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A B S T R A C T   

In open forest canopies, such as in boreal forests, forest floor can contribute significantly to the observed top of 
canopy reflectance. In order to retrieve the biophysical properties of the tree layer, correcting for forest floor is 
essential. Traditionally, the algorithms for retrieval of forest floor reflectance depend on tree layer information 
such as leaf area index, canopy cover, and site fertility. To overcome these circular dependencies, we propose an 
algorithm that can be applied only using airborne remote sensing data. We acquired airborne hyperspectral 
imagery over the Hyytiälä forest research station (61°50′N, 24°17′E) in central Finland on July 3rd in 2015 using 
a hyperspectral pushbroom line scanner. The image data had a spectral resolution of 4.6 nm, and the spatial 
resolution was 0.6 m. We developed a linear spectral unmixing algorithm, which is based on the definition of the 
reflectance factor, taking into account the variation of incident irradiance inside the canopy. The weights of the 
mixture can be computed from tree canopy gap fractions, a tree species insensitive leaf albedo, and average tree 
stand reflectance. Canopy gap fractions were retrieved with empirical methods available in scientific literature. 
The forest floor reflectance in the near-infrared increased with site fertility in agreement with the forest floor 
field measurements. Moreover, we found that in near infrared, the reflectance of moderately rich and moist 
upland forests was significantly different from all other fertility classes. Finally, we tested the reflectance de-
composition on the photochemical reflectance index (PRI) known to be heavily affected by understory re-
flectance and canopy structure, and the forest PRI to be decoupled from the PRI of the over- and understory.   

1. Introduction 

Forest floor spectral properties are an important driver of top-of- 
canopy (TOC) bidirectional reflectance factor (BRF): in forests with 
open canopies, such as in boreal forests, understory can contribute up to 
40% at forest stand level and 20% at landscape level in the red and 
near-infrared (NIR) parts of the spectrum (Rautiainen et al., 2011). This 
can cause spectral uncertainty in determining the properties of the 
forest canopy, such as its leaf area index (LAI) used in carbon balance 
models, from satellite data (Eriksson et al., 2006; Heiskanen et al., 
2012). The forest floor BRF contains information on the forest eco-
system, the growing conditions of the understory vegetation, and soil 
fertility (Hallik et al., 2009). Moreover, the forest floor BRF can be used 
to differentiate among understory vegetation species and monitor their 
physiology (Rees et al., 2004) or determine the fractional cover of 
major understory plant types similarly found in boreal forest 
(Schaepman-Strub et al., 2009). 

In Finnish boreal forests, forest floor is usually covered by an un-
derstory, commonly composed of a ground layer (soil and mosses) and 

an upper understory layer, which are dwarf shrubs; bare soil is rarely 
visible (Rautiainen et al., 2011). The understory vegetation varies with 
the site fertility, light availability, fire regime, etc. and can include 
ferns, herbs and lichen intermingled with debris and litter. In this 
paper, we hence use understory and forest floor almost inter-
changeably, although the latter term is more general and includes the 
rare situations of a lack of understory. Forest floor also plays a key role 
in the forest site fertility classification system used in the study: the 
Finnish national forest inventory is based on forest floor vegetation 
(Kuusela and Salminen, 1969), making it a natural classifier for 
studying forest floor reflectance. 

One way to measure forest floor BRF is through extensive fieldwork. 
However, it is time consuming and labor intensive. Mapping forest floor 
reflectance from air or space is possible, but poses many challenges as 
understory layers are not homogenous, but rather a spatially varying 
mixture of the different components. Only a few studies have attempted 
to create a spectral database of boreal forest understory vegetation, 
such as Miller et al. (1997) in Canadian boreal forest, Peltoniemi et al. 
(2005) and Rautiainen et al. (2011) in Finnish boreal forest, and Kuusk 
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et al. (2004) and Hallik et al. (2009) who measured in Sweden and 
Estonia. Spectral libraries can never achieve the spatial coverage pro-
vided by remote sensing techniques. A possible path to separating the 
over- and forest floor BRF contributions in remote sensed signal is by 
using (linear) spectral unmixing, where the signal is decomposed into 
several spectral contributors (endmembers) of known targets (Adams 
et al., 1986; Peddle et al., 1999; Somers et al., 2011). Linear spectral 
unmixing has been used frequently in remote sensing of vegetation (e.g.  
Asner et al., 2004; Fitzgerald et al., 2004; Goodwin et al., 2005;  
Jiménez-Muñoz et al., 2009; Leboeuf et al., 2007; Peddle et al., 1999;  
Rogan and Miller, 2006). 

Only few studies have attempted to measure forest floor BRF from 
air or space. Pisek et al. (2010) successfully measured forest floor BRF 
in a boreal forest from an aircraft using a hyperspectral camera with 
nadir and one off-nadir view angle (40°). Using linear spectral unmixing 
they were able to map the background reflectance in forest stands with 
LAI  <  5 with an error within 16% in the red and 12% in NIR. Pisek 
et al. (2015a) were able to calculate forest floor BRF using an UAV and 
found the optimal view zenith angles to be 0° and 40° and a solar zenith 
angle of 45° for mid-summer conditions. More studies have attempted 
to retrieve forest floor BRF from satellite data. Jiao et al. (2014) used a 
Multi-angle Imaging SpectroRadiometer (MISR) to calculate forest floor 
BRF and found the largest variation of forest background reflectivity at 
middle and high latitudes of the northern hemisphere. Pisek et al. 
(2015b) used semi-empirical and physical based approaches with 
MODIS Bidirectional Reflectance Distribution Factor (BRDF) data to 
track seasonal changes in forest floor Normalized Difference Vegetation 
Index (NDVI). A similar study by Rautiainen and Heiskanen (2013) 
tracked the seasonal dynamics of forest floor BRF using a multi-sensor 
(SPOT, MODIS, Hyperion) time-series approach and showed that the 
contribution of forest floor to TOC or landscape reflectance strongly 
depends on tree canopy gap fraction and forest floor reflectance with 
seasonal variation from 20% to 40%. Suzuki et al. (2011) used a 
combination of airborne imagery and radiative transfer modelling to 
estimate the NDVI of forest floor and canopy. Their results indicate that 
satellite-derived NDVI in boreal forests can be attributed up 85% by the 
forest floor component. Pisek and Chen (2009) used MISR data to es-
timate forest floor reflectance from nadir and at 45° forward direction 
angle. Their study concluded that the background reflectivity varies 
between coniferous and deciduous stands, particularly in NIR, and 
cannot be ignored when retrieving canopy biophysical properties.  
Kuusinen et al. (2015) used a combination of spectral forest floor 
measurements, tree stand measurements (LAI, canopy cover fraction, 
site fertility, etc.) and Landsat Thematic Mapper (TM) to calculate the 
variation in canopy and forest floor reflectance during stand develop-
ment in Finnish boreal forests. In addition, they used linear spectral 
unmixing to estimate the BRF of sunlit forest floor, and canopy and 
shaded ground for sites of different fertility. Their results show that the 
sunlit forest floor BRF in the NIR increases as site fertility increases but 
decreases in the RED and shortwave-infrared bands. 

One shortcoming of the studies by Jiao et al. (2014), Kuusinen et al. 
(2015), Liu et al. (2017), Pisek et al. (2015b), Pisek and Chen (2009),  
Rautiainen and Heiskanen (2013), and Suzuki et al. (2011) is the de-
pendency on field measured information such as site fertility class or 
canopy gap fraction. Alternatively, forest floor reflectance can be cal-
culated using multi-angular data and forest parameters (Pisek et al., 
2010, 2012). However, using this approach still requires tree height, 
crown height, canopy cover, and needle clumping index as model in-
puts. The forest floor reflectance retrieval algorithm by Kuusinen et al. 
(2015) cannot be used to map plot level forest floor BRF and requires 
numerous field-measured input parameters. 

The photochemical reflectance index (PRI) is correlated with the 
photosynthetic light use efficiency (LUE), the efficiency at which the 
plants convert light into fixed carbon (Gamon et al., 1992). It is a robust 
and well-validated indicator at the level of a leaf. In the study on the 
key spectral features of boreal forest floor by Rautiainen et al. (2011), 

PRI was the index strongest correlated with the cover fraction of herbs, 
and it was suggested as a suitable tool for separating fertile and infertile 
site types. For structured canopies, PRI measured from a distant plat-
form (UAV, aircraft) is heavily affected by forest floor and canopy 
structure (Barton and North, 2001; Damm et al., 2015; Mõttus et al., 
2015). We hence tested the unmixing algorithm on this vegetation 
index to see if it can bring out the contrasting spectral properties of the 
different vegetation components. 

Therefore, the goals of this study are: 1) to develop an algorithm 
that allows to determine the forest floor reflectance factor only using 
airborne remote sensing, and 2) to calculate the forest floor reflectance 
factor for sites with different fertility classes. To achieve this, we de-
veloped a form of the linear unmixing equation that takes into account 
the variations of irradiance inside the canopy and studied the effect of 
forest fertility class on remotely sensed forest floor reflectance at dif-
ferent wavelengths. 

2. Materials and methods 

2.1. Study site 

The airborne hyperspectral acquisition covered the area sur-
rounding the Hyytiälä forest research station in central Finland 
(61°50′N, 24°17′E) managed by the University of Helsinki. The Hyytiälä 
area is predominantly covered with boreal forest. The forest overstory is 
composed of three main tree species: deciduous silver birch (Betula 
pendula), evergreen Scots pine (Pinus sylvestris L) and evergreen Norway 
spruce (Picea abies (L) Karst). The terrain is hilly with an average ele-
vation of 160 m above sea level and is covered mainly with managed 
boreal forest, agricultural fields, wet- and peatlands. The forest floor is a 
mix of bryophyte, lichen species and a collection of shrubs. The climate 
is of a mild sea climate influenced by the Gulf stream with the growing 
season lasting from May until late August. Monthly average air tem-
peratures varies from 5 °C in May to 15 °C in late August. 

2.2. Airborne hyperspectral acquisition 

On July 3rd, 2015 we acquired airborne hyperspectral imagery 
using an AISA Eagle II airborne hyperspectral scanner (AHS) (Specim- 
Spectral Imaging Ltd., Oulu, Finland) onboard a Skyvan research air-
craft. We operated the flights between 10:44 and 12:20 (GMT + 3) and 
were flown at approximately 1 km altitude above the ground with flight 
lines consecutively in the northwestern and southeastern directions to 
minimize BRF effects. The average solar zenith angle was 48°, the 
photosynthetic photon flux density ranged from 1285 to 
1493 μmol m−2 s−1 with a mean value of 1408 μmol m−2 s−1 (SMEAR 
II measurement data above the forest). The weather conditions were 
optimal for an airborne hyperspectral acquisition with a clear blue sky. 
We flew 11 flight lines covering an area of approximately 12 km long 
and 4.5 km wide. 

The Aisa Eagle II sensor is a pushbroom scanner sensitive in the 
400–970 nm spectral region. The instrument was configured to have a 
spectral bandwidth (half width full maximum) of 4.6 nm and 128 
contiguous spectral bands. The AHS's field of view (FOV) was 37.7° 
divided over 1024 pixels with a pixel size of approximately 0.6 m in 
both along- and cross-track directions. We used an Oxford RT3100 IMU 
for post-correction of progressive and angular movements. The IMU and 
AHS were synchronized at the start of each flight line using a syn-
chronization signal in the instrument software. 

Each image was radiometrically calibrated using the Caligeo tool 
(version 4.9.7, Specim OY, Oulu, Finland) based laboratory-measured 
calibration coefficients. We then used ATCOR-4.7 (ReSe applications 
Schläpfer, Switzerland) to apply atmospheric correction and convert at- 
sensor radiances to top-of-canopy (TOC) hemispherical-directional re-
flectance factors (HDRF). An aerosol optical thickness of 0.06 was 
measured at 500 nm by a sun photometer at the Hyytiälä forest research 
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station and was downloaded from the AERONET (aerosol robotic net-
work) website (NASA, 2019). The optical thickness of 0.06 corresponds 
to a visibility of 120 km in Atcor (Daniel Schläpfer, ReSe Applications, 
pers. comm.). 

We then performed image georegistration and orthorectification 
using the Parge image rectification tool (version 3.1, ReSe Applications 
Schläpfer, Switzerland). We downloaded a digital elevation model with 
2 m spatial resolution from the Finnish National Land Survey and se-
lected 15 road intersections as ground control points on the atmo-
spherically corrected AISA images. The ground control points were 
validated for spatial accuracy with an aerial photograph (spatial re-
solution 0.5 m, Finnish National Land Survey) using the WGS1984 UTM 
zone 35. This process determined the boresight angles, i.e. the align-
ment between the IMU axes and the optical axis of the hyperspectral 
sensor. 

Finally, we downloaded a 3D lidar point cloud (0.5 points per m2) 
dataset from the National Land Survey of Finland to create a top-of- 
canopy (TOC) surface for orthorectifying the atmospherically corrected 
reflectance images. We used the Lastools software (version: 140615, 
RapidLasso GmbH, Germany) to separate ground and tree canopy re-
turns. We first filtered out all outliers 30 m and higher above the 
ground. Then we created a digital surface model (DSM) by converting 
the point cloud to a 10 m grid. We removed any spikes in the DSM by 
applying two smoothing processes in which we used focal statistics in 
Arcmap 10 (Esri, Redlands, CA, USA) with a 3 × 3 grid to calculate the 
mean cell value within this grid. The smoothed DSM was then used as 
TOC surface when georectifying AHS data using the fast nearest 
neighbor resampling method onto a 0.6 m pixel grid in the WGS1984 
UTM zone 35 coordinate system. The final geometric accuracy of the 
AHS data was approximately 2 m. 

2.3. Forest plot data 

We combined plot measurements by Korhonen et al. (2011) and 
(Majasalmi et al., 2012, 2015) including information on plot location 
(easting, northing), site fertility class, tree species composition, dia-
meter at breast height (DBH), median tree height, and effective leaf 
area index (LAI) calculated from canopy gap fraction (CGF). The study 
sites belonged to the following fertility classes in decreasing order of 
fertility: moderately-rich upland, moist upland, dryish upland, and dry 
upland (Rantala et al., 2011). We visually checked each field plot if it 
had been harvested in the AHS imagery and excluded 92 field plots 
which had changed between 2008 and 2015 due to forest management 
such as clear cuts, regrowth (sapling stands). In addition, we removed 
10 field plots that were in too close proximity (within 10 m) to roads or 
water bodies. In total, we used 250 field plots for our forest floor BRF 
analysis with moderately rich field plots dominating and dry upland 
being the least represented (Table 1). 

Moderately-rich sites have an abundance of herbs, grasses, and a 
raw hummus layer covering the ground. This fertility class grows a mix 
of birch, spruce, and pine. Moist upland sites are covered with feather 
mosses and dwarf shrubs with a spruce-dominated mixed overstory. 
Dryish upland sites are characterized by thick humus layer, feather 
mosses, cowberry and lichens. Dry upland is covered by lichen and 
dwarf shrubs such as heather and herbs, and few grass species. Both 
dryish upland and dry upland sites are typical pine habitats. 

2.4. Forest floor spectral data 

We used the spectral forest floor BRF measurements by Rautiainen 
et al. (2011) for four forest plots in Hyytiälä, Finland between 
29.6.2010 and 9.7.2010. They measured four study sites representing 
different forest fertility site types. At each site, under diffuse light 
conditions, they measured forest floor spectra using a Fieldspec Hand-
held spectroradiometer (ASD Inc., Colorado, USA; range 325–1075 nm, 
3.5 nm spectral resolution) along a 28 m transect. The selection in-
cluded plots representing the four fertility sites used also in this study: 
moderately-rich upland (called herb-rich by Rautiainen et al. (2011), 
moist upland (mesic), dryish upland (sub-xeric) and dry upland (xeric) 
with overstory species characteristic to each fertility type. 

2.5. Linear spectral unmixing 

We can express the total reflectance of an image pixel as a linear 
combination of the component materials: 

= a fBRF ,
n

n n
(1) 

where an is the apparent BRF of the component n and fn the corre-
sponding weight, i.e., the proportion of each component in the in-
stantaneous field of view (IFOV) of the sensor. Apparent reflectance (an) 
is the ratio of upwelling radiance in the field of view of the sensor to the 
downwelling irradiance at the top of canopy surface multiplied by the 
BRDF of a non-absorbing Lambertian surface. In remote sensing of ve-
getation, the imaginary surface for which the radiometric and re-
flectance quantities are given is called the top of canopy (TOC) surface. 
Generally, the spectral irradiance on a material inside a pixel is dif-
ferent from that at TOC, e.g. due to nonzero inclination angle, shading 
by other materials, self-shading or multiple scattering within the pixel. 
Therefore, the apparent reflectance an in Eq. (1) differs from the true 
spectral reflectance r(λ) (Takala and Mõttus, 2016). The true re-
flectance can be calculated from apparent reflectance a(λ) if the spec-
tral irradiances on the material inside the pixel, ϕ(λ), and TOC, F(λ), 
are known (Mõttus et al., 2015): 

= =a r
F

r k( ) ( ) ( )
( )

( ) ( ),
(2) 

where =k ( ) F
( )
( ) is the reflectance conversion factor and λ is the 

wavelength. Thus, we can rewrite Eq.(1) as: 

= r k fBRF .
n

n n n
(3)  

With remote sensing of vegetation it is common to assume that a 
pixel is made up of two different materials, overstory and understory 
(or soil, referred here to generally as forest floor), and two different 
illumination conditions, sunlit and shaded (Li and Strahler, 1985). We 
will use the assumption that the true reflectance of shaded and sunlit 
canopy components are equal. Similarly, we will assume that there is no 
difference between the shaded and sunlit forest floor true reflectance. 
Hence, we arrive at: 

= + + +r k f k f r k f k fBRF ( )[ ( ) ( ) ] ( ) [ ( ) ( ) ],C C sl C sl C sh C sh F F sl F sl F sh F sh, , , , , , , ,

(4) 

where r is the true reflectance, and the indices C, F, sl and sh indicate 
canopy, forest floor, sunlit component and shaded component, 

Table 1 
Distribution of field plots according to their fertility class.        

Fertility class Moderately-rich upland Moist upland Dryish upland Dry upland Total  

Number of plots 28 177 33 12 250 
Proportion in % 11 71 13 5 100 

V. Markiet and M. Mõttus   Remote Sensing of Environment 249 (2020) 112018

3



respectively. 
The goal of the work presented in this paper is to calculate true 

understory reflectance rF(λ) from Eq. (4). To achieve this, we first need 
to determine the true reflectance of the canopy elements, rC(λ), and the 
eight model parameters: four reflectance conversion factors k(λ) and 
four proportions f. 

2.5.1. Spectral invariants 
We applied the theory of spectral invariants to specify the re-

flectance of a canopy element, rC(λ), and to retrieve the conversion 
factors k(λ). According to this theory, reflectance of a vegetation ca-
nopy in the 710–790 nm spectral interval follows the relationship: 

= +pBRF( )
( )

BRF( ) ,
(5) 

where ω(λ) is the leaf spectral albedo, and p and ρ are spectrally in-
variant parameters. The spectral invariant parameters represent the 
slope (p) and intercept (ρ) of a linear fit between the ω(λ), and BRF(λ) 
between 710 and 790 nm. The slope is proportional to the eigenvalue of 
the scattering operator (Knyazikhin et al., 2013). We followed the ex-
ample of Hernández-Clemente et al. (2016) and expressed BRF as a 
function of leaf albedo, and the irradiances on leaf and TOC: 

=
F

BRF( ) ( ) ( )
( )

.
(6)  

Next, we split the leaf irradiance ϕ(λ) into two components, an 
unscattered irradiance coming from the sun and sky, ϕS(λ), and a 
multiply scattered diffuse component which has at least once interacted 
with a canopy element or forest floor, ϕM(λ). We obtained from Eq. (6): 

= +
F F

BRF( )
( )

( )
( )

( )
( )

.M S

(7)  

Very little angular information is available for conifers needles as its 
determination requires intricate vegetation measurements at different 
structural levels (shoot, branch, tree) and a reconstruction of tree 
structure. Barclay (2001) found that needle angle distributions can be 
close to spherical for some Northern American species, with dominantly 
horizontal needles for others. Niinemets et al. (2002) inverted a shoot 
radiative transfer model for Scots pine in Estonia to find out that its 
needle inclination angles are spherically distributed. For broadleaves, 
more information is available: Pisek et al. (2013) demonstrated birch 
leaves to be planophile with leaf angles determined by the shade tol-
erance of the species and light conditions within the canopy (Niinemets, 
2010). Hence, we assumed the leaf orientation in this study area, 
dominated with coniferous trees, to be spherical. 

For spherically oriented leaves and ignoring the contribution of 
diffuse sky irradiance (which is a reasonable assumption in the 
710–790 nm spectral interval), Hernández-Clemente et al. (2016) ob-
tained 

= F( ) ( )
4 cos

,C S,
0 (8) 

where θ0 is the solar zenith angle and F(λ) is the direct solar irradiance 
on a horizontal surface. For a horizontal surface, such as the forest 
floor, we can naturally write 

= F( ) ( ).F S,

Therefore, as ϕS(λ) is proportional to F(λ), the second term on the 
right hand side of Eq. (7) is independent of the wavelength λ and equals 
the spectral invariant ρ in Eq. (5). The first term on the right hand side 
of Eq. (7) hence equals the product pBRF in Eq. (5) which allows us to 
write: 

= ×p F( ) BRF( ) ( ).M (9)  

Additionally, Hernández-Clemente et al. (2016) demonstrated that 
if the angular distribution of leaves is assumed to be spherical, the 

sunlit fraction of vegetation in a pixel is: 

= 4 cos .sl 0 (10)  

Note that the derivations above are identical to those presented by  
Hernández-Clemente et al. (2016). We repeated them to retrieve the 
expression for ϕM (Eq. (9)) which was not explicitly given by  
Hernández-Clemente et al. (2016). 

2.5.2. Choosing the leaf albedo 
There is no absolute rule for the selection of the leaf albedo ω(λ). 

Instead, the albedo used in Eq. (5) can be scaled to represent any 
structural level of the canopy (Lewis and Disney, 2007; Stenberg et al., 
2014). Naturally, different leaf albedos yield different values for p and 
ρ. An example of this scaling is the possibility to use either a needle or a 
shoot as the basic scattering element in a coniferous canopy. The 
spectral albedos of a shoot and a needle are different (but connected via 
the within-shoot recollision probability, Rautiainen et al., 2012), as are 
the recollision probabilities and fractions of sunlit elements. Proper 
scaling between the two structural levels guarantees that the predicted 
scattering BRF(λ) is the same for two approaches (Smolander and 
Stenberg, 2005). 

The selection of structural level affects the division of reflected ra-
diation into first-order and diffuse components making the retrieved 
forest floor reflectance depend somewhat on the selected leaf albedo. 
The p-theory assumes that the scattered radiation field inside the ca-
nopy is completely diffuse. It would therefore be most reasonable to use 
the albedo of a structural level, which is best related to the radiation 
regime below the canopy. 

Rautiainen et al. (2009) have found that in boreal forests, the ap-
parent clumping index as determined from LAI-2000 plant canopy is a 
unique function of the effective LAI (Leff), independent of species. The 
apparent clumping index here refers to the value not corrected for 
shoot-level clumping in conifers, which is invisible to the LAI-2000. 
According to Rautiainen et al. (2009) apparent clumping index in-
creases from close to 0.6 at Leff = 2 to approximately 0.75 at Leff ≃ 4, the 
largest measured Leff. Hence, a value of peff = 0.65 is a suitable average 
value quantifying most forests in the study area. Mathematically, we 
need to find the leaf albedo ωeff that would produce a recollision 
probability of peff when inserted into Eq. (5), while the albedos of dif-
ferent structural scales are connected via partial recollision prob-
abilities prel as: 

=
p
p

( )
(1 ) ( )

1 ( )
.eff

rel

rel (11)  

After some derivations, we obtain that 

=p
p p

p1
,rel

eff

eff (12) 

where p is the p-value obtained with the leaf albedo ω(λ). 
Knyazikhin et al. (2013) have suggested the use of a PROSP-

ECT-derived reference leaf albedo, ωref(λ), as the leaf albedo, ω(λ), 
which makes the model insensitive to tree species. We denote the p- 
value retrieved by fitting Eq. (5) to the measured BRF and ωref(λ) in the 
spectral interval of 710 to 790 nm as peff. Starting from these baseline 
values, we calculated the value of rC(λ) to be used in the linear un-
mixing as follows.  

1. We calculated the average p-value for all 250 stands using Eq. (5) 
and the reference albedo ωref, =p 0.81ref . 

2. We scaled the reference albedo to the structural level which de-
termines canopy transmittance. We calculated prel from Eq. (12) 
using =p 0.81ref as p, and peff = 0.65. We then calculated the ef-
fective leaf albedo ωeff(λ) in the 710–790 nm spectral interval from 
Eq. (11).  

3. The reference albedo is only applicable between 710 and 790 nm 
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and excludes the effects of non-green canopy material. We calcu-
lated an effective albedo of canopy scattering elements, rC(λ), ap-
plicable across the spectral range used in the study by assuming that 
the brightest pixels in the NIR (at 787 nm) represent pure overstory 
vegetation. Note that the brightest pixels do not necessary belong to 
the most reflective surfaces as brightness is the product of re-
flectance and irradiance; highly reflective forest floor is mostly 
shaded by the overstory and hence the latter is expected to dominate 
the brightest pixels in NIR. We fitted Eq. (5) to the mean BRF of the 
brightest 10% pixels [BRFB(λ)] and ωeff(λ) in the 710–790 nm 
spectral range to obtain the coefficients pB and ρB for each field plot. 
Finally, we calculated the true effective leaf albedo rC(λ) for spectral 
unmixing as: 

=
+

r
p

( ) BRF ( )
BRF ( )

.C
B B

B

B (13)  

2.5.3. Reflectance conversion factors 
To calculate the reflectance conversion factor kC, sh, we made the 

natural assumption that shaded foliage is illuminated by multiply 
scattered irradiance only: 

= =k
F

p( )
( )

( )
BRF( ).C sh

M
eff, (14)  

Eq. (14) indicates that the scattered radiation field in the canopy is 
spectrally similar and proportional to reflectance as reflectance is a 
special case of scattered field: it's upward scattering at the upper canopy 
boundary. A similar equation can be obtained for forest floor based on 
Eq. (9). However, the (re)collision probability for diffuse flux traveling 
downwards directly above the forest floor equals unity, i.e., forest floor 
is treated as a solid surface and not as a turbid medium. We hence get 
from Eq. (14) the irradiance conversion ratio: 

=k ( ) BRF( ).F sh, (15)  

Sunlit foliage and forest floor are additionally illuminated by the 
unscattered irradiance: 

=
+

= +k
F

p( )
( )

( )
BRF( ) 1

4 cos
,C sl

M C S
eff,

,

0 (16)  

= +k ( ) BRF( ) 1.F sl, (17)  

Eqs. (14)–(17) allow us to retrieve all the conversion factors in Eq.  
(4) from remotely sensed data. Note that the spectral variation of the 
factors depends only on that of the canopy BRF. 

2.5.4. Component proportions in a pixel 
The fraction of forest floor in a pixel equals the canopy gap fraction 

in the view direction, fF = tV; the fraction of sunlit forest floor equals 
the canopy gap fraction in the solar direction, t0. Assuming the 

probability for forest floor to be visible is independent of the probability 
for it to be sunlit, we can write: 

=f t t .F sl V, 0 (18)  

The shaded forest floor component can be expressed as: 

= =f f f t t(1 ).F sh F F sl V, , 0 (19)  

The spectral invariant theory allows us to retrieve the total sunlit 
fraction of green foliage in the IFOV, αsl, using Eq. (10). In the case of a 
non-green forest floor, all sunlit foliage is contributed by the overstory 
(forest canopy). In the case of a non-vegetated background, we can thus 
write: 

=f
t1

.C sl
sl

V
, (20)  

In the other extreme case of a fully vegetated forest floor, the sunlit 
fraction of the visible foliage in a pixel, asl, is a sum of sunlit fraction of 
visible overstory and forest floor (assuming identical orientations of 
over- and understory foliage elements): 

= +a f f .sl C sl F sl, , (21)  

We obtain from Eqs. (18) and (21): 

=f t t .C sl sl V, 0 (22)  

We assume that all 250 field plots have green forest floor during the 
time of the airborne campaign in the summer season. Hence, we used 
Eq. (22) to calculate total sunlit canopy fraction to account for con-
tribution of visible understory vegetation to overstory. Finally, the 
fraction of shaded canopy fC, sh was calculated so that: 

+ + + =f f f f 1.C sh C sl F sl F sh, , , , (23)  

2.5.5. Canopy gap fraction estimation 
We estimated the canopy gap fractions t0 and tV using a beta re-

gression model reported to provide accurate results in the Finnish 
boreal region (Hadi et al., 2016). Unfortunately, the specific model was 
not available from literature and we needed to re-calibrate it. To 
achieve this, we used LAI-2000 canopy gap fraction measurements at 
five zenith angles (7°, 23°, 38°, 53°, 68°). We used the value for the first 
ring (7°) as tV and interpolated linearly the canopy gap fraction mea-
surements to the actual solar zenith angle θ0 to obtain t0. To find the 
best spectral band for our canopy gap fraction prediction we fitted a 
line between BRF(λ) and canopy gap fraction (tV) for each plot and 
calculated the R2 to quantify goodness of fit. Then, for each plot we 
fitted a linear model with BRF at 621 nm [BRF(621)], the spectral in-
variant p, and the sunlit fraction (αsl) as the explanatory variables. 
Computations were made using the betareg function in R. 

Fig. 1. Flow chart of the computations to retrieve forest floor reflectance spectrum from imaging spectroscopy data using spectral invariants and nonlinear unmixing.  
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2.5.6. Order of calculations 
After calculating rC(λ) from Eq. (13) and the gap fractions as de-

scribed in the above section, we determined all the forest floor and 
canopy fractions f in Eq. (4): the visible sunlit forest floor fraction, fF, sl, 
from Eq. (18); the shaded forest floor fraction, fF, sh, from Eq. (19); the 

sunlit canopy fraction, fC, sl, from Eq. (22); and the shaded canopy 
fraction, fC, sh, from Eq. (23). Finally, we calculated the canopy and 
forest floor reflectance conversion factors k: the shaded canopy factor, 
kC, sh, from Eq. (14); the sunlit canopy factor, kC, sl, from Eq. (16); the 
sunlit forest floor factor, kF, sl, from Eq. (17); and the shaded forest floor 

Fig. 2. a) Leaf spectra rC for each fertility class and the PROSPECT-derived reference albedo ωeff(λ); b) Predicted canopy gap fraction (CGF) in nadir against the value 
measured at 7° zenith angle with a fitted linear regression line. 

Fig. 3. The measured forest floor reflectance, RF, X(λ), (black line), rF(λ) for the same single plot (red dotted line), and the fertility class average r ( )F X, (blue dotted 
line) for a) moderately-rich (herb-rich), b) moist upland (mesic), c) dryish upland (sub-xeric), and d) dry upland (xeric) plots. The site fertility types given in 
parentheses are the ones used by Rautiainen et al. (2011) who provided the field-measured spectra. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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factor, kF, sh, from Eq. (15). Knowing all eight model parameters and 
rC(λ), we could solve Eq. (4) for rF(λ). A flow chart of the processing 
steps is given in Fig. 1. 

2.5.7. Forest floor BRF as a function of site fertility 
Forest floor reflectance and site fertility are both directly connected 

to the amount and composition of understory. To determine whether 
the mean rF(λ) for each fertility class X, r ( )F X, , is statistically sig-
nificantly different from one another we performed pairwise compar-
isons. We used two-tailed Welch's t-tests in R (function name: “t.test” 
with arguments: “two.sided”) to find the significant differences of 
r ( )F X, between fertility classes. For each fertility class X we calculated 
the 95% confidence interval E of r ( )F X, as: 

=E
n

1.96 ,rU
(24) 

where σ is the standard deviation of rF(λ) for each fertility class, and n is 
the number of field plots belonging to this class. 

2.6. Calculation of PRI 

PRI is defined as (Gamon et al., 1992): 

=
+

R R
R R

PRI (531) (570)
(531) (570) (25) 

where R(λ) is the reflectance at the wavelength λ given in nanometers. 

We calculated four PRI values:  

1. forest PRI, by using TOC BRF as R in Eq. (25)  
2. overstory PRI, by using rC(λ)[kC, sl(λ)fC, sl + kC, sh(λ)fC, sh] from Eq.  

(4) as R  
3. leaf-level PRI, by using rC as R;  
4. understory PRI, by using rF as R. 

We then plotted overstory PRI, understory PRI, and leaf-level PRI 
each against TOC PRI evaluated their correlation using the Pearson's 
correlation coefficient and the t-test to determine the statistical sig-
nificance of the correlation. 

3. Results 

3.1. Leaf spectra and canopy gap fraction 

As expected, the canopy leaf spectra rC from Eq. (13) and the 
PROSPECT-derived reference albedo ωeff were identical between 710 
and 790 nm. The rC averaged over each site fertility class was higher 
than ωeff in the blue and red regions (Fig. 2a) and close to ωeff in the 
green (550 nm) and red edge (720 nm) regions. 

The predicted canopy gap fractions (t0 and tV), used in Eq. (22) to 
estimate fC, sl, had a linear correlation with the field-measured values. 
The coefficient of determination (R2) was 0.37 and RMSE = 0.12 
(Fig. 2b). 

3.2. Forest floor reflectance 

In general, the magnitude of r ( )F X, was overestimated for all four 
field plots compared to that obtained from field measurements, RF, X(λ), 
where X is the fertility class (Fig. 3). This is especially visible in the 
green (550 nm) region and the NIR (700–900 nm). The opposite hap-
pened for moist upland (mesic) and dry upland (xeric) plots in the red 
region at 700 nm. Similarly, the overestimation in green and NIR oc-
curred for RF, X(λ) for each of the four studied fertility classes. What is 
noteworthy is the difference between RF, X(λ) and r ( )F X, for dryish 
upland (Fig. 3c). Whereas, moist upland had less disparity between RF, X 
(λ) and r ( )F X, . 

The forest floor field spectra (black lines in Fig. 3) and all AHS- 
derived rU spectra (Fig. 4) demonstrated typical green vegetation 
spectra with strong absorption in red and large reflectance in the NIR 
region. This supports our assumption to use green forest floor in Eq.  
(22). The r ( )F X, of different fertility classes became visibly separable in 
the green region, around 550 nm, and even more so in the NIR region 
(Fig. 4). In the latter we observed the largest spectral differences in rU 
between the fertility classes. In addition, r ( )F X, in the NIR region in-
creased with site fertility while it was approximately the same for all 
fertility classes (Fig. 4) in the red region (680 nm). Despite the overlap 
in the green region at 552 nm (Fig. 4), the differences were statistically 
significant) between moderately-rich and moist upland (Table 2), and 
for all other pairs, the was highly significantly different. Even though 
the variation ranges of understory spectra for the different fertility 
classes overlapped in the red (683 nm), t-tests showed a significant 
difference (P  <  0.01) r ( )F,X between moderately rich and dryish up-
land, and moderately rich and dry upland. Moist upland r ( )F,X is sig-
nificantly different (P  <  0.05) from dryish upland, and dry upland 
(P  <  0.01). We observed the largest differences in r ( )F,X in the NIR 
region between the fertility classes, where t-tests (Table 2) showed 
significant differences (P  <  0.01) between all four studied fertility 
classes. 

3.3. Leaf, understory and canopy PRI 

The TOC BRF PRI correlations with overstory PRI (r2 =  − 0.0038), 
rC PRI (r2 =  − 0.004), and rF(r2 =  − 0.003 were very weak but 

Fig. 4. The average forest floor reflectance for four fertility classes as retrieved 
from AHS, r ( )F,X , with 95% confidence intervals plotted at 552, 645,683, 739 
and 820 nm. 

Table 2 
Significance of r ( )F X, differences among all fertility class combinations at 
552 nm (upper-right part of table) and 820 nm (bottom-left part). The P-values 
significance codes are indicated with * (P  <  0.01), ** (P  <  0.05),— 
(P  >  0.05).        

Moderately-rich Moist upland Dryish upland Dry upland  

Moderately-rich  – * * 
Moist upland *  * * 
Dryish upland * *  * 
Dry upland * * *  

V. Markiet and M. Mõttus   Remote Sensing of Environment 249 (2020) 112018

7



statistically significant P  <  0.01, P  <  0.01, P  <  0.01, respectively 
(Fig. 5). The smallest mean PRI value of −0.09 was measured for 
overstory;rF, rC and TOC BRF produced PRI of −0.064, −0.068, and 
−0.056, respectively. The TOC PRI was statistically different from the 
three other PRI values (P  <  0.01). 

4. Discussion 

The observed variation in rF(λ) spectra within each site fertility 
class (Fig. 4) could be caused by the normal variation in understory 
vegetation composition, or forest management practices, such as stand 
thinning, which can damage the understory or cover it with cutting 
residues. Nevertheless, the general trends agree with the general un-
derstanding that herb-moderately rich understory vegetation, in-
dicative of rich abundance of nutrients, is characterized by mosses and 
large distribution of herbs, grasses and ferns agreeing with the higher 
NIR reflectance compared to other fertility sites. In contrast, dryish and 
dry uplands lack the nutrient richness and the ground cover is domi-
nated by lichen and dwarf shrubs, leading to a lower NIR reflectance 
(Rantala et al., 2011). 

The r ( )F,X spectra show a pattern similar to the measured forest 
floor spectra, originally reported by Rautiainen et al. (2011; their fig. 
3C), with moist upland (mesic) having the highest reflectance up to 
0.15 HDRF in the green region (550 nm), and up to 0.52 HDRF in the 
NIR region (850 nm). Moreover, their results show that dry upland 
(xeric) is the least reflective fertility class in green and NIR but com-
pared to the other fertility classes is most sensitive in the red region. In 
general, however, the reported forest floor HDRF for dry upland had 
approximately 30% lower reflectance in the NIR region. These results 
agree with our results in Fig. 4 where r ( )F,X spectra increases in the 
green and NIR spectral region as fertility class increases. Their results 

differ from our results in the red region around 680 nm, where they 
have a larger variation, up to 0.07, in r ( )F,X among fertility classes 
compared to our 0.01. In general, our rU(λ) is approximately 20% 
higher in green and NIR. We hypothesize that this is due to the use of 
the reference albedo which ignores non-green material, leading to an 
inaccurate rC(λ) in Eq. (4), and hence inaccurate unmixing of re-
flectance. 

The understory retrieval algorithm requires specification whether 
the forest floor is green or not, and choosing the appropriate equation, 
(21) or (22). We only tested it using forests in Finland where no soil is 
visible and, during growing season, forest floor has a clear red edge 
indicative of green vegetation (Rautiainen et al., 2011). Moreover, the 
algorithm likely fail during the end or beginning of the growing season 
when the forest floor is covered with snow. We understand the spatial 
and temporal limitations of our proposed algorithm and a more robust 
version of our algorithm needs to be developed for different forest 
types. 

For reliable understory HDRF, the understory signal should be 
strongly present in forest BRF, which does not hold for very closed 
canopies. The algorithm will fail for very closed as well as open ca-
nopies. However, the algorithm assumes substantial overstory cover (by 
assuming that the 10% brightest pixels in NIR are dominated by 
overstory signal) and is hence likely to fail for open canopy woodlands. 

The study done by Kuusinen et al. (2015) also produced r ( )F,X re-
sults similar to ours. They used linear spectral unmixing and Landsat 
spectral data to calculate sunlit forest floor BRF by site fertility and tree 
species for a boreal forest in Finland. Their results showed an increase 
in sunlit forest floor reflectance in NIR (760–900 nm) with increasing 
site fertility, from 0.18 for least fertile to 0.32 BRF at the most fertile 
site. Moreover, they observed a slight increase in forest floor BRF in the 
red (630–690 nm) region as fertility site increases. These results agree 

Fig. 5. a) Overstory PRI, b) rCPRI, and c) rF PRI as functions of TOC PRI for 250 field plots.  
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with our r ( )F,X spectra presented in Fig. 4 that show a similar pattern 
with a slight increase in forest floor BRF in the red region. Their model 
required information on canopy gap fraction measurements, tree spe-
cies information, and site fertility to be solvable, whereas our model is 
independent of species information and retrieves gap fractions from 
spectral reflectance data. 

Lastly, a similar study by Pisek et al. (2010) in which they used 
airborne hyperspectral imagery to estimate forest floor BRF for a Ca-
nadian coniferous forest reported results between 0.04 and 0.06 in the 
red spectral region (671 nm). These results are slightly lower compared 
to our r (671) 0.1F,X . Additionally, they reported forest floor BRFs 
between 0.3 and 0.5 in the NIR spectral band (866 nm) which is a si-
milar range to our 0.4 to 0.6 range. While, these results are similar to 
ours, our study results are only representative for European boreal 
forests. 

Estimating forest floor BRF requires knowledge of the leaf albedo 
and the canopy gap fraction (CGF). The leaf albedo used in the study 
varies somewhat with species, although its value at 790 nm (and NIR in 
general) is determined by that of the reference albedo, ωref (Fig. 2a). 
The variation of rC(λ) with fertility class is determined by the depen-
dence of species composition on site fertility and causes differences in 
retrieved leaf reflectance rC(λ) (which includes also the effect of non- 
green material) in the visible part of the spectrum. Also, the leaf angle 
distribution, or, more specifically, the G-function in the solar direction 
needs to be known. This value affects the estimates of the fraction of 
sunlit foliage and the irradiance on sunlit leaves. These lead to varia-
tions in the modeled contributions of first- and higher-order scattering 
to the canopy-reflected signal, and also total canopy scattering. How-
ever, our analyses using different values for G suggest that the un-
certainty in leaf orientation translates to an rU uncertainty smaller than 
10% (relative units). The G-function is known to be species-specific and 
can potentially be estimated from hyperspectral data, although ac-
cording to our knowledge, it has only been attempted for field crops 
(Zou and Mõttus, 2015). 

CGF quantifies the overstory canopy structure and determines how 
much light penetrates through the canopy to the forest floor. A reliable 
CGF estimate is also the key to the robustness of the algorithm. The 
unmixing Eq. (4) indicates that the (estimated) canopy gap fraction 
largely determines the contribution of canopy to the total BRF. For 
small CGF values, even large relative errors in canopy contribution have 
a small effect (due to the small absolute contribution of the canopy). 
For large CGF values, even small errors in canopy reflectance con-
tribution estimation (e.g., due to an incorrect CGF estimate) can 
translate to large errors in the estimate of forest floor reflectance con-
tribution, and hence also its reflectance factor. 

Measuring CGF in the field is a laborious task, especially for larger 
areas, hence we wanted to predict CGF from remote sensing data. As no 
wide-area models or products are readily available, to determine this 
parameter from remote sensing data, we selected a published model 
covering a large geographic area (Hadi et al., 2016). A more limited 
study has also shown that the p-theory can provide an estimate for this 
parameter via a linear correlation with ln ∣ 1 − p∣ (Vanhatalo et al., 
2014). Kuusinen et al. (2015) demonstrated that the forest floor con-
tribution in the NIR to TOC BRF decreases as tree height, LAI, and 
canopy cover increases. This suggests an increased effect of CGF on the 
retrieved rF(λ), and a larger error in rF(λ) in NIR. The agreement of 
retrieved rF(λ) in the NIR region with other studies suggest our model 
has sufficient accuracy. To further test the robustness of the forest floor 
reflectance retrieval algorithm to true variations in CGF (i.e., assuming 
that CGF is correctly estimated), we retrieved forest floor BRF for plots 
with high and low LAI (low and high CGF, respectively). For the test 
plots, we had reliable ground-measured CGF and optical LAI data. The 
retrieved forest floor BRF changed little with canopy cover for each 
fertility class (data not shown), which indicates the robustness of the 
retrieval algorithm to variations in overstory cover. 

According to our unmixing algorithm, the PRI value of the canopy is 

not correlated with that of leaves, overstory or understory across the 
wide variety of canopy structures used in the study. The most surprising 
results is a lack of correlation between TOC BRF-derived PRI and the 
value calculated from the leaf reflectance, rC. The latter is directly 
calculated from 10% of the brightest pixels. This result demonstrates 
the large variation in PRI with shadow fraction for vegetation canopies, 
caused by multiple scattering, shading, diffuse illumination and, last 
and not least, possible variation of PRI with irradiation conditions. 
Before an in-depth analysis, these results cannot be used as direct va-
lidation of a lack of correlation between forest and leaf PRI, but 
nevertheless provide yet another indication of the complexity of PRI 
scaling. 

We did not fully utilize the potential of the high spatial resolution 
data as we only used the high spatial resolution to select the brightest 
pixels. Despite the decreased signal to noise ratio in shaded pixels, the 
0.6 m resolution can be utilized for forest floor retrieval if pure pixels, 
so called ‘endmembers’ can be determined from data. Two possible 
endmembers that are to be included are apparent reflectance of shaded 
and sunlit leaves (as described by Mõttus et al., 2015), and sunlit and 
shaded forest floor. 

Previously, medium-resolution satellite data has been used in most 
studies of forest floor reflectance retrieval (Jiao et al., 2014; Kuusinen 
et al., 2015; Liu et al., 2017; Pisek et al., 2015b; Pisek and Chen, 2009;  
Rautiainen and Heiskanen, 2013). The algorithm presented here at plot 
level will, in principle, also work with a spatial resolution of 10–20 m 
after slight modifications. It would not be possible to use the brightest 
canopy leaf spectra to calculate rC(λ), and average canopy reflectance 
will need to be used; alternatively, canopy element reflectance may be 
determined from auxiliary data sources (e.g., spectral databases). 

The linear mixture model presented in Eq. (4) is not fundamentally 
new and has also been used, with appropriate adaptations, in previous 
works (Kuusinen et al., 2015; Li and Strahler, 1985; Pisek et al., 2015a). 
The new aspect here is explicitly distinguishing true and apparent re-
flectances, and presenting forest reflectance as a function of physically 
measurable reflectance properties. Instead of the abstract sunlit canopy 
reflectance, we define forest BRF via the reflectance properties of the 
physical objects scattering the radiation. We believe that the use of leaf 
albedo, despite its variation with species and phenology, improves the 
robustness of the retrieval of rF. The switch from the actual reflectance 
of the canopy element to the reference albedo makes the model 
mathematically more complex but may be necessary to account for the 
large diversity of green vegetation mapped by remote sensing instru-
ments. 

In this paper, we presented an algorithm that separates the con-
tribution of apparent forest floor from apparent overstory HDRF using 
an airborne hyperspectral remote sensing data independent of forest 
stand data obtained through extensive fieldwork. This algorithm can be 
used to calculate apparent forest floor HDRF and apparent overstory 
HDRF at field plot level. Moreover, the algorithm can provide a solution 
to separate site fertility classes using their true forest floor HDRF. 
However, more work is needed to improve the retrieval of other canopy 
biophysical characteristics, most critically gap fractions as the algo-
rithm described here depends on them. The retrieval of gap fractions is 
not only critical for quantifying the direct contribution of understory 
reflectance to canopy-leaving radiance, but also for determining the 
canopy-level recollision probability peff (Eq. 12) which determines ca-
nopy diffuse transmittance as demonstrated by (Stenberg, 2007). It is 
clear that in the case of a physically based algorithm, the retrieved 
values of vegetation state variables are interrelated. It would hence be 
reasonable to attempt a simultaneous retrieval of gap fraction, recolli-
sion probability, and understory reflectance, in a comprehensive re-
flectance parametrization of vegetation reflectance based on spectral 
invariants – for example, as an advanced version of the PARAS model 
(Rautiainen and Stenberg, 2005). Furthermore, there is no clear un-
derstand the effect of the assumption of green forest floor, and the full 
diversity of possible canopy structures on the retrieval result. The 
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algorithm needs also further validation, hopefully with field data 
measured simultaneously with remote sensing acquisition. Un-
fortunately, spatially extensive field measurements of forest floor re-
flectance are scarce and laborious to obtain. 

5. Conclusion 

We demonstrated, using a linear spectral unmixing algorithm, that 
we were able to separate forest floor and overstory HDRF for different 
fertility sites from airborne hyperspectral remote sensing imagery data 
without the input of field stand variables. We observed an increase in 
true forest floor HDRF from nutrient poor sites to nutrient rich sites in 
both the green (550 nm) and NIR (820 nm) regions. The promising re-
sults presented in this paper can help to create in the future operational 
algorithms to separate forest floor and overstory reflectance from air-
borne imaging spectroscopy with possible application to medium-re-
solution satellite data. 
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