5 research outputs found

    Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBA data

    Full text link
    The Compact High Resolution Imaging Spectrometer (CHRIS) mounted onboard the Project for Onboard Autonomy (PROBA) spacecraft is capable of sampling reflected radiation at five viewing angles over the visible and near-infrared regions of the solar spectrum with high spatial resolution. We combined the spectral domain with the angular domain of CHRIS data in order to map the surface heterogeneity of an Alpine coniferous forest during winter. In the spectral domain, linear spectral unmixing of the nadir image resulted in a canopy cover map. In the angular domain, pixelwise inversion of the Rahman-Pinty-Verstraete (RPV) model at a single wavelength at the red edge (722 nm) yielded a map of the Minnaert-k parameter that provided information on surface heterogeneity at a subpixel scale. However, the interpretation of the Minnaert-k parameter is not always straightforward because fully vegetated targets typically produce the same type of reflectance anisotropy as non-vegetated targets. Merging both maps resulted in a forest cover heterogeneity map, which contains more detailed information on canopy heterogeneity at the CHRIS subpixel scale than is possible to realize from a single-source optical data set

    Practical recommendations for hyperspectral and thermal proximal disease sensing in potato and leek fields

    Get PDF
    Thermal and hyperspectral proximal disease sensing are valuable tools towards increasing pesticide use efficiency. However, some practical aspects of the implementation of these sensors remain poorly understood. We studied an optimal measurement setup combining both sensors for disease detection in leek and potato. This was achieved by optimising the signal-to-noise ratio (SNR) based on the height of measurement above the crop canopy, off-zenith camera angle and exposure time (ET) of the sensor. Our results indicated a clear increase in SNR with increasing ET for potato. Taking into account practical constraints, the suggested setup for a hyperspectral sensor in our experiment involves (for both leek and potato) an off-zenith angle of 17 degrees, height of 30 cm above crop canopy and ET of 1 ms, which differs from the optimal setup of the same sensor for wheat. Artificial light proved important to counteract the effect of cloud cover on hyperspectral measurements. The interference of these lamps with thermal measurements was minimal for a young leek crop but increased in older leek and after long exposure. These results indicate the importance of optimising the setup before measurements, for each type of crop

    Airborne dual-wavelength waveform LiDAR improves species classification accuracy of boreal broadleaved and coniferous trees

    Get PDF
    Funding Information: This study was conducted on course FOR-254 ‘Advanced Forest Inventory and Management Project’ at the University of Helsinki. Plots IM and OG were measured by students and assistants on course FOR110B with the kind permission of Prof. Pauline Stenberg. Dr. Pekka Kaitaniemi provided phenological observations during LiDAR campaigns, and support by Dr. Antti Uotila was crucial in finding aspen, alder and larch samples in Hyytiälä. The LiDAR and field data in 2013 were collected and processed with funding from the Academy of Finland and Metsämiesten säätiö. Other work by made possible by the University of Helsinki. Publisher Copyright: © 2022, Finnish Society of Forest Science. All rights reserved.Tree species identification constitutes a bottleneck in remote sensing applications. Waveform LiDAR has been shown to offer potential over discrete-return observations, and we assessed if the combination of two-wavelength waveform data can lead to further improvements. A total of 2532 trees representing seven living and dead conifer and deciduous species classes found in Hyytiälä forests in southern Finland were included in the experiments. LiDAR data was acquired by two single-wavelength sensors. The 1064-nm and 1550-nm data were radiometrically corrected to enable range-normalization using the radar equation. Pulses were traced through the canopy, and by applying 3D crown models, the return waveforms were assigned to individual trees. Crown models and a terrain model enabled a further split of the waveforms to strata representing the crown, understory and ground segments. Different geometric and radiometric waveform attributes were extracted per return pulse and aggregated to tree-level mean and standard deviation features. We analyzed the effect of tree size on the features, the correlation between features and the between-species differences of the waveform features. Feature importance for species classification was derived using F-test and the Random Forest algorithm. Classification tests showed significant improvement in overall accuracy (74→83% with 7 classes, 88→91% with 4 classes) when the 1064-nm and 1550-nm features were merged. Most features were not invariant to tree size, and the dependencies differed between species and LiDAR wavelength. The differences were likely driven by factors such as bark reflectance, height growth induced structural changes near the treetop as well as foliage density in old trees.Peer reviewe

    Multi-sensor and data fusion approach for determining yield limiting factors and for in-situ measurement of yellow rust and fusarium head blight in cereals

    Get PDF
    The world’s population is increasing and along with it, the demand for food. A novel parametric model (Volterra Non-linear Regressive with eXogenous inputs (VNRX)) is introduced for quantifying influences of individual and multiple soil properties on crop yield and normalised difference vegetation Index. The performance was compared to a random forest method over two consecutive years, with the best results of 55.6% and 52%, respectively. The VNRX was then implemented using high sampling resolution soil data collected with an on-line visible and near infrared (vis-NIR) spectroscopy sensor predicting yield variation of 23.21%. A hyperspectral imager coupled with partial least squares regression was successfully applied in the detection of fusarium head blight and yellow rust infection in winter wheat and barley canopies, under laboratory and on-line measurement conditions. Maps of the two diseases were developed for four fields. Spectral indices of the standard deviation between 500 to 650 nm, and the squared difference between 650 and 700 nm, were found to be useful in differentiating between the two diseases, in the two crops, under variable water stress. The optimisation of the hyperspectral imager for field measurement was based on signal-to-noise ratio, and considered; camera angle and distance, integration time, and light source angle and distance from the crop canopy. The study summarises in the proposal of a new method of disease management through suggested selective harvest and fungicide applications, for winter wheat and barley which theoretically reduced fungicide rate by an average of 24% and offers a combined saving of the two methods of £83 per hectare
    corecore