefficient as a proxy for the alignment as follows: Let Bi
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denote the substring of size |A| in B starting at position i ( 0 ≤ i ≤ |B| − |A|). For a given

k, we seek all mapping positions i in B such that

J(A,Bi) ≥ G(εmax, k)− δ (2.4)

Note that ifA aligns withBi with per-base error rate≤ εmax, then E(J(A,Bi)) ≥ G(εmax, k)

(using Equation 2.1). As this equation applies only to the expected value of J(A,Bi), we

lower this threshold by δ to account for variation in the estimate. The parameter δ is defined

as the margin of error in Jaccard estimation using a 90% confidence interval.

ACGTCGCATCGTCCGCCTCGAC

k-mers

Reference
Query

ACGTCGCATCGT

Figure 2.3: Illustrating the use of Jaccard similarity to identify the mapping targets of a
long read. Circular dots are used to denote k-mers in the sequences.

2.3 The Proposed Algorithm

Directly computing J(A,Bi) for all positions i is as asymptotically expensive as the align-

ment algorithm. The rationale for reformulating the problem in terms of Jaccard coeffi-

cients is that it enables the design of fast approximate algorithms. We present an algorithm

to estimate J(A,Bi) efficiently using a combination of MinHash and winnowing tech-

niques. In addition, we compute an estimate of the alignment error rate ε for each mapping

reported. Our method relies on an indexing and search strategy we developed to prune the
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incorrect mapping positions efficiently.

2.3.1 Definitions

Let W (A) be the set of minimizers computed for read A using the winnowing method

with window-size w. Assuming s is a fixed parameter, we define S
(
W (A)

)
as the set of

the s smallest hashed k-mers that were sampled using winnowing of A, i.e., S
(
W (A)

)
=

mins{h : 〈h, pos〉 ∈ W (A)}. The set S
(
W (A)

)
is used as a MinHash sketch for the

sequence A. To estimate J(A,Bi), we define winnowed-minhash estimate J (A,Bi) for

J(A,Bi) as

J (A,Bi) =
|S
(
W (A) ∪W (Bi)

)
∩ S
(
W (A)

)
∩ S
(
W (Bi)

)
|

|S
(
W (A) ∪W (Bi)

)
|

(2.5)

The theoretical properties of the MinHash estimators rely on having a true random

permutation which is prohibitive in practice. As such, it is usually implemented using hash

functions instead. Our estimator J (A,Bi), unlike Equation 2.2, uses winnowing to reduce

the sampling frame before picking the minimum hash values. We empirically validate in

Section 2.7.1 that the quality of the Jaccard estimation using J (A,Bi) is as good as a

typical MinHash implementation. We use Wh(A) to denote the set of hashed k-mers in

W (A), i.e., Wh(A) = {h : 〈h, pos〉 ∈ W (A)}.

2.3.2 Indexing the Reference

Retaining the minimizers W (Bi) is sufficient for Jaccard similarity estimation J (A,Bi)

(Equation 2.5). Since W (Bi) ⊆ W (B) (Section 2.1), we compute W (B) from the refer-

ence sequence B in order to be able to extract W (Bi) efficiently for any i. The set W (B)

can be computed from B in a linear scan in O(|B|) time. We store W (B) as an arrayM of

tuples 〈h, pos〉. When created, the set is naturally in ascending sorted order of the positions.

Further, to enable O(1) look-up of all the occurrences of a particular minimizer’s hashed

value h, we also replicate W (B) as a hash table H with h as the key and an array of its

22



positions {pos : 〈h, pos〉 ∈ W (B)} as the mapped value. The expected space requirements

forM and H are 2|B|/w (Section 2.1). We postpone our discussion on how to compute

an appropriate window-size w to Section 2.4. Besides low memory requirements, a key

advantage of this indexing strategy is that a new reference sequence can be incrementally

added to the existing data structure in time linear to its length, which is not feasible for

suffix array or Burrows-Wheeler transform based indices, typically used in most mapping

software.

2.3.3 Searching the Reference

The goal of the search phase is to identify for each read A, positions i such that J(A,Bi) ≥

G(εmax, k) − δ. We instead compute the winnowed-minhash estimate J (A,Bi). Let τ =

G(εmax, k)− δ. To avoid directly evaluating J (A,Bi) for each Bi, we state and prove the

following theorem:

Theorem 1. Assuming sketch size s ≤ |Wh(A)|,

J (A,Bi) ≥ τ ⇒ |Wh(A) ∩Wh(Bi)| ≥ s · τ ∀i 0 ≤ i ≤ |B| − |A|.

Proof. s ≤ |Wh(A)| =⇒ |S
(
W (A) ∪W (Bi)

)
| = s (6)

From Equation 2.5,

J (A,Bi) ≥ τ =⇒
|S
(
W (A) ∪W (Bi)

)
∩ S(W (A)) ∩ S(W (Bi))|

|S
(
W (A) ∪W (Bi)

)
|

≥ τ

=⇒
|S
(
W (A) ∪W (Bi)

)
∩ S(W (A)) ∩ S(W (Bi))|
s

≥ τ (using Equation 6)

23



Note that S
(
W (A) ∪W (Bi)

)
⊆ S(W (A)) ∪ S(W (Bi)). Therefore,

|
(
S(W (A)) ∪ S(W (Bi))

)
∩ S(W (A)) ∩ S(W (Bi))|
s

≥ τ

=⇒ |S(W (A)) ∩ S(W (Bi))| ≥ s · τ

But, S(W (A)) ⊆ Wh(A) and S(W (Bi)) ⊆ Wh(Bi)

Therefore, |Wh(A) ∩Wh(Bi)| ≥ s · τ

We use the above condition as a filter and only consider positions in B which satisfy

|Wh(A) ∩Wh(Bi)| ≥ s · τ . To maximize effectiveness of the filter, we set the sketch size

s = |Wh(A)|. The search proceeds in two successive stages. The first stage identifies

candidate positions i using Theorem 1, and the second stage computes J (A,Bi) at each

candidate position i. The position is retained as output if J (A,Bi) ≥ τ , and discarded

otherwise.

Stage 1: Algorithm 1 outlines the first stage of our mapping procedure. It calculates all

offset positions i in B such that |Wh(A) ∩Wh(Bi)| ≥ ds · τe = m. The output list T is

created in the form of one or more tuple ranges 〈x, y〉, implying that the criterion holds

true for all Bi, x ≤ i ≤ y. We begin by computing the minimizer hashed values Wh(A) by

winnowing the read A, and compute the positions of their occurrence in the reference (line

4). Accordingly, L = {pos : h ∈ Wh(A) ∧ 〈h, pos〉 ∈ W (B)}. Next, we sort the array

L to process all the positions in ascending order. If Bi satisfies the filtering criterion, there

should be at least m entries in L with values between [i, i + |A|). It also implies that m

consecutive entries should exist in L with positional difference between the first and mth

entry being < |A|. This criterion is efficiently evaluated for all Bi using a linear scan on L

(lines 6–9). If satisfied, we push the associated candidate range into T . To avoid reporting
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Bi more than once, we merge two consecutive overlapping tuple ranges into one.

Algorithm 1: Stage 1 of mapping read
Input: read A, reference index mapH (hash k-mer→ pos[]), s, τ
Output: list T of candidate regions in the reference

1 m = ds · τe
2 T = L = []
3 for e ∈ Wh(A) do
4 L.append(H(e))

5 sort(L)
6 for i← 0 to |L| −m do
7 j ← i+ (m− 1)
8 if (L[j]− L[i]) < |A| then
9 T .append( 〈L[j]− |A|+ 1, L[i]〉 )

Stage 2: Evaluation of each tuple 〈x, y〉 in the Stage 1 output array T requires computing

J (A,Bi) ∀i, x ≤ i ≤ y. Accordingly, we compute the minimum s unique sketch ele-

ments within Wh(A) ∪Wh(Bi), and count the ones shared between A and Bi. We show

the step-by-step procedure in Algorithm 2. We use L to contain the minimizer hashed

values {h ∈ Wh(A) ∪Wh(Bi)}. To implement L, we make use of the C++ ordered map

data structure that supports logarithmic time insertion, deletion and linear time iteration

over unique ordered keys. We keep the hashed value as the map’s key, and map it to 1 if

it appears in both the reference and the read, and 0 otherwise. For each tuple 〈x, y〉, we

begin by saving the hashed values Wh(A) in read A into map L (lines 1, 3). Two loops

(lines 2, 7) evaluate each tuple 〈x, y〉 in T , and consider each Bi, x ≤ i ≤ y for Jaccard

estimation J (A,Bi). The function getMinimizers gathers the reference minimizer

hashes Wh(Bi) by sequentially iterating over M in the required position range and pop-

ulating the minimizers associated with each Bi into the map L (lines 4,8-9). Note that a

few incorrect corner minimizers {h : 〈h, pos〉 ∈ W (B), i ≤ pos ≤ i + |A|} \ Wh(Bi)

can appear in L that were winnowed from windows overlapping with Bi. However, these

can be discarded by recomputing the minimum of the first and last window of Bi. Finally,
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Algorithm 2: Stage 2 of mapping read
Input: indexM, Stage 1 output T , s, τ
Output: P

1 L0 = L = {}, L0.insert
(
Wh(A)

)
2 for 〈x, y〉 ∈ T do
3 i← x, j ← x+ |A|,L ← L0

4 L.insert
(
getMinimizers(i, j)

)
5 if J = solveJaccard(L) ≥ τ then
6 P .append〈i,J 〉
7 while i ≤ y do
8 L.delete

(
getMinimizers(i, i+ 1)

)
9 L.insert

(
getMinimizers(j, j + 1)

)
10 if J = solveJaccard(L) ≥ τ then
11 P .append〈i,J 〉
12 i← i+ 1, j ← j + 1

13 Function getMinimizers (p, q)
14 return {h : 〈h, pos〉 ∈ W (B), p ≤ pos < q}
15 Function solveJaccard (L)

16 shared sketch =
∑s−1

k=0 L[k]
17 return J = shared sketch/s

function solveJaccard computes |S
(
W (A) ∪ W (Bi)

)
∩ S(W (A)) ∩ S(W (Bi))| by

iterating over s minimum unique sketch elements and counting the ones shared between A

and Bi. If J (A,Bi) ≥ τ , then the position i and Jaccard estimate J (A,Bi) are saved into

the output P as pair 〈i,J (A,Bi)〉. The corresponding estimate of the alignment error rate

ε in this case, computed using Equation 2.1, would be F
(
J (A,Bi), k

)
.

2.4 Selecting Window and Sketch Sizes

The sketch size for Jaccard similarity estimation is inversely proportional to the window

size w (Section 2.3.3). A larger window size improves the runtime and space requirement

during the search but also negatively affects the statistical significance and accuracy of our

estimate. To achieve the right balance, we analyze the p-value of a mapping location being

reported under the null hypothesis that both query and reference sequences are random.
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For the subsequent analysis, we will assume the sketch size is s, the count of shared sketch

elements is a discrete random variable Z, the k-mer size is k, the alphabet set is Σ, and the

read and reference sequence sizes are q and r respectively.

Location i is reported if J (A,Bi) ≥ τ , i.e., at least ds · τe sketch elements are shared.

Following [82], consider two random sequences of length q with k-mer sets X and Y

respectively. The probability of a random k-mer α appearing in X or Y , assuming q � k,

is P (α ∈ X) = P (α ∈ Y ) = 1− (1− |Σ|−k)q. Therefore, the expected Jaccard similarity

Jnull = J(X, Y ) is given by

Jnull =
P (α ∈ X ∩ Y )

P (α ∈ X ∪ Y )
=

P (α ∈ X) · P (α ∈ Y )

P (α ∈ X) + P (α ∈ Y )− P (α ∈ X) · P (α ∈ Y )

For sketch size s, the probability that x or more sketch elements are shared is P (Z ≥

x|Jnull, s) =
∑s

j=x

(
s
j

)
(Jnull)

j(1−Jnull)s−j.Using this equation, we compute the probabil-

ity of a random sequence of length q mapping to at least one substring in a random reference

sequence of size r � q as 1−
(
1−P (Z ≥ x|Jnull, s)

)r. For a minimum read length l0 and

x = ds · τe, we wish to ensure that this probability is kept below a user-specified threshold

pmax. As reported mapping locations i must satisfy J (A,Bi) ≥ τ and q ≥ l0, a mapping

with J (A,Bi) = τ, q = l0, in general, will have the highest probability of generating a

random match. Therefore, we compute the maximum value of w that satisfies the pmax

constraint for this instance. Sketch size s is set to |Wh(A)|, which from Section 2.3.3 is

expected to be q · 2/w. Since x, s, and w have a circular dependency, we iteratively solve

for w, starting from the maximum value l0, until the probability of a random mapping is

≤ pmax. Influence of different parameters on window size is shown in Figure 2.4. The

window size w increases with increasing pmax or l0, but has an inverse relationship with

εmax. These plots also highlight that as read length and error rate improve, our algorithm

automatically adapts to a larger window size, greatly improving efficiency.
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Figure 2.4: Illustration of how w varies with pmax, εmax, and l0, respectively. The default
values are set as l0 = 5000, εmax = 0.15, pmax = 0.001, k = 16, and r = 109. Steps appear
in the first two curves because Z is a discrete variable.

2.5 Proof of Sensitivity

We analyze the sensitivity exhibited by our algorithm in identifying correct mapping lo-

cations as a function of the read alignment error rate. Let i be a correct mapping location

for read A. If εtrue is the true error rate in aligning A with Bi, then Jtrue ≈ G(εtrue, k).

The algorithm reports this mapping location if the Jaccard estimate J (A,Bi) ≥ τ , i.e.,

the count of shared sketch elements Z ≥ s · τ . The associated probability is given by

P (Z ≥ s · τ | Jtrue, s) ≈
∑s

x=ds·τe
(
s
x

)
(Jtrue)

x(1 − Jtrue)s−x. We report the corresponding

values in Table 2.1 while varying εmax and εtrue from 0.04 to 0.20 error rate, for two sketch

sizes s = 200 and 500, respectively. In an ideal scenario, a mapping should be reported

only if εtrue ≤ εmax, i.e., a perfect algorithm would have “1” in each of the entries at or

above the diagonal, and “0” in all other positions. From the table, it is evident that the

algorithm achieves close to ideal sensitivity for alignment error rates up to 20%.

2.6 Other Implementation Details

Optimizing for Variable Read Lengths: In contrast to cyclic short-read sequencing,

single-molecule technologies can generate highly variable read lengths (e.g. 102–106 bases).

Previously, we discussed how the window size w is determined using the minimum read

length l0 in Section 2.4. From Figure 2.4, notice that we can further reduce the sampling
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Table 2.1: Probability of a mapping location being reported by our algorithm for different
values of εtrue and εmax. True mapping locations correspond to εtrue ≤ εmax, i.e., entries at
or above the diagonal in the tables. Sketch sizes are set to 200 and 500 for the left and right
tables, respectively. The k-mer size k is set to 16.

εtrue
εmax

0.04 0.08 0.12 0.16 0.20

0.04 0.951 1 1 1 1
0.08 0 0.937 1 1 1
0.12 0 0.016 0.925 1 1
0.16 0 0 0.184 0.907 0.997
0.20 0 0 0.003 0.403 0.922

εtrue
εmax

0.04 0.08 0.12 0.16 0.20

0.04 0.939 1 1 1 1
0.08 0 0.949 1 1 1
0.12 0 0 0.937 1 1
0.16 0 0 0.013 0.904 1
0.20 0 0 0 0.104 0.896

rate (i.e. use a larger window size) for reads longer than l0 while still satisfying the p-

value constraint. However, to realize this, the sampling scheme for indexing the reference

sequence B needs to be consistent with that of query. We propose the idea of multilevel

winnowing to further optimize the runtime of our algorithm by choosing custom window

size for each input read. Suppose Ww(B) denotes the set of winnowed fingerprints in

the reference computed using window size w, then W2w(B) ⊆ Ww(B) [127]. We ex-

ploit this property to construct a multilevel reference index with multiple window sizes

{w, 2w, 4w . . . } recursively. This optimization yields us faster mapping time per base pair

for reads longer than l0 as we independently compute the window size for a given read

length l ≥ l0, and round it to the closest smaller reference window size {w, 2w, 4w . . . }.

The expected time and space complexity to index the reference using multiple levels is un-

affected because the expected size of W2x+1w(B) is half of W2xw(B) and W2x+1w(B) can

be determined in linear time from W2xw(B).

Strand Prediction: To account for the reads sequenced from the reverse strand relative to

the reference genome, we compute and store only canonical k-mers, i.e. the lexicographi-

cally smaller of the forward and reverse-complemented k-mer. For each k-mer tuple 〈k, i〉

in W (A) and W (B), we append a strand bit 1 if the forward k-mer is lexicographically

smaller and −1 otherwise. While evaluating the read mappings in Stage 2, we compute the
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Figure 2.5: Jaccard similarity estimation using MinHash and winnowed-minhash estimator
J (A,Bi) over simulated reads, with sketch sizes s = 100 and s = 200. Red bar indicates
the average estimation difference over all reads.

mapping strand of the read through a consensus vote among the shared sketches using sum

of pairwise products of the strand bits.

2.7 Experimental Results

2.7.1 Quality of Jaccard Estimation

We first show that the accuracy of the winnowed-minhash estimator J to estimate the

Jaccard similarity is as good as the direct MinHash estimation using a hash function. We

construct a random sequence of length 5 kbp with each character having equal probability

of being either A,C,G or T. We generate reads while introducing substitution errors at each

position with probability 0.15. Note that both substitutions and indels have a similar effect

of altering the k-mers containing them, and a uniform distribution of errors alters more

k-mers than a clustering of errors. Figure 2.5 shows the estimation difference against the

true Jaccard similarity using MinHash and our estimator for two different sketch sizes

s = 100 and s = 200. Based on these results, we conclude that the bias in our estimation

is practically negligible as the mean error by our method in estimating Jaccard similarity is

< 0.003 for both sketch sizes. As expected, the magnitude of estimation error reduces with

increasing sketch size.
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2.7.2 Mapping MinION and PacBio Reads

We refer the C++ implementation of our algorithm as Mashmap and compare its run-

time performance and memory usage against alignment based long-read mappers BWA-

MEM v0.7.15-r114 [25], BLASR vSMRTportal 2.3.0 [24], minimap v0.2 [129], and min-

imap2 v2.15 [34]. We also perform a comparison of the approximate mapping targets gen-

erated by Mashmap, minimap and minimap2. Like Mashmap, both minimap and minimap2

use winnowing to index the reference, but do not use the MinHash approximation to esti-

mate Jaccard similarity or nucleotide identity. Instead, minimap seeks clusters of minimizer

matches to identify regions of local similarity, whereas minimap2 uses a chaining heuris-

tic to identify co-linear matches. minimap2 provides an option to compute base-to-base

alignment after identifying the mapping targets, but we turn off the feature for a fair mea-

surement of its runtime. Importantly, minimap and minimap2 approximate a local align-

ment process, which is useful for split-read mapping. However, because Mashmap (v1.0)

is designed to find complete read mappings, we only consider this case for the following

comparisons.

Datasets and Methodology: We evaluated the algorithms by mapping long read datasets

generated using single-molecule sequencers from Pacific Biosciences and Oxford Nanopore,

and report single-threaded execution timings on an Intel R© Haswell CPU (Xeon E5-2698)

with 512 GB RAM. We use two datasets, labeled N1 and P1 respectively, both containing

reads of length ≥ 5 kbp. Dataset N1 is a random sample of 30,000 reads from the MinION

(R9/1D) sequencing dataset of the Escherichia coli K12 genome [130]. Dataset P1 contains

18,000 reads generated through a single SMRT cell from PacBio’s (P6/C4) sequencing of

the CHM1 human genome [131]. We map N1 to E. coli K12 (4.6 Mbp) and P1 to the

human reference (3.2 Gbp). For Mashmap, we use the following parameters: l0 = 5000,

εmax = 0.15, and pmax = 0.001. When a read maps to multiple locations, Mashmap only

minimap2 was developed post publication of this work

31



Table 2.2: Runtime and memory usage comparison of Mashmap against minimap, min-
imap2, BWA-MEM and BLASR for N1, P1 datasets. BWA-MEM was executed with long
read mapping parameters -x pacbio/ont2d. Similarly, minimap2 was executed using
parameters -x map-pb/map-ont.

Method
N1 (MinION-K12) P1 (Pacbio-CHM1)

Index Map Memory (MB) Index Map Memory (GB)

Mashmap 0.4s 41s 13 4m 12s 1m 57s 3.7
minimap 0.6s 20s 232 2m 58s 1m 32s 6.8
minimap2 0.6s 29s 459 2m 56s 1m 41s 9.7
BWA-MEM 2.0s 5h 20m 1283 1h 24m 5h 27m 5.8
BLASR 1.3s 10h 17m 697 40m 36s 20h 40m 17.6

reports locations where mapping error rate is no more than 1% above the minimum of error

rate over all such locations.

Run-Time Performance: Run-times for the index building and mapping stages, and mem-

ory used, for the four methods are compared in Table 2.2. As both BWA-MEM and BLASR

are sensitive alignment based methods, we expect their run-times to be significantly higher.

Indeed, they take several hours in comparison to seconds (N1) or a few minutes (P1) taken

by alignment-free methods. The principal challenge is whether the latter methods can re-

tain the quality obtainable through alignment based methods. We note that Mashmap has

the lowest memory footprint for both datasets, and its run-time is similar to minimap and

minimap2. The ability to compute the sampling rate at runtime gives Mashmap its edge in

terms of memory usage.

Quality of Mapping: As there is no standard benchmark using real datasets, we assess

sensitivity/recall using BWA-MEM’s starting read mapping positions, and precision by

computing Smith-Waterman (SW) alignments of the reported mappings (Table 2.3). Since

minimap, minimap2 and BWA-MEM also report split-read alignments, we post-filter their

results to only keep alignments with ≥ 80% read coverage. Recall is measured against

BWA-MEM alignments which satisfy the εmax = 0.15 cutoff (≥ 85% identity). As min-
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Table 2.3: Precision and recall statistics of Mashmap, minimap and minimap2 using
datasets N1 and P1.

Id
Recall statistics Precision statistics

Mashmap minimap minimap2 #BWA map-
pings

Mashmap minimap minimap2

N1 100.0% 99.87% 99.97% 10,823 94.39% 94.32% 93.89%
P1 96.56% 97.83% 97.81% 10,115 84.59% 30.34% 97.08%

imap, minimap2 and Mashmap estimate mapping positions, the reported mapping is as-

sumed equivalent to BWA-MEM if they overlap, and the strand matches. Precision was di-

rectly validated using Smith-Waterman (SW) alignment (with scoring matrix: match = 1,

mismatch = −1, gapopen = −2, gapextend = −1). For the evaluation, we allow SW-

identity ≥ 75% and query coverage ≥ 80%. Results in Table 2.3 show that the three

algorithms have close to ideal sensitivity/recall, demonstrating their ability to uncover the

right target locations.

Minimap2 and Mashmap achieve high precision, avoiding too many false positives.

The three algorithms consistently achieve about 94% precision, indicating that error rate in

a small fraction of ONT reads may be higher than 25%. Minimap’s low precision on human

is largely driven by false-positive mappings to repetitive sequence. Mashmap false positives

here are dominated by reported mappings with a SW query coverage less than 80% of

the read length. It may be possible to avoid such mappings by considering the positional

distribution of shared sketch elements during the second stage filter, or by adopting a local

alignment reporting strategy like minimap2.

We compare our identity estimates (1 − ε) × 100 against the SW alignment identities

in Figure 2.6. For the PacBio reads, we observe that most of the points are aligned close

to y = x. However, for the nanopore reads, our approach overestimates the identity. This

is because PacBio sequencing produces mostly random errors, whereas current nanopore

errors are more clustered and systematic [132]. Although clustering of sequencing errors

distorts the identity estimates, it actually improves the mapping sensitivity because the
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Figure 2.6: Correlation between Smith-Waterman identity and the identity estimated by
Mashmap using datasets P1 (PacBio) and N1 (MinION). Red dotted line corresponds to
the error cut-off εmax = 0.15.

count of minimizer matches increases.

Performance Gain from Future Improvements in Long-read Sequencing Technolo-

gies: We discussed how Mashmap adjusts its k-mer sampling rate for estimating the Jac-

card similarity based on the provided error-rate (εmax) and minimum length (l0) cutoffs in

Section 2.4. Here we show that improvement in read lengths and sequencing error-rate can

boost the performance of Mashmap without affecting its output accuracy. For dataset P1,

memory usage by Mashmap drops significantly with decreasing per-base error rate thresh-

old εmax from 0.20 to 0.10 (Figure 2.7a), or increasing minimum length threshold l0 from

5 kbp to 30 kbp (Figure 2.7b). Note that the reduced k-mer sampling rate from reference

and query sequences would also translate to faster mapping time. All this is achieved while

maintaining high recall scores (>90%) against the BWA-mem mappings that satisfy the

input thresholds (Figures 2.7c, 2.7d).

2.7.3 Mapping to RefSeq

We perform mapping of a publicly available PacBio read set consisting of 127,565 reads

(each ≥ 5 kbp) sequenced from a mock microbial community containing 20 strains [133].

To demonstrate the scalability of our algorithm, we map these reads against the complete
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Figure 2.7: (a) Drop in memory-usage of Mashmap with varying values of maximum per-
base error rate threshold εmax from 0.20 to 0.10. Here l0 is fixed to 5 kbp. (b) Drop in
memory-usage of Mashmap with varying values of read length cutoff l0 from 5 kbp to 40
kbp. Here εmax is fixed to 0.15. (c) Recall scores against BWA-mem mappings which
satisfy input cutoffs with varying εmax. These values are consistently above 90%. Note
that recall score is relatively higher at εmax = 0.20 because a significant fraction of PacBio
reads in dataset P1 have error rates much less than 20%. With decreasing εmax threshold,
fraction of borderline cases increases. (d) Recall scores against BWA-mem mappings with
varying l0 parameter. These scores are consistently above 97%.

NCBI RefSeq database (838 Gbp) containing sequences from 60,892 organisms. This ex-

periment was executed using default parameters (l0 = 5000, εmax = 0.15, pmax = 0.001)

on an Intel Xeon CPU E7-8837 with 1 TB memory. The other software could not index

the entire RefSeq database at once with the memory limitation. Mashmap took 29 CPU

hours to index the reference and 16 CPU hours for mapping, with a peak memory usage

of 660 GB. Note that the same index can be repeatedly used for mapping sequences, con-

ferring our method the ability to process data in real-time. To check the accuracy of our

results, we ran BWA-MEM against the 20 known genomes of the mock community. The
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recall of Mashmap against BWA-MEM mappings ranged from 97.7% to 99.1% for all the

20 genomes in the mock community.

2.8 Summary

We have presented a fast approximate algorithm for mapping long reads to large refer-

ence genomes. Instead of reporting base-level alignments, Mashmap reports all reference

intervals with sufficient Jaccard similarity compared to the k-mer spectrum of the read.

In contrast to earlier techniques based on MinHash and winnowing, we provide a for-

mal characterization of the mappings the algorithm is intended to uncover, and provide a

provably good algorithm for computing them. Mashmap is designed such that it automati-

cally adapts to different minimum read length and error-rate thresholds, and provides both

positional and identity estimates for each mapping reported. As a result, our algorithm

has been integrated as a mapping engine to address a wider set of biological applications,

including metagenomics long read classification [134], whole-genome homology predic-

tion [44], phylogenetic distance estimation [45], and detecting segmental duplications in

the human genome [68, 64].
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CHAPTER 3

GAPPED ALIGNMENT FOR SPLIT-READ MAPPING AND WHOLE-GENOME

COMPARISONS

In this chapter, we augment new algorithmic strategies to extend our mapping framework

for computing local alignment boundaries, useful for both split-read and whole-genome

mapping applications. Given minimum identity and length requirements for local align-

ments, we formulate the characteristics of homologies we intend to compute. The new

algorithm internally makes use of the Mashmap end-to-end read mapping framework by

applying it to non-overlapping substrings of the query sequence. We mathematically show

that all valid local alignment boundaries, which satisfy the user-specified alignment iden-

tity and length thresholds, are reported with high probability. The new problem formulation

provides a convenient handle for users to account for the divergence between the query and

reference sequences, without having to do any parameter tuning. Further, we formulate a

heuristic to prioritize mappings with higher scores. We leverage the classic plane-sweep

technique from computational geometry to develop an O(n log n) algorithm to solve the

filtering problem, with n being the count of total mappings.

We demonstrate the practical utility of the algorithm by evaluating accuracy and compu-

tational performance using real data instances, which include mapping mammalian genome

assemblies and ultra-long nanopore reads to the reference genomes, and sensitive self-

alignment analysis of the human genome. We compared its performance against Min-

imap2 [34] and the widely used alignment-based method Nucmer [81, 62]. Our algorithm

operates in about a minute and 4 GB memory, including both indexing and mapping stages,

to map human genome assembly to a reference when given minimum alignment identity

and length requirements of 95% and 10 Kbp respectively. This makes it one of the most

This chapter interpolates material from a paper by the author [44]
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resource-efficient software for genome-to-genome mapping, especially with respect to the

memory-usage. This performance is achieved while maintaining output sensitivity per-

centage in the high 90s. Finally, we leverage the computational efficiency of our algorithm,

and perform a sensitive self-alignment of the human genome to compute all duplications

of length ≥ 1 Kbp and ≥ 90% identity. The reported output achieves good recall and

covers twice the number of bases than the current UCSC browser’s segmental duplication

annotation.

3.1 The Mashmap2 Algorithm

We designed Mashmap2 to enable fast computation of homology maps between two se-

quences or a sequence and itself. It consists of two algorithmic components. The first

computes approximate boundaries and alignment scores for all pairs of substrings that ex-

ceed a user specified length and identity threshold. The second applies a novel filtering

algorithm to optionally weed out redundant, paralogous mappings.

3.1.1 Computing Local Alignment Boundaries

Consider all local mappings of the form Q[i..j] between sequences Q (query) and R (ref-

erence) of length l0 or more, such that Q[i..j] aligns with a substring of R with per-base

error-rate ≤ εmax and |j − i + 1| ≥ l0. Alignment algorithms have quadratic time com-

plexity, therefore an exact evaluation of the local mappings between all possible substring

combinations will require at least Ω(|Q||R|) time. As such, solving this problem exactly

is computationally prohibitive for typical sizes of real datasets. Instead of explicitly com-

puting all such structures, we seek at least one seed mapping of length l0/2 along the path

of each optimal alignment. Doing so, while maintaining high sensitivity and sufficient

specificity will allow computation of the local alignments efficiently using an appropriate

alignment algorithm.

In our approach, we leverage our previous alignment-free end-to-end read mapping
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algorithm, designed for mapping noisy long reads (Chapter 2). This allows us to benefit

from its attractive properties including probabilistic guarantees on quality, and algorithmic

and space efficiency. We continue to assume the same error model that was used in this

work, also restated here. We assume that alignment errors, i.e, substitutions and indels in

a valid alignment occur independently and follow a Poisson distribution. We also simplify

by assuming that k-mers are independent entities in sequences. For a given per-base error

rate threshold εmax, the read-mapping algorithm reports all target mapping coordinates

and identity estimates of a read in the reference, where it aligns end-to-end with ≤ εmax

per-base error rate, with high probability. This is achieved by linking Jaccard coefficient

between the k-mer spectra of the read and its mapping region to the alignment-error rate,

under the assumed error distribution model.

Proposed Algorithm

We first split the query sequence Q into l0/2 sized non-overlapping fragments. If a sub-

string of Q, say Qsub, of length ≥ l0 aligns against a substring of R with ε ≤ εmax per-base

error rate, then following statements hold true:

– There is at least one l0/2 sized query fragment that maps end-to-end along the op-

timal alignment path. This is because at least b(|Qsub| − l0/2 + 1) /(l0/2)c ≥ 1

fragments completely span Qsub (see Figure 3.1).

– Under the assumed error distribution, the expected count of errors in a sub-interval

is proportional to its length. Therefore, the above l0/2 sized fragment should map

along the optimal alignment path with ε · l0/2 expected errors.

Accordingly, the read mapping routine in Mashmap can be used to map each fragment

with εmax error-rate threshold. Let p be the probability that a fragment is mapped to the

desired target position on the reference, computed as described in Section 2.5. Proba-

bility of reporting at least one seed mapping along the optimal alignment is given by
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Figure 3.1: A local alignment depicting the inclusion of a length l0/2 fragment of the query
sequence.
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Figure 3.2: Probability of mapping at least one seed fragment for two different error-rate
thresholds εmax = 10%, 20%. As true error rate ε decreases, the probability values ac-
cordingly improve as expected. Similarly, longer alignments spanning more fragments are
more likely to be reported. Most importantly, all the sensitivity scores are consistently
above 90%. To compute the probability values, sketch size for Minhash based Jaccard
estimation was assumed as 200, and the k-mer size was set to 16. These parameters are
internally set by Mashmap (Section 2.4).

1 − (1 − p)b(|Qsub|−l0/2 +1)/(l0/2)c. We show that these probability scores are sufficiently

high, between 0.92 and 1.00 for alignment error rate thresholds εmax 10% and 20% respec-

tively (Figure 3.2).

The above seed matches and their alignment identity estimates are further processed to

compute approximate local boundaries and their scores. After computing all seed matches,

matches which involve consecutive query sequence fragments are merged together if they

are mapped closely in the same order on the reference sequence. Suppose mappings from

the consecutive query fragments qi, qi+1, . . . , qj are mapped to reference positions with be-
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Figure 3.3: Left figure is a toy example to illustrate line segments corresponding to multiple
local alignments obtained between query and reference sequence, similar to a dot-plot.
Each alignment segment is labeled with an alignment score. Now, suppose we wish to
filter best mappings for the query sequence. These segments can be considered as weighted
intervals over the query sequence (right figure). In the above case, two intervals marked
with a cross are completely subsumed by higher scoring intervals, and therefore, will be
labeled as redundant by our filtering heuristic.

gin positions p0, p1, . . . , pj−i respectively, then they are grouped together as a local align-

ment segment if p0 ≤ p1 ≤ . . . ≤ pj−i, and pk+1 − pk ≤ l0, [0 ≤ k < j − i]. The

alignment boundaries are estimated as the first and last mapping offsets of the group. The

corresponding alignment scores are estimated as their average identity estimate multiplied

by the sum of the fragment lengths. We use these alignment boundaries and the scores as

input to a subsequent filtering algorithm.

3.1.2 A Geometric Algorithm for Filtering Alignments

Large mammalian genomes and plant genomes have abundant repetitive sequences. As a

consequence, a large fraction of inferior mappings are reported due to paralogous genomic

segments or false positive mappings resulting from simple sequence repeats. Furthermore,

from a biological perspective, closely examining all alternative mappings may not be fea-

sible. Therefore, different strategies are adopted to identify biologically relevant outputs.

We formulate a filtering heuristic for our mapping application, and develop an optimal

O(n log n) algorithm to solve it. We also prove that Ω(n log n) runtime is necessary to

solve this problem. The effectiveness of this algorithm on real genomic data is demon-

strated later, in the Results section.
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Problem Formulation

Suppose all output mappings of a query sequence are laid out as weighted segment inter-

vals, with the alignment scores used as weights (Figure 3.3). We propose the following

filtering heuristic: a segment is termed redundant if and only if it is subsumed by higher

scoring segments at all of its positions. Therefore, the objective is to identify all good

(non-redundant) segments. In practice, there can be multiple alignments with equal scores.

Therefore, segment scores are allowed to be non-unique.

A sub-optimalO(n2) algorithm for solving the above problem can be readily developed

by doing an all to all comparison among the segments. However, it would lead to practi-

cally slow implementation for typical input sizes. The formulated filtering problem bears

resemblance to the line segment intersection test problem for which Shamos and Hoey gave

a classic O(n log n) algorithm using plane-sweep technique [135]. Accordingly, we sum-

marize their algorithm next, and subsequently describe the modifications made to solve the

filtering problem.

The Shamos-Hoey Algorithm

Similar to the filtering problem, the problem of detecting whether n segments have an in-

tersecting pair has a trivial O(n2) solution. Shamos and Hoey solved this problem using a

plane-sweep based O(n log n) algorithm. The algorithm defines an ordering between seg-

ments in the 2D plane. The main loop of the algorithm conceptually sweeps a vertical line

from left to right, and while doing so, the sweep-line status data-structure L dynamically

holds segments which intersect the sweep-line. The sweep-line halts at 2n endpoints of the

input segments, and the order of segments in L is evaluated to detect any intersection. For

efficiency, this algorithm chooses a balanced tree to implement the sweep-line status L .

As such, it spends O(log n) time at each halting point, and therefore, the total runtime is

bounded by O(n log n). This algorithm is popular not only for its theoretical and practical

efficiency, but also for ease of implementation.
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In our problem as well, evaluating segments which intersect the vertical sweep-line

at 2n endpoints is sufficient to identify all good segments. However, evaluating all inter-

secting segments at each endpoint is inefficient, and again leads to a quadratic algorithm.

Therefore, we devise a new ordering scheme among segments which will enable us to

evaluate only a subset of intersecting segments at each endpoint.

Proposed Algorithm for Alignment Filtering

We define an order between segments as following: Between two segments, the segment

with higher score is considered as greater, but if the scores are equal, then the segment with

the larger starting position is considered as greater. This particular ordering helps avoid

redundant computations, and will be crucial for bounding the runtime later.

Similar to the Shamos-Hoey algrithm, we also use a height-balanced Binary Search

Tree (BST) as the data-structure for the sweep-line status L , which tracks the segments

that intersect the vertical sweep line. L is required to support the following operations in

our algorithm:

1. insert(s). Insert segment s into L .

2. delete(s). Delete segment s from L .

3. mark good(). Mark all segments with highest score as good in L .

Note that the insert and delete operations are naturally supported in O(log n) time in

BSTs, whereas the mark good function can be realized as a sequence of maximum and

predecessor operations. If there are k segments with equal and highest scores in L , the

function mark good uses O(k log n) time. With the data-structures and the operations de-

fined above, we give an outline of the complete filtering procedure in Algorithm 3. The

main loop of the algorithm iterates over the 2n segment endpoints, which is analogous to

the sweep line moving from left to right, halting at the 2n points. In each iteration, we up-
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date the sweep-line status L so that it holds the segments which intersect the sweep line,

and mark the highest-scoring segments as good using the mark good function.

Lemma 1. Algorithm 3 solves the filtering problem correctly.

Proof. Consider a function S : N → {0, 1}n from positions in the query sequence to

subsets of segments {1, 2, . . . , n}. A segment si ∈ {S(pos)} if and only if it is among the

highest scoring segments which overlap with the query sequence at position pos. Clearly,

a union of all subsets in the domain of function S equals the set of good segments. If we

perform a linear scan on the domain, from begin to end position of the query sequence, then

value of S can change only at the 2n endpoints of the segments. Therefore, the highest

scoring segments overlapping at the 2n endpoints constitute the set of good segments,

which is precisely what Algorithm 3 computes.

Algorithm 3: Plane-sweep based alignment filtering algorithm
Input: segments {1. . .n}

1 Sort the 2n segment endpoints and place them in the array E
2 Initialize the sweep-line status structure L
3 Initially mark all the segments as redundant
4 for i← 1 to 2n do
5 p = E [i]
6 set beg = set of segments of which p is a left endpoint
7 for s ∈ set beg do
8 L .insert(s)

9 set end = set of segments of which p is a right endpoint
10 for s ∈ set end do
11 L .delete(s)

12 L .mark good()
13 i = i+ |set beg|+ |set end|

We make an additional modification to the above algorithm for efficiency, specifically in

the mark good function. In this function, we mark the highest scoring segments in the

tree L as good. We execute this by traversing the segments in decreasing order in L ,

starting from the maximum. However, we terminate the traversal if a segment is observed
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as marked good already. This helps to avoid redundant computations, and the algorithm

still remains correct due to the following property:

Lemma 2. Consider all the segments with equal and highest scores in L : s1, s2, . . . , sj, . . . , sk,

ordered in non-increasing manner. Suppose segment sj has been marked good in one of the

previous iterations of the algorithm, then the segments sj+1, sj+2, . . . sk must have already

been marked good as well.

Proof. The aforementioned property is satisfied by default during the first iteration of the

algorithm because there cannot be any previously marked segments. Suppose this prop-

erty remains true till iteration i, and we are currently executing iteration i + 1. Segments

s1, s2, . . . sk ∈ L , so we know that the sweep line intersects these segments. Also, the

ordering of the segments is maintained based on their scores and begin positions, and since

the scores of these segments are equal, therefore begin pos(s1) ≥ begin pos(s2) ≥ . . .

≥ begin pos(sk). Now consider the iteration when segment sj was marked good. Then,

the sweep line must have intersected the segments sj+1, sj+2, . . . sk as well. Therefore, if

the segment sj was marked, then the segments sj+1, sj+2, . . . sk must have been marked

within or before the same iteration.

The total cost of sorting, insert and delete operations in Algorithm 3 is clearly O(n log n).

Because the revised mark good function marks at most n segments throughout the algo-

rithm, its runtime is also bounded by O(n log n). Thus, we conclude that the runtime

complexity of our alignment filtering algorithm is bounded by O(n log n).

Theorem 2. Given n alignment segments, Algorithm 3 solves the alignment filtering prob-

lem in O(n log n) time.

Theorem 3. The above proposed filtering algorithm is optimal given the objective function.

Proof. The INTEGER ELEMENT UNIQUENESS problem (given n integers, decide whether

they are all unique) is known to have a lower bound of Ω(n log n) assuming the algebraic
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decision-tree model [136]. A simple transformation can be designed to show that

INTEGER ELEMENT UNIQUENESS ∝n ALIGNMENT FILTERING

Let {x1, x2, . . . , xn} be a set of n integer elements. For each element xi, construct a seg-

ment with begin position, end position, and score as xi, xi, and i respectively. Because

each segment is assigned a unique score, all the n elements are unique if and only if the

filtering algorithm reports all the segments as good.

3.1.3 Related Work for Filtering Alignments

There can be many alternative formulations of the filtering criteria. For instance, BLAST [54]

filters out alignments if they are fully contained in ≥ K alignments of higher scores [137].

Berman et al. [137] also discussed a weaker alternative filtering condition where a match

is filtered out if each position in a segment is covered by ≥ K segments of higher score.

Note that our filtering formulation is its special case with K = 1. They discussed a differ-

ent O(n log n) algorithm to solve the problem based on interval-tree of all input segments.

Although a direct performance comparison is not possible due to unavailability of their im-

plementation, note that the tree size in our plane-sweep based algorithm is limited by the

number of overlapping segments which intersect the vertical sweep-line, which can be (and

typically is) orders of magnitude smaller than the total count for large datasets. As such,

even with the same theoretical complexity, we expect our algorithm to perform faster with

less memory usage in practice.

3.1.4 Execution for Mapping Applications

The above filtering criteria is useful to identify the promising alignments between query

and reference genomes. For the genome-to-genome mapping application, we execute the

filtering algorithm twice, once to filter best alignments for query sequence, followed by

46



filtering best alignments for reference sequence. Mappings which pass both filters con-

stitute the orthologous matches, required for building a one-to-one homology map. For

read mapping however, filtering on just the query sequence is appropriate. Accordingly,

Mashmap2 provides two filtering modes: one-to-one and map for the two applications

respectively.

3.2 Results

We assess the performance of Mashmap2 for genome-to-genome and split-read mapping in

comparison to recent versions of state-of-the-art software Minimap2 [34] and Nucmer [62].

Results indicate that Mashmap2 provides output of comparable quality, and yields signif-

icant gains in memory-usage. Subsequently, we demonstrate the utility of Mashmap2 in

accurately computing all 1 Kbp long duplications in the human genome.

3.2.1 Genome-to-Genome Mapping

Datasets

To evaluate and compare Mashmap2 for mapping genomes, we used six datasets D1-D6

listed in Table 3.1. Dataset D1 includes comparison between microbial genomes E. coli

O157:H7 and E. coli K12. The two instances D2 and D3 require mapping of NA12878

human reference genome assemblies to the hg38 human reference genome. Query genome

assemblies in both instances D2 and D3 are the recently published assemblies computed us-

ing Canu [138] using ultra-long Oxford Nanopore Technologies (ONT) reads [4]. Dataset

D3 includes a long-read only Canu assembly whereas assembly in dataset D2 is also error-

corrected using Illumina reads. The next two datasets D4, D5 involve inter-species genome

comparisons- human v/s gorilla and chimp v/s gorilla, respectively. Finally, to evaluate

Mashmap2 for the split-read mapping task, D6 includes raw ultra-long human ONT reads,

generated using a single flowcell [4]. We restrict our benchmarking to real data instances

because simulations typically fail to capture the full complexity of mutational processes.
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Table 3.1: List of datasets used for evaluation. Datasets D1-D5 are included to evaluate
Mashmap2 for genome-to-genome mapping application, and D6 for long read mapping
application. We discarded a small fraction of contigs and reads with length <10 Kbp.

Id
Query sequences (≥ 10 Kbp)

Reference genome
Source # Sequences N50 (bp)

D1 E. coli O157
genome

2 5.5M E. coli K12 MG1655

D2 human genome
assembly
(ONT+Illumina)

2,269 7.7M human (hg38)

D3 human genome
assembly (ONT)

2,263 7.4M human (hg38)

D4 human (hg38)
genome

365 145M gorilla (gorGor5)

D5 chimp (panTro5)
genome

3,086 137M gorilla (gorGor5)

D6 Ultra-long human
ONT reads

7,656 129K human (hg38)

Defining Baseline and Methodology

We used MUMmer package (v4.0.0.beta2), which includes the Nucmer4 alignment pro-

gram for comparing DNA sequences [62]. Nucmer4 is sensitive enough to report align-

ments for both assembly and read mapping tasks, therefore we considered its output as

truth while evaluating accuracy. In addition, UCSC genome browser [139] hosts high-

quality pairwise syntenic alignment sets between popular mammalian genomes. Therefore,

for evaluating the inter-species genome comparisons (D4, D5), we could use these as our

truth sets. These alignments were originally computed using BLASTZ [56] with careful

parameter tuning, and are more reliable for this purpose. We also used Minimap2 (v2.7-

r659) [34] as a baseline for various performance metrics. Minimap2 executes chaining

algorithm on fixed-length exact matches to compute alignment boundaries. To our knowl-

edge, it is among the fastest tools available to map DNA sequences in an alignment-free

fashion.

Each software, including ours exposes many parameters (e.g., k-mer or seed length).
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Default k-mer size in Mashmap2 is 16. We mostly conform to default parameters with

all software tested, except as noted below. Mashmap2 mainly requires a minimum length

and identity for the desired local alignments. In this test, we targeted long alignments,

and accordingly fixed the minimum alignment length requirement as 10 Kbp. We set the

minimum alignment identity requirement for all the datasets based on their input charac-

teristics as {D1-D2: 95%, D3-D5: 90%, D6: 80%}. Accordingly, we tested Mashmap2

for reporting the alignment boundaries as per the provided requirements. Filtering modes

were set to one-to-one and map for datasets D1-D5 and D6 respectively. Nucmer4

was run with default parameters, followed by running delta-filter, both components of the

MUMmer package. Following its user documentation, delta-filter was executed with -1

parameter to construct one-to-one alignment map in datasets D1-D5 and -q parameter for

read mapping in D6. Finally, Minimap2 supports genome-to-genome mapping mode using

-x asm5 flag, and nanopore read mapping mode using -x map-ont. We executed all

three software in multi-threaded mode using 8 CPU threads. All comparisons were done

on an Intel Xeon E5-2680 platform with 28 physical cores and 256 GB RAM.

Runtime and Memory Usage

The wall-clock runtime and memory-usage of Mashmap2, Minimap2 and Nucmer4 using

datasets D1-D6 are shown in Table 3.2. The runtimes represent end-to-end time, from

reading input sequences to generating the final output. Minimap2 can report base-to-base

alignments but does not by default. Thus, the final output of Mashmap2 and Minimap2 are

alignment boundaries and scores, whereas Nucmer4 outputs base-to-base alignments. Both

alignment-free methods Mashmap2 and Minimap2 map most of the query bases to unique

positions in all datasets (shown later), therefore base-to-base alignments can be computed

quickly for the final output using chaining heuristics and vectorization techniques [37, 34].

From Table 3.2, we observe that Mashmap2 uses significantly less memory when com-

pared to Minimap2. It improves memory-usage by 5.3x, 4.9x, 4.4x, 3.0x, 3.3x, 1.04x for
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Table 3.2: Total execution time and memory usage comparison of Mashmap2 against Min-
imap2 and alignment-based tool Nucmer4. All software were run in parallel using 8 CPU
threads.

Id
Mashmap2 Minimap2 Nucmer4

Time Memory Time Memory Time Memory
D1 0.5s 16M 0.4s 85M 5.2s 138M
D2 1m 26s 3.5G 3m 3s 17.3G 5h 1m 53G
D3 6m 33s 3.6G 3m 11s 15.9G 2h 10m 53G
D4 27m 33s 9.0G 15m 6s 26.7G 33h 4m 57G
D5 25m 40s 7.7G 5m 54s 25.7G 24h 58m 56G
D6 13m 6s 10.0G 3m 10s 10.4G 25m 2s 53G

the six datasets respectively. The performance gap against Nucmer4 is much wider with

speedups of 10.4x, 210x, 19.8x, 72.0x, 58.4x, 1.9x and memory-usage improvements by

8.6x, 15.1x, 14.7x, 6.3x, 7.3x, 5.3x on the datasets D1-D6 respectively. Low memory re-

quirements in Mashmap2 can allow for larger comparisons (e.g. a genome against a big,

in-memory reference database).

Mashmap2 and Minimap2 follow the same initial step of sampling k-mers using min-

imizers [127, 36], followed by computing their exact matches in the reference genome.

However, they differ in using these exact matches to compute the mappings. Mashmap2

includes an efficient MinHash-based mechanism to estimate Jaccard similarity and auto-

tunes the internal parameters (e.g., k-mer sampling rate, Jaccard similarity threshold), con-

forming to the local alignment identity and length requirements provided by user. Auto-

tuning can help achieve faster runtime and reduce memory-usage with increasing identity

and length thresholds (Figure 3.4). It is important to maintain high accuracy while being

fast, therefore we next evaluate the quality of output.

Accuracy

Accuracy evaluation of Mashmap2 and Minimap2 in comparison to the assumed truth sets

is shown in Table 3.3. As stated before in Section 3.2.1, recall was measured against the

assumed true alignments, i.e., Nucmer4 alignments for intra-species comparisons (D1-D3,
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Table 3.3: Accuracy evaluation of Mashmap2 and Minimap2 to do an alignment-free com-
putation of mapping boundaries. Recall was measured against the truth sets assumed (Sec-
tion 3.2.1).

Id
Recall scores Fraction of query

bases mapped
uniquely

Precision*

Mashmap2 Minimap2 #True Alignments Mashmap2 Minimap2 Mashmap2
D1 100% 100% 144 74.0% 78.9% 72.0%
D2 97.5% 98.3% 35,186 96.8% 96.3% 50.0%
D3 97.1% 98.1% 37,807 96.9% 96.0% 55.2%
D4 97.0% 97.7% 63,908 87.5% 91.3% 75.9%
D5 97.5% 98.0% 65,289 89.8% 93.2% 57.3%
D6 99.3% 99.5% 4,349 89.9% 84.6% 34.8%
*Fraction of mappings which satisfied alignment thresholds in Mashmap2
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Figure 3.4: Wall time of Mashmap2 decreases with increasing length or identity thresholds
using dataset D3 and 8 CPU threads. In this experiment, identity and length thresholds
were fixed to 90% and 10 Kbp while varying the other parameter. Memory-usage also
follows a similar trend (data not shown).

D6) and UCSC browser pairwise alignments for inter-species comparisons (D4, D5) which

satisfy the alignment requirements in terms of minimum length and identity provided to

Mashmap2. We also expected Minimap2 to report these alignments because it is designed

to compute matches in these identity ranges.

A reported local alignment boundary estimate by Mashmap2 or Minimap2 was assumed

to recall a true alignment if it overlapped with the alignment on both query and reference

sequences, and if the mapping strand matched. From Table 3.3, we observe that both

Mashmap2 and Minimap2 consistently achieved high recall scores≥ 97%, with Minimap2
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Table 3.4: Effectiveness of the filtering algorithm in Mashmap2. A large fraction of map-
pings were filtered out by the algorithm, while the recall scores against the assumed truth
sets remained largely unaffected. Last column in this table is copied from Table 3.3 for
convenience.

Id
Count of output mappings Recall scores

Without filter With filter Ratio
(without/with)

Without filter With filter

D1 145 82 1.77 100.0% 100.0%
D2 6,541,930 3,985 1,642 99.9% 97.5%
D3 53,331,538 3,137 17,001 99.7% 97.1%
D4 152,536,106 4,756 32,072 100.0% 97.0%
D5 152,266,777 13,834 11,007 100.0% 97.5%
D6 18,604,261 12,930 1,439 99.9% 99.3%

performing slightly better. Obtaining high recall scores by itself is not sufficient, because

it can be achieved by mapping a query sequence to all possible positions. In parallel to

achieving high recall scores, both Mashmap2 and Minimap2 mapped a large fraction of

query genome assemblies to unique mapping positions in the reference genomes. To show

this, we computed the fraction of base-pairs of the query sequence that are mapped to a

single position on the reference genome (Table 3.3).

Next, we evaluated the precision, i.e. what fraction of Mashmap2 mappings yield one or

more alignments above the specified length and identity thresholds. We used LAST [122]

to compute the alignments. The precision score of Mashmap2 averages to 57.5% across all

the datasets, varying from 34.8% (in D6) to 75.9% (in D4). The corresponding scores for

Minimap2 using the same threshold values are much lower (average = 15%), but Minimap2

follows different design principles and lacks similar guarantees on the characteristics of its

output. In the current context of tasks that require such guarantees, Mashmap2 provides

better precision on all datasets.

Efficacy of The Filtering Algorithm

Eukaryotic genomes tend to contain a lot of repetitive sequences, therefore, the motivation

behind our plane-sweep based filtering heuristic is to discard noisy mappings, and compute
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Figure 3.5: Visualization of ≥ 1 Kbp duplications in the human genome computed using
Mashmap2. Alignments are colored based on their lengths: blue 1-5 Kbp, red 5-10 Kbp,
black >10 Kbp. Majority of blue and red mappings occur due to SINEs and LINEs repeats
respectively. Right plot is a magnification of ≥ 1 Kbp duplications within chromosome
7. Chromosome 7 is known to be one of the most duplicated human chromosomes. Large
clustered duplications in red circle are associated with Williams-Beuren syndrome [140].

promising matches between the query and reference genomes. We show the importance and

effectiveness of our filtering strategy in Table 3.4. Note that a large fraction of mappings

was pruned out by the filter. While doing so, high recall scores against the assumed true sets

were maintained (see Table 3.4). Although we do not present the contribution of this phase

to the total runtime, the plane-sweep algorithm is fast in practice; it used an insignificant

fraction of the total runtime.

3.2.2 Computing Duplications in the Human Genome

Soon after the publication of the human genome, it was realized that the genome is re-

plete with repetitive sequences [141]. Intra- and inter-chromosomal duplications have been

found to play a vital role in genome evolution, its stability, and diseases [66], and know-

ing the location of such repeats can be important for many genomic analyses. Yet, fully

annotating all repeats in a genome can be computationally challenging. To demonstrate

the scalability of Mashmap2, we computed all ≥ 1 Kbp duplications in the hg38 human

genome [142] with ≥ 90% alignment identity. The importance of these duplications has

been known for a long time [66, 69]; accordingly the UCSC genome browser also main-

tains them as a public database (named as segmental duplications) for the human genome.
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Figure 3.6: Recall scores of duplications computed using Mashmap2 against the UCSC
segmental duplication database. Above 90% recall scores are achieved on each chromo-
some consistently. The red dotted line shows the aggregate recall score of 97.15% for the
complete genome.

The goal of our experiment is to recover as many duplications as possible. Due to the prob-

abilistic guarantees provided by our algorithm (Section 3.1.1), we expect it to compute

such duplications with a high recall value. Typical genome-to-genome aligners including

Minimap2, Nucmer4 and BLASTZ do not provide such guarantees, and typically require

extensive parameter tuning as well as preprocessing of input to perform this task [e.g., 70,

69]. We summarize our method below and contrast our output with the UCSC database.

Methodology

We used 24 chromosome sequences (1-22, X,Y) and mitochondrial DNA from the hg38

version of the human genome as our input sequence set. To compute all ≥1 Kbp, ≥90%

identity duplications, we directly used Mashmap2 with the same length and identity re-

quirements, with filtering disabled. From its output, we discarded short≤ 500bp mappings

with < 90% estimated identity, plus the trivial duplications (i.e. regions matching with

themselves), and were left with 2.1 billion candidate mappings. The count of reported

mappings is high due to several high-copy repeat families in the genome, not all of which
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Figure 3.7: Comparison of genomic coverage between the UCSC Segmental Duplication
database and Mashmap2 output alignments. Both methods reported equal coverage 83%
on mitochondrial chromosome (not shown above to keep the plot legible). Coverage of
duplications computed using our method is significantly higher, owing to its exhaustive
search of all repeats with ≥1 Kbp length and ≥90% identity without repeat masking.

exceed our minimum thresholds. To remove the shorter or lower identity mappings, each of

the approximate alignments was processed using LAST to compute a base-level alignment.

This resulted in 210 million validated alignments with ≥1 Kbp length and ≥90% identity.

We note that a large fraction of the candidate mappings failed to satisfy the specified cutoffs

here. This is because Mashmap2 looks at the Jaccard similarity of k-mer sets to evaluate

the mappings, but does not consider the distribution of k-mer match positions [143]. As a

result, frequently occurring exact repeats of length < 1 Kbp in the human genome can also

qualify as a match in the output. It may be be possible to improve the specificity by fur-

ther considering the distribution of k-mer matches. This experiment took 120 CPU hours

for executing Mashmap2 and 24, 000 CPU hours for validating all reported mappings using

LAST. We show a dot-plot visualization of the reported alignments in Figure 3.5, which ap-

pears dense due to extensive duplications in the human genome. Finally, we converted the

alignments into BED format to compare against the UCSC database using Bedtools [144];

the accuracy results are discussed next.
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Accuracy Evaluation and Insights

The UCSC Segmental Duplications database for the hg38 human genome was computed

using a standard pipeline proposed by [70], and was last updated in 2014. It is important

to note that prior to computing genomic duplications, their method removed high-copy

repeat elements (e.g., LINEs, Alus) from the genome. Therefore, this database is not an

exhaustive set of all ≥1 Kbp, ≥90% identity duplications in the genome, but a significant

fraction of them. Nonetheless, low-copy repeat annotations have a higher likelihood of

being missed by a mapper. Therefore, checking the recall against this database serves as an

appropriate test to evaluate Mashmap2 in computing all homologous mappings of specified

characteristics.

To measure recall on each chromosome, we computed coverage of those UCSC du-

plication annotations that have overlap with Mashmap2 duplications, and divided it by the

coverage of all UCSC duplication annotations. Therefore, a 100% recall score would imply

that all base-pairs which are annotated as segmental duplication in the UCSC database are

part of one or more Mashmap2 alignments. We show these recall scores for each chro-

mosome as well for the complete genome in Figure 3.6. Recall is consistently observed

to be above 90% for each chromosome, and the aggregate recall for the complete genome

is 97.15%. Among the 2.85% missed alignments, a large fraction of alignments were not

recalled because difference in the alignment parameters can affect alignment identity and

length. As a result, same regions can yield slightly different alignments using LAST and

BLAST. If we relax the alignment identity and length cutoff in LAST to 88% and 950 bp

respectively, the recall score improves to 98.28%. High recall scores achieved here, as well

as in our prior experiments, demonstrate high sensitivity of our algorithm for any specified

alignment characteristics by user, which is consistent with the theory in Section 3.1.1.

Finally, we compared the coverage of our alignments versus the UCSC database. Since

our method did an exhaustive search of all duplications with ≥ 1 Kbp length and ≥ 90%

identity without masking any genomic repeats, we observe that our algorithm attains either
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equal or higher coverage on each chromosome (Figure 3.7). For the complete genome, cov-

erage of our alignments is 10.3%; 5% higher than the coverage of UCSC annotations. We

further examined the subset of our duplications which do not overlap with UCSC segmen-

tal duplications. Indeed a large coverage fraction (82%) comprises of high-copy repeats

(i.e. coverage depth > 50), potentially due to common repeat elements, which explains

the wide gap in the coverage observed. The remaining 18% coverage fraction, however,

is composed of low-copy repeats, with coverage depth ≤ 50 indicating the potential to

uncover novel segmental duplications. Validating this possibility requires a more careful

inspection of the output, and will be our future work. Mashmap2 alignments are available

online at https://gembox.cbcb.umd.edu/mashmap/index.html.

3.3 Summary

In this chapter, we presented a fast algorithm for computing homology maps between whole

genomes. We have given both theoretical and experimental evidence of the sensitivity pro-

vided, in terms of computing local alignment boundaries based on the minimum alignment

length and identity parameters. To the best of our knowledge, this is the first practical and

scalable algorithm to provide such guarantees. This formulation grants a convenient mech-

anism for users to execute this algorithm based on the underlying applications, which can

be (but not limited to) mapping genome assembly of variable quality, aligning long reads to

reference genomes, or computing segmental duplications in large genomes. Additionally,

we formulated a filtering heuristic, and proposed an optimal plane-sweep based filtering

algorithm for prioritizing alignments based on their scores and locations. The filtering

algorithm is practically fast, accurate, and easy to implement in a few lines of code by us-

ing standard libraries. When mapping a human genome assembly to the human reference

genome, Mashmap2 takes only about a minute from reading input sequences to generating

the final alignment boundaries, identity estimates, and a dot-plot for visualization. Because

of the underlying auto-tuning mechanism in Mashmap2, its runtime and memory-use de-
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pend on the sensitivity requirements provided to the algorithm.
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CHAPTER 4

GENOME DISTANCE ESTIMATION FOR HIGH-THROUGHPUT ANI

ANALYSIS

Whole-genome Average Nucleotide Identity (ANI) is recognized as the standard genome

sequence similarity metric for microbial species classification. Existing ANI solvers ei-

ther rely on time-consuming alignment routines, or sacrifice the output accuracy. In this

chapter, we describe how to accelerate Average Nucleotide Identity (ANI) computation

by leveraging our alignment-free mapping technique. Our new algorithm FastANI pro-

vides ANI values that are essentially identical to the alignment-based ANI values for both

complete and draft quality genomes, while being two to three orders of magnitude faster.

Accordingly, FastANI enables accurate estimation of pairwise ANI values for large cohorts

of genomes.

Even though the term ‘species’ was conceived by Aristotle about 2,000 years ago to de-

sign a classification system for the organisms observed in nature, existence of such discrete

biological units species in microbes is still debated [75]. By applying our algorithm to a

collection of 90,000 prokaryotic genomes, we take a data-driven approach to address the

following fundamental question: “do well-defined clusters of genomes (species) exist?”

4.1 Biological Relevance

Large collections of prokaryotic genomes with varied ecologic and evolutionary histories

are now publicly available. This deluge of genomic data provides the opportunity to more

robustly evaluate important questions in microbial ecology and evolution, as well as un-

derscores the need to advance existing bioinformatics approaches for the analysis of such

big genomic data. One such question is whether bacteria (and other microbes) form dis-

This chapter interpolates material from a paper by the author [44]
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crete clusters (species), or, due to high frequency of horizontal gene transfer (HGT) and

slow decay kinetics, a continuum of genetic diversity is observed instead. Studies based

on a small number of closely related genomes have shown that genetic continuum may

prevail [145]. On the other hand, other studies have argued that HGT may not be frequent

enough to distort species boundaries, or that organisms within species exchange DNA more

frequently compared to organisms across species, thus maintaining distinct clusters [146].

An important criticism of all these studies is that they have typically been performed with

isolated genomes in the laboratory that may not adequately represent natural diversity due

to cultivation biases, or were based on a small number of available genomes from a few

phylogenetic lineages, which does not allow for robust conclusions to emerge. Therefore,

it is still unclear if well-defined clusters of genomes are evident among prokaryotes and

how to recognize them. Defining species is not only an important academic exercise but

also has major practical consequences. For instance, the diagnosis of disease agents, the

regulation of which organisms can be transported across countries and which organisms

should be under quarantine, or the communication about which organisms or mixtures of

organisms are beneficial to human, animals or plants, are all deeply-rooted on how species

are defined.

One fundamental task in assessing species boundaries is the estimation of the genetic

relatedness between two genomes. In recent years, the whole-genome average nucleotide

identity (ANI) has emerged as a robust method for this task, with organisms belonging

to the same species typically showing ≥95% ANI among themselves [73, 71]. ANI rep-

resents the average nucleotide identity of all orthologous genes shared between any two

genomes and offers robust resolution between strains of the same or closely related species

(i.e., showing 80-100% ANI). The ANI measure does not strictly represent core genome

evolutionary relatedness, as orthologous genes can vary widely between pairs of genomes

compared. Nevertheless, it closely reflects the traditional microbiological concept of DNA-

DNA hybridization relatedness for defining species [73], as it takes into account the fluid
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nature of the bacterial gene pool and hence implicitly considers shared function.

Sequencing of 16S rRNA genes is another highly popular, alternative traditional method

for defining species and assessing their evolutionary uniqueness. However, methods based

on single [147] or a set of universally conserved genes [148], such as 16S rRNA and riboso-

mal protein-encoding genes are often not applicable to incomplete genomes (e.g., the genes

are not assembled), and these genes typically show higher sequence conservation than the

genome average. Consequently, analysis of universal genes does not provide sufficient res-

olution at the species level [149], and has frequently resulted in lack of clear genetic discon-

tinuities among closely related taxa [148]. ANI offers several important advantages such

as higher resolution among closely related genomes. Finally, ANI can be estimated among

draft (incomplete) genome sequences recovered from the environment using metagenomic

or singe-cell techniques that do not encode universally conserved genes but encode at least

a few hundred shared genes, greatly expanding the number of sequences that can be stud-

ied and classified compared to a universal gene-based approach. Accordingly, ANI has

been recognized internationally for its potential for replacing DNA-DNA hybridization as

the standard measure of relatedness, as it is easier to estimate and represents portable and

reproducible data [74, 150]. Despite these strengths, to date ANI-based methods could

not be applied for a large number of genomes due to their reliance on alignment-based

searches [e.g., BLAST [54]], which are computationally expensive due to the quadratic

time complexity of alignment algorithms [151].

4.2 The FastANI Algorithm

FastANI uses Mashmap as its underlying mapping framework. Analogous to the sequenc-

ing errors, here we assume that genome mutations occur independently and follow Poisson

distribution. As a result, we can avoid direct alignments, but instead relate alignment iden-

tity between the sequences to Jaccard similarity of constituent k-mers (Section 2.1).
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Figure 4.1: a. Graphical illustration of FastANI’s work-flow for computing ANI between a
query genome and a reference genome. Five mappings are obtained from three query frag-
ments using Mashmap. Mforward saves the maximum identity mapping for each query frag-
ment. In this example, Mforward = {m2,m4,m5}. From this set, Mreciprocal picks m4 and
m5 as the maximum identity mapping for each reference bin. Mapping identities of ortholo-
gous mappings, thus found in Mreciprocal, are finally averaged to compute ANI. b. FastANI
supports visualization of the orthologous mappings Mreciprocal that are used to estimate the
ANI value using genoPlotR [152]. In this figure, ANI is computed between Bartonella
quintana strain (NC 018533.1) as query and Bartonella henselae strain (NC 005956.1) as
reference. Red line segments denote the orthologous mappings computed by FastANI for
ANI estimation.

4.2.1 Extending Mashmap to Compute ANI

Previously established and widely used implementations of ANI begin by either identify-

ing the protein coding genomic fragments [75] or extracting approximately 1 Kbp long

overlapping fragments [73] from the query genome. These fragments are then mapped to

the reference genome using BLASTn [54] or MUMmer [81], and the best match for each

fragment is saved. This is followed by a reverse search, i.e., swapping the reference and

query genomes. Mean identity of the reciprocal best matches computed through forward

and reverse searches yields the ANI value. Rationale for this bi-directional approach is to

bound the ANI computation to orthologous genes and discard the paralogs. In designing

FastANI, we followed a similar approach while avoiding the alignment step.

FastANI first fragments the given query genome (A) into non-overlapping fragments

of size l. These l-sized fragments are then mapped to the reference genome (B) using

Mashmap. Mashmap first indexes the reference genome and subsequently computes map-

pings as well as alignment identity estimates for each query fragment, one at a time. At the
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end of the Mashmap run, all the query fragments f1, f2 . . . fb|A|/lc are mapped to B. The

results are saved in a set M containing triplets of the form 〈f, i, p〉, where f is the frag-

ment id, i is the identity estimate, and p is the starting position where f is mapped to B.

The subset of M (say Mforward) corresponding to the maximum identity mapping for each

query fragment is then extracted. To further identify the reciprocal matches, each triplet

〈f, i, p〉 in Mforward is ‘binned’ based on its mapping position in the reference, with its

value updated to 〈f, i, bin〉 = 〈f, i, bp/lc〉. Through this step, fragments which are mapped

to the same or nearby positions on the reference genome are likely to get equal bin value.

Next, Mreciprocal filters the maximum identity mapping for each bin. Finally, FastANI re-

ports the mean identity of all the triplets in Mreciprocal (See Figure 4.1 for an example and

visualization).

We define τ as an input parameter to FastANI to indicate a minimum count of reciprocal

mappings for the resulting ANI value to be trusted. It is important to appropriately choose

the parameters (l, τ and I0).

4.2.2 Algorithmic Parameter Settings

FastANI is targeted to estimate ANI in the 80%-100% identity range. Therefore, it calls

Mashmap mapping routine with an identity cutoff I0 = 80%, which enables it to compute

mappings with alignment identity close to 80% or higher.

Choosing an appropriate value of query fragment l requires an evaluation of the trade-

off between FastANI’s computation efficiency and ANI’s estimation accuracy. Higher

value of l implies less number of non-overlapping query fragments, thus reducing the over-

all runtime. However, if l is much longer than the average gene length, a fragment could

span more than one conserved segment, especially if the genome is highly recombinant.

We empirically evaluated different values of l and set it to 3 Kbp (Table A.1). Last, we

set τ to 50 to avoid incorrect ANI estimation from just a few matching fragments between

genomes that are too divergent (e.g., showing < 80% ANI). With l = 3 Kbp, τ = 50 im-
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plies that we require at least 150 Kbp homologous genome sequence between two genomes

to make a reliable ANI estimate, which is a reasonable assumption for both complete and

incomplete genome assemblies based on our previous study [153].

Software and Data Availability FastANI can be downloaded at https://github.

com/ParBLiSS/FastANI. All the datasets used in this study are available at http:

//enve-omics.ce.gatech.edu/data/fastani.

4.3 Results

We first demonstrate FastANI yields accuracy on par with the widely accepted BLASTn

based approaches, and then leverage its computational efficiency to analyze genomic relat-

edness within and across species.

4.3.1 Benchmark Datasets

To test accuracy and speed, we evaluated FastANI on both high-quality closed genomes

from NCBI RefSeq database as well as publicly available draft genome assemblies. We

first removed poor quality genome assemblies with low N50 length (< 10 Kbp). In

total, five datasets were used, D1 through D5 (see Table 4.1). Dataset D1 is the set

of closed prokaryotic genomes downloaded from RefSeq database. Datasets D2, D3,

and D4 include draft genome assemblies of isolates of Bacillus cereus s.l., Escherichia

coli, and Bacillus anthracis, respectively, downloaded from the prokaryote section of the

NCBI Genome database. Dataset D5 includes a recently published large collection of

metagenome-assembled genomes (MAGs) [154]. These sizable datasets represent genomes

showing different levels of identity among themselves and varying values of completeness

and assembly quality (Figure 4.2). For each dataset, one genome was selected as the query

genome and its ANI was computed with every genome in the complete dataset. In all cases

except in D1, query genome strains were selected randomly.
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Table 4.1: Datasets used for testing accuracy and speed of FastANI.

Id Reference clade No. of
Genomes

Median N50
(Mbp)

Query Genome

D1 NCBI RefSeq 1,675 3.14 E. coli K-12 MG1655
D2 Bacillus cereus s.l. 570 1.16 B. anthracis 52-G
D3 Escherichia coli 4,271 0.15 E. coli 0.1288
D4 Bacillus anthracis 464 0.59 B. anthracis 2000031001
D5 MAGs [154] 7,897 0.04 Acinetobacter sp. UBA6007
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Figure 4.2: N50, genome-length and completeness distribution for the five datasets D1-
D5 is shown using boxplots. Genome completeness was estimated using the presence of
marker genes in CheckM (v1.0.3) [155]. All five datasets exhibit different assembly N50
and length characteristics. As expected, majority of genomes in datasets D1-D4 (isolates)
are complete, whereas metagenome-assembled genomes (MAGs) in the D5 dataset have
low completeness.
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4.3.2 Accuracy Evaluation

We evaluated FastANI against the BLASTn based method [77] of computing ANI, hence-

forth referred as ANIb, and the ANI values predicted by the Mash [82] (v1.1) tool. User

documentation for Mash recommends using larger sketch size (i.e., k-mer sample) than the

default to obtain higher accuracy [82]. Accordingly, we ran Mash with both the default

sketch size of 1K as well as increase it up to 100K.

FastANI achieves near perfect linear correlation with ANIb on all datasets D1-D5 (Fig-

ure 4.3, Table 4.2). Mash results improve with increasing sketch size, particularly for D1.

However, even when executed with the largest sketch size of 100K, Mash results diverge

from ANIb values on datasets D1, D3 and D4. For D1, this primarily appears to be caused

by divergent genomes (e.g., showing < 90% ANI). For D3, Mash diverges on closely re-

lated genomes due to fragmented and incomplete genome assemblies of the draft genomes.

Dataset D4 is challenging because its constituent genomes are closely related strains of

Bacillus anthracis, with ANIb > 99.9 for all the pairs. FastANI provides much better pre-

cision than Mash in D4 dataset, and therefore, can be used to discriminate between very

closely related microbial strains such as those of different epidemic outbreaks. However,

for two genomes out of the 464, FastANI estimates are diverging from ANIb. To investi-

gate further, we visualized gene synteny pattern using Mauve [156] and found that these

two genome sequences have many re-arrangements with respect to the query genome (Fig-

ure A.1). Given that B. anthracis strains typically show high genome synteny [157], these

results indicate that the two genomes were poorly assembled. Incorrect data will yield

unpredictable results not only with FastANI but using any method that assesses genetic re-

latedness, including phylogeny-based methods. If the two incorrect B. anthracis assemblies

are removed, FastANI’s correlation with ANIb improves to 0.944 in D4.

These correlation results demonstrate that FastANI provides significant quality im-

provement over Mash (see Table 4.2), and can be a reasonable substitute for ANIb. Al-

though this experiment was conducted with single query genome per dataset, increasing
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Figure 4.3: Plots showing how FastANI and Mash-based ANI (sketch size = 105) output
correlate with ANIb values for datasets D1-D5. Because FastANI assumes a probabilistic
identity cutoff that is set to 80% by default, it reports 76, 570, 4,271, 464 and 130 genome
matches for the individual queries in datasets D1-D5 respectively. To enable a direct quality
comparison against FastANI, Mash is executed for only those pairs that are reported by
FastANI. Notice that each dataset encompass a different nucleotide identity range (x-axes).
Gray line represents a straight line y = x plot for reference. Pearson correlation coefficients
corresponding to these plots are listed separately in Table 4.2. Last plot shows error of these
methods w.r.t. ANIb using all five datasets.

the count of query genomes did not affect our conclusions (Figure A.2). Further, FastANI

estimates were accurate for draft genomes, in the range of 20%−100% completeness (Fig-

ure 4.4).

We also highlight the effect of genome completeness and contamination on FastANI’s

accuracy using simulated datasets (Figure 4.5). The completeness and contamination were

simulated by manipulating the read composition of E. coli str. O157-H7 prior to its as-

sembly, i.e., under-sampling the reads at various scales to induce incompleteness and

adding reads of Pseudomonads aeruginosa str. PAO1 to induce contamination. Degrees

of completeness and contamination were measured using the gene composition of assem-

bled genome. Results show that the contamination had almost no effect at all on FastANI’s
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Table 4.2: Comparison of FastANI and Mash-based ANI accuracy by measuring their Pear-
son correlation coefficients with ANIb values. Mash is executed with sketch sizes (-s):
1,000 (default), 10,000 and 100,000. FastANI achieves > 0.99 correlation with ANIb in
all cases but D4. Its correlation value on D4 improves from 0.681 to 0.944 if the two poor
assemblies present in D4 are not taken into account.

Dataset FastANI
Mash

-s 103 -s 104 -s 105

D1 0.995 0.594 0.932 0.935
D2 0.999 0.996 0.997 0.997
D3 0.995 0.944 0.944 0.944
D4 0.681 -0.040 0.003 0.010
D5 0.998 0.634 0.997 0.999
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Figure 4.4: FastANI’s aggregate accuracy and error characteristics based on datasets D1-
D5. Upper left plot shows the FastANI and ANIb correlation. The remaining three plots
show differences between FastANI and ANIb value versus reference genome assembly
quality (N50 and genome completeness) and the number of reciprocal fragments that
matched between query and reference genome for each comparison. Overall, these re-
sults show no significant biases associated with these factors. In the bottom-right plot, we
observe that the difference is relatively higher when there are few reciprocal fragments,
which typically happens for distant genomes (i.e., ANI close to 80%).
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Figure 4.5: FastANI’s accuracy evaluation using simulated datasets. Levels A to M in Panel
A indicate decreasing genome completeness and increasing contamination. For each com-
bination of completeness and contamination, FastANI’s accuracy with respect to BLAST-
based ANI (ANIb) is presented. Panels B-D show FastANI’s deviation from ANIb when
computing ANI between the simulated E. coli str. O157-H7 genome against the refer-
ence genomes of E. coli str. O157-H7 genome (ANI=100%), E. coli str. K12 genome
(ANI=97.8%) and E. fergusonii genome (ANI=90.9%) respectively. Missing (blank) val-
ues are those that FastANI failed to estimate due to insufficient hits.

output quality, except when there was also a very low completeness. Also, when complete-

ness was > 50% there was basically no effect, but around 20% completeness and below,

the estimate became unreliable which is likely true for BLAST-based ANI as well. This im-

plies that FastANI can tolerate variable assembly quality, completeness and contamination.

Most importantly, it correlates well with ANIb in the desired identity range of 80%−100%.
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4.3.3 Computational Speedup

FastANI is designed to efficiently process large assembly datasets with modest compute

resources. For FastANI’s sequential and parallel runtime evaluation, we used a single com-

pute node with two Intel Xeon E5-2698 v4 20-core processors. First we show runtime

comparison of FastANI and ANIb using serial execution (single thread, single process) us-

ing all datasets in Table 4.3. FastANI operation consists of indexing phase followed by

compute phase, for which we measured the runtime separately. For any database, indexing

all the reference genomes needs to be done only once, and thereafter, FastANI can com-

pute ANI estimates for any number of input query genomes against the reference genomes.

Therefore, speedup in Table 4.3 is measured with respect to FastANI compute time. We

observe that the runtime improvement due to FastANI varied from 50x for D3 to 4608x

for D5. FastANI speed-up is much higher on D1 and D5 because these datasets contain a

diverse set of prokaryotic genomes. This is attributable to the fact that the algorithm under-

lying FastANI is able to prune distant genomes (ANI� 80%) efficiently. On the contrary,

ANI values for all genomes in datasets D2-D4 were high (> 80%). Note that replacing

BLASTn with faster alignment software in ANIb does not improve its performance signifi-

cantly. A recent survey of ANI methods [79] reported speedups of only up to 4.7x by using

Usearch [80] and MUMmer [81].

To accelerate ANI computation even further, FastANI can be trivially parallelized using

multi-core parallel execution. One way to achieve this is to split the reference genomes in

several equal-size parts. This way, each instance of FastANI process can search query

genome(s) against each part of the reference database independently. We utilized this

scheme and evaluated scalability using up to 80 FastANI parallel processes. Compared

to the sequential execution time listed in Table 4.3, runtime of the compute phase reduced

to 2, 8, 46, 6 and 1 second for datasets D1-D5 respectively (Figure 4.6). These results con-

firm that FastANI can be used to query against databases containing thousands of genomes

in a few seconds.
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Table 4.3: Comparison of execution time of FastANI versus ANIb. Speedup in the last
column is measured as the ratio of ANIb’s runtime and FastANI’s compute time.

Dataset
FastANI

ANIb (sec) Speedup
Indexing (sec) Compute (sec)

D1 468.2 16.76 13,113 782x
D2 195.7 264.8 18,155 69x
D3 1,538 1,981 99,317 50x
D4 128.8 214.5 11,051 52x
D5 2,784 14.88 68,571 4608x
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Figure 4.6: Scaling results of FastANI’s execution time using datasets D1-D5 on a compute
node with 40 physical cores. We executed parallel FastANI processes where each process
was assigned an equal sized random part of the reference database for computing ANI.
Left and right plots evaluate FastANI’s compute and indexing phase, respectively. FastANI
achieves reasonable speedups on all datasets except the compute phase in D1 and D5, as
their runtime on a single core is too small to begin with (Table 4.3).

For the above experiments, FastANI required a maximum 62 GB memory for D5, our

largest dataset for this experiment. For databases much larger than D5, peak memory usage

can be reduced by either distributing the compute across multiple nodes in a cluster or

processing chunks of the reference database one by one, as necessary.

4.3.4 Large-scale Pairwise Comparison Indicates Genetic Discontinuity

We examined the distribution of pairwise ANI values between all 91,761 prokaryotic as-

semblies that existed in the NCBI Genome database as of March 15, 2017. Prior to analysis,

we removed 2,262 genomes due to short N50 length (< 10 Kbp). In our evaluation, the ANI
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Figure 4.7: a. Histogram plot showing the distribution of ANI values among the 90K
genomes. Only ANI values in the 76-100% range are shown. Out of total 8.01 billion
pairwise genome comparisons, FastANI reported only 17M ANI values (0.21%) with ANI
between 83% and 95% indicating a wide genetic discontinuum. Multiple colors are used to
show how genomes from different genera are contributing to this distribution. Few peaks
in the histogram arise from genera that have been extensively sequenced and dominate
the database. b. Density curves of ANI values in the ANI range 76-100%. Each curve
shows the density curve corresponding to the database at a particular time period. Wide
discontinuity in all four curves is observed consistently. c. Distribution of ANI values
with each comparison labeled by the nomenclature of genomes being compared. All the
comparisons between Escherichia coli and Shigella spp. have been labeled separately. The
95% ANI threshold on x-axis serves as a valid classifier for comparisons belonging to same
and different species.
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between each pair of genomes A and B is computed twice, once with A as query genome

and again with B as query genome. This choice did not meaningfully alter the ANI value

reported by FastANI unless the draft genomes are incorrectly assembled or contaminated.

Computing pairwise ANI values for the entire database took 77K CPU hours for all 8.01

billion comparisons. To our knowledge, this is the largest cohort of genomes for which

ANI has been computed. In comparison, the largest previously published ANI analysis in-

cluded 86 million comparisons and took 190K CPU hours [149]. Among the total of 8.01

billion pairwise comparisons, 679,765,100 yielded ANI values in the 76-100% range. The

distribution of these ANI values reveals a clear and wide discontinuity in the identity range

of 83-95% (Figure 4.7a). FastANI reported only 17,132,536 ANI values (i.e., 2.5% of the

679,765,100 pairs) within the range of 83% to 95%. When performing this analysis using

Mash, the bimodal distribution of ANI values was persistent (Figure A.3).

The frequency of intra- vs. inter-species genomes sequenced in the NCBI database

has changed over time, with earlier sequencing efforts targeting distantly related organisms

in order to cover phylogenetic diversity while efforts in more recent years targeted more

closely related organisms for micro-diversity or epidemiological studies. We confirmed

that discontinuity pattern has been maintained at different time points in the past (Figure

4.7b). In previous taxonomic studies, 95% ANI cutoff is the most frequently used standard

for species demarcation. Density curves in the figure show that the two peaks consistently

lie on either side of the 95% ANI value.

To further test the validity of the hypothesis that 95% ANI score can demarcate species

boundaries, we examined correlation between standing nomenclature and the 95% ANI-

based demarcation. As per this standard, we should expect a pair of genomes to have

ANI value ≥ 95% if and only if both genomes are classified as same species in the ex-

isting taxonomy. From the complete set of 89,499 genomes, we identified the subset for

which we could determine the named species for each genome. Whenever available (9%

of the total genomes), we recovered the links to NCBI taxonomy to determine the species.
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For the remainder of the genomes, we inferred the species from the organism name given

in the GenBank file, excluding all entries with ambiguous terms (sp, cf, aff, bacterium,

archeon, endosymbiont), resulting in the species-wise classification of an additional 78%

of the genomes. The remainder 13% of the genomes lacked clear nomenclature and hence

could not be reliably assigned to a named species for the purpose of this test.

We evaluated the distribution of ANI values in comparison to the named species that the

corresponding genomes were assigned to (Figure 4.7c). The ≥ 95% ANI criterion reflects

same named species with a recall frequency of 98.5% and a precision of 93.1%. We fur-

ther explored the values affecting precision, i.e., 6.9% of ANI values above 95% that were

obtained for genomes assigned to different named species. Among those, 5.6% are due

to comparisons between Escherichia coli and Shigella spp., a case in which the inconsis-

tency between taxonomy and genomic relatedness is well documented [145] (highlighted

in green in Figure 4.7c). The remaining 1.3% of the cases mostly exist within the Mycobac-

terium genus (0.5%), which includes a group of closely related named species as part of

the M. tuberculosis complex such as M. tuberculosis (reference), M. canettii (ANI 97-99%

against reference), M. bovis (ANI 99.6%), M. microti (ANI 99.8-99.9%), and M. africanum

(ANI 99.9%), among others. An additional 0.2% of the cases correspond to comparisons

between Neisseria gonorrhoeae and N. meningitidis, two species with large representation

in the database and ANI values close to 95% (Inter-quartile range: 94.9-95.2%). Excluding

the cases of E. coli vs. Shigella spp. alone, precision increases to 98.7%. With both recall

and precision values ≥ 98.5%, these results corroborate the utility of ANI for species de-

marcation, which is consistent with previous studies based on a much smaller datasets of

genomes [71, 75, 158, 149].

4.3.5 Weighing the Cultivation Bias

The genetic discontinuity was apparent even when the species with large count of se-

quenced representatives such as pathogenic bacteria of human or animal hosts were it-
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eratively removed from the analysis (Figure A.4), or when genomes were randomly drawn

with species-dependent probabilities that ensured equal representation of highly sampled

and sparsely sampled species in the final set (Figure A.5). To account for the possible influ-

ence of cultivation bias on our conclusions, we sampled five genomes from each of the 750

named species with ≥ 5 genomes present in the database. Even though the percentage of

the inter-species pairs remains small within the 83-95% valley range (0.2%), discontinuity

appears to be less pronounced (Figure A.5). The latter was attributable to the fact that sev-

eral highly sampled species have closely related species (of “intermediate” identity) that

include relatively fewer sequenced representatives; thus, subsampling the genomes of the

former species affected more the frequency of ANI values in the 95-100% relative to the

83-95% range.

The above results might indicate that cultivation biases could have accounted, at least

in part, for the wide discontinuity observed. Cultivation biases could include, for instance,

a historical tendency to preserve the isolates that meet the known/expected phenotypic

criteria of the species and discard the remaining ones, which could represent “outlier” or

“intermediate” genomes in terms of phenotypic and genetic similarity, or biases of the

cultivation media and conditions against such “intermediate” genomes. However, given

that these highly sampled species represent several distinct major prokaryotic lineages,

it is likely that the discontinuity represents a real biological signature and is not driven

by cultivation or other biases (or the latter should have been uniformly applied to several

different isolation procedures and lineages of the highly sampled species and their close

relatives). It is also important to note that these results are consistent with cultivation-

independent metagenomics analysis of natural microbial communities, which have showed

that the communities are composed of predominantly sequence-discrete populations [159].

Moreover, the discontinuity pattern observed using the collection of 8,000 MAGs recovered

from different habitats (Figure 4.3, D5) is remarkably similar to the discontinuity observed

among isolate genomes (Figure 4.7).
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The biological mechanisms underlying this genetic discontinuity are not clear but should

be subject of future research for a more complete understanding of prokaryotic species.

The mechanisms could involve a dramatic drop in recombination frequency around 90-

95% ANI, which could account for the discontinuity if bacteria evolve sexually [160],

ecological sweeps that remove diversity due to competition [161, 162], or stochastic neu-

tral processes [163, 164]. A genomic nucleotide diversity of 5-10% translates to tens of

thousands of years of evolution time, which provides ample opportunities for ecological or

genetic sweeps to occur. Nonetheless, the existence of genetic discontinuity among 90K

genomes represents a major finding that can help define species more accurately and has

important practical consequences for recognizing and communicating about prokaryotic

species.

4.4 Summary

FastANI accurately estimates ANI values between both complete and draft genomes while

reducing the computing time by two to three orders of magnitude. We leveraged the com-

putational efficiency offered by FastANI to evaluate the distribution of ANI values in a

set of over 90,000 genomes, and demonstrate that genetic relatedness discontinuity can be

consistently identified among these genomes around 95% ANI. This discontinuity is re-

covered with or without the most frequently represented species in the database, is robust

to historic additions in the public databases, and it represents an accurate threshold for de-

marcating almost all currently named prokaryotic species. While this genetic discontinuity

has been observed previously [71, 75, 158, 149], the FastANI-based results reported here

show a sharper discontinuity while using a much larger set of genomes by at least an order

of magnitude.

As genome sequences from isolates, and more recently using metagenomics and single-

cell amplification are flooding public databases [46, 154, 165], FastANI provides a scalable

solution and a useful addition to the genomic toolkit. We expect FastANI to be useful for
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analysis of both clinical and environmental microbial genomes. It can be used for study-

ing the inter- and intra-species diversity within large collections of genomes, including

genomes showing various levels of completeness. It can also accelerate the study of the

novelty of new species or phenotypic similarity of a query genome sequence in comparison

to all available genomes. FastANI and Mash gave comparable ANI estimates for complete

genomes, but the advantages of FastANI for draft (incomplete), divergent (<90% ANI)

or highly related (>99.5% ANI) genomes are significant (Figure 4.3), and thus, FastANI

should be the preferable method.
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CHAPTER 5

COMPLEXITY OF READ TO GRAPH ALIGNMENT

Aligning reads to graphs is becoming increasingly important in the context of several ap-

plications in computational biology. The sequence to graph alignment problem seeks the

best matching path in a graph G(V,E) for an input query sequence. In this chapter, we

study sequence to graph alignment problems under Hamming and edit distance models,

and linear and affine gap penalty functions, for multiple variants of the problem that allow

changes in query alone, graph alone, or in both. We prove that when changes are permitted

in graphs either standalone or in conjunction with changes in the query, the sequence to

graph alignment problem is NP-complete under both Hamming and edit distance models

for alphabets of size ≥ 2. These results improve upon previous hardness results which

assume an alphabet of size ≥ |V | [107]. On the other hand, it is known that the align-

ment problem is polynomially solvable when changes are allowed on the query sequence

alone [107, 108]. Based on the recently discovered lower bounds, it is unlikely that the

best existing polynomial time algorithms can be further improved. See Figure 5.1 for an

overview.

5.1 Preliminaries

Let Σ denote an alphabet, and x and y be two strings over Σ. We use x[i] to denote the

ith character of x, and |x| to denote its length. Let x[i, j] (1 ≤ i ≤ j ≤ |x|) denote

x[i]x[i + 1] . . . x[j], the substring of x beginning at the ith position and ending at the jth

position. Concatenation of x and y is denoted as xy. Let xk denote string x concatenated

with itself k times.

Definition 5.1.1. Sequence Graph: A sequence graph G(V,E, σ) is a directed graph with

This chapter interpolates material from a paper by the author [108]
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Changes allowed in:

graph alone graph and query

Scoring method:

Hamming distance

Edit distance

Linear gap penalty

Affine gap penalty

query alone

(proved in this chapter) (known)

Figure 5.1: Complexity results for the read to graph alignment problem variants.

vertices V and edges E. Function σ : V → Σ+ labels each vertex v ∈ V with string σ(v)

over the alphabet Σ.

Naturally, path p = vi, vi+1, . . . , vj in G(V,E, σ) spells the sequence σ(vi) σ(vi+1) . . .

σ(vj). Given a query sequence q, we seek its best matching path sequence in the graph.

Alignment problems are formulated such that distance between the computed path and the

query sequence is minimized, subject to a specified distance metric such as Hamming or

edit distance. Typically, an alignment is scored using either a linear or an affine gap penalty

function. The cost of a gap is proportional to its length, when using a linear gap penalty

function. An affine gap penalty function imposes an additional constant cost to initiate a

gap.

5.2 Asymmetry of Edit Locations

An alignment between two sequences also specifies possible changes to the sequences (e.g.

substitutions, insertions, deletions) to make them identical, with alignment distance spec-

ifying the cumulative penalty for the changes. The changes can be individually applied

either to the first or the second sequence, or any combination thereof. Such a symmetry

is no longer valid when aligning sequences to graphs [107]. This is because alignments
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can occur along cyclic paths in the graph. If the label of a vertex in the graph is changed,

then an alignment path visiting that vertex k times reflects the same change at k different

positions in the alignment. On the other hand, a change in one position of the sequence

only reflects that change in the corresponding position in the alignment. As such, optimal

alignment scores vary depending on whether changes are permitted in just the sequence,

just the graph, or both (see Figure 5.2 for an illustration). This characteristic leads to three

different problems, with each potentially resulting in a different optimal distance.

Sequence:   AGAG
 
Graph:

AGAG

AGAG
or

Sequence I:    AGAG   
Sequence II:   ACAC

ACAC

ACAC

ACAC
or

AGAG

Input:

Alignment:

CA

CA GA

Figure 5.2: Asymmetry with respect to the location of changes in sequence to graph align-
ment illustrated using Hamming distance. Two substitutions are required in the sequence,
whereas just one is sufficient if made in the graph.

Consider the sequence to graph alignment problem under the Hamming or edit distance

metrics. For each distance metric, there are three versions of the problem depending on

whether changes are allowed in query alone, graph alone, or both in the query and graph.

Consider the decision versions of these problems, which ask whether there exists an align-

ment with≤ d modifications (substitutions or edits), as per the distance metric. Restricting

substitutions or edits to the query sequence alone admits polynomial time solutions [107,

20, 109]. In the pioneering work of Amir et al. [107] in the domain of string to hypertext

matching, it has been proved that the other problem variants which permit changes to graph

are NP-complete. The proofs provided in their work assume an alphabet size ≥ |V |. To

date, tractability of these problems remains unknown for the case of constant sized alpha-

bets (e.g., for DNA, RNA, or protein sequences). In what follows, we close this knowledge

gap by showing that the problems remain NP-complete for any alphabet of size at least 2.
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5.3 Alignment using Hamming Distance

Theorem 4. The problem “Can we substitute a total of ≤ d characters in graph G and

query q such that q will have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The problem is in NP . Given a solution, the set of substitutions can be used to

obtain the corrected graph and query. Next, we can leverage any polynomial time algo-

rithm [107, 20, 105] to verify if the corrected query matches a path in the corrected graph.

To show that the problem is NP-hard, we perform a reduction using the directed

Hamiltonian cycle problem. Suppose G′(V,E) is a directed graph in which we seek a

Hamiltonian cycle. Let n = |V |. We transform it into a sequence graph G(V,E, σ) over

the alphabet Σ = {α, β} by simply labeling each vertex v ∈ V with αn (Figure 5.3). Note

that the graph structure remains unchanged. Next, we construct query sequence q. Let to-

ken ti be the sequence of n characters αn−i−1βαi. We choose query q to be the n2(2n+ 2)

long sequence: (t0t1 . . . tn−1)2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if

and only if q can be matched after substituting a total of ≤ n characters in G(V,E, σ) and

q.

Suppose there is a Hamiltonian cycle in G′(V,E). We can follow the corresponding

loop in G(V,E, σ) from the first character of any vertex label. To match each token in

the query q, we require one α → β substitution per vertex. Thus, the query q matches

G(V,E, σ) after making exactly n substitutions in the graph.

Conversely, suppose the query q matches the graph G(V,E, σ) after making ≤ n

substitutions in the query and the graph. Consider the following substring qsub of q:

t0t1 . . . tn−1t0t1. Note that there are n + 1 non-overlapping instances of qsub in q. Even

if all the n substitutions occur in the query, at least one instance of qsub must remain un-

changed. As a result, qsub must match to a path in the corrected G(V,E, σ).

Case 1: qsub starts matching from the first character of a vertex label. Note that the first n

tokens qsub[1, n] = t0, qsub[n + 1, 2n] = t1, . . ., qsub[n2 − n + 1, n2] = tn−1 are all unique
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followed by qsub[n2 + 1, n2 + n] = t0. Therefore, this requires a Hamiltonian cycle in

G(V,E, σ). Accordingly, there is a Hamiltonian cycle in G′(V,E).

Case 2: qsub starts somewhere other than the starting position within a vertex label. Let

qsub[k] (1 < k ≤ n) be the first character that matches at the beginning of the next vertex

on the path matching q. Similar to the previous case, the following n sequences qsub[k, n+

k−1], qsub[n+k, 2n+k−1], . . . , qsub[n
2−n+k, n2 +k−1] are unique due to the spacing

between β characters in qsub. Therefore, the matching path must yield a Hamiltonian cycle.

Corollary 1. The problem “Can we substitute ≤ d characters in graph G such that q will

have a matching path in G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used in the proof of Theorem 4 can be trivially extended to prove the

above claim. Alternatively, we can simplify the proof by using the query sequence q =

(t0t1 . . . tn−1)
2 since only one instance of the substring qsub in q is needed for the subsequent

arguments. This is because substitutions in the query sequence are not permitted.

Using the above two results, we conclude that Hamming-distance based decision for-

mulations of sequence to graph alignment problems are NP-complete when substitutions

are allowed in graph labels, for |Σ| ≥ 2. In fact, it can be easily shown that |Σ| ≥ 2 reflects

a tight bound. Using |Σ| = 1, all the problem instances can be decided in polynomial time

using straightforward application of standard graph algorithms.

5.4 Alignment using Edit Distance

We next show that edit distance based decision problems that permit changes in graph labels

are NP-complete if |Σ| ≥ 2. Similar to our previous claims, allowing edits in the graph

makes the sequence to graph alignment problem intractable. Proofs used for Hamming

distance do not apply here as edits also permit insertions and deletions. Length of vertex

labels can grow or shrink using insertion and deletion edits respectively.
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q: (αααβ  ααβα  αβαα  βααα)10

α8 β8 α8

G'(V, E)

α4 α4

α4 α4

α8 β8 α8

α8 β8 α8 α8 β8 α8

(Theorem 1) (Theorem 2)

q: (α8αβ7 α8      α8 βαβ6 α8 
….α8β2αβ5 α8  α8 β3αβ4 α8)10

Figure 5.3: The constructs used for reductions in proofs of Theorems 4 and 5.

Theorem 5. The problem “Can we perform a total of ≤ d edits in graph G and query q so

that q will match in G?” is NP-complete for |Σ| ≥ 2.

Proof. Clearly the problem is in NP . We again use the directed Hamiltonian cycle prob-

lem for reduction. Given an instance G′(V,E) of the directed Hamiltonian cycle problem,

we design an instance G(V,E, σ) using Σ = {α, β}. Let n = |V |. Label each vertex v in

V using a sequence of 6n characters α2nβ2nα2n (Figure 5.3). Let token ti be a sequence of

length 6n: α2n βiαβ2n−1−i α2n. Using such tokens, we build a query sequence q of length

6n2(2n+ 2) as (t0t1 . . . tn−1)
2n+2. We claim that a Hamiltonian cycle exists in G′(V,E) if

and only if we can match the sequence q to the graph G(V,E, σ) using ≤ n total edits.

If there is a Hamiltonian cycle in G′(V,E), we can follow the same loop in G(V,E, σ)

to align q. The alignment requires one substitution per vertex. To prove the converse,

suppose query q matches graph G(V,E, σ) after making a total of ≤ n edits in q and

G(V,E, σ). Consider the substring qsub of q: t0t1 . . . tn−1t0. Note that there are n + 1

non-overlapping instances of qsub in q, at least one of which must remain unchanged. Ac-

cordingly, the substring qsub must match corrected G(V,E, σ).

For the token ti, let ki = βiαβ2n−1−i be its kernel sequence of length 2n. It follows

that ti = α2nkiα
2n. We show that a kernel must be matched entirely within a vertex in

G(V,E, σ) using the following two arguments. First, since any vertex label cannot shrink

from length 6n to < 5n, a kernel cannot be matched to an entire vertex after the edits. It
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implies that a kernel must match to ≤ 2 vertices. Second, if a kernel aligns across two

vertices, (2n−1) β’s must be required in place of α’s at the two vertex ends, thus requiring

> n edits. Therefore, a kernel can only be matched within a single vertex label. Finally,

it is easy to observe that any vertex label after ≤ n edits cannot be matched to more than

one kernel. When combining these arguments with the fact that all n consecutive kernels

in qsub are unique, we establish that the alignment path of qsub must follow a Hamiltonian

cycle in G(V,E, σ). Accordingly, there is a Hamiltonian cycle in G′(V,E).

Corollary 2. The problem “Can we perform ≤ d edits in graph G so that q will match in

G?” is NP-complete for |Σ| ≥ 2.

Proof. The setup used to prove Theorem 5 can be trivially extended to prove the above

claim.

It is straightforward to prove that other problem variants, e.g., with linear gap penalty or

affine gap penalty scoring functions are at least as hard as the edit-distance based formula-

tions. Therefore, the sequence to graph alignment problem remainsNP-complete even on

constant sized alphabets for these classes of scoring functions also if changes are permitted

in the graph. Finally, we note that all the above problems remain equally hard even for

planar sequence graphs of max-degree 3, similar to the Hamiltonian cycle problem [166].

5.5 Permitting Edits to Sequence Alone

Allowing changes to the query sequence alone makes the problem polynomially solv-

able [107]. Table 5.1 summarizes the latest algorithmic developments for this problem

while allowing edits to the query sequence alone. It is worth noting that the best algo-

rithm [108] achieves the same time complexity O(|V | + m|E|), as required for the easier

problem of partial order alignment, i.e., sequence alignment to acyclic graphs [104, 20, 12].

We next discuss whether there can exist faster algorithms for solving the sequence to

graph alignment problem, when permitting the edits to sequence alone. As noted by [109],
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Linear gap penalty Affine gap penalty
Edit distance Arbitrary costs

Amir et al. [107] O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|)) -

Navarro [20] O(m(|V |+ |E|)) - -

HybridSpades [91] O(m(|V | log(m|V |) + |E|)) O(m(|V | log(m|V |) + |E|)) -

V-ALIGN [167] O(m|V ||E|) O(m|V ||E|) O(m|V ||E|)
Rautiainen and
Marschall [109]

O(|V |+m|E|) O(m(|V | log |V |+ |E|)) O(m(|V | log |V |+ |E|))

Jain et al. [108] O(|V |+m|E|) O(|V |+m|E|) O(|V |+m|E|)

Table 5.1: Comparison of run-time complexity achieved by different algorithms for the
sequence to graph alignment problem when changes are allowed in the query sequence
alone. In this table, m denotes the query length, and V,E denote the vertex and edge sets
in a graph with character-labeled vertices respectively.

the sequence to sequence alignment problem is a special case of the sequence to graph

alignment problem because a sequence can be represented as a directed chain graph with

character labels. As a result, existence of either O(m1−ε|E|) or O(m|E|1−ε), ε > 0 time

algorithm for solving the sequence to graph alignment problem (for both acyclic or cyclic

graphs) is unlikely because it would also yield a strongly sub-quadratic algorithm for solv-

ing the sequence to sequence alignment problem, further contradicting SETH [151]. Equi et

al. [168, 169] prove that exact and approximate matching to graphs are equally hard prob-

lems under the SETH assumption. An implication of this result is that the sequence to

graph alignment problem is unlikely to have a faster ‘banded alignment’ solution [170], for

the problem variant where the count of edits allowed is an input parameter.

5.6 Summary

We prove that the sequence to graph alignment problem versions are NP-complete when

changes are allowed in the sequence graph, for any alphabet of size ≥ 2. The theoretical

results presented in this chapter enhance the fundamental understanding of the problem. In

the case of classic sequence to sequence comparison, the quadratic-time alignment algo-

rithms can account for errors or mutation events in reference. As it turns out, we lose this

privilege when reference is a graph.
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CHAPTER 6

ACCELERATING LONG READ ALIGNMENT TO GRAPHS

Given a variation graph in the form of a directed acyclic string graph (DAG), solving the

long read to graph alignment problem exactly using a sequential dynamic programming

algorithm takes quadratic time in terms of the graph size and read length, making it diffi-

cult to scale to high throughput DNA sequencing data. In this chapter, we propose the first

parallel algorithm for computing read to graph alignments that leverages multiple cores

and single-instruction multiple-data (SIMD) operations. We take advantage of the avail-

able inter-task parallelism, and provide a novel blocked approach to compute the score

matrix while ensuring high memory locality. Using a 48-core Intel Xeon Skylake pro-

cessor, the proposed algorithm achieves peak performance of 317 billion cell updates per

second (GCUPS), and demonstrates near linear weak and strong scaling on up to 48 cores.

It delivers significant performance gains compared to existing algorithms, and results in

run-time reduction from multiple days to three hours for the problem of optimally align-

ing high coverage long (PacBio/ONT) or short (Illumina) DNA reads to an MHC human

variation graph containing 10 million vertices.

6.1 Preliminaries

6.1.1 Problem Formulation

The classic sequence to sequence alignment problems for approximate matching are typ-

ically classified as either global, semi-global or local alignment. These problems can be

solved exactly using dynamic programming (e.g., using Needleman-Wunsh [172] or Smith-

Waterman [173] algorithms). Given a scoring scheme to reward matches and penalize

This chapter interpolates material from a paper by the author [171]
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mismatches, insertions and deletions, the alignment problems are formulated to compute

alignments that achieve maximum score. Similarly, when aligning a query sequence to a

variation graph, the problem is to identify the highest scoring alignment between the query

sequence and any path in the graph.

In this work, we focus on sequence to DAG alignment problem in local mode, i.e.,

computing local regions of similarity [173]. The proposed parallelization algorithm in

this paper generalizes to other alignment modes, but they are not discussed for brevity.

Following previous works [115, 15, 118, 119, 114], we consider variation graph as a DAG

G(V,E, σ), where function σ assigns each vertex a character from the alphabet set Σ =

{A,C,G, T} describing DNA bases. Naturally, any path p in the graph spells a DNA

sequence. Let q ∈ Σ∗ be a query sequence of length m.

Definition 6.1.1. Sequence to DAG Local Alignment Problem: Given a query sequence q

and a DAG G(V,E, σ), identify a path p in the DAG and a substring of q : q[i..j] s.t. the

optimal alignment score between q[i..j] and the sequence specified by p is maximum over

all possible choices for p, i, and j. In addition, report the corresponding alignment.

In cases when the query has multiple optimal alignments, we aim to output one of them.

Although the problem definition includes a single query sequence for convenience, we are

required to solve numerous instances of the problem, twice for each input sequence (count-

ing both the complementary DNA strands) in the set of reads being mapped.

6.1.2 Sequential Algorithm

Sequence alignment to DAGs is computed using dynamic programming (DP), essentially

by extending the Smith-Waterman algorithm to DAGs [20, 12]. Assume the DAGG is topo-

logically sorted. Suppose Ci,j denotes the highest score of an optimal alignment between

any suffix of q[1..i] and any path ending at vertex vj . Then, a sequential O(m(|V | + |E|))

time algorithm follows from the recurrence below:
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Figure 6.1: Example to illustrate difference between Smith-Waterman sequence to se-
quence alignment and sequence to DAG alignment procedures.

C0,j = 0

Ci,j = max



0

∆i,j

Ci−1,k + ∆i,j ∀k : (vk, vj) ∈ E

Ci,k −∆ins ∀k : (vk, vj) ∈ E

Ci−1,j −∆del

(6.1)

where ∆i,j denotes the score of a match/mismatch, and ∆ins and ∆del denote the insertion

and deletion penalties, respectively. The DP score matrix has a height of m+ 1 and width

of |V |. Note that score of each cell depends on cells in the previous row as well as cells to

the left in the same row. Once the location of optimal alignment in the matrix is known,

final base-to-base alignment is reported using a traceback procedure that follows the chain

of decisions made in computing the Ci,j’s. Similar to the Smith-Waterman algorithm, the

traceback begins at the highest scoring cell and proceeds until a cell with zero score is

encountered. The two cells with the zero and the highest score denote the start and the end

of an optimal alignment respectively.

88



6.1.3 Constraints on Design of Parallel Algorithm

The described sequential algorithm is similar to the Smith-Waterman algorithm, the only

difference being that each vertex can now have multiple neighbor vertices instead of just

one (Figure 6.1). This one difference, however, makes numerous parallelization strate-

gies [174, 175, 176, 177] developed for accelerating the Smith-Waterman algorithm either

inapplicable or inefficient for the sequence to DAG alignment problem. We list the chal-

lenges below:

1. Storing complete DP score matrix in memory is usually impossible with real input

data. In the Smith-Waterman algorithm, score matrix can be computed either one

column, row, or diagonal at a time. This is possible because storing one previous

column (or row) is sufficient as the DP progresses. However, vertices in the variation

graph can be connected to many (near and distant in topological order) predecessor

vertices, leaving row-wise computation as the only choice.

2. Unlike the Smith-Waterman algorithm, count of arithmetic operations required to

compute score for each cell Ci,j in a row is not uniform, and depends on in-degree of

vertex vj . This further makes SIMD-based intra-task parallelization challenging.

We present a new inter-task based parallelization approach that takes into account the

above constraints.

6.2 Proposed Parallel Algorithm

6.2.1 Graph Representation

Solving Recurrence (6.1) requires frequent access to graph vertices and edges. Therefore,

it is important that we spend as few CPU cycles as possible to access graph information

while computing scores. Variation graphs are highly sparse, in fact the edge to vertex ratio

is typically close to one [178]. Therefore, we choose the standard ‘compressed sparse
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row’ (CSR) format. It allows constant time access to adjacency list of any vertex. In this

format, we use three arrays: the first one of size |E| for contiguous storage of adjacency list,

another (|V |+1)-sized pointer array to mark start and end offsets for each vertex within the

adjacency list, and the last array of size |V | to store DNA character labels of each vertex.

6.2.2 A Three-Stage Algorithm

The proposed algorithm is designed to produce not only the optimal alignment scores, but

also the base-to-base alignments corresponding to them. The base-to-base alignments are

computed using a traceback procedure which requires access to the entire score matrix,

or an appropriate section of it. In most practical cases, the sizes of the score matrices

are too large to be able to completely store in memory. Therefore, we execute a three-stage

algorithm to keep the memory-usage low. The first two stages of the algorithm are executed

to identify starting and ending positions of the optimal alignments. In particular, the first

stage DP-fwd computes ending position of an optimal alignment for each read by executing

the DP to solve Recurrence (6.1). The second stage DP-rev solves the same DP in reverse

direction, i.e., from bottom to top to locate the starting positions of the optimal alignments.

Since score of a cell depends only on its current and previous row (Section 6.1.1), we only

need to keep two rows in memory. Hence, the two stages use low memory. Finally, the third

stage uses the starting and ending locations to recompute the corresponding section of the

score matrix, and executes a traceback to report the base-to-base alignments (Section 6.2.4).

This approach is similar to the one proposed by Huang et al. [179] to contain the memory

usage while computing local alignment between two sequences.

It may seem that the first two stages are exactly symmetric, but there is a caveat. If

there are multiple alignments with the best score, it may so happen that the second stage

reports the starting point of an alignment which is different from the one obtained in the

first stage. This can be avoided using a simple trick, which is to add an artificial score at

the known alignment end coordinate during reverse DP [179]. Using this, we ensure that
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the two stages return the two ends of an optimal alignment.

The first DP-fwd stage returns optimal score, ending position of an optimal alignment,

and optimally aligning strand of each input read. DP-rev stage only uses sequences cor-

responding to the optimally aligning read strands as its input. Figure 6.2 summarizes the

role of all three stages in the algorithm. Note that both DP-fwd and DP-rev stages compute

the entire DP matrix using the same recurrence relation, therefore designing a single par-

allel strategy suffices to accelerate them. We propose a parallel algorithm in the following

section.

DP-fwd 
Output: score, ending position 
and read strand of an optimal 
alignment for each read

DP-rev 
Output: optimal alignments’ 
starting positions

Traceback 
Output: base-to-base 
alignments

1.

2.

3.

Figure 6.2: Role of the three stages used in our algorithm.

6.2.3 Parallel Computation of the Score Matrix

Prior to describing full details, we give an overview of the algorithm. Both DP-fwd and

DP-rev stages compute the entire score matrix containing (m+ 1)× |V | elements for each

input sequence. Computing score matrices is highly compute-intensive, and consumes

most of the time in sequential as well as our parallel algorithm. The proposed algorithm is

inspired from previous optimization efforts targeted towards accelerating Smith-Waterman

alignment using SIMD instructions [180, 181]. Alignment of a single sequence is called

a task. We present an inter-task parallel algorithm to accelerate the matrix computation.
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In other words, rather than parallelizing the alignment of a single read, the algorithm pro-

cesses multiple reads simultaneously (Section 6.2.3). To compute each task, we can choose

to follow a naive sequential algorithm, essentially computing the scores row by row. How-

ever, it turns out that traversing O(|V |)-sized row buffers repeatedly makes the algorithm

memory-bound (Section 6.2.3). To address this issue, we subsequently introduce a new

blocking strategy that leverages a domain-specific property of variation graphs, and en-

hances memory access locality.

Inter-task parallelism

Our algorithm leverages inter-task parallelism by aligning multiple reads simultaneously.

Below, we discuss how to make use of multiple threads and SIMD instructions to realize

this efficiently:

Multi-threading We divide the input read set into batches that are individually scheduled

to different threads. Because runtime to align reads of different lengths varies, we use the

dynamic scheduling policy in OpenMP.

Vectorization Within each thread, we vectorize our implementation to process all reads in a

batch simultaneously (Figure 6.3a). Count of reads in a single batch is set to SIMD width to

keep all vector lanes busy. For instance, recent Intel R© Xeon R© Skylake processors support

AVX512 integer instructions (512 bit vectors). Therefore, depending on the requirement

of precision to compute scores (e.g., int8, int16 or int32), there is scope of 16-64x speedup

using vectorization. For each batch of reads, we convert read characters from AoS to SoA

format to ensure that we can load the read characters for one cell update using just one

vector load instruction. Suppose in-degree of vertex vj is δj , then computing Ci,j across

all vector lanes uses 10 + 4δj vector operations (using cmpeq, blend, set, max, and add;

not counting load and store) in our implementation. Finally, because read lengths within

a batch of reads can vary, we pad shorter reads with dummy characters to obtain uniform

lengths.
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(SIMD execution)

Reference graph

Reads

(a) Vectorization by using inter-task parallelism.

Reference graph

Reads

Reference graph

Reads

(b) Modifying sequential procedure of each task to enable blocking.

Load balancing Lengths of long reads tend to vary significantly in a single sequencing

run. Therefore, to avoid wasteful work due to padding, we sort the complete input read set

by their length before dividing them into batches. In this way, variation in the lengths of

adjacent set of reads is reduced. The sorting is done in decreasing order of read lengths to

make sure that processing of longer reads is initiated first.

Optimizing Precision Operating at lower precision (e.g., int16 vs. int32) yields higher

scope for parallelism using vector units. Note that the product of maximum input read

length and match parameter is an upper bound on the score value in all DP matrices. Based

on this value, the algorithm decides the required precision at runtime. Besides maximum

score, we also keep track of its column and row position during DP computation. The row

positions use the same precision as score values because they are bounded by maximum

read length. The column positions, however, can range from 1 to |V |, therefore they are

always operated using int32 precision.

In the above inter-task parallelization scheme, each individual task can still be executed
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using a naive sequential algorithm, essentially computing the scores row by row. Working

independently on individual reads gives us an advantage that there is no synchronization

needed across threads or vector-units, which favors both performance and programmability.

For each task, we need to maintain two score buffers for the current and previous rows.

The two buffers can be used inter-changeably, i.e., one for reading previous row and one

for computing current row. However, each of them uses O(|V |) memory, and does not fit

in cache. As shown later in results (Section 6.3), this issue limits scalability by making the

algorithm memory bandwidth bound due to frequent access to DRAM. We next describe

a blocked computation strategy which modifies the sequential procedure of each task to

resolve this issue.

Improving Memory Locality using Blocked Computation

We propose a blocked algorithm to compute the score matrix which significantly reduces

the average count of reads and writes to DRAM. The first step is to increase the granularity

by computing multiple rows rather than one row in a single horizontal sweep (Figure 6.3b).

For a subsequent horizontal sweep, we just need to preserve scores associated with the

last row of the current block. Next, while processing multiple rows in a single horizontal

sweep, we modify memory access pattern to ensure majority of accesses are cached. This

modification leverages a domain-specific topological property of the graphs.

In the variation graphs, we find that the fraction of vertices connected to ‘distant’ ver-

tices in the topological order is significantly small. More formally, let Bwidth be an appro-

priately chosen distance threshold, then the number of vertices in set V ′ = {vi : (vi, vj) ∈

E, j − i ≥ Bwidth} is much smaller compared to |V |, for even small values of Bwidth. In

our implementation for instance, we selected Bwidth = 8 as this value was appropriate for

various graphs tested empirically. This particular graph property is attributed to the fact that

> 99.9% of genetic variations in a human genome are either single nucleotide substitutions

or small insertions/deletions [19]. Such genetic variants mostly appear as small bubbles
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in the variation graphs. Large structural variants which would result in connecting farther

vertices occur at much less frequency. As a result, majority of vertices in variation graphs

are expected to have all their neighbors in near vicinity in the topological order. We next

show how to leverage this property to improve the memory access pattern.

In the blocked-procedure, suppose the count of rows processed in a single horizontal

sweep is denoted as Bheight. We use a small circular buffer of size Bheight · Bwidth for

temporary storage of scores while processing the Bheight rows (see Figure 6.3). Using this

buffer, score of a vertex vi is available while computing score of vj whenever j−i < Bwidth.

This modification ensures that majority of DRAM accesses are cached. To manage the

scores of ‘long-hopped’ vertices ∈ V ′, we use a separate buffer to save their scores for

subsequent access. This buffer is also small and manageable because |V ′| � |V |. In our

implementation, we set Bheight and Bwidth to 16 and 8 respectively as these values resulted

in the least memory latency and best performance during execution (further discussed later

in Results section).

(Last row buffer)

Reference graph
‘long-hop’

Block

Figure 6.3: Visualizing a section of DP matrix to illustrate different memory accesses oc-
curring using the blocked approach. Blocking improves memory locality because majority
of accesses (red arrows) occur within the circular Bwidth ×Bheight block buffer.
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6.2.4 Computing Base-to-Base Alignments

The first two stages output the starting and ending alignment coordinates of each read.

In the third stage, we recompute the enclosed section of the score matrix to execute the

final traceback. Note that the coordinates of the optimal alignments of each read vary.

Therefore, different matrix columns need to be computed for each read. This implies that

we cannot re-use the inter-task SIMD parallelism that is developed for the first two stages.

However, each of these tasks can still be executed independently using multi-threading. In

this stage, we preserve the computed scores in memory. Because read alignments can hop

through long edges (w.r.t. the topological vertex order) in the graph, even the score sub-

matrices can be large. To reduce memory usage by a factor of four, we save the matrix using

differences between adjacent rows instead. This helps because maximum absolute value of

the differences (Ci,j − Ci−1,j) is bounded by the sum of match and gap parameters [37],

and can be saved as 8-bit integer values. We note that it is possible to extend alternate

approaches to graphs such as Hirschberg’s divide and conquer algorithm [182] or external

memory algorithms [183] which use less memory, but they require more computation time

in practice. Finally, the algorithm finishes after computing base-to-base alignments by

tracing the paths associated with the respective optimal alignments of the input reads.

6.3 Results

We refer to the C++ implementation of our parallel sequence to graph alignment algorithm

as PaSGAL. This section provides details of the experimental setup, performance char-

acteristics of PaSGAL, and advantages of the proposed optimizations. Subsequently, we

demonstrate significant performance gains compared to existing read to graph aligners.
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Table 6.1: Summary of input graphs and read sets used for evaluation. First three columns
show input graphs and their sizes while the remaining columns show characteristics of
simulated read sets.

Reference
graph # vertices # edges Read set Mean length

(bp) Coverage # reads

L1 100 30x 317 606
LRC 1 099 856 1 144 498 L2 9882 30x 3214

L3 24 871 30x 1277

MHC1
MHC2

5 138 362
10 618 991

5 318 019
10 698 615

M1 100 10x 497 046
M2 10 060 10x 4941
M3 24 877 10x 1998

6.3.1 Experimental Setup

Data-sets

We used three input graphs and multiple read sets for evaluating PaSGAL (Table 6.1).

Variation Graphs Leukocyte Receptor Complex (LRC) and Major Histocompatibility

Complex (MHC) regions are among the most diverse variant hot-spots, spanning about 1.06

Mbp and 4.97 Mbp of the human genome [15, 178], respectively. We leveraged existing

tools to build variation graphs using real public data. The first two graphs, labeled as LRC

and MHC1 were built using the vg toolkit [16]. We supplied human genome (GRCh38)

and variant files from 1000 genome project [19] as input to vg. The variant files constitute

small-scale variations (≤ 50 bp) in genomes of 2504 individuals. To also evaluate using

more complex graphs, we used a second MHC variation graph (MHC2) from a previous

study [84], which also includes large structural variations.

Read Sets Multiple sequencing read sets of different characteristics were simulated from

the LRC (L1-L3) and MHC (M1-M3) regions in the human genome (GRCh38) (Table 6.1).

These read sets are representative of outputs produced using different technologies, lengths,

and error characteristics. We used mason2 [184] and pbsim [185] tools to simulate single-

end short Illumina and long noisy PacBio reads respectively. Sampling was done at 30x and
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10x coverage from the LRC and MHC regions respectively. Because Illumina sequencers

produce fixed-length short reads, L1 and M1 data sets contain uniform length reads of size

100 bp. On the contrary, long read technologies produce noisy reads of variable lengths;

therefore L2-M2 and L3-M3 were sampled using mean read length 10 Kbp and 25 Kbp

respectively. The minimum length, maximum length and mean error-rate parameters were

set to 1 Kbp, 30 Kbp and 15% respectively during simulation. The match score, and mis-

match, insertion, and deletion penalties were all set to 1. For each input read, the alignment

program considers both complementary DNA strands, and outputs an optimal alignment to

the input graph.

Hardware/Software Description

Unless otherwise mentioned, all our experiments used a single node consisting of Intel R©

Xeon R© Platinum 8160 (Skylake) processor in Stampede2 cluster located at Texas Ad-

vanced Computing Center. Each node is equipped with 192 GB RAM and two sockets,

each containing 24 cores. Peak memory bandwidth of a node is 220 GB/s spread over

two NUMA domains, one on each socket. These nodes operate at base frequency of 2.1

GHz, although frequency can vary due to turbo boost feature. Skylake platforms support

AVX512 (512 bit) vector processing for 8-bit, 16-bit, and 32-bit integer operations.

PaSGAL was compiled using Intel R© compiler (v18.0.2). We used OpenMP for multi-

threading and hand-written SIMD intrinsics for vectorization.

Measurements

In all experiments, we measured runtime of the main alignment routine, and ignored pre-

processing time, i.e., the time spent to load the input and converting graph into CSR for-

mat (Section 6.2.1). Loading and pre-processing the input in PaSGAL took an insignificant

fraction of time (< 1%). For all multi-threaded executions, we mapped a single thread to a

single physical core.
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6.3.2 Performance Results

Time to Solution

We first show the time to solution using PaSGAL for all nine input combinations in Ta-

ble 6.2 using 48 threads. PaSGAL makes efficient use of multiple cores as well as vector

units within each core to achieve fast time to solution. Using PaSGAL, we aligned 30x

coverage read sets (L1-L3) to the LRC graph in < 15 minutes. For the larger MHC1 graph,

10x coverage read sets (M1-M3) were aligned in < 1.5 hours. Finally, the largest graph

MHC2 took the longest time of 1.5 to 3.5 hours.

Table 6.2: Performance evaluation of PaSGAL using all the test data sets.

Reference graph LRC MHC1 MHC2
Read set L1 L2 L3 M1 M2 M3 M1 M2 M3

Total time (s) 358 650 824 2592 4325 4963 5481 9218 11 580

DP-fwd time (%) 62 56 49 63 62 57 62 60 51
DP-rev time (%) 36 34 31 37 36 38 37 36 35

Traceback time (%) 2 10 20 1 2 5 1 5 14

Memory usage (GB) 7 8 34 34 33 34 88 88 142

We also show the performance achieved for score matrix computation as billion cell up-

dates per second (GCUPS), the standard metric to evaluate Smith-Waterman algorithms (Fig-

ure 6.4). The GCUPS metric indicates the count of score matrix cells that are computed in

a second, therefore higher is better. PaSGAL achieved peak performance of 317 GCUPS

using the LRC/L1 input. To our knowledge, this is the highest performance achieved till

date when aligning sequences to DAGs. Note that short read alignment (L1 and M1) was

consistently fastest for all the three graphs because PaSGAL selects the required SIMD

precision level based on the input read length (Section 6.2.3). For L1 and M1, 8-bit preci-

sion is sufficient as read length is only 100. On the other hand, the other read sets require

16-bit precision.

Large count of reads in an input set ensures that all the vector lanes do useful work, thus
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Figure 6.4: Performance achieved during DP-fwd and DP-rev stages of PaSGAL measured
in billions of cell updates per second (GCUPS).

DP-fwd and DP-rev stages of the algorithm achieve high efficiency. We also note that the

GCUPS performance numbers for forward DP are relatively higher compared to reverse

DP. Even though the recurrences computed in DP-rev and DP-fwd stages are identical,

DP-rev requires additional logic to ensure that it reports the end point of the same optimal

alignment that was identified by the DP-fwd stage for each read (Section 6.2.2).

Finally, we also include a break-down of the total execution time into time spent in

the three individual stages DP-fwd, DP-rev, and traceback (Table 6.2). Even though the

traceback phase is not vectorized, time to compute the two end points of optimal alignments

using the DP-fwd and DP-rev stages still took majority of the time. This is because during

the traceback stage, we are only required to compute a small portion of the score matrix.

Load balance

Unlike short reads, long read lengths tend to vary significantly, therefore splitting the work

equally can be challenging in an inter-task parallel approach. In PaSGAL, we address this

issue by sorting the reads by their lengths and adopting dynamic scheduling policy (Sec-

tion 6.2.3). We measured individual timings on 48 threads for all three stages of the al-

gorithm. In Figure 6.5, we report ‘load imbalance ratio’ which is equal to maximum time
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divided by average time on all threads. Ideally, this ratio should equal one. We observe

that this ratio is below 1.5 for all data sets. Better load balance is achieved for short read

sets (L1, M1) relative to long reads, owing to their uniform lengths. Further, better load

balance is observed for DP-fwd stage relative to DP-rev stage. DP-fwd stage processes

both strands of DNA sequences, where as DP-rev only processes one, reducing its input

size by half (Section 6.2.2). The sorting approach is inherently more effective with higher

read counts (Section 6.2.3).
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Figure 6.5: Load imbalance observed in PaSGAL using all test data sets while using 48
threads.

Benefits of Proposed Optimizations

We next verified performance gains from the two optimizations – blocked strategy (Sec-

tion 6.2.3) and vectorization (Section 6.2.3) used to accelerate the score matrix computa-

tion in DP-fwd and DP-rev stages, which account for majority of the time spent. We also

collected critical performance counter numbers (e.g., memory latency, bandwidth etc.) us-

ing Intel R© VTune R© Amplifier tool. VTune profiling requires the experiments to be short to

avoid counter overflow. Therefore, we used a small simulated short-read set from the LRC

region, adding to 12,288 reads of length 96 bp, and aligned them to the LRC graph.

Blocked approach Goal of the blocked approach is to remove memory access bottlenecks

due to frequent access to DRAM (Section 6.2.3). PaSGAL uses default block width (Bwidth)
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and height (Bheight) values of 8 and 16 respectively. Using 48 threads and vectorized ex-

ecution, we analyzed benefit of this approach by manipulating block dimensions from 1

to 32 (see Table 6.3). Note that using block height of one is equivalent to computing the

score matrix one row at a time. The results support that the blocked approach succeeds in

improving runtime by reducing memory latency, LLC (last-level cache) misses and DRAM

bandwidth. This is because majority of reads and writes occur in the smallBwidth×Bheight-

sized block. Each cell in the block is a SIMD register of size 64 bytes, therefore total stor-

age memory equals 8 KB, making it small enough to fit in L1 cache memory (capacity=32

KB) of all cores.

Table 6.3: Significance of using blocked approach.

(a) Performance analysis while increasing block height from 1 to 32, while keeping width fixed to the default
value of 8.

Block height 1 4 8 16 32
Time (s) 40.9 11.1 8.4 7.8 8.0
Avg. memory latency (cycle) 27 8 7 7 8
LLC miss count (×106) 632.3 14.4 1.4 0 3.6
Avg. DRAM bandwidth (GB/s) 189.3 176.3 125.1 71.7 35.5

(b) Performance analysis while increasing block width from 1 to 32, and keeping height fixed to the default
value of 16.

Block width 1 4 8 16 32
Time (s) 32.5 7.9 7.8 7.8 7.9
Avg. memory latency (cycle) 13 7 7 7 7
LLC miss count (×106) 44.6 0.5 0 0 0
Avg. DRAM bandwidth (GB/s) 177.2 69.8 69.6 70.8 70.6

Vectorization Using Figure 6.6, we show the benefit of vectorization in PaSGAL by com-

paring it to our sequential scalar code, which computes score matrix sequentially in a row-

wise manner. To isolate the benefit of vectorization and the enhanced memory locality,

we executed this experiment using single thread only. Here we also experimented with

three precision levels for integer instructions (8-bit, 16-bit and 32-bit). The plot shows

that vectorization coupled with improved memory locality resulted in up to 58.7x speedup

compared to the scalar code.

102



scalar
(naive)

int32 int16 int8

Precision

100

101

102

103

104

105

Ti
m

e 
(s

)

1.0x

17.9x 33.7x 58.7x

Figure 6.6: Performance improvement in PaSGAL obtained using improved memory local-
ity and vectorization supporting different precision levels. This experiment was executed
using a single thread.

Scalability

The combination of our efficient vectorization strategy and blocking algorithm drive the

high-performance in PaSGAL. These optimizations also helped us achieve near-linear strong

scaling and weak scaling results going from 1 to 48 cores. The Skylake processors in

Stampede2 use turbo technology, thus making scaling studies less reliable. Therefore, we

conducted our scaling experiments on a different Skylake CPU (Intel R© Xeon R© Platinum

8180) with turbo technology disabled. In the two scaling experiments, we aligned L1-L3

read sets to the LRC graph, and report scaling behavior of the DP-fwd stage and overall

runtime separately.

Strong scaling Using the strong scaling experiment, we study the ability of our algorithm

to compute the alignment problem faster with increasing core counts. Using 48 cores,

the total runtime was reduced by 47x, 41x and 38x for the read sets L1, L2 and L3 re-

spectively (Figure 6.7). Speedup factors for the DP-fwd stage were roughly similar- 47x,

43x and 40x respectively. Short read set (L1), in particular delivered close to ideal scal-

ing behavior because of following two reasons- a) read count in L1 is very high, thus all

SIMD lanes were busy doing useful work throughout the execution, and b) read lengths

are uniform, therefore there was no overhead from load imbalance (Section 6.3.2). We
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also evaluated the scaling behavior of the DP-fwd stage by manipulating the block dimen-

sions (Figure 6.8). Results reveal that the blocked approach is critical for the near-linear

speedups achieved.
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Figure 6.7: Strong scaling: Speedup achieved using PaSGAL with increasing core count
relative to its single-core execution time. Left plot shows speedups achieved for the DP-fwd
stage whereas right plot shows the overall speedup.
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Figure 6.8: Illustration of how scaling behavior varies using different block sizes. Default
values for block width and height were set to 8 and 16 respectively. We aligned the 96-bp
short read set (Section 6.3.2) to the LRC graph in this experiment.

Weak scaling In the weak scaling experiment, we maintained size of input read set pro-

portional to core count. This metric measures the ability of an algorithm to handle larger

input sizes given more resources. Therefore, an ideal weak scaling behavior translates to
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constant execution time regardless of core count. To conduct this experiment using 1 to 48

cores, we re-simulated read sets with coverage proportional to core counts (i.e., 30x for 48

cores, 15x for 24 cores etc.). Results show that nearly uniform runtime was achieved going

from 1 to 48 cores (Figure 6.9).
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Figure 6.9: Weak scaling: PaSGAL’s execution time remains nearly uniform with larger
input data and proportionally increased core counts.

6.3.3 Comparison with Previous Algorithms

We compared PaSGAL against two recently published tools for sequence alignment to

variation graphs – Graphaligner (commit:241565c) [120] and vg (v1.9.0-196) [16]. The

software vg supports both exact and heuristic alignment modes. For convenience, we refer

to its exact implementation as vg-exact, and heuristic implementation as vg-heuristic. We

find that PaSGAL achieves up to 10x and 25x speedup against Graphaligner and vg-exact

respectively, while using the lowest amount of memory. Compared to the vg-heuristic

algorithm, we observe significant benefit in output quality. The comparisons against the

exact and heuristic methods are discussed below separately.
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Comparison With Exact Algorithms

Graphaligner uses bit-level parallelism to compute edit distance between input reads and

graph. The algorithm outputs edit distance scores, therefore we compared its runtime

against the equivalent DP-fwd stage of our algorithm. We also utilized the sequential im-

plementation available in the Graphaligner repository as our sequential baseline. vg-exact

extends Farrar’s intra-task SIMD algorithm [121] to DAGs. It uses SSE (128-bit) intrinsics

to accelerate the computation, and reports both optimal alignment scores and base-to-base

alignment. As such, we compared its runtime against the total execution time of PaSGAL.

Spoa [94], like vg-exact, also uses a intra-task SIMD parallelization algorithm for sequence

alignment to DAGs, however, we could not compare against it because its implementa-

tion is designed to compute multiple sequence alignment for a different application. Both

Graphaligner and vg do not support multi-threading, therefore, we used a single thread for a

fair comparison. To allow all the experiments to finish in reasonable time, we re-simulated

six read sets: L1′-L3′, M1′-M3′ with 0.5x coverage by following the exact same procedure

as before (Section 6.3.1).

We show the speedups achieved using PaSGAL when compared to the other algorithms

in Table 6.4. The speedups ranged from 40-98x, 3-11x and 13-25x when compared to the

sequential baseline, Graphaligner and vg-exact, respectively. In three out of the six runs,

vg-exact ran out of memory because it processes the DP column-wise and allocates the

complete DP matrix in memory during the alignment. vg-exact supports affine gap penalty,

which we plan to support in future versions of PaSGAL. Besides being fastest on a single-

core, we conclude that PaSGAL also uses the lowest memory among all the algorithms.

Our previous results validate that PaSGAL supports efficient scalability using multiple

cores (Section 6.3.2), whereas current exact methods use single-thread only. Based on the

observed numbers, it will take other algorithms multiple days to process the 10x coverage

MHC read sets (M1-M3), which PaSGAL does in about three hours or less (Table 6.2).

Overall, PaSGAL provides significant advantage over existing exact algorithms in terms of
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Table 6.4: Comparison with other exact algorithms.

(a) Runtime improvement achieved using PaSGAL relative to a sequential imple-
mentation, Graphaligner and vg-exact using single thread execution.

Reference graph LRC MHC1
Read set L1′ L2′ L3′ M1′ M2′ M3′

vs. sequential 94.9x 50.3x 41.1x 98.3x 56.3x 51.7x
vs. Graphaligner 10.7x 4.2x 3.0x 10.0x 3.7x 3.7x
vs. vg-exact 25.3x 13.3x - 23.3x - -

(b) Peak memory-usage of all exact algorithms.

Reference graph LRC MHC1
Read set L1′ L2′ L3′ M1′ M2′ M3′

PaSGAL (GB) 0.2 0.3 0.8 0.9 0.9 0.9
sequential (GB) 1.0 1.0 1.0 1.4 1.4 1.4
Graphaligner (GB) 1.1 1.1 1.1 2.0 2.0 2.0
vg-exact (GB) 0.7 108.8 - 2.9 - -

its ability to process high throughput read sets and larger graphs for biological and clinical

applications.

Comparison with Seed-and-Extend Based Heuristic Algorithm

PaSGAL being an exact aligner, guarantees to produce an optimal alignment, irrespective

of graph topology and sequence characteristics. Heuristic algorithms accelerate the map-

ping process by avoiding a full-scale DP when mapping a read. The seed-and-extend based

heuristics identify local graph regions using either maximal or fixed length exact matches,

and validate the matches using an extension step. Although this approach can be signifi-

cantly faster, both seed-computation and extension stages are still challenging to execute in

complex regions of graphs, and when the read lengths are long.

We ran vg-heuristic with default parameter settings using the L1′-L3′ read sets, and

found it to be orders of magnitude (28-56x) faster than our exact algorithm. Next, we

looked at the output accuracy. Since we executed both tools with the same scoring parame-

ters, we compare the optimal alignment scores from PaSGAL against the scores computed

by vg-heuristic (Table 6.5). We note that a large fraction of output scores reported by vg-
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heuristic are sub-optimal for L2′ and M2′ read sets. It failed to produce reasonable output

for L3′ indicating that the algorithm is suited for short reads only.

Table 6.5: Accuracy evaluation of vg-heuristic algorithm for short and long read data sets.
We compare its alignment score against the optimal score computed by PaSGAL.

Read set L1′ L2′ L3′

Fraction of alignments with
> 5% diff. from optimal score (%) 0.04 24.53 100

Fraction of alignments with
> 20% diff. from optimal score (%) 0.00 9.40 100

6.4 Summary

In this chapter, we presented an inter-task based parallel algorithm PaSGAL to accelerate

alignment of sequences to DAGs. Although conceptually similar to the classic Smith-

Waterman problem which admits easy parallelization, significant variability in the number

and structure of dependencies in the dynamic programming table make parallelization of

alignment to DAGs quite challenging. Given an input set of reads and a variation graph,

PaSGAL outputs optimal alignment scores and base-to-base alignments, a requirement for

downstream biological analysis. To the best of our knowledge, it is the first parallel algo-

rithm for solving this problem that fully utilizes modern architectures by leveraging multi-

ple cores and wide SIMD width. To achieve these goals, we presented a three-stage algo-

rithm and several optimizations to maximize integer operations per second. As a result, we

are able to compute alignments of high-coverage long or short read sets to large variation

graphs associated with clinically important human genome segments in the order of few

minutes or hours, which was not feasible with prior algorithms. There is plenty of evi-

dence in recent scientific literature that justifies the utility of variation graphs as a reference

for studying genetic variants. The scalable and exact approach presented in this chapter

constitutes a useful step towards fully realizing the potential of graph-based references for
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accurate genotyping.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

As the pace of whole-genome sequencing continues to increase, faster practical algorithms

and theoretical advances will be critical for biological data analyses. The presented re-

search is a step in this direction. We propose new scalable algorithms for long read mapping

to a large collection of reference genomes, and variation graphs. The proposed algorithms

build on top of classic computational techniques such as sketching using MinHash [40] and

winnowing [127, 36], plane sweep from computational geometry [135], and string pattern

matching to hypertext [107, 20].

Using a fast alignment-free formulation coupled with a space-efficient indexing strat-

egy, Mashmap is the first long read mapper to demonstrate scaling to the entire NCBI

database. We further generalize the algorithm to compute gapped mappings, and show its

utility for mapping ultra-long nanopore reads. We find that the solutions developed in the

context of long read mapping are also adaptable to other related biological applications,

such as computing whole-genome comparisons, detecting duplications in the genomes,

long read-based metagenomics classification, etc. Accordingly, we extend Mashmap to ac-

celerate the computation of homology maps and whole-genome distances (ANI). The com-

putational efficiency and sensitivity guarantees allow us to demonstrate its applicability in

addressing fundamental biological questions. For instance, we recovered all long duplica-

tions in the human genome using Mashmap2, and found that a significant 10.3% fraction

of the human genome comprises of ≥ 1 Kbp duplications, with potential to uncover novel

segmental duplications. In addition, we performed 8 billion pairwise ANI computations

to conclude that ≥ 95% ANI criterion reflects the same named species with a recall and

precision of ≥ 98.5%.

We also shed light on the computational complexity of long read alignment to a graph-
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based reference. In particular, we prove that alignment to general graphs is NP-complete

unless edits are restricted to reads. Subsequently, we narrow down our focus on long read

alignment to variation graphs. We take advantage of the domain-specific properties of

these graphs, and develop a new parallel algorithm PaSGAL capable of producing optimal

alignments of high coverage long read sets to medically relevant variation graphs derived

from the human population. The algorithms presented in this dissertation are available as

open-source software using the following links:

• Mashmap, Mashmap2: https://github.com/marbl/MashMap

• FastANI: https://github.com/ParBLiSS/FastANI

• PaSGAL: https://github.com/ParBLiSS/PaSGAL

7.1 Open Problems

Several interesting future directions are highlighted below that could be worthy of further

investigation based on the results attained in this thesis.

Towards better error models for alignment-free mapping We make a few assump-

tions to model alignment edits (or errors) in query sequences while correlating the Jaccard

similarity of k-mer sets to alignment quality (Section 2.1). The crucial assumptions are: i)

k-mers in the query being mapped are unique, ii) the alignment edits occur independently,

and iii) the edits follow a Poisson distribution. We rely on these to establish the sensitivity

guarantees of the algorithm. While the model should be reasonable to account for errors

in long reads, there might be instances where these assumptions fall short; for example,

simple repeats may include repeated occurrence of k-mers, or alignment edits occurring as

long contiguous insertion or deletions due to structural variations. Future research to im-

prove the Mashmap model should be directed towards using alternate k-mer statistics such

as weighted Jaccard similarity to account for multiplicity of k-mers [143], and modeling

the structural variations separately [68]. These modifications will likely improve accuracy
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in practice.

Repeat handling and specificity of the alignment-free model The Mashmap model

allows us to quantify its sensitivity guarantees, implying that the alignments with desired

minimum length and identity are reported with high probability. This analysis is useful

as we are able to auto-tune the parameters to guarantee sensitivity in the high 90s. But

the model lacks theoretical guarantees on specificity. Currently it is not robust to prune

mappings which fall short of meeting the criterion by small margins. This becomes critical

when aligning to a highly repetitive reference genome (Section 3.2.2). In the context of

computing duplications in the human genome, we address this by using alignment to prune

the false positives. However, it is desirable to have a fast alignment-free solution with

specificity guarantees in the future.

Locality sensitive hashing for graphs The runtime and memory usage of Mashmap

grows linearly with the database size. As the genomic databases are expected to grow much

faster than memory devices, future research should be aimed towards sub-linear alignment-

free algorithms. We expect that majority of new data will bear high redundancy (e.g.,

strains within species). Leveraging graph-based references is a promising approach for

compact representations of such data. Accordingly, it is tempting to think of whether the

Jaccard similarity-based formulation, and its estimation using MinHash, can be extended to

graphs. To achieve this, one possibility is to perform minimizer sampling along the chains

of a graph, while preserving its junction vertices. Similar to Mashmap, we can target paths

on graphs that yield sufficient Jaccard similarity of k-mers. The biggest challenge here is to

deal with all possible paths in the graph, the count of which can be large when aligning long

reads. An efficient algorithm for this problem will not only be useful for mapping reads

to graphs, but also for zooming into an assembly graph to query and analyze unassembled

genes [186, 187].
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Extending complexity results for special graph instances The alignment problem for

sequence graphs is a rich area with several unsolved problems. For the intractable problem

variants when edits are allowed in graphs, development of practically fast or polynomial-

time approximation algorithms are fertile grounds for future research. The results ob-

tained in this research hold for general string labeled graphs. It remains open whether the

problems remain hard for alignment to specific graph types such as de Bruijn graphs [9],

Wheeler graphs [188] and string graphs [10].

Extending PaSGAL for wider utility Besides pan-genomics, our exact parallel sequence

to graph alignment algorithm PaSGAL can be useful for other applications that benefit

from sequence to DAG alignment, e.g., sequence alignment to splicing graphs in tran-

scriptomics [11] and antibiotic resistance profiling [87]. Utility of PaSGAL can be further

expanded by development of intra-task algorithms for use-cases with small count of query

sequences (e.g., when aligning assembly contigs) or partial order alignment [12, 94], and

eventually extending this framework to handle general sequence graphs (e.g., de-Bruijn

graphs). Our research demonstrates that exact algorithms can be leveraged for graphs with

millions of vertices and edges. Therefore, making PaSGAL available as a flexible library

for exact pattern matching to different graph formats while supporting multiple alignment

modes, will be of significant value. An exact algorithm combined with an appropriate

graph localization heuristic can further scale to variation graphs built using whole verte-

brae genomes.
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APPENDIX A

GENOME DISTANCE ESTIMATION FOR HIGH-THROUGHPUT ANI

ANALYSIS

In this section, we report additional experiments to further support the conclusions in Chap-

ter 4:

• We selected the fragment length parameter in FastANI as 3 Kbp during our analy-

ses (Section 4.2.2). Table A.1 highlights the accuracy vs. runtime trade-off associ-

ated with varying this parameter, and justifies that 3 Kbp is a reasonable choice.

• ANI estimates using FastANI can be distorted if the input data has significant con-

tamination (Section 4.3.2). We further analyzed the pair of outlier strains in dataset

D4. Figure A.1 shows that their whole-genome alignment pattern against the query

strain looks significantly different from what we would normally expect.

• Our accuracy analysis with five datasets D1-D5 was executed using a single query

genome (Figure 4.3). Using Figure A.2, we further show that the correlation behavior

remains unaffected even with multiple randomly selected query genomes.

• In Figure A.3, we note that the genetic discontinuity (i.e., the bimodal ANI distribu-

tion) that we observed using FastANI can be observed using Mash [82] also.

• The last two figures (Figures A.4, A.5) show the revised ANI distribution curves on

reduced genome databases to account for the cultivation bias in the NCBI database.

115



Table A.1: Evaluation of FastANI accuracy and performance while varying the fragment
length l used in the algorithm. We measured Pearson correlation coefficients of FastANI
estimate with BLAST-based ANI computation (ANIb) as well as runtime and memory us-
age for each value of fragment size (1 Kbp - 10 Kbp). This experiment was conducted using
datasets D3 and D4. From the table, it is evident that increasing fragment size improves
runtime and memory usage, but negatively affects accuracy. Based on these trade-offs, we
set the fragment size to 3 Kbp in the FastANI implementation.

Dataset Metric
Fragment length l

1 Kbp 3 Kbp 5 Kbp 10 Kbp

D3

Correlation with ANIb 0.998 0.995 0.992 0.987
Runtime (index phase) in seconds 2590 1667 1435 1145
Runtime (compute phase) in seconds 4738 2099 1286 547
Memory (GB) 114 48 29 15

D4

Correlation with ANIb 0.965 0.944 0.902 0.787
Runtime (index phase) in seconds 257 175 159 125
Runtime (compute phase) in seconds 747 254 173 74
Memory (GB) 12.6 4.4 3.2 1.6
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(a) Mauve alignment of first outlier B. anthracis strain 2002734165 against the query
strain.

(b) Mauve alignment of second outlier B. anthracis strain Ba A2012 AAAC01000001
against the query strain.

(c) Mauve alignment of a randomly picked B. anthracis strain (2000031757) against the
query strain.

(d) Mauve alignment of another randomly picked B. anthracis strain (2002734211)
against the query strain.

Figure A.1: Top two plots show the mauve alignments of the two outlier B. anthracis strains
(2002734165 and Ba A2012 AAAC01000001) against the query strain (2000031001) used
in D4 dataset. Bottom two plots show the mauve alignments of two randomly picked B.
anthracis strains against the query strain. The top two outlier strains show unusually higher
degree of recombination and gaps than we expect between any two correctly sequenced and
assembled B. anthracis strains. Same behavior was also observed using visualization sup-
port in FastANI software (figures not shown here). CheckM statistics for the first outlier
genome indicated high strain heterogeneity (i.e., contamination from closely related taxa)
of 9%. Mean strain heterogeneity in dataset D4 is 0.13%. Quality control and reassembly
of raw sequences using Sickle [189] and Spades [190] respectively didn’t improve the as-
sembly quality, indicating contamination at the read level. Based on the CheckM estimates,
the second outlier genome had the highest incompleteness of 7% in dataset D4. Reads for
the second genome were not publicly accessible to perform a re-assembly.
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Supplementary Figure 3: Correlation of FastANI and Mash output with ANIb using the five datasets D1-D5 listed in Table 1. For a 
more robust comparison, we re-executed the experiment in main text (Fig. 1) with five randomly picked query genomes per 
dataset that were typically assigned to different species. Similar to what we observed before (Fig. 1, Table 2), FastANI continues 
to demonstrate either superior or competitive performance than Mash using all the datasets. 
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D5 0.981 0.988 

Figure A.2: Correlation of FastANI and Mash output with ANIb using the five datasets D1-
D5 listed in Table 1. For a more robust comparison, we re-executed the experiment in main
text (Figure 4.3) with five randomly picked query genomes per dataset that were typically
assigned to different species. Similar to what we observed before (Figure 4.3, Table 4.2),
FastANI continues to demonstrate either superior or competitive performance than Mash
using all the datasets.
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Figure A.3: Histogram plot showing the distribution of ANI values among the 90K
genomes with ANI estimated using Mash. Similar to the FastANI results presented in
main text (Figure 4.7c), the bimodal ANI distribution is persistent. Moreover, the 95%
ANI species cutoff is evident using Mash results as well. Considering the shapes of the two
peaks, the right peak matches with the one obtained using FastANI, but shape of the left
peak differs. In lower identity range however, we expect FastANI’s output (Figure 4.7c)
to be more reliable than Mash. For this all vs. all comparison, Mash took much less time
compared to FastANI- only 51 CPU hours and 359 CPU hours with sketch sizes 103 and
104 respectively. However, Mash failed to produce output with sketch size 105 due to a
runtime error.
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Figure A.4: The sequence discontinuity was also evident when the species with large num-
bers of representatives in the database were iteratively removed from the database. We
computed genome clusters corresponding to genome pairs with ≥95% ANI values. The
main plot shows a histogram of ANI values (filled grey) for all genomes in the database
(same as Figure 4.7a). The different lines shown correspond to the resulting histograms af-
ter removing the top-n largest clusters, with n ranging from zero (black line) to 400 (bright-
est red line). Notice that the second peak on the right side starts to disappear when all 400
clusters are removed due to reduced intra-species comparisons in the database. The top
inset shows how the fraction of pairs that fall into the 83-95% ANI region (with respect to
the 75%-100% ANI region) vary with the number of clusters removed (black-to-red filled
area, both in log scale), as well as the fraction of pairs above 95% (blue line). Notice that
while removing the top-n largest clusters, the fraction of pairs inside the valley is consis-
tently below 5%. The bottom inset shows a magnification of the valley region (83% - 95%
ANI).
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Figure A.5: Distribution of pairwise ANI values in a genome set that is characterized by
equal representation of named species in our dataset. First, we selected all named species
for which there were five or more genomes available in the NCBI database (750 in count).
A custom database was created with five genomes randomly picked for each named species,
yielding a total of 3,750 genomes. Discontinuity is still evident with FastANI report-
ing only 0.2% inter-species pairs in the valley region (83%-95%) out of the total inter-
species pair count present in the sampled set. The right-hand side peak is small (relative
to Fig. 4.7a) because we have only five genomes per species yielding only 18,750 intra-
species pairs in the sampled set. Similar observations were drawn when we sampled two
genomes per species yielding a set of 4,838 genomes (2,419 species x 2) [data not shown].
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[115] J. Sirén, N. Välimäki, and V. Mäkinen, “Indexing graphs for path queries with
applications in genome research,” IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics (TCBB), vol. 11, no. 2, pp. 375–388, 2014.

[116] J. Sirén, “Indexing variation graphs,” in 2017 Proceedings of the ninteenth work-
shop on algorithm engineering and experiments (ALENEX), SIAM, 2017, pp. 13–
27.

131

https://www.biorxiv.org/content/early/2017/11/08/216127.full.pdf
https://www.biorxiv.org/content/early/2017/11/08/216127.full.pdf
https://www.biorxiv.org/content/early/2018/02/15/266197.full.pdf
https://www.biorxiv.org/content/early/2018/02/15/266197.full.pdf


[117] J. Pritt, N.-C. Chen, and B. Langmead, “Forge: Prioritizing variants for graph
genomes,” Genome biology, vol. 19, no. 1, p. 220, 2018.

[118] S. Maciuca, C. del Ojo Elias, G. McVean, and Z. Iqbal, “A natural encoding of
genetic variation in a burrows-wheeler transform to enable mapping and genome
inference,” in International Workshop on Algorithms in Bioinformatics, Springer,
2016, pp. 222–233.

[119] E. Biederstedt, J. C. Oliver, N. F. Hansen, A. Jajoo, N. Dunn, A. Olson, B. Busby,
and A. T. Dilthey, “Novograph: Genome graph construction from multiple long-
read de novo assemblies,” F1000Research, vol. 7, 2018.
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