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ABSTRACT 

The world’s population is increasing and along with it, the demand for food. A novel 

parametric model (Volterra Non-linear Regressive with eXogenous inputs (VNRX)) is 

introduced for quantifying influences of individual and multiple soil properties on crop yield 

and normalised difference vegetation Index. The performance was compared to a random 

forest method over two consecutive years, with the best results of 55.6% and 52%, 

respectively. The VNRX was then implemented using high sampling resolution soil data 

collected with an on-line visible and near infrared (vis-NIR) spectroscopy sensor predicting 

yield variation of 23.21%.  

A hyperspectral imager coupled with partial least squares regression was successfully applied 

in the detection of fusarium head blight and yellow rust infection in winter wheat and barley 

canopies, under laboratory and on-line measurement conditions. Maps of the two diseases 

were developed for four fields. Spectral indices of the standard deviation between 500 to 650 

nm, and the squared difference between 650 and 700 nm, were found to be useful in 

differentiating between the two diseases, in the two crops, under variable water stress. The 

optimisation of the hyperspectral imager for field measurement was based on signal-to-noise 

ratio, and considered; camera angle and distance, integration time, and light source angle and 

distance from the crop canopy.  

The study summarises in the proposal of a new method of disease management through 

suggested selective harvest and fungicide applications, for winter wheat and barley which 

theoretically reduced fungicide rate by an average of 24% and offers a combined saving of 

the two methods of £83 per hectare. 
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1 Introduction  

Chapter Synopsis; 

This chapter sets the background and scope of the research in this thesis, which is focused 

towards spectral recognition of crop disease. The research presented here has been conducted 

as part of the larger Farm FUSE project, which aimed to fuse a set of data on soil and crop 

together with auxiliary data on topography, land use and weather to delineate management 

zones for site specific, land and crop management including site specific agro-chemical 

applications. The specific aims and objectives of the thesis are provided below, which are 

targeted towards the recognised gaps in knowledge from literature. The thesis structure is 

outlined, and a full disclosure of contribution to work in each section is given here.  

1.1 Background and Context 

Conventional farming relies upon the unsustainable management of external inputs, and high-

yield varieties susceptible to disease, to achieve higher yields. However, crop diseases cause 

significant reductions in harvest and further financial losses from reduced quality (Hole et al., 

2005; Godfray et al., 2010). The homogenous application of inorganic, chemical, disease 

control products, started more than a century ago (Oerke 2006). With the world’s population 

estimated to reach 9 billion by 2050, sustainable approaches to increase crop yield are a 

necessity (Hole et al., 2005). One way to achieve this is by site specific management of farm 

resources. Among these, fungicide applications may well be reduced by targeted site specific 

spraying. Accurate measurement of fungal diseases is a main requirement for sustainable 

application of fungicides and expected to contribute to the reduction and prevention of the 

spread of crop disease and the quantity and quality losses incurred from them. The thesis will 

focus on the detection of crop diseases (specifically yellow rust and fusarium head blight 
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(FHB)), and consider the potential of variably applying fungicides at field scale, in response 

to their severity.  

Soil variability within agricultural fields differs in spatial scale, from small scales of 0.30 m 

by 0.30 m grids (Raun et al., 1998), to larger scales of 2 m by 2 m grids (Dhillon et al., 

1994). Borlaug and Doswell (1994) stated that soil fertility is the single most important factor 

that limits crop yields in developing countries. However, an area such as 0.30 m by 0.30 m 

would only effect a few plants (depending on drill rate). From a management perspective, soil 

variability on small scales (e.g. less than a few meters) cannot be variably managed on a 

commercial scale, due to practicality issues and technology limitations. As much as 50% of 

the increase in crop yields worldwide during the 20th century is due to the use of chemical 

fertilizers (Baligar et al., 2001). Conventional farming in the UK relies on unsustainable 

applications of external inputs, based on homogeneous applications of micro- and macro-

nutrients to obtain higher crop yields. These applications are made based on an average 

sample collected per field or per 1-3 ha in the best scenario. Plant resistance to diseases and 

pests are linked to balanced crop nutrition. A lack of different nutrients will increase the 

crop’s vulnerability to specific diseases. However, an abundance of nutrients (such as 

available nitrogen) are of particular interest in linking a crop’s susceptibility to various fungal 

diseases, through prolonged, and denser canopies, and nitrogen availability (Huber, 1980; 

Engelhard, 1989; Agrios, 1997; Fageria and Baligar, 1997; Graham and Webb, 1991; 

Snoeijers et al., 2000). However, nitrogen is needed to support plants in growth and repair 

and resistance from disease injury. A lack of nitrogen can leave a plant susceptible to 

pathogens that are specialised in infecting weak plants (Agrios, 1997; McElhaney et al., 

1998). 
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The spatial and temporal variability of soil physical and chemical properties affect 

agricultural quantitative and qualitative production (Mzuku et al., 2005). Assessment of field 

variability can help identify limiting factors of crop growth and optimise agrochemical inputs 

(Vrindts et al., 2003). Assessing the contribution of disease, in comparison to nutrient factors, 

as a yield limiting factor has not yet been approached in the literature, and would require a 

high sampling resolution of environmental parameters, crop disease, and yield mapping.  

Fungal plant diseases and stressful environmental conditions can result in a significant 

agronomic impact. Diseases can potentially spread over large areas through vectors and 

infected plant materials (López et al., 2003; Sankaran et al., 2010). Streams can spread the 

fungal spores through locations and rain through the crop canopy. Certain pathogens require a 

moist leaf surface for successful infection (Bisby 1943; HGCA 2010). Through wind 

dispersal, it is possible for fungal spores to be spread across and between continents (Brown 

and Hovmøller, 2002).  Crop diseases cause major economic and agricultural losses 

worldwide by reducing both production quantity and quality (Roberts and Paul, 2006). A 

greater occurrence of fungal diseases is observed in denser canopies, although a conclusive 

regression through multiple years and fields has not been obtained, potentially due to the 

strong influence of weather conditions (Sentelhas et al., 1993; Rozalski et al., 1998). 

Cunniffe et al. (2015) have recently summarised the issues in modelling of crop 

epidemiology, and the parameters considered. Therefore, the monitoring and detection of 

stress and diseases in plants is vital for sustainable agriculture practice. 
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Fungal disease control is a large task for successful production of cereals worldwide. For 

example, yellow rust (Puccinia. striiformis) is a foliar disease, which can reduce crop yields 

by up to 7 tha
-1

 in severe epidemics (Bravo et al., 2003). A virulent strain of yellow rust 

developed during 2009 which attacked several widely grown genetically resistant cereal crop 

varieties, including Solstice (Milus et al., 2009). Another important fungal disease that 

attacks cereal crops is FHB with the most aggressive and prevalent species (Fusarium 

graminearum), being highly pathogenic and produces mycotoxins (Rotter et al., 1996; 

Brennan et al., 2005; Desjardin, 2006; Leslie and Summerell, 2006). FHB predominantly 

affects the ear of the crop and has become one of the most important pre-harvest diseases 

worldwide. Similar to yellow rust, fusarium also causes a reduction in yield quantity and 

quality, and when producing mycotoxins, it becomes a significant threat to both humans and 

animals. Fusarium is a sporadic disease, dependent on warm and humid weather conditions, 

which causes variability of disease presence and level of infection across regions, and years 

(Jelinek et al., 1989; Rossi et al., 2001; Xu, 2003).  Yellow rust and FHB were selected for 

the thesis focus, as they have been reliably seen at the field site over numerous years. 

However, diseases such as Septoria also have a high geographic distribution and are 

economically important, causing significant losses of up to 50% in wheat each year (Moss, 

2013; Quaedvlieg et al., 2013). 

Although azole fungicides are currently widely used in wheat production, there is a risk that 

these fungicides may not be available in the future (Chandler, 2008). The European and 

Mediterranean Plant Protection Organization (EPPO, 2010) conclude that a diverse 

availability of azoles are the major contributing factor in the successful management of 

fungal pathogens. Agronomists are currently taking preventative measures not to compromise 

azoles, by rotating their usage and combining them with other active ingredient based 
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fungicides (Mielecki, 2011). The potential consequences of changes in the EU Pesticide 

Directive (91/414/EEC) will have considerable impacts on crop production in complying 

countries, requiring the withdrawal of 20% of the active ingredients (Hillocks, 2012). 

Consequently, this will result in more food having to be produced with fewer fungicides. In 

the next few decades, average crop yields are predicted to continue levelling off or to decline 

across many regions. Even in the most managed and irrigated cropping systems, the yield is 

currently ~80% of its expected potential (at best), hence, reducing the gap between actual and 

potential yields is of importance. However, no evidence exists suggesting that yields have 

ever achieved >80% of their potential (Lobell et al., 2009; Fischer et al., 2014). Therefore, it 

is necessary to measure and map the spatial distribution of these two diseases aiming at 

optimising variable rate application of relevant fungicide for sustainable increase in crop 

yield. 

Limited measurement techniques of crop diseases are available at research or commercial 

scales. Some of these methods provide direct quantification of crop disease spread, whereas 

others rely on the measurement of a parameter linked with disease spread. A CROP-meter 

(Ehlert et al., 2003) is currently sold as agricultural equipment, which can vary the 

application rate of fungicide in accordance to the measurement of crop density. The CROP-

meter’s application is relevant to plant density. Plant density affects microclimates and its 

conduciveness to diseases (Park et al., 1992; Murray et al., 1994; Dammer and Ehlert, 2006). 

The financial benefit of the CROP-meter method is attributed to a reduction in application 

rate in sparser areas. The crop density could be a reflection of multi-stresses occurring at the 

same time e.g., water, nutrients, temperature, disease etc. Crop density is also dependent upon 

the climatic conditions each year and associated crop variety (Cuculeanu et al., 2002). 

Therefore, there is a big question mark of the applicability of the CROP-meter for disease 

https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/yield-gap-analysis-of-rainfed-wheat-demonstrates-local-to-global-relevance/086231FFEB3AE7CDA08875E79E11957A/core-reader#ref17
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monitoring and control. Reports showed that the CROP-meter optimizes fungicide control by 

reducing fungicide input, but does not increase crop quality or quantity, highlighting an un-

met demand where quality and quantity of yield is improved by taking into account 

environmental parameters.  

A few optical devices for crop health are available commercially. Handheld devices for 

assessing parameter such as chlorophyll levels (correlated to nitrogen status) are used, by 

measuring leaf reflectance in the visible and infrared wavebands of the fluorescence like 

PocketPEA (Hansatech, Norfolk, UK). Tractor mounted sensors, which measure crop 

canopy reflectance in the visible and infrared are commercially available and most 

frequently used for normalized difference vegetation index (NDVI) calculations across the 

field, such as those from GreenSeeker (Trimble, California, USA), and Crop Circle ( 

Holland Scientific, Lincoln, NE USA).  

Spectroscopy and imaging techniques are currently used as direct tools for disease and stress 

monitoring (Hahn, 2009). Non-mobile (off-line) field and laboratory methods for disease 

classification and plant growing conditions have been studied and demonstrated (Roggo et 

al., 2003; Wu et al., 2008). Moshou et al. (2005) have shown that hyperspectral imaging for 

the recognition of in-situ disease can provide identification with a high degree of accuracy. 

However, their use in the field as mobile (also known as on-line) applications, for mapping 

crop disease has got rather limited attention by research (Lenk et al., 2007; Sankaran et al., 

2010). It was recognised in 2003 (West et al., 2003) that although optical technologies are 

available for development into suitable disease detection systems, many challenges are still 

needed to be overcome, and this is still arguably the case. No sensor-based technologies for 

disease detection commercially exist, that take into account the dispersion dynamics of 

pathogens within a field (West et al., 2003; Dammer and Ehlert 2006; Mahlein 2016). Whilst 
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progress has been made in disease recognition in the field, there are only a few yellow rust 

specific identification systems and none for FHB. Commonly the attempts of disease 

recognition using hyperspectral and multispectral imagery, are targeted to individual leaves 

rather than the canopy (Bock et al., 2010a).   

Although on-line applications are still rather limited, optical techniques have the potential to 

be integrated with agricultural vehicles. Optical methods provide non-invasive and high 

sampling resolution data necessary for monitoring and mapping of crop diseases. Among 

optical sensing methods, hyperspectral and multispectral imaging techniques are the best 

candidates as they have been used in disease and stress monitoring (Hahn, 2009). 

Hyperspectral imaging takes near simultaneous spectral measurements along a series of 

spatial positions, providing spectral features at high resolutions and with an improved 

understanding of the target than multispectral imagery (Gilchrist 2006).  

Spectral reflectance in vegetation canopies is dependent on several factors including the 

illumination angle, the canopy architecture and the radiative properties of the plants (Pinter 

and Jackson, 1985; Asner, 1998). Other factors affecting this are the integration time, light 

source, and camera distance and angle. Therefore, optimising the measurement configuration 

is essential before on-line field measurements using a hyperspectral imager can be 

successfully carried out, which is the main target of this thesis.  
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1.2 Research objectives 

There is a necessity for on-line recognition of crop disease, being both disease specific and 

capable of quantifying disease presence, for site specific management and evaluation of yield 

limiting factors.  

Hypothesis 

The project will consider the following hypotheses; 

1. Proximal hyperspectral imagery is capable of detecting specific crop diseases (e.g., FHB 

and yellow rust), and can be applied for on-line detection and mapping of their spatial 

distribution in cereal crops. 

2. Multi-sensor and data fusion of crop disease, canopy and soil properties collected at high 

sampling resolutions, can be successfully used for the quantification of the yield limiting 

factors. 

Aim 

The aim of the thesis is; 

To apply a hyperspectral imager on-line application to cereal crop disease recognition, 

critically appraising the existing technology. It also investigates a novel modelling approach 

for quantifying the crop yield limiting factors. The key aim is to produce management zone 

maps for variable rate fungicide application and selective harvest, in response to crop disease 

pressures, soil characteristics and micro-climatic conditions. 
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Objectives 

The objectives of the thesis are; 

1. To critically appraise different approaches, and identify the best configuration for the 

hyperspectral imaging systems for in-situ and on-line field measurement of crop 

disease. 

2. To evaluate the individual and interaction effects of parameters limiting crop growth 

and yield.  

3. To create a spectral library using hyperspectral data to identify and quantify specific 

crop diseases (yellow rust and fusarium head blight) independent from water stresses.  

4. To implement the hyperspectral imager for on-line detection and mapping of the 

spatial distribution of yellow rust and fusarium head blight in winter wheat and 

barley. 

5. To adopt a data-fusion approach for delineation of management zones for variable 

rate fungicide application and selective harvest.  
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1.3 Thesis structure 
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A new non-linear parametric 

modelling method to quantify 

influence of soil properties on 
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Subchapter 3:2: 

A new non-linear parametric 

modelling method to quantify 

influence of soil properties on 

crop yields - Application to 

on-line soil data. 

Chapter 4: 

Optimising the configuration of a hyperspectral imager for 

on-line measurement of wheat canopy  

 

Chapter 8: Conclusions and further work 

Multi-sensor and data fusion approach for determining yield limiting factors and for potential in-situ 

measurement of yellow rust and fusarium head blight in cereals 

Chapter 2: Literature review 

Chapter1: Introduction 

Chapter 5: 

Hyperspectral measurements of yellow rust and fusarium in 

cereal crops: Part 1: Laboratory study 

 

Chapter 6: 

Hyperspectral measurements of yellow rust and fusarium in 

cereal crops: Part 2: On-line field measurement 
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1.4 Disclosure 

The thesis consists of 8 Chapters. Apart from Chapter 1 (Introduction), Chapter 2 (Literature 

review) and Chapter 8 (Conclusions and Further work), the remaining chapters are presented 

as papers (accepted or under review) and are detailed below; 

Chapter 3 part 1: A new non-linear parametric modelling method to quantify influence of 

soil properties on crop yields - Methodology 

The study was collaborative work with Dr. Yifan Zhao and Dr. Said Nawar. The paper is 

submitted to the European journal of Agronomy. The paper is presented as part 1 of chapter 

3. My contribution to this work was being the lead author, and conducting all the field work 

data collection, soil processing and property analysis. The majority of NARMARX modelling 

was produced by Dr. Yifan Zhao, and random forest analysis By Dr. Said Nawar.  

Whetton, R.L., Zhao, Y., Nawar, S., and Mouazen, A.M. (2016). A new non-linear parametric 

modelling method to quantify influence of soil properties on crop yields - Methodology. 

European journal of Agronomy (under review).  

Chapter 3 part 2: A new non-linear parametric modelling method to quantify influence of 

soil properties on crop yields - Application to on-line soil data 

The study was collaborative work with Dr. Yifan Zhao, and the paper is submitted to Soil 

Research. The paper presented as part 2 of chapter 3. My contribution to this work was being 

the lead author, and conducting all the field work data collection, soil processing and property 

analysis. I have also prepared the data layers through interpolation (kriging) and raster 

analysis. The methodology and results for NARMARX modelling were produced by Dr. 

Yifan Zhao.  
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Whetton, R.L., Zhao, Y. and Mouazen, A.M. (2016). A new non-linear parametric modelling 

method to quantify influence of soil properties on crop yields - Application to on-line soil 

data.  Soil research (under review). 

Chapter 4: Optimising the configuration of a hyperspectral imager for on-line field 

measurement of wheat canopy 

The study was first presented at ATIA, with a short paper included in the proceedings. A 

more elaborated version of the work (provided in the thesis) was accepted for publication in 

Biosystem Engineering.  All work was my own with supervision and guidance from my 

supervisors.  

Whetton R.L., Waine T.W. and Mouazen, A.M. (2016). Optimising configuration of a 

hyperspectral imager for on-line field measurement of wheat canopy. Biosystems 

Engineering (accepted on 9
th

 December 2016). 

10.1016/j.biosystemseng.2016.12.006. 

Chapter 5: Hyperspectral measurements of yellow rust and fusarium head blight in cereal 

crops: Part 1: Laboratory study.  

This work was submitted to Biosystems Engineering and the work is currently in review.  All 

work was my own with supervision and guidance from my supervisors. 

Whetton, R.L., Waine, T.W. and Mouazen, A.M. (2016). Hyperspectral measurements of 

yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosystems 

Engineering (under review). 
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Chapter 6: Hyperspectral measurements of yellow rust and fusarium head blight in cereal 

crops: Part 2: on-line field measurement.  

The study was first presented at CIGAR in June 2016, with the abstract provided in the 

proceedings. A full paper was prepared and submitted to Biosystems Engineering. All work 

was my own with supervision and guidance from my supervisors. 

Whetton, R.L., Waine, T.W. and Mouazen, A.M. (2016). Hyperspectral measurements of 

yellow rust and fusarium head blight in cereal crops: Part 2: on-line field measurement. 

Biosystems Engineering (under review). 

Chapter 7: Management zone maps for variable fungicide application and selective harvest 

All work was my own with supervision and guidance from my supervisors.  

Whetton, R.L., Waine, T.W. and Mouazen, A.M. (2016). Yellow rust and fusarium head blight 

disease in winter wheat; proposed Management zones European Journal of Agronomy (under 

review).  
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2 Literature review 

Chapter Synopsis; 

This chapter undertakes a critical review of the literature, with particular focus on cereal crop 

yield limiting factors, fungal disease, soil properties, nutrient status, water stress, climate and 

infection. It will also review measurement and monitoring techniques used for disease 

detection.  

2.1 Fungal diseases 

Fungal diseases result in significant yield losses of cereal crops worldwide. Yellow rust, a 

foliar disease, and fusarium, which affects the head of the crop, are two fungal infections 

common on the small cereal crops, wheat and barley. Over 200 million hectares of farmland 

worldwide is used to grow wheat (Triticum aestivum), which contributes to about 21% of the 

world's food according to the food and agriculture organization (FAO) (Gustavsson et al., 

2011).  

2.1.1 Yellow rust 

Yellow rust, Puccinia striiformis, is a plant pathogen (Figure 1), causing yellow rust 

(commonly in patches through a field) alternatively known as stripe rust, which produces 

yellow uredo spores on the leaves. Yellow rust, is one of the most widely destructive plant 

diseases in winter cereal crops (Wellings, 2011). The spores are predominantly dispersed by 

the wind, and require damp or very humid conditions to infect the crop’s leaves. Disease 

symptoms start with chlorosis, occurring parallel to leaf veins in a narrow 2mm wide stripe, 

which develop into multiple yellow coloured rust pustules (De Vallavieille-Pope et al., 1995). 

Disease presence can vary considerably between plants. In severe epidemics, the yields can 

be reduced by up to 7 tonne ha
-1

 (Bravo et al., 2003). A virulent strain of yellow rust that 
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developed during 2009, attacked several widely grown genetically resistant cereal crop 

varieties, including Solstice (Milus et al., 2009). A broad-spectrum seed dressing and 

appropriate fungicide treatments should be used in areas at-risk and those with historic 

infection (Blake et al., 2011).  

 

Figure 1: Example of yellow rust (Puccinia striiformis) disease on winter wheat. 

2.1.2 Fusarium head blight 

Fusarium head blight (FHB) infection (Figure 2) is a major fungal disease, affecting several 

hosts including wheat and barley (Parry et al., 1995). The disease occurs throughout most of 

the world and is caused by the genus, Fusarium.  FHB is prevalent as several species, 

including; F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichoides, M. 

nivale and M. Majus (Parry et al., 1995; Xu et al., 2005). Fusarium fungi survive over winter 

on plant residues (as mycelium), which can produce ascospores that infect the flag shoot 

(Sutton, 1982; Oberti et al., 2014). FHB is a sporadic disease, severity is dependent on warm 

humid weather (Rossi et al., 2001; Xu, 2003), causing variability of disease presence and 

level of infection across regions and years (Jelinek et al., 1989). FHB symptoms in wheat and 
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barley appear in the head and peduncle tissues, causing discolouration and early senescence. 

Early visual symptoms consist of a characteristic purple/pink discolouration. Seed from a 

FHB affected crop is often shrunken, with a bleached appearance (Andersen, 1948; Parry et 

al., 1995; McMullen et al., 1997; Goswami and Kistler, 2004). FHB can result in yield losses, 

reduced grain, seed quality and size, causing direct economic losses. Mycotoxin 

contamination (a secondary metabolite of the fusarium mould) in the grain, results in indirect 

economic losses, due to market rejection or downgrading of grain quality (Sutton, 1982; 

Gilbert and Tekauz, 1995; Parry et al., 1995; Goswami and Kistler, 2004). Due to legal limits 

imposed by the European commission, for the fusarium mycotoxins deoxynivalenol (DON), 

and zearalenone (ZON) high levels of mycotoxins in cereal grain mean that it cannot be sold 

for human consumption (1250ppb for DON and 100ppb for ZON in wheat crop) but the crop 

can be downgraded to cattle feed (ruminants are more resistant to mycotoxins) but at a 

reduced price (HGCA 2014). 

 

Figure 2: Example of Fusarium head blight (FHB) disease on winter wheat. 
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FHB has become one of the most important pre-harvest diseases worldwide (Magan et al. 

2002). Control of fusarium and high mycotoxin contaminations are required to prevent toxic 

contamination reaching the food chain either in milling grain (for human consumption) or as 

cattle feed (Magan et al., 2002). F. graminearum is regarded as the most prevalent fusarium 

pathogen in the UK, as it is highly pathogenic (when considering mycotoxins) with a high 

genetic variation due to being a species complex (Rotter et al., 1996; Brennan et al., 2005; 

Desjardin, 2006; Leslie and Summerell, 2006). Ear development is a critical growth stage for 

cereal pathogen infection. Cereals are highly susceptible to fusarium infection during anthesis 

(growth stage 60, Figure 3), as the anthers provide nutrients to fungal growth (Andersen, 

1948; Parry et al., 1995; Lacey et al., 1999; Xu, 2003; Del Ponte et al., 2007). Imathiu et al. 

(2008) found that fusarium DNA can be detected in the ‘panicle’ of the crop at the end of 

anthesis (growth stage 60 – 69 illustrated in Figure 3). If the crop is infected later during 

grain development, visual symptoms may not develop, though mycotoxins can still be 

produced in the grain (Salas et al., 1999; Osborne and Stein, 2007). 
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Figure 3: Zadok’s scale of the main growth stages of wheat, (consistent across other small 

cereal crops) (OMAFRA, 2009).  

Impey (2012) confirmed the presence of fusarium leaf lesions in Herefordshire. This study 

was based on leaf analysis from five sites by the Agricultural and Environmental 

Consultancy. Fusarium leaf lesions found on the top two leaves is unusual but indicates the 

disease’s establishment in the ear (Impey, 2012). The addition of leaf lesions reduces 

photosynthesising green leaf area, contributing to a reduction in yield.  

Early detection of cereal disease, which may lack obvious visual symptoms, allows for a 

more effective fungicide treatment, preventing losses to crop yield and quality. Optical 

sensing provides non-destructive measurements, allowing repeated data acquisition 

throughout the growing season (Oberti et al., 2014). Among these optical techniques, 

hyperspectral imagers show the potential for such system and are discussed later on.  

http://www.sciencedirect.com/science/article/pii/S0168169914000611#b0015
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2.1.3 Fungal disease resistance 

Significant increases in cereal crop yields have been achieved over the last half-century 

through changes in agronomic practice, synthetic fertilizers, pesticides, resistant and high 

yielding cultivars (Bilsborrow et al., 2013). The most economical approach is to cultivate 

varieties with a genetic resistance to fungal diseases. Genetically modified plants with an 

increased resistance to fungal diseases are part of active research aiming to aid the reduction 

of the use of chemical fungicides (Bliffeld et al., 1999; Clausen, 2000; Bieri et al., 2003). 

However, resistant crops are susceptible to being overcome by fungal pathogens, due to many 

resistant plant varieties relying on a few key resistance genes. Fungicide resistance has also 

developed to many of the available fungicide classes (Mielecki, 2011). 

Cultivating varieties with resistance genes to FHB infection can be complicated due to the 

nature of the disease and the necessity to check ‘resistant’ plants at maturity for disease 

expression and distinguishing them under varying and complex environmental effects as well 

as the cost and time implications required for phenotyping (Bai and Shaner, 1994; Yang, 

1994; Campbell and Lipps, 1998). There are varying types of resistance genes for FHB 

infection in wheat and small cereal crops (Bai and Shaner, 1994; Yang, 1994; McMullen et 

al., 1997). Genetic resistance to FHB is generally expressed as a quantitative trait, due to its 

resistance relying on only a few genes, and their wide variation in response to environmental 

conditions. Fungicide resistant pathogens, and pathogens overcoming crop genetic resistance 

are both cause for concern (Wolfe 1985). With approaches to fungal disease control 

becoming less effective there is pressure for new disease management strategies to be 

developed. Improving disease control and the timings of application of fungicides, could 

prolong certain fungicides’ effectiveness, and keep them available as a reliable method for 

longer, due to reducing the chance of resistant mutants establishing (FRAC, 2010). 



20 

 

2.1.4 Disease distribution and spread 

There are multiple environmental factors in addition to those of crop resistance, which 

contributes to disease distribution. These include climate, humidity, weather, sources of 

inoculation, and environmental stresses. Balanced nutrition has an important role in 

determining plant resistance or susceptibility to diseases.  

2.1.4.1 Sources of fungal disease inoculation  

Theoretically, a higher disease pressure is expected to occur in fields of minimum or no 

tillage (Edwards, 2007; Parikka et al., 2007; Imathiu, 2008). A regular practice in 

conventional farming is to grow a wheat crop for 2 successional years without rotation, which 

commonly results in a yield loss and a higher demand for fungicide (Bilsborrow et al., 2013). 

Yellow rust and FHB species can survive in soil and weeds occurring in the hedgerows and 

borders of a field, acting as a source of inoculum (Jenkinson and Parry, 1994; Champeil et 

al., 2004; Imathiu et al., 2013). Initial infections of soil-borne pathogens, commonly result 

from infected plant residues left over from the previous year’s harvest. Fusarium species 

survive over winter on plant tissues and residues as mycelium (Sutton, 1982), infecting the 

ear of the crop as conidia and ascospores (Osborne and Stein, 2007), even after two years on 

the soil surface (Pereyra et al., 2004). Crop residue is considered a major factor for 

inoculation levels (Teich and Hamilton, 1985; Dill Macky and Jones, 2000). Pathogen 

survival is expected to be reduced in ploughed systems, as tillage buries residue, speeds 

decomposition and reduces pathogen reproduction and survival (Khonga and Sutton, 1988; 

Pereyra et al., 2004).  However, stubble can have a significant impact on other fungal 

diseases as well, such as Septoria tritici Blotch (STB). Zymoseptoria tritici causes STB on 

wheat. STB is a highly significant disease reducing wheat yields by up to 50% in severe 

epidemics on susceptible varieties (Eyal et al., 1973: Eyal et al., 1987; Fones and Gurr 2015). 

http://www.sciencedirect.com/science/article/pii/S0168160507003947#bib56
http://www.sciencedirect.com/science/article/pii/S0168160507003947#bib9
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Annual losses in the UK are around 20% of harvest (HGCA, 2012). STB poses a threat in 

temperate climates around the world. Septoria shows symptoms only in the later stages of 

infection, as the fungus can grow between leaf cells without causing visible damage. 

However, once established, visible symptoms  can occur throughout infected crops, rapidly 

creating oval pale brown lesions, containing black spots (pycnidia). Lesions can form from a 

single spore. In high severity, these lesions can join together, covering a large surface area of 

the leaf. Airborne ascospores, rain splashed pycnidiospores (from infected plant debris), and 

seed-borne infections are the main causes of STB.  

There is a trade-off between preserving top soil and increasing disease presence. Stubble can 

help the survival of stubble-borne pathogens, for example, Z. tritici populations can survive 

between growing seasons and release spores to infect the next crop. This increased survival 

can increase potential mutations, and the rate of evolution. Traditionally crop rotations and 

burying infected crop residues (tillage) reduces levels of early inoculation within a field. 

However, there is a large airborne source of inoculum from ascospores from neighbouring 

fields (Schuh 1990). This means that tillage has little impact on STB levels later in the season 

(Schuh 1990; Suffert and Sache 2011). STB control is the focus of about 70% of fungicide 

applications in Europe (Eyal et al., 1973: Eyal et al., 1987). Whilst STB is not considered 

further in the thesis, it would be a suitable disease for further work. The adaptability of STB 

supports studies into early disease recognition, as a method of control.  

The fusarium conidial spores are usually transported by rain drop splashes from the infected 

tissue to plant leaves and ears, though wind and insects are also sources for its distribution. 

Yellow rust infection is caused by uredospores and are predominantly dispersed by the wind 

and require damp or high humid conditions to infect the crop’s leaves (De Vallavieille-Pope 
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et al., 1995; Parry et al., 1995; Sache 2000; Paul et al., 2004). This method of pathogen 

transportation is more effective in sparse canopies, though in low precipitation levels, a dense 

crop stand will be more infected due to higher humidity (Broscious et al., 1985; Sentelhas et 

al., 1993). Cultivation practices, environmental factors such as crop density and climate 

variations are important factors to consider when modelling the spread of disease. Influence 

of environment on disease distribution 

Epidemics of fungal diseases are strongly influenced by the local environment, persistence 

and adaption of the pathogen, and the crop’s variety and physiological condition (Dammer, 

2003). The climate and local weather conditions are considered a highly influential factor 

regarding the distribution and severity of fungal infections in a crop stand. Warm, humid 

conditions are ideal for FHB infection in crops (Rossi et al., 2001; Xu, 2003), particularly if 

occurring during anthesis and early stages of kernel development (Gilbert and Tekauz, 2000). 

Yellow rust infections are closely correlated with temperature, ideally between 10°C and 

15°C with little infection occurring<2°C and above>23°C (Murray et al., 1994; Park et al., 

1992). Environmental conditions and the economic impact of yellow rust, FHB infection and 

associated mycotoxins are highlighted in Table 1. 

. 
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Table 1: Pathogen infection and influence. The economic impact, and environmental 

conditions conducive to yellow rust, fusarium head blight (FHB) infection and associated 

mycotoxins. The growth stages are in reference to Zadoks scale (Zadoks et al., 1974; De 

Vallavieille-Pope et al., 1995; Gilbert and Tekauz, 2000; Rossi et al., 2001; Bravo et al., 

2003; Xu, 2003; Del Ponte et al., 2007) 

 Pathogens Growth stage Weather conditions 

promoting infection 

Effect on yield 

Yellow rust Puccinia 

striiformis. 

Usually at stem 

elongation and 

onwards (growth 

stage 30 shown in 

Figure 3. 

Infection pressures 

correlated with 

temperature, wind to 

spread, moisture to 

inoculate, cool moist 

summers. 

Reduced quality and 40-

50% reductions in yield. 

The reduction can reach up 

to 7 tonne ha ¯
1
. 

FHB  Several fusarium 

and 

Microdochium 

species. 

Usually at 

anthesis and 

onwards (growth 

stage 60 shown in 

Figure 3. 

Variety of species 

suited to varying 

conditions, 

predominantly ideal if 

warm and humid.  

40% reduction in quantity 

and reduction in quality by 

size, weight, shape, and 

toxins. Reduced quality; 

potentially toxic. 

 

There is unequivocal evidence that the climate is changing at an increasing, and alarming rate 

(Change 2007; Parry 2007).  Due to the impact of climate on crop disease pressure, there is a 

recognised need for a suitable crop monitoring system. F. graminearum is a dominant cause 

of FHB with a broader adaption to environmental variability and climatic conditions, 

compared to other species. The incidence of the disease can occur over varying temperatures 

and moisture conditions, either through different regions, or from within field variability due 

to e.g., soil type and moisture, and the impact of crop density on humidity and temperature 

(Dammer, 2003; Backhouse 2014). Climate change could cause a population change in the 
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pathogen, allowing for a wider distribution of aggressive and virulent strains, which again 

supports a need for optimisation of disease monitoring and control (Sung and Cook, 1981; 

Dufault et al., 2006; Rossi et al., 2001).  

2.1.4.2 Influence of canopy density on microclimate and disease spread 

Under clear weather conditions in spring and summer, areas of the field with a low crop 

density will warm up and cool down faster than those with dense canopies. Differences in a 

wheat field’s microclimate could have an inter-canopy variation of up to 7.5°C (Dammer, 

2003). Considering the influence of canopy density on environmental conditions and thus 

disease distribution, the impact of crop density variation should be considered when 

monitoring crop health. 

2.1.4.3 Influence of rainfall on disease distribution 

Imathiu et al. (2008) concluded that the closer the plant part is to the soil surface, the higher 

the infection with fusarium species. It also showed a dilution effect of the inoculum away 

from the soil surface and potential sources of inoculum, possibly resulting from splash 

dispersal or from earlier inoculation where the disease concentration increases between 

inoculation and sampling. Moisture is often required for disease infection (De Vallavieille-

Pope et al., 1995; Rossi et al., 2001; Xu, 2003). Therefore, when assessing the regional 

distribution of fungal disease, the impacts of local weather conditions should be a 

consideration.    
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2.1.4.4 Influence of soil characteristics 

Balanced nutrition has an important role in determining plant resistance to diseases. Soil 

properties can have an indirect effect on disease pressure. For example, variable soil moisture 

will affect the crop microclimate, and an increase in nitrogen will increase the duration and 

green area index of the canopy (Stokes et al., 1997; Sylvester-Bradley and Kindred, 2009).  

Both macro (specifically nitrogen, potassium and phosphorus) and micro nutrients have an 

impact on the severity of fungal diseases. A lack of different nutrients will increase the crop’s 

vulnerability to specific diseases. Nutrients provide building blocks for the synthesis of plant 

components (e.g., additional amino acids, proteins, chlorophyll), supporting growth, repair, 

and resistance from disease (Huber, 1980; Engelhard, 1989; Graham and Webb, 1991; 

Fageria and Baligar, 1997; McElhaney et al., 1998). Plant growth promoting bacteria in the 

rhizosphere, can also increase the crops nutrient uptake (Amule et al., 2017). When 

considering a method of disease control, it is important to acknowledge its interaction with 

nitrogen. A lack of nitrogen can leave a plant susceptible to pathogens that are specialised in 

infecting weak plants (Agrios, 1997; Snoeijers et al., 2000). However, increases in nitrogen 

will increase the green area index and duration of the canopy (Stokes et al., 1997; Sylvester-

Bradley and Kindred, 2009). This subsequently affects the microclimate of the crop and the 

effect of suitable disease control (by fungicides or genetic resistance) and prolongs the 

canopy duration (Bryson et al., 1997).  

Studies observed that a high increase in nitrogen application within a wheat crop led to an 

increase in the disease severity due to prolonged green canopy (Leitch and Jenkins, 1995; von 

Tiedemann, 1996). Ishikawa et al. (2012) argue that there is an optimum N concentration for 

fungal infections to develop in wheat. The quality and nutritional content of whole grain 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b33
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b34
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b33
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b34
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b34
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b11
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wheat stay the same between organic and conventional farming practices though a drop in 

yield may be seen under organic practices (Shier et al., 1984; Mader et al., 2002).  

2.1.5 Current approach in fungal disease control 

Multiple fungal pathogens commonly co-exist within a cereal field. Fungicide treatments are 

often ‘broad-band’, and applied homogenously to the field, in an attempt to control the 

various established plant diseases, and pre-emptively protect plants from later occurring ones 

(Dammer and Ehlert, 2006). The recommended dosages of fungicide products given on the 

product labels usually have a high efficacy even when subjected to environmental conditions 

conducive to disease spread (FRAC, 2010). However, if there is a low disease pressure at the 

time of spraying, a lower dosage is often sufficient to get the same efficacy of disease control 

(Burth et al., 1990). However, crop pathogens under conditions conducive to disease can 

spread very quickly, particularly if already established in the crop stand. A variable rate could 

be applied to the crop stand in response to areas of high and low disease pressure. In this 

instance, a sensing system of crop intensity would be valuable in optimising fungicide 

application.  

2.1.6 Timings of fungicide applications 

Typically there are up to four timings of fungicide application to control yellow rust. T0 

(Timing 0) is applied between growth stage 25 and 30 (Zadoks scale). Its application is 

usually a preventative in historically problematic fields, or if an early disease is observed. T1 

(GS 31-33) and T2 (GS 37-39) are applied to keep the third, second and flag leaves healthy, 

as these heavily influence yield in wheat. The T3 application (GS 52-60) is usually an “ear 

wash”, usually to preserve the quality of the grain. T2 is commonly considered the most 

crucial application, and is the most frequently followed, due to the importance of maintaining 
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flag leaf health. T1 is considered secondary in importance followed by T3 and then T0 

(HGCA 2008; Clark, 2016). 

2.2 Techniques for disease detection 

There are several techniques applied for disease detection. The main methods currently used 

for disease recognition are based on visual assessments conducted by expert knowledge, 

molecular techniques, spectroscopy, volatile organic compounds (VOC’s). There are direct 

and indirect methods of fungal disease detection. Direct methods include molecular 

techniques such as immunology-based methods and Polymerase chain reactions, whilst 

indirect methods rely on stress based symptom detection (through imaging and spectroscopy) 

and biomarker based detection (through plant metabolites, and volatile organic compound 

profiling) (Ray et al., 2017).   

Biosensors have been utilised for environmental monitoring. They are analytical devices, 

which incorporate a biological material for recognition of a concentration of an analyte and 

produce an electrical signal for the output (Tothill, 2001).  In recent years, biosensors have 

been used for rapid detection in quantifying and diagnosing plant diseases in the field, 

detecting pathogens and aiding management decisions for the reduction of disease spread 

(Ray et al., 2017). A few electrical biosensors are available, but have been advancing through 

research, for example, air sampling coupled with PCR (West et al., 2008). 

Molecular techniques are commonly used to confirm the presence of a disease pathogen 

within a crop stand. In 2004 there were approximately 100 commercially available test kits 

for the methods described above (Alvarez, 2004). These techniques are commonly based on 

liquid chromatography, Polymerase Chain Reaction (PCR) and Enzyme Linked 

Immunosorbent Assay (ELISA). Liquid chromatography separates a complex sample into 
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individual components through solid and liquid stages, while PCR detects a specific sequence 

of DNA, and ELISA is an immunological response to detect antigenic protein. As techniques 

have continued to develop in increasing the accuracy and the process speed, the number of 

commercially available molecular tests have continued to grow. Next-generation sequencing 

was introduced in 2005 and has rapidly developed in the area. DNA sequencing, such as that 

based on nanopores, is a rapidly growing industry, which is currently making advances in 

agricultural research. However, it still requires extensive sample preparation (Thate et al., 

2007). Moreover, PCR and real-time PCR detect and multiply a specific sequence of DNA 

(Schaad and Frederick, 2002; and Henson and French, 1993). Other techniques available and 

have applied in the field of crop disease detection include; immunofluorescence (IF), 

fluorescence in-situ hybridization (FISH), flow cytometry, and DNA microarrays, loop-

mediated isothermal amplification (LAMP) assays and real-time Lamp assays (Prithiviraj et 

al., 2004; Das, 2004; Saponari et al., 2008; Ruiz-Ruiz et al., 2009; Yvon et al., 2009; Bekele 

et al., 2011). Molecular techniques provide a reliable and thorough evaluation of plant 

pathogen presence. However, their application is generally limited due to them being time 

consuming, labour-intensive, expensive and require experienced operators. Commonly, they 

require preparation involving intricate procedures, equipment, and consumable pathogen 

specific reagents. Therefore, they cannot realistically be used in preliminary screening of a 

large quantity of samples (Sankaran et al., 2010). 

An alternative approach to the molecular techniques is the recognition and distinguishing of 

VOC’s. Metabolic activities within plant components (e.g. leaves, stem, and seed) release 

VOC’s. Species, physiological condition and stress, age and development stage, 

environmental conditions, disease pressure and any pest stress all dictate the VOC profile. A 

distinct volatile biomarker identifying a specific plant and disease from that of a nutrient or 
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environmental stress is necessary to overcome the natural variation in the VOC profile within 

a plant species, which can otherwise conceal the presence of stress and disease (Sankaran et 

al., 2010). Potential exists for distinguishing between species of fungi based on characteristic 

volatile patterns (Magan and Evans, 2000). Indirect detection methods are where disease 

occurrence is predicted based on other factors, such as the density of the crop. Currently, the 

market offers a method, for fungal control, which is based on crop density measurement for 

optimising the application of a variable rate of fungicide (Dammer and Ehlert, 2006). This 

method contributes towards real-time control of fungicide application. Spatial information 

about crop density can be obtained by a CROP-Meter (Ehlert et al., 2003). The CROP-Meter 

provides an indirect measurement of leaf area index (LAI) and plant mass using a pendulum, 

which passes through the plant matter. Authors reported an increase in savings from CROP-

meter between 7% and 38% of fungicide costs depending on the heterogeneity of the field 

and the variability and extent of the LAI, which is attributed to a reduction in application rate 

in sparser areas. This success suggests an influence of LAI on the microclimate conditions 

within the crop. Studies have shown a correlation of leaf rust infection with temperature 

(Park et al., 1992; Murray et al., 1994; Dammer and Ehlert, 2006).  However, LAI could be a 

reflection of multiple stresses at the same time e.g. water, nutrients, temperature, and 

diseases. Although Dammer and Ehlert (2006) report that variable-rate fungicide application 

based on plant biomass is fiscally successful, it did not improve grain quality or quantity. A 

direct method of specific disease detection could result in not only an economic benefit, from 

reduced fungicide input (like the biomass based CROP-meter), but also lead to an increase in 

yield, by reducing losses caused by disease presence.  

The direct detection methods of crop diseases refer to those methods based on proximal 

sensors. These include classical imaging, visible and infrared spectroscopy, fluorescence 
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spectroscopy, and hyperspectral imaging. Optical sensing performs non-destructive 

measurements, allowing for repeated data acquisitions throughout the growing season 

without interfering with crop growth. The capability of two commercially available optical 

devices, the GreenSeeker RT100TM (Trimble, California, USA) and Crop Circle TM 

(Holland Scientific, Lincoln, NE USA), which are both active sensors for measuring relative 

greenness of crop, were used to discriminate levels of downy mildew (Plasmopara viticola) 

infection on detached grapevine leaves. A linear relationship between disease severity and 

output optical data was found from both sensors (Calcante et al., 2012). Since optical 

methods based on a hyperspectral imager were used in this study, a detailed literature review 

on optical methods is provided in the following section.  

2.2.1 Review of optical imaging techniques of crop canopies 

Originally, spectral images were sequentially taken, through a series of wavelength band pass 

filters; an image is collected at one wavelength at a time in a fixed field of view (FOV). If an 

object is moving or spectrally unstable, the results would be questionable. Integral spectral 

images require all the wavelengths to be recorded near simultaneously. Spectroscopy (based 

on the measurement of electromagnetic radiation reflectance of a targeted object) both 

passive (using an external light source), and active (using its own light source e.g., a halogen 

lamp), and conventional analyses have traditionally been used in the past to analyse 

individual samples under off-line (non-mobile) measurement conditions, which is time and 

resource consuming. Recent applications have been developing towards real-time (on-line, 

mobile) measurements for use in-situ and monitoring (Gilchrist, 2006). Spectroscopic 

technology has been successfully applied for plant stress detection such as water-stress and 

nutrient-stress detection (Sankaran et al., 2010). Crop disease would ideally be identified in 

http://www.sciencedirect.com/science/article/pii/S0168169914000611#b0015
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spectroscopy by a wavelength range or index that is specific to a plant disease and is little 

affected by environmental conditions (Griffin and Burke, 2003). 

Spectral reflectance in vegetation canopies is dependent on the illumination angle of the 

canopies’ architecture and the radiative properties of the plants. The most important plant 

characteristics that determine reflectance are LAI and leaf pigmentation. Cell structure in the 

leaves reflects near-infrared light (from 700 to 1000 nm), greater foliage has a greater effect, 

and chlorophyll in plant leaves, absorbs visible light, particularly blue and red, (from 400 to 

700 nm) (Campbell and Norman, 1998). Normalized Difference Vegetation Index (NDVI) 

measures the visible and near-infrared sunlight reflected by the crop. For the most effective 

method for measuring LAI, it can be first scanned by a proximal NDVI scanner and 

calibrated for LAI, which is conducted as a commercial practice. Canopy reflectance is 

dependent upon the structure and changes of the solar angle. Moreover, wind direction can 

also influence reflectance due to the orientation of the leaf (Rauner, 1976). A common 

approach is to include leaf angle and its effect on reflectance to derive an average leaf angle, 

developing it into a conical distribution and substituting it into a radiation transfer calculation 

(Monteith and Unsworth, 2008). In a homogenous canopy, the absorption of light is evenly 

distributed, making an ellipsoidal distribution adequate for use in many canopy types (Jones 

and Vaughan, 2010). Crop density through the use of a LAI measure is a traditional approach 

to calculate how much radiation is absorbed by the canopy. The overall reflectance in a dense 

canopy is less than a less-dense canopy, which is attributed to the light having passed through 

more than one reflection, due to a greater capacity for absorption and light scattering (Jones 

and Vaughan, 2010). The occurrences of sparse or irregular clouds affect the quality of light 

incidence, so that each spectral measurement should include a sunlight irradiance 

measurement (Jones and Vaughan 2010). Soil moisture can have a strong influence on 
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reflectance, related to an increase in absorption from wet soil, particularly in a sparse crop 

(Jones and Vaughan, 2010). 

2.2.2 Application of visible and infrared spectroscopy in disease detection 

Visible and infrared (350-2500 nm) spectroscopy has been used as a rapid, non-destructive 

tool for detection of plant diseases. It is cost effective and a fast developing technology 

(Ramon et al., 2002; Delwiche and Graybosch, 2002; Pontius et al., 2005; Gomez et al., 

2006; Zhang et al., 2008a,b; Guo et al., 2009; Sundaram et al., 2009). Visible and infrared 

spectroscopy can be applied to detect plant stress, damage and disease, and when applied to 

plant disease detection it is commonly used in combination (Malthus and Madeira, 1993; 

Polischuk et al., 1997; Bravo et al., 2003; Huang et al., 2004; Spinelli et al., 2006; Larsolle 

and Muhammed, 2007; Naidu et al., 2009). The visible and infrared wavelengths of the 

electromagnetic spectrum provide maximum information on the plant’s physiological stress 

state (Muhammed, 2002, 2005; Xu et al., 2007). When specific wavebands indicative of a 

disease are known, they can be applied to detect the plant disease in a crop field (West et al., 

2003). It is even feasible to detect the presence of a pathogen before visible disease 

symptoms appear (Sankaran et al., 2010). 

Within the visible spectrum, the radiation reflectance from an environmentally stressed plant 

will increase. This is due to an increase in the incident light reflection from the leaf of a 

stressed plant (Cibula and Carter, 1992). Using leaf spectral reflectance at 500, 600 and 650 

nm wavelengths, Sasaki et al. (1998) classified to 90% accuracy, diseased and healthy 

cucumber plants. Polischuk et al. (1997) used spectral reflectance measurements in making 

an early diagnosis of Tomato mosaic tobamovirus (ToMV) infection in Debney's tobacco 

(Nicotiana debneyi). Significant visual symptoms were noted three weeks after inoculation, 
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whilst a reduction in chlorophyll was detected by leaf reflectance after ten days. Similar 

results were also found on barley leaves with powdery mildew (Lorenzen and Jensen, 1989).  

Spinelli et al. (2006) used a NIR-based technique under greenhouse conditions for detecting 

fire blight disease in pear plants. Results showed that the NIR technique alone was unable to 

detect and therefore, classify the infected and healthy plants. This was attributed to the small 

leaf scan area, which in this study was 2mm
2
. Spinelli et al. (2006) highlighted the 

importance of field of view, recommending that a large area of both the diseased and healthy 

plants should be considered.  

Under field conditions, Naidu et al. (2009) used leaf spectral reflectance to identify viral 

infections causing leaf roll disease in grapevines (Vitis vinifera L.). To assess the ability and 

use of spectral reflectance in identifying a disease, discriminant analysis was performed to 

classify leaves into infected and non-infected leaves. The accuracy was reached a maximum 

of 75% for classifying leaf disease categories, when both the vegetative indices and 

individual reflectance bands (from the green, mid infrared and near infrared spectral regions) 

were used. The many successful studies on using the visible near infrared (vis-NIR) 

spectroscopy for disease detection confirm the possibilities of using this technology for early 

detection of diseases in field conditions. Moshou et al. (2011) introduced a prototype of an 

on-line and automated multi-spectral camera (using the 495, 747 and 837 nm wavebands) for 

the detection of early stages of disease in wheat crop, for both yellow rust and septoria. A 

review by Mahlein (2016), discusses the use of optical sensors for the recognition of crop 

disease, and the development process they must continue to undergo. Thomas et al. (2017) 

recorded both reflectance and transmittance imagery in barley crop inoculated with powdery 

mildew, finding that reflectance data outperformed transmission data in early disease 
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detection. They also highlight the significance of reflectance in the 580 to 650nm 

wavelengths, for disease detection. 

Mahlein et al. (2010) studied the potential of three spectral indices (NDVI, Anthocyanin 

Reflectance Index (ARI) and modified Chlorophyll Absorption Integral (mCAI) between 

400–1050 nm wavelengths, in early disease detection of sugar beets, concluding that 

multiple indices would be required for an accurate distinction of diseases. Results 

suggested that a distinctive differentiation of the three sugar beet diseases using spectral 

vegetation indices is possible using two or more indices in combination. Rumpf et al. 

(2010) used nine spectral vegetation indices (collected with hyperspectral reflectance) 

relating to physiological parameters in a support vector machine learning for the 

classification of specific diseases between healthy and inoculated sugar beet plants.  

Discrimination between healthy and diseased leaves was successfully done with an accuracy 

of 97%. These studies highlighted the potential accuracy of spectral indices in disease 

recognition.   

Whilst previous research has studied spectral data collected in the field and from mobile 

systems, limited studies on on-line (mobile, and attached to a vehicle) captured spectral data, 

for crop disease detection could be found in the literature, which is a key gap for research to 

justify the novelty of this thesis.  

2.2.3 Application of fluorescence spectroscopy in disease detection 

Fluorescence characteristics have been used for the last twenty years in vegetation studies. It 

is a method, where fluorescence is measured during excitation (Sankaran et al., 2010). 

Excitation is where fluorescence occurs when a molecule absorbs light photons from the ultra 

violet visible light spectrum (200-900 nm). The molecule then rapidly emits light photons and 
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returns to its previous state. A small quantity of energy is lost in heat or movement within the 

molecule, so excitation energy is greater than the emitted energy. Belasque et al. (2008) 

commented on how the change in blue-green fluorescence and chlorophyll florescence of 

plants at excitation could be used not only to encompass the monitoring of stress on the 

physiological condition of the plant, but potentially be applied in detecting and discriminating 

disease stress from mechanical one (physical damage such as broken stems and damaged 

leaves). 

A further advancement of fluorescence spectroscopy is fluorescence imaging. Instead of 

using a UV (10-400 nm) or halogen (320-1100 nm) light source for florescence excitation, a 

xenon (240-1100 nm with strong peaks at 750-1000 nm) light source is becoming more 

common. Fluorescence images are collected using a camera instead of a single spectrum, and 

at specified wavelengths the fluorescence is recorded with use of a charge coupled device 

(CCD) camera based system (Bravo et al., 2004; Lenk and Buschmann, 2006; Chaerle et al., 

2007; Lenk et al., 2007, Sankaran et al., 2010). In fluorescence imaging, the commonly used 

regions of the electromagnetic spectra are blue (440 nm), green (520–550 nm), red (690 nm), 

far red (740 nm), and near infrared (800 nm) (Lenk and Buschmann, 2006; Chaerle et al., 

2007). Lenk et al. (2007) described multispectral fluorescence and its possible application in 

monitoring disease symptoms in plants, as well as use in fruit quality, leaf structure and 

photosynthesis. 

In 2007, Poutaraud et al. (2007) measured the distribution of downy mildew (P. viticola) 

from grapevine stress induced secondary metabolites (stilbenic phytoalexins) using in vivo 

fluorescence measurements, finding that the high intensity of blue and violet fluorescence 

(near 390 nm) emitted by the metabolite could be used as a strong indicator for early onset of 

disease. Also using fluorescence measurements Bélanger et al. (2008) showed that disease 

http://www.sciencedirect.com/science/article/pii/S0168169914000611#b0005
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could be quantified on detached leaves. Authors reported that the ratio between blue (near 

440 nm) and green (near 520 nm) intensity between the healthy and diseased tissue was 

significantly different shortly after inoculation. 

2.2.4 Alternative spectral methods 

There are other imaging techniques that can be applied in the detection of plant diseases, such 

as x-ray imaging, terahetz spectroscopy, NMR spectroscopy and infrared thermography. 

These techniques are generally not applied to plant pathology as they are expensive to run, 

and so are not cost effective when compared to the potential of crop quality and yield 

increase (Sankaran et al., 2010). However, Masri et al. (2017) using thermography, found 

that air temperature and fusarium infected ears were negatively correlated 6 days after 

inoculation.  

2.2.5 Hyperspectral and multispectral imaging 

Hyperspectral imaging has been developed dramatically from large, aircraft-based systems, to 

a more compact (UAV connected), economic tool that can be applied in monitoring, 

inspecting and diagnosing crop disease. A hyperspectral imaging instrument takes 

simultaneous (or near-simultaneous) spectral measurements along a series of spatial 

positions, giving both the shape and features of the spectral curve. The more spectral 

wavelengths observed (resolution of wavelength nm collected), the greater is the 

understanding of the sample quality (Gilchrist, 2006). Hyperspectral imaging is similar to 

multispectral imaging, but differs on having a broader range of wavelengths and spectral 

bands. One spectrum of different wavelengths per pixel, to form the hyperspectral image 

(Sankaran et al., 2010). These wavelengths can include the visible (Vis), near infrared (NIR) 

and infrared (IR) regions. Each spectral region provides information about the plant. The 

reflectance at visible wavelengths is attributed to leaf pigmentation, with a low reflectance 
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indicating larger absorption of the light due to darker coloured leaves. This is attributed to the 

photosynthetic pigments of the plants leaves, governed by the abundance of chlorophyll, 

absorbing most of the light radiation (Gates et al., 1965; Thomas and Gausman, 1977). Leaf 

reflectance in the NIR range is affected by the structure of the plant leaves (Gates et al., 

1965), and can be related to the leaf wax coating (Cameron 1970). The infrared wavelength 

reflectance provides information on the physiological condition of the plant. The wavelength 

measurement for the return of light intensity in hyperspectral imaging adds the multiple 

wavelengths (spectrum) with its spatial position to the brightness information of the spectral 

image, providing a rapid image-contrast, which would not be present in a conventional image 

approach (Huang et al., 2007). Mahlein et al. (2013) used spectral vegetation indices to 

differentiate between diseases on sugar beet plants and three leaf diseases. Hyperspectral 

signatures of healthy and diseased sugar beet leaves were assessed, finding a single 

wavelength and normalised wavelength difference between 450 to 950 nm to be most 

relevant, with classification accuracies being between 85 and 92%.  

In addition, the proximal applications of hyperspectral imaging have been successfully 

adapted to use in remote sensing (air and satellite) applications for a range of control, 

monitoring, and scientific applications. Remote-sensing based monitoring has also been used 

in agriculture for detecting invasive species (Sankaran et al., 2010). Application of remote 

hyperspectral sensing techniques have been aimed at supporting real-time monitoring and 

inspection, in the identification, quantification and quality control (Gilchrist 2006; Sankaran 

et al., 2010). Hyperspectral imaging is commonly used for monitoring food product quality 

and pharmaceuticals (Mehl et al., 2004; Lee et al., 2005; Yao et al., 2005; Tallada et al., 

2006; Gowen et al., 2007; Mahesh et al., 2008; Sighicelli et al., 2009). The application of the 
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technology for use in precision agriculture and plant disease detection has been gaining 

popularity (Okamoto et al., 2009).   

The use of hyperspectral imaging techniques for disease identification was reported by 

several researchers under non-mobile measurement conditions (Roggo et al., 2003; Wu et al., 

2008). The early success in field studies for hyperspectral detection of yellow rust focused on 

detecting the presence of yellow rust (Bravo et al., 2003; Moshou et al., 2004). Bravo et al. 

(2003) detected early symptoms of yellow rust (P. striiformis) on winter wheat, using a 

quadratic discriminant model with an accurate classification accuracy of 92–98%. Moshou et 

al. (2004) successfully detected yellow rust disease in winter wheat by using spectral 

wavelengths of 460 to 900 nm, classifying individual plants into healthy and infected with 

accuracies between 92.0% and 99.4%. Moshou et al. (2005) combined hyperspectral 

reflectance and multispectral fluorescence imaging for the detection of yellow rust in winter 

wheat, through sensory and data fusion approach. The hyperspectral imaging data collection 

was obtained under ambient light conditions in winter wheat plots, whereas data for 

fluorescence images was obtained through UV excitation. Moshou et al. (2005) demonstrated 

that when sensory imagery was combined with quadratic discriminant analysis (QDA) based 

classification, the accuracy of healthy plants improved considerably to 97% from a prior 71–

90%. Similarly, the classification accuracy of the diseased plants increased to 99.4% and 

healthy plants’ classification further improved to 98.7% accuracy, when the self-organizing 

map (SOM)-based neural network was used for the plant classification. More recent attempts 

with hyperspectral and multispectral imagery are targeted to leaves rather than the canopy 

(Bock et al., 2010). Huang et al. (2015) successfully provided quantitative assessment of 

yellow rust in winter wheat, through hyperspectral measurement of individual infected 

leaves. This research shows the potential application for hyperspectral imaging in the 

http://www.sciencedirect.com/science/article/pii/S0168169915001532#b0040
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application of disease recognition in-situ with resultant high accuracies. Whilst the use of 

hyperspectral imaging techniques for offline disease identification has been reported by 

several researchers there are few on-line (Roggo et al., 2003; Wu et al., 2008; Bock et al., 

2010).  

Soil and canopy properties can vary on different scales and a greater resolution in data 

collection could be more sensitive to detecting the smaller scale changes (Raun et al., 1998; 

Dhillon et al., 1994; Rossi et al., 2001; Dammer, 2003; Xu, 2003). Proximal spectral data can 

have a high resolution, an example of this is the on-line soil measurement platform created by 

Mouazen (2006), where a spectrophotometer (Tec5 Technology for Spectroscopy, Oberursel, 

Germany) was applied to a tractor travelling at a speed of 3 km h
-1 

and collecting spectral soil 

data every second at 10 m parallel intervals. The resolution of data acquired, of course, 

depends on the method of application and the make and model of the camera. Satellite data, 

for example from Landsat 8, has a spatial resolution of 30 meters for the visible and NIR, 

which may not detect finer spatial changes. However, the benefit of the spatial and temporal 

coverage of satellite data may outweigh the negatives for certain applications (Lobell, 2013). 

2.2.6 Optical imaging summary 

Optical imaging techniques don’t require direct contact with samples, hence, they can be 

operated at a wide range of distances. Measurements are very rapid and can be performed at 

normal field vehicle operation speeds. Moshou et al. (2011) developed a prototype, tractor 

mounted, hyperspectral imager demonstrating the practicality towards field-scale disease 

detection of yellow rust. 

Studies have considered proximal detection of diseased and healthy crops, by using sampled 

leaves/ears, a summary of which can be found in Table 2. They commonly found the most 

http://www.sciencedirect.com/science/article/pii/S0168169915001532#b0040
http://www.sciencedirect.com/science/article/pii/S0168169915001532#b0040
https://link.springer.com/article/10.1007/s11119-014-9365-6#CR18
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discriminant wavelength intervals to be at green (near 500 nm) and near infrared (900 nm and 

1600 – 2200 nm) (Naidu et al., 2009). Polder et al. (2005) reported successful detection of 

fusarium in single kernels, by using both spectroscopy and imaging. Bauriegel et al. (2011) 

successfully recognised FHB infection at growth stages 71–85, using spectral ranges of 400–

1000 nm, 500–533 nm (green), 560–675 nm (yellow), 682–733 nm (red) and 927–931 nm 

(red edge). Similarly, Delwiche and Kim (2000) successfully detected FHB in wheat kernels 

using a hyperspectral imager at 435 – 860 nm spectral range based on machine learning. 

Oerke and Steiner (2010) detected significantly higher temperature in fusarium infected 

ears, by means of an infrared thermography method for in-situ measurement of crop 

canopy.  

Although certain nm wavelengths can be associated to disease recognition in the spectra, the 

use of a full spectral range generally produces a more reliable prediction model, due to 

interactions of different properties on the spectrum.  This was confirmed for the Vis-NIR 

spectral analysis for the prediction of soil properties (Mouazen et al., 2005). Therefore, the 

analysis of the full spectral range obtained in this study will be considered rather than 

focusing on specific wavebands.  

Although many studies of the use of optical methods for the recognition of crop disease can 

be found in the literature, very limited research was published on the use of these optical 

techniques for on-line measurements.  

  

http://link.springer.com/article/10.1007/s10658-011-9878-z#CR35
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Table 2: summary of different spectral applications to recognition of crop diseases and 

associated observations and accuracies 

Spectrum Observations and success Reference 

Visible spectrum 90% accuracy for detection of environmentally stressed plant due to an 

increased radiation reflectance. 

Sasaki et 

al.(1998) 

Hyperspectral 

wavelengths at 704, 

1423 and 1926 nm 

Quantitative assessment of yellow rust in winter wheat, through 

individual infected leaves with an R² of 0.88. 

Huang et 

al.(2015) 

Spectroscopy and 

imaging. 

Successful detection of fusarium in single wheat kernels,  Polder et 

al.(2005) 

Flouresence spectrum The method could be applied in detecting and discriminating disease 

stress from environmentally attributed stress. 

Belasque et 

al.(2008) 

hyperspectral 

wavelength range of 

435 to 860 nm 

Fusarium head blight in wheat kernels through machine learning. Delwiche and 

Kim (2000) 

NIR spectrum Unable to discriminate between infected and healthy plants. 

Recommend a larger area of view rather than a small one. 

Spinelli et 

al.(2006) 

NIR spectrum Maximum of 75% accuracy for classifying leaf disease categories Naidu et 

al.(2009) 

Vis-NIR spectral range 

of 400–1000 nm 

Discrimination of fusarium infected from healthy plants at growth 

stages 71–85 using principal component analysis (PCA) 

Bauriegel et 

al. (2011) 

NIR along with mid 

infrared spectrum 

Noticed it was more reliable than NIR spectroscopy alone for earlier 

disease detection and identification 

Sankaran et 

al.(2010).   

Vis-NIR spectrum Detecting early symptoms of yellow rust on winter wheat, with a 

discrimination accuracy of 92–98% between infected and healthy 

plants. 

Bravo et 

al.(2003) 

Vis- NIR spectrum Discriminating healthy from infected individual plants with 

classifications accuracies ranged between 92.0% and 99.4%. 

Moshou et 

al.(2004) 

Infrared thermography Detected significantly higher temperature in fusarium infected ears. Oerke and 

Steiner (2010) 

Hyperspectral imaging Classification accuracy of the infected and healthy plants ranged 

between 98.7% and 71–90%. 

Moshou et 

al.(2005) 

Hyperspectral imaging 

and fluorescence 

When sensory imagery was combined with quadratic discriminant 

analysis (QDA) based classification, the accuracy improved to 97% and 

99.4% for healthy and infected plants. 

Moshou et 

al.(2005) 

 

http://link.springer.com/article/10.1007/s10658-011-9878-z#CR35
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2.3 Variability and yield limiting factors  

The spatial variability that exists in the majority of agricultural fields requires careful 

management with the aim to increase yield at reduced input cost and related environmental 

impacts. Conventional management of fields relies on homogeneous applications of external 

inputs. For example, current fertiliser applications are made based on an average soil sample 

collected per field or 1-3 per ha in the best scenario, which ignores within field variability. 

But, soil commonly varies within an agricultural field (Raun et al., 1998; Dhillon et al., 

1994). Therefore, an alternative scenario of the conventional homogeneous application is 

required, namely, variable rate applications, by which the required amount of input (e.g., 

fungicide, fertilizer, etc) is applied in the right place where needed. Variable rate applications 

have seen a surge of innovative technologies in recent years, relying on input data from 

normalised difference vegetation index (NDVI), leaf area index (LAI), soil properties or a 

combination of these (Lowenberg-DeBoer and Aghib, 1999; Maleki et al., 2008; Halcro et 

al., 2013). Although precision management of farm external inputs is growing due to its 

economically beneficial results (Halcro et al., 2013), quantifying the yield limiting factors is 

still a crucial question to be answered, before variable rate applications can be optimised to 

meet the exact crop needs.  

One way to analyse and quantify the yield limiting factor is by adopting an input-output 

model that describes the relationship of the inputs (e.g. crop and soil properties, topography 

and terrain attributes, disease and weather conditions) and output (crop yield) of a system. 

This can be achieved for example by the implementation of machine learning, multivariate 

statistical analyses, random forest and others. Wang and Shen (2015) used classification and 

regression tree analysis to relate soil characteristics to yield. They classified low yield areas 

and could detect them based on just a few soil properties to an accuracy of 61.8%. Volterra 
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Non-linear Regressive with eXogenous inputs (VNRX) is a non-linear parametric model 

(Zhao et al., 2013), which will be applied for quantifying the individual and collective 

influences of soil properties on yield variability, for the first time in this thesis.  

Parametric models have attracted more and more interest recently due to their limited reliance 

on field calibration, less requirement of sample size and their transparent assessment of 

model performance. Parametric modelling in agriculture was used to assess soil erosion as 

correlated to landslide events (Pradhan et al., 2012), to assess land size for a maximum crop 

output (Färe et al., 1997), water retention (Timlin et al., 2004) and soil respiration (Chen et 

al., 2011). However, very few studies on the use of parametric modelling to predict yield can 

be found in literature. The first successful application of parametric modelling to predict crop 

yield was reported by Mkhabela et al. (2011), where NDVI was the sole input. Authors 

reported difficulties associated with removing non-target crop NDVI obtained from the earth 

observation satellite imagery (with a resolution of 250m). Huang et al. (2013) developed a 

regression model to predict rice yield based on a direct empirical relationship established 

between NDVI and rice yields, achieving some success. Whilst the relationship between 

nutrients in soil and yield is widely understood, there are areas of interest where high 

sampling resolution data (obtained with advanced remote and proximal sensing technologies) 

could be applied.  

2.4 On-line measurement of soil properties 

In addition to crop disease and crop NDVI measurements, soil property data was also 

collected using on-line measurement systems. Kuang et al. (2012) stated that among the 

different sensing techniques for soil properties, the most applicable one for the field under 

both non-mobile and on-line mobile conditions is vis-NIR spectroscopy. It has the potential 

to provide a rapid, cost effective and accurate analysis of multiple soil properties. The 
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technology can be mounted on a tractor for on-line sensing, capable of collecting high 

sampling resolution data e.g., >500 readings per ha (Mouazen, 2006; Maleki et al., 2008; 

Kuang and Mouazen, 2011a; 2011b). The Mouazen (2006) internationally patented system 

was proven by many publications to enable the measurement of key soil properties with 

appreciable accuracy (Mouazen et al., 2005; Kuang and Mouazen, 2012; Kuang et al., 2015). 

By utilising such a system, a greater understanding of the spatial distribution of soil 

properties and their impact and correlation on crop growth and yield will be possible. This 

on-line soil sensor will be a key contributor for the delineation of management zones for 

selective harvest and fungicide application to be investigated in this thesis. 

2.5 Literature conclusions; research gaps 

The literature review confirmed that there is a need to develop and test a proximal sensor for 

on-line measurement of crop diseases, e.g., yellow rust and FHB. The sensor should enable 

the collection of high sampling resolution data on these diseases to enable site specific 

application of fungicide or selective harvest. 

The literature review has highlighted the impact of soil, canopy properties, and microclimate 

conditions, on the risk of infection. It is more effective to know the location and severity of 

the disease, rather than estimating the overall average for the field (Dammer, 1999; Fleischer 

et al., 1999). On-line soil and crop data and micro-climatic conditions when fused with 

quantitative data on crop disease may not only be beneficial for variable rate fungicide 

application and selective harvest, but predicting future infection patterns. 

There is a need for high sampling resolution data on soil characteristics, crop growth, 

diseases, and microclimate conditions to enable understanding for managing variability that 

exists in most agricultural fields. These layers could be applied to a non-linear model to 
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explore the yield limiting factors, by quantifying the individual and collective influences of 

these layers on the yield variability within a field. 
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3 Quantification of yield limiting factors 

Chapter Synopsis; 

This chapter discusses the implementation of a new non-linear parametric modelling 

approach for quantifying the yield limiting factors, by estimating the individual contributions 

and interactions of soil properties to NDVI and yield.  

Chapter 3 is split into two subchapters;  

3.1 A new non-linear parametric modelling method to quantify influence of soil properties on 

crop yields – Methodology.  

3.2 A new non-linear parametric modelling method to quantify influence of soil properties on 

crop yields - Application to on-line soil data. 

This modelling approach is further explored with the inclusion of disease data (e.g., fusarium 

head blight (FHB) and late yellow rust) with some key soil properties (TN, OC, MC, and 

CEC). Results of this further analysis can be found in Appendix A. 
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3.1 A new non-linear parametric modelling method to quantify 

influence of soil properties on crop yields: Methodology 

 

Abstract 

This paper aims at introducing a new non-linear parametric modelling technique based on a 

Volterra Non-linear Regressive with eXogenous inputs (VNRX) model to study and quantify 

the effect of soil properties on crop yield. Two versions of VNRX were implemented, 

namely, VNRX-LN, accounting for both the linear and non-linear variability in the system, 

and VNRX-L, accounting for linear variability only. The performance was compared with a 

non-linear random forest (RF) model to predict oilseed rape (2013) and barley (2014) yields 

in one field in Germany. Soil samples were collected in 2013 and analysed in the laboratory 

for ten properties. These were used as system inputs for the three models and crop yield data 

of 2013 (oilseed rape) and 2014 (wheat) were used as the system outputs. Results 

demonstrated the individual and total contribution of soil properties on crop yield to vary 

throughout different cropping seasons. Both VNRX-LN and RF models outperformed the 

VNRX-L model (attributed to the ability of these models to account for non-linearity) and 

explained up to 55.6% (2013) and 45.8% (2014) of yield variation for the RF model and 

52.2% (2013) and 50.6% (2014) of yield variation for the VNRX-LN model. Although 

VNRX-LN and RF models almost equally performed for yield prediction, the RF models 

were more consistent with the soil properties ranking for describing the yield variability, 

indicating a greater stability.  The VNRX-LN accounted for slightly more variability over the 

two years, though the ranking of properties was more variable, which could be attributed to 

other parameters that have not been involved in this study.  

 



48 

 

Keywords 

Yield prediction; yield limiting factors; soil fertility; random forest, VNRX. 

 

3.1.1 Introduction 

Quantification of soil related yield limiting factors is essential for site specific management 

of farm resources and for crop yield forecast. However, the estimation of these limiting 

factors is not a straightforward process, as many affecting parameters exist in a very complex 

system, consisting of soil and associated micro- and macro-variability, microclimate, 

topography, land use and others. Whilst the relationship between nutrients in soil and yield is 

widely understood, there is little work using high sampling resolution data obtained with 

advanced on-line proximal sensing technologies. Modelling approaches to predict crop yield 

have been introduced (Hole et al., 2005), which included statistical, process-based numerical, 

machine learning and parametric modelling approaches. Although statistical models are more 

suitable for large spatio-temporal scales, they can hardly extrapolate beyond historical 

extremes (Hahn, 2009). Process-based models (Fourcaud et al., 2008; Thorp et al., 2014) 

emulate the main processes of crop growth and development. These models are typically 

developed and tested using experimental trials, and thus offer the distinct advantage of 

leveraging decades of research on crop physiology and reproduction, agronomy, and soil 

science, among other disciplines. These models also require extensive input data on cultivar, 

management, and soil conditions that are unavailable in many parts of the world.  Apart from 

overfitting issues, machine learning modelling techniques were successfully implemented 

recently to predict wheat yield using proximal sensors (Pantazi et al., 2016). 
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Parametric models have attracted more and more interest recently due to their limited reliance 

on field calibration, less requirement of sample size and their transparent assessment of 

model performance. Very few studies on the use of parametric modelling to predict yield can 

be found in literature. Assuming that regression analysis falls under parametric modelling, the 

number of studies on prediction of crop yield suddenly increases. Palm (1997) produced the 

simplest form of parametric modelling to estimate crop yield, in the form of a regression of 

yield against rainfall. In areas where water is a limiting parameter, about 46% of yield 

variability was attributed to rainfall. A simple parametric simulation of maize yields using the 

standard Food and Agriculture Organisation (FAO) methodology was produced by Rijks et 

al. (2003), where 73.75% of the yield variability between separate years was attributed to 

evapotranspiration.  

The non-linear auto-regressive moving average model with eXogenous inputs (NARMAX) is 

a parametric modelling method introduced by Billings et al. (1989) and one of the most 

popular classes of non-linear system identification methods for a complex system, where the 

inner structure of the underlying system is unknown but only input and output observational 

data are available. Comparing with machine learning methods, one of the advantages of the 

NARMAX model is transparency, which means that it can be written down, can be related to 

known and existing models in the literature, and also can be analysed in frequency and other 

domains. This characteristic is attractive for a studying brain, climatic change or an 

agriculture system that is a typical input-output system with an unknown inner structure, 

because it not only allows further frequency analysis or statistical analysis based the 

identified model, but also is easily understood and interpreted. A Volterra non-linear 

regressive with eXogenous inputs (VNRX) is a special case of NARMAX that has been 

recently introduced. Although it has been successfully applied in brain signal analysis (Zhao 
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et al., 2012; Sarrigiannis et al., 2014), climate change (Bigg et al., 2014; Zhao et al., 2016a) 

and non-destructive tests (Zhao et al., 2017), its application in agriculture is novel. This non-

linear model has potential to understand how soil properties and other factors affecting the 

crop yield due to its capability to reveal non-linear information whilst linear modelling 

methods cannot, or would produce misleading results. 

This paper aims at (1) exploring the potential of the new proposed VNRX models to quantify 

soil related yield limiting factors and understand the dependence among crop yield and soil 

properties within a field, (2) comparing between VNRX with random forest (RF) models for 

identifying and quantifying the most influencing soil properties that affect yield variability. 

All methods were tested in one arable field in Germany, throughout two cropping seasons in 

2013 and 2014 with oilseed rape and wheat grown, respectively. 

3.1.2 Material and methods 

3.1.2.1 Study site and data collection 

The study site was an arable field located in Premslin near Rostock in Germany (Figure 4), 

with 11°46’2.00” E latitude and 53°6’58.00” N longitude according to the Universal 

transverse Mercator (UTM) system. The field is about 33 ha in area, with an average annual 

rainfall of 591 mm, an average temperature of 16.5 ºC from May through to August in the 

2013 and 2014 cropping seasons. The soil type according to FAO soil classes is a 

homogenous Dystric Cambisol with humic loam texture, on a sandstone rock (FAO code 

Bd67-2b). Oilseed rape and barley were cultivated during the experiment in 2013 and 2014 

cropping seasons, respectively. 



51 

 

Figure 4: Field location in Premslin near Rostock in Germany, where soil samples 

and yield data were recorded in 2013 and 2014. 

 

 

 

 

 

 

 

 

A total of 140 soil samples were collected after the harvest of the previous crop in 2013 

(Figure 4). About 700 g of each soil sample was prepared as a mixture of soil collected over 

1.5 m distance at about 0.15 m depth. An equal gap between neighbouring sampling lines of 

12 m was selected. A differential global positioning system (DGPS) (EZ-Guide 250, Trimble, 

California, USA) with sub-metre accuracy was used to record the position of each soil 

sample. Soil samples were placed into tightly sealed plastic bags to hold field moisture, and 

stored in a refrigerator at 4 ºC, until laboratory analysis. Yield data were collected in 2013 

and 2014, at different spatial resolutions to that of the soil samples using the on-board yield 

sensor of the farmer’s combine harvester (New Holland, CX8070 model).  

3.1.2.2 Laboratory analysis and development of calibration models of soil properties 

Each sample was air dried at a temperature not greater than 30 °C, grinded and sieved with a 

2 mm sieve. Samples were then subjected to chemical analyses to determine selected soil 

parameters that were likely to be limiting the yield of the oilseed rape and barley. These 

parameters are pH, soil moisture content (MC), cation exchange capacity (CEC), organic 
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carbon (OC), total nitrogen (TN), and the available cations sodium (Na), potassium (K), 

calcium (Ca), magnesium (Mg), and available phosphorous (P). pH was measured 

potentiometrically on a suspension of soil to water ratio (1:2.5) under a controlled 

temperature environment (DEFRA, 2010). MC was determined by oven drying of soil 

samples at 105 ºC for 24 h. To determine CEC, soil was saturated with Sodium Acetate 

(pH 7.0), and the excess acetate removed by washing with water and ethanol. The sodium 

ions absorbed onto the cation exchange sites of the soil were displaced with 1.0M 

Ammonium Acetate, and their concentration was determined using a Flame Photometer 

(Chapman 1965). OC was determined according to the British Standard BS 7755 Section 

3.8:1995 using a combustion method, which is identical to ISO 10694:1995. TN was 

determined by the Dumas method, where soil samples are heated to 900 ºC in the presence 

of oxygen gas as described by British Standard BS EN 13654-2:2001. Exchangeable K, Na, 

Ca and Mg were extracted with 1.0 molar Ammonium Nitrate (MAFF/ADAS, 1986), and 

their concentrations in the extract were determined by Agilent 240 FS AA atomic absorption 

spectrophotometry (Agilent Technologies, Inc. USA). Available P was determined by 

extraction from the soil at 20 °C by shaking with 0.5 M sodium bicarbonate solution at pH 

8.5 and the concentration was determined by an ascorbic acid method (Olsen, 1954). 

3.1.2.3  Data processing 

Yield and ten soil data layers were first fitted to semi-varigrams using Vesper software 

developed by the Australian Centre of Precision Agriculture (Sydney, Australia) to typify the 

spatial variation. After satisfactory semi-variogram selection, semi-variogram parameters 

were transferred into ArcGIS (Esri, USA) software to perform ordinary kriging to predict 

values of un-sampled positions. The interpolated (through kriging) data layers were then 

converted into a common 5 m
2
 raster grid in ArcGIS (Esri, USA) in order to assist data fusion 
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(Frogbrook and Oliver, 2007). The resulting 5 m
2
 raster squares of the layers were converted 

into a common grid of points by extracting the value at the midpoint of each raster square. 

These steps ensured that all layers consisted of common sets of 5 m
2
 grid points, which is 

essential for running different spatial analyses. This method allowed data from a diverse 

range of soil and yield surveys, measured at different resolutions, to be merged (Khosla et al., 

2008). However, it is worth to mention that transferring information of 5 m
2
 raster to a point 

would introduce unavoidable error to the spatial distribution of data. The different soil and 

crop data were subjected to the linear and non-linear VNRX, and RF modelling methods, 

detailed in the following sections. 

3.1.2.4 Random forest method 

Random forest is a non-linear classification and regression algorithm developed first by 

Breiman (2001), which can be described as follows: 

Suppose we have a calibration set                with               and an independent 

test case    with predictor   , the following steps can be carried out: 

1) Sample the calibration set   with replacement to generate bootstrap resamples 

         

2) For each resample           , grow a regression tree   . 

3) For predicting the test case     with covariate   , the predicted value by the whole RF 

is obtained by combining the results given by individual trees. Let         
  denote the 

prediction of     by m
th

 tree, the RF prediction for regression problems can then be 

written as: 
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Equation 1 

 

 
        

 
 

   
 

 

4) Parallel to the calibration step, RF performs an internal cross-validation by dividing 

the calibration set into in-bag and out-of-bag (OOB) sets (2/3 as in-bag set and the 

remaining as OOB). The number of variable per level (mtry = 1), size of nodes 

(nodesize = 20) and number of trees (ntree = 500) parameters are optimized by 

minimizing the aggregate error rate of the OOB set (RMSE_OOB) (Breiman, 2001; 

Xin et al., 2012). The accuracy of a random forest’s prediction can be estimated from 

these OOB data, by using the following equation: 

Equation 2 

        
 

  
           

        
 

 

   

 
 

Where       
        is the average prediction for the i

th
 observation from all trees, for which this 

observation has been OOB (Grömping, 2009).  

Breiman (2002) suggested reduction in mean square error (MSE) (known as variable 

importance scores) when permuting a variable Xj called “MSE reduction, and decrease in 

classification accuracy after permuting Xj over all trees”. Permutation-based MSE reduction 

has been adopted as the state-of-the-art approach for measuring the importance of a variable 

by various authors (Ishwaran, 2007; Genuer et al., 2008; Strobl et al., 2008). According to 

Grömping (2009), this is determined as follows: for tree t, the OOB mean squared error is 

calculated as the average of the squared deviations of OOB responses from their respective 

predictions: 
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Equation 3 

         
 

       
           

 
 

 

    
      

 
 

where the    indicates predictions, OOBt = {i : observation i is OOB for tree t}, that is, 

summation is over OOB observations only, and nOOB,t is the number of OOB observations 

in tree t. If regressor Xj does not have predictive value for the response, it should not make a 

difference if the values for Xj are randomly permuted in the OOB data before the predictions 

are generated. The OOBMSEt (Xj permuted) can be calculated using; 

Equation 4 

                         
 

       
                        

 
 

 

    
      

 
 

Then, the difference OOBMSEt (Xj permuted) − OOBMSEt is calculated for each variable Xj 

in each tree t, based on one permutation of the variable’s out-of-bag data for the tree. For the 

complete forest, the MSE reduction according to regressor Xj can be calculated as the average 

over all ntree trees of these differences (Grömping, 2009). The values of calculated MSE 

should be always between 0% and 100%. All RF models were performed within R program 

using the software package Random Forest Version 4.6-12 (Liaw and Wiener, 2015), based 

on Breiman and Cutler's Fortran code (Breiman, 2001). Results were evaluated by calculating 

the MSE reduction in RF to indicate the contribution of each soil property on crop yield in 

2013 and 2014. Values of EMS range always from 0% to 100%. The larger EMS is, the 

higher dependence is between this term and the output. 
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3.1.2.5 Parametric modelling 

In this study, a simplified VNRX model, also known as non-linear finite impulse response 

(NFIR) model, is proposed to understand and quantify the correlation between soil properties 

and crop yield. This model has been commonly used to represent a multi-inputs and single-

output system, and can be expressed as: 

Equation 5 

                   

where   is the number of the system inputs,   is some unknown linear or non-linear mapping, 

which links the system output   to the system inputs           ;   denotes the model 

residual.  

A commonly employed model type to specify the function  in Eq. (5) is a polynomial 

function (Chen and Billings, 1989; Wei et al., 2004), which can be expressed as follows: 

Equation 6 

            

 

   

 

 

where    is the     model term generated from all input vectors;    is the corresponding 

unknown parameters;   is the total number of potential model terms. Note that    is, in 

general, non-linear. Considering a system with two inputs    and   , a second order 

polynomial function can be written as: 

Equation 7 

                   
               

f
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Comparing with existing linear parametric methods, the proposed method accommodates the 

non-linear relationship between the inputs and the output by introducing 

terms    
    

       . Note that the candidate term    in Eq. (6) can be any linear or non-

linear relationship among inputs. This paper will compare the performance of a model 

accounting only for linear terms, designated as VNRX-L, with a model accounting for both 

linear and non-linear terms, named VNRX-LN throughout this paper.  

The next step is to estimate the parameters               based on the 

observations         . The procedure begins by determining the structure, or the important 

model terms, using the orthogonal least squares (OLS) estimation procedures. It determines 

which dynamics and non-linear terms should be included in the model by computing the 

contribution that each potential model term makes to the variation of the system output. The 

model is to be built up term by term in a manner that exposes the significance of each new 

term that is added. Once the structure of the model has been determined, the unknown 

parameters can be estimated, and the procedure of model validation can ensure the model is 

adequate. In this paper, a routine called adaptive-forward-orthogonal least squares (AFOLS) 

was employed not only to determine the model structure but also to estimate the unknown 

parameters. More detailed explanation of this method can be found in Zhao et al. (2012). 

Finally, the performance of the VNRX models in the prediction of yield was evaluated. This 

was done by considering the value of error reduction ratio (ERR) for each selected term 

calculated from AFOLS that measures the percentage this term contributes to the system 

output (Zhao et al., 2013). Values of ERR range always from 0% to 100%. The larger ERR 

is, the higher dependence is between this term and the output. It is, therefore, a very 

important index to indicate the importance of each term to the output.  
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To calculate the contribution of each input variable to the output, the sum of ERR values of 

all selected terms, denoted as     , is calculated by 

Equation 8 

            

 

   

 

 

to describe the percentage explained by the identified model to the system output, where   

denotes the number of the selected terms. If the considered inputs can fully explain the 

variation of system output, the value of      is equal to 100%. It is an indicator of model 

performance and uncertainty. The contribution of the     input variable to the variation of the 

system output, denoted as      , is defined as the sum of ERR values of the terms that 

include this input variable. Because some selected terms may involve more than one input 

variable due to non-linearity, the sum of       for all input variables can be greater than 

    . To overcome this problem, the value of       is written as: 

Equation 9 

      
               

 
   

                
 
   

 
   

      
 

The value of       should be always between 0% and 100%. 

3.1.3 Results and discussion 

In this work, the ten laboratory measured soil properties (i.e., TN, OC, Ca, CEC, Na, Mg, K, 

pH, P and MC) were normalised and used as inputs to the VNRX and RF models’ 

establishments, whereas the model output was crop yield. The aim was to investigate the 

contribution of each soil property on crop yield through two different cropping seasons. 

Whilst the soil properties were collected only in 2013 the yield was collected in 2013 and 
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2014, it is assumed that soil properties may have decreased or increased in the time. The 

methods used are not process based, and do not consider any temporal patterns or outline any 

expected behaviours as input parameters, so the outputs cannot be considered interpretable to 

other circumstances. However, they were applied in this study to understand yield variability 

within a field at a given time. The knowledge gained is limited to its application in this field 

and year. The study was designed to assess the models potential to explain yield variability, 

particularly in non-homogenous fields.  

3.1.3.1 Soil and yield data analysis 

Results of the descriptive statistical analyses for soil properties are shown in Table 3, where 

soil data were collected in 2013. The experimental soil ranges from strongly acidic to slightly 

alkaline (pH = 5.4 to 7.7), with a mean neutral pH value of 6.63. The pH and OM conditions 

were appropriate for the growth of oilseed rape and wheat (DEFRA, 2010), with a potential 

pH effect on the P and Mg availability for smaller pH ranges than 6.5 (Truog, 1946, 

Murrmann and Peech, 1969; Murrmann et al., 2005). Exchangeable K, Mg, Na, and Ca were 

considered low for both crops, with mean values of 0.5 mg l
-1

, 0.29 mg l
-1

, 0.06 mg l
-1

 and 

2.86 mg l
-1

, respectively. Available P, CEC and TN were of low concentrations for oilseed 

rape and wheat growth (DEFRA, 2010). P was consistently one of the largest contributors to 

yield variation, this could be due to it being present in low concentrations, compared to the 

crops ideal requirement (e.g., for oilseed rape the target soil index is 16-25 mg/l). However, it 

was variable through the field from 9.54 mg/l to 1.34 mg/l (HGCA, 2014). These low 

concentrations indicate these soil properties to be limiting of crop growth and yield.  
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Table 3: Statistics of measured soil properties of the 140 soil samples used as input data into 

the three models.  

 TN    pH P OC  MC   K   Mg  Na  Ca  CEC  

Max 0.141 7.7 9.54 1.29 12.5 1.33 0.63 0.13 5.17 11.7 

Min 0.058 5.4 1.34 0.59 6.15 0.14 0.13 0.025 1.47 6.3 

Mean 0.08 6.63 2.69 0.83 8.19 0.5 0.29 0.06 2.86 8.45 

SD 0.014 0.467 0.93 0.15 1.12 0.23 0.089 0.016 0.665 1.04 

TN is total nitrogen, OC is organic carbon, and MC is moisture content which are all in % of dry matter; K is 

exchangeable potassium in mg/l; P is extractable phosphorous in mg l
-1

; CEC is cation exchange capacity in 

mg100g
-1

; Ca is calcium in mg l
-1

; Na is sodium in mg l
-1

; Mg is magnesium in mg l
-1

; and pH the log 

measurement of acidity. 

 

The semi-variogram analysis of yield 2013 and 2014 shows the best fit of yield data to be 

obtained with spherical models with negligible sums of squares error (SSE) values (Table 4). 

Spherical models were selected as they best fit the empirical data. Spherical models are most 

suitable for data with a progressive decrease in spatial autocorrelation. Selection of a suitable 

model fit is important as the steepness of the curve (fitted to the empirical data) will impact 

the influence of the closer data points.  

Table 4: Semi-variogram model parameters of yield maps. The best fit was achieved with 

spherical models for each, showing nugget (c0), sill (c), range (r m), proportion (C0/ C %), 

and the sum of square error (SSE)  

Variable c0 c r (m) (c0/ c) (%)  (SSE) 

Yield 2013 0.0021 0.007 24.38 30.0% 0.0001 

 Yield 2014 0.0039 0.009 40.98 43.1% 0.0001   

c0 is nugget variance, c is sill, r is range and SSE is sum of squared error. 
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The ratio of nugget variance to sill variance is an important parameter to quantify short-

distance autocorrelation or the degree of spatial dependency for a variable (Cambardella et 

al., 1994; Chang et al., 2014). Cambardella et al.,(1994) defined three categories of spatial 

dependency of high, moderate, and week with ratios of less than 25%, between 25% and 

75%, and greater than 75%, respectively. In this study, variations of the ratio of nugget 

variance to sill variance of yield 2013 and 2014 are of moderate spatial dependence, with 

ratios of 30.0% and 43.1%, respectively.  Ranges of spatial dependence vary from 19.49 m 

(yield 2013) to 0.98 m (yield 2014), which in 2013 is wider than the sampling interval of 12 

m and confirming the effectiveness of geostatistical analysis adopted in this study (Chang et 

al., 2014). Although the yield data in 2014 demonstrates smaller spatial variability than that 

in 2014, which can be attributed to different crops and agricultural inputs (fertilisers, 

pesticides and seeding rate), a different spatial distribution pattern across the study area can 

be observed (Figure 5). 
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Figure 5: Yield maps of oilseed rape and barley measured in 2013 (a) and 2014 (b), 

respectively, and developed with ordinary kriging based on spherical model (shown by 

the line). Semi-variograms fit to the lag points which are distance classes into which 

pairs of locations are grouped (shown by the small circles), with a sum of square error 

(SSE) value of 0.0001 and 0.0001 for (c) and (d), respectively. Figure also shows 

position of 140 soil samples used in this study. 
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3.1.3.2 Linear correlation 

Examining Pearson’s correlation coefficient (r) values between pairs of soil properties 

reveals few linear correlations, with the strongest correlation unsurprisingly recorded 

between OC and TN (r = 0.945), which is in line with other reports (Carlyle, 1993; Kuang 

and Mouazen, 2011). Other reasonable correlations can be observed between Ca and pH (r = 

0.716), although those calculated between OC and MC, TN and Ca, TN and MC are of 

smaller r values ranging between 0.507 and 0.559. Another interesting but negative linear 

correlation (r = -0.656) is calculated between pH and CEC, explaining that pH decreases with 

increasing CEC, which is true as CEC represents the soil’s ability to hold positively charged 

ions e.g., exchangeable cations (Hazelton and Murphy, 2007).  

The r values indicate no linear correlation could be observed between the ten soil properties 

and yield in 2013 and 2014 (Table 5). The highest correlation of 0.239 is calculated between 

OC and yield of 2013, which makes P the second highest correlated at 0.192, which for single 

properties is very reasonable, as they are both influential soil fertility parameters (Tiessen et 

al., 1994; Baligar et al., 2001; Agegnehu et al., 2016; Zhang et al., 2016). TN, Na, and pH 

also make a slight correlation to yield estimation in the two years. However, collectively the 

contribution is very limited and does not offer much explanation to yield variability, in either 

of the years. This indicates the system complexity and non-linearity that cannot be explored 

or quantified by simple linear relationships.  
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Table 5: Pearson correlation (r) between soil properties and yield of 2013 and 2014. 

 Ca CEC K MC Mg Na OC P pH TN Yield13  Yield14  

Ca 1.000            

CEC -0.018 1.000           

K -0.096 0.187 1.000          

MC 0.442 0.101 0.192 1.000         

Mg -0.040 0.197 0.111 0.168 1.000        

Na 0.103 -0.052 0.350 0.235 -0.023 1.000       

OC 0.507 0.150 0.004 0.510 0.189 -0.033 1.000      

P -0.238 0.180 0.074 -0.360 -0.219 0.004 -0.131 1.000     

pH 0.716 -0.656 -0.076 0.285 -0.124 0.140 0.297 -0.300 1.000 

 

  

TN 0.564 0.216 0.079 0.559 0.217 0.006 0.945 -0.130 0.305 1.000   

Yield13  -0.058 -0.010 -0.037 -0.030 0.059 -0.002 0.239 0.192 -0.043 0.160 1.000  

Yield14 0.092 -0.092 -0.071 0.054 -0.011 0.109 -0.043 0.141 0.127 -0.084 0.190 1.000 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry biomass; K is 

exchangeable potassium in mg/l; P is extractable phosphorous in mg/l; CEC is cation exchange capacity in 

meq/100g; Ca is calcium in mg/l; Na is sodium in mg/l; Mg is magnesium in mg/l; and pH the log measurement 

of acidity. 

3.1.3.3 Random forest model 

To analyse the contribution of soil variables to the yield prediction, we fit two separate RF 

models for the dataset of 2013 and 2014. Since the RF algorithm automatically considered 

interactions among the explanatory variables, the two separate RF models provided quite 

similar prediction results for yield with R
2
 of 0.83 and 0.81 for 2013 and 2014, respectively, 

with both being significant at <0.01. Permuting the predictor's values over the dataset showed 
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a negative influence on prediction. The MSE with the original dataset were compared with 

the 'permuted' dataset results and the final results are shown in Table 6.  

Table 6: Calculated variable importance score (MSE) of yield prediction obtained with the 

random forest (RF) model, indicating contribution of each soil property to crop yield in 2013 

and 2014. 

Rank 

2013 2014 

Input MSE (%)  Input MSE (%) 

1 OC 12.84 TN 11.44 

2 TN 11.01 OC 7.43 

3 Ca 9.43 P 6.41 

4 P 6.22 Ca 5.20 

5 CEC 4.73 pH 5.12 

6 pH 3.91 CEC 3.23 

7 Na 3.72 Mg 2.82 

8 Mg 1.94 MC 2.33 

9 MC 1.35 Na 2.03 

10 K 0.82 K 0.11 

Total 55.62  45.81 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry biomass; K is 

exchangeable potassium in mg/l; P is extractable phosphorous in mg/l; CEC is cation exchange capacity in 

meq/100g; Ca is calcium in mg/l; Na is sodium in mg/l; Mg is magnesium in mg/l; and pH the log measurement 

of acidity. 

 

The results show that according to MSE values, soil properties’ contribution to the yield are 

55.62% and 45.81% for models of years 2013 and 2014, respectively. Some of 44.38 and 
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54.19% variation in the yield was left unexplained by both models. This result may be 

explained by the fact that there are some factors could not be measured or included in the 

models, such as weather conditions (Roberts et al., 2012; Lobell et al., 2014), and crop 

disease (Paveley et al., 2012). The OC, TN and Ca were the top three highest contributors to 

oilseed rape yield in 2013, whereas TN, OC, and P were the top three highest contributors to 

barley yield in 2014. The OC has the highest variable importance score (12.84%) in 2013, 

meanwhile it was the second highest variable importance score (7.43%) in 2014. This result 

is expected and supported by the fact that OC can play a vital role in increasing crop yield 

(Agegnehu et al., 2016), improving soil fertility (Tiessen et al., 1994; Zhang et al., 2016), 

improving soil structure (Lorenz et al., 2007; Lal, 2011), and water retention (Fan et al., 

2013). Furthermore, soils with low OC contents have low crop yield and low use efficiency 

of added nutrients (Agegnehu et al., 2016). Similarly, TN was the highest contributor to yield 

prediction after OC in 2014 with a MSE value of 11.44%, whereas TN was the second 

highest contributor in 2013 (MSE = 11.01%). Agegnehu et al. (2016) found that nitrogen 

supply appeared to be a much greater factor limiting yield, which was related to the soil TN 

content before planting and uptake rate by plants during the growing season. Interestingly, 

they found that increases in yield and yield components were more pronounced when organic 

amendments and N fertilizer were both applied, in comparison to one or the other. 

Surprisingly, K had the lowest variable importance score for both RF 2013 and 2014 models 

with contributions of 0.82%, and 0.11%, respectively. There was a gradual decline in soil K 

levels, however, cereals remove less K compared to other crops (Malo et al., 2008). Both P 

and Ca exchange the third and fourth places on the list. CEC is ranked the fifth and the sixth 

in 2013 and 2014 with MSE values of 4.73% and 3.23%, respectively, whereas pH on 

contrary to CEC, is ranked the sixth (3.91%) and the fifth (5.12%) on the list for 2013 and 
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2014, respectively. The remaining soil properties e.g., Na, Mg, and MC collectively 

contributed to the yield of 7.01% and 7.18% for 2013 and 2014, respectively.  

3.1.3.4 Parametric models 

Based on Eq. (6), the following VNRX-LN model with quadratic terms was established to 

relate the ten soil input variables with yield: 

Equation 10 

                      

  

   

  

   

  

   

 

 

This model included 66 terms consisting of 11 linear terms                       and 55 

non-linear terms                                 . The VNRX-L model can be 

written as:  

Equation 11 

            

  

   

 

 

The contributions of each soil property to crop yield variation were listed in Table 7 and 

Table 8 for the VNRX-LN model and VNRX-L model, respectively. The VNRX-LN model 

accounted for both linear and non-linear interactions, whilst the VNRX-L only considered 

linear interaction. The non-linear aspect of the VNRX-LN model, permitted far more of the 

yield variation to be understood, which is shown in the SERR values for 2013 and 2014 being 

52.23% and 50.66%, respectively for the VNRX-LN and 19.15% and 8.5% for the VNRX-L. 

This is supported by the negligible linear correlations calculated with r (Table 5). The 

variation of SERR contribution between the years can be attributed to varying weather 

conditions (Renouf et al., 2010; Boone et al., 2016), pests (Eberhart and Russell, 1966; 
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Paveley et al., 2012) and finally, the different crops grown, e.g., oilseed rape in 2013 and 

wheat in 2014.  

The output of the VNRX-LN model indicated as ERRC shows P, CEC and OC to be the top 

three contributors to oilseed rape yield variability in 2013, whereas P, Na and OC were the 

top three contributors to wheat in 2014. This seems logical from the soil fertility point of 

view, as these (apart from Na) are all key nutrients to crop growth and development (Baligar 

et al., 2001). As indicated above, OC can improve soil fertility, soil structure and water 

retention, hence improve soil productivity. Na is a minor nutrient, which can have negative 

effects on moisture uptake and can inhibit enzyme activities at high levels. The high yield 

variability attributed to Na from the VNRX models is thus unexpected. Though there is an 

optimal K:Na ratio for plant growth and yield development (Wakeel 2013).  High amounts of 

K have been found to reduce the occurrence of crop disease. High quantities of Na can reduce 

the availability of K to plants (Perrenoud 1990; Prabhu et al., 2007). Within the studied field, 

levels of K were more variable through the field than Na, the interaction between K and Na 

may help explain the higher Na impact on yield variation, particularly in the non-linear 

VNRX model (Baligar et al., 2001; Wakeel 2013). CEC is often used as a measurement of 

soil fertility, but is not nutrient specific, whereas P is a main soil nutrient (with N and K) for 

crop growth and development. CEC is also related to K content and clay particles, which all 

affect available water content (Bergaya and Vayer, 1997). 

Surprisingly, TN (Table 7) had a small contribution to yield variation in 2013 (ERRC = 

1.23%), which may well be attributed to the small variation in nitrogen in this field (Table 3), 

or to the smaller sensitivity of oilseed rape to nitrogen as compared to barley, as TN 

demonstrates a higher contribution (ERRC = 5.01%) in 2014’s calculations. Both pH and Mg 
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were quite consistent contributors to 2013 and 2014 yield variability with calculated ERRC 

values of 4.915 and 5.05%, respectively. 

Table 7: Calculated individual contribution (ERRC) of each soil property and sum of 

contribution (SERR) to crop yield in 2013 and 2014 cropping seasons, obtained with Volterra 

Non-linear Regressive with eXogenous inputs (VNRX), accounting for both linear and non-

linear relationships (VNRX-LN). 

Rank 

2013 2014 

Input ERRC (%) Input ERRC (%) 

1 P 12.74 P 8.30 

2 CEC  12.47 Na 6.77 

3 OC 6.44 OC 6.71 

4 pH 4.91 K 5.89 

5 Ca 3.87 pH 5.05 

6 Na 3.82 TN 5.01 

7 Mg 3.41 MC 5.00 

8 K 1.75 Mg 4.06 

9 MC 1.59 CEC  2.79 

10 TN 1.23 Ca 1.08 

SERR 52.23  50.66 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry biomass; K is 

exchangeable potassium in mg/l; P is extractable phosphorous in mg/l; CEC is cation exchange capacity in 

meq/100g; Ca is calcium in mg/l; Na is sodium in mg/l; Mg is magnesium in mg/l; and pH the log measurement 

of acidity. 
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The range of soil pH in this field is between moderately basic to moderately acidic (Table 3). 

Furthermore, it is interesting to see that MC has a low contribution to yield variation in 2013 

(ERRC = 1.59%), with a higher contribution calculated in 2014 (ERRC = 5.0%), which may 

be attributed to different crop or weather conditions across the two cropping seasons. 

Reasonable contributions of K to the yield variability are calculated with the best contribution 

observed in 2014. Ca was the lowest contributor in 2014 only.  

The VNRX-L model (Table 8) shows different ranking results and different contributions of 

individual soil properties as compared to the VNRX-LN model. With the VNRX-L model 

both P and OC are the top two contributors to yield variability in both 2013 and 2014 years. 

Contrary to the VNRX-LN model, TN obtained with the VNRX-L model in 2013 was of 

more significant influence and got the same ranking in 2014, although the ERRC with the 

VNRX-L model is smaller (e.g., 0.88) compared to the VNRX-LN model (e.g., 5.01%), 

which is attributed to the larger SERR of the latter than the former approach. Ca has a 

remarkably similar contribution in both 2013 and 2014, being the fourth most significant 

parameter. Na was a larger contributor to yield variability in 2014 than in 2013, which is in 

line with the VNRX-LN model predictions. pH varied in contribution between the two years 

significantly, this could be due to the availability of nutrients detailed in Table 3, and being 

reasonably neutral in acidity. Mg and MC are both insignificant contributors, which is in line 

with the VNRX-LN model that accounts for both the linear and non-linear variability. K 

holds a similar position in 2013 and 2014 for both parametric models investigated. CEC most 

interestingly had no effect in 2013 in the VNRX-L model, opposed to the VNRX-LN model 

predictions. 

 



71 

 

Table 8: Calculated individual contribution (ERRC) of each soil property and sum of 

contribution (SERR) to crop yield in 2013 and 2014 cropping seasons, obtained with Volterra 

Non-linear Regressive with eXogenous inputs (VNRX), accounting for linear relationship 

only (VNRX-L). 

Rank 

2013 2014 

Input ERRC (%) Input ERRC (%) 

1 P 6.18 P 2.01 

2 OC 5.73 OC 1.46 

3 TN 3.94 Na 1.21 

4 Ca 1.23 Ca 1.20 

5 pH 1.09 K 1.13 

6 Mg 0.53 TN 0.88 

7 K 0.17 CEC 0.33 

8 Na 0.15 MC 0.18 

9 MC 0.13  Mg 0.07 

10 CEC  0 pH 0.03 

SERR 19.15  8.50 

 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry biomass; K is 

exchangeable potassium in mg/l; P is extractable phosphorous in mg/l; CEC is cation exchange capacity in 

meq/100g; Ca is calcium in mg/l; Na is sodium in mg/l; Mg is magnesium in mg/l; and pH the log measurement 

of acidity. 
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3.1.3.5 Parametric models versus random forest models 

Based on results discussed above, it seems that OC always retained a high contribution to 

yield variability through both years. This is true for all three models investigated in this 

study. Soil OC arguably was the best single indicator of soil quality and function because of 

its impact on soil physical, chemical and biological properties (Reeves, 1997; Shukla et al., 

Ebinger, 2006; D’Hose et al., 2014). Furthermore, OC is a source of plant nutrients in soils 

and is vital in maintaining and improving soil structure, promoting water retention, and 

reducing erosion (D’Hose et al., 2014). Therefore, it is not surprising to observe that soil OC 

is a high contributor to yield variability.  

P has a direct link with yield and so is expected to be a high contributor to yield variability 

(Harmsen et al., 2001). P was the highest contributor to yield variability in both VNRX 

models. However, with the RF model, P consistently contributed around 6% to yield 

variability, being ranked as the third contributor to yield variability in 2014, and fourth in 

2013. VNRX-LN presents TN as a moderate contributor, whereas the highest contribution for 

TN is obtained with RF models. Since N is a key indicator for soil quality and plays a vital 

role in crop production, this is an advantage of RF over VNRX (Sharma et al., 2008). 

Although VNRX-LN and RF models allow the prediction of yield variability to be around 

50%, with the input data from ten on-line soil properties, there is a remaining 50% of the 

contribution that has not been accounted for. Kravchenko and Bullock (2000) stated that yield 

variability is caused by a host of factors in addition to topographical and soil characteristics. 

Therefore, it’s suggested that there are other external factors (such as diseases, pests, and 

compaction) that need to be incorporated along with soil properties to allow for more 

accurate assessment of the yield limiting factors and for improving the accuracy of prediction 

of yield. Phosphorus along with Nitrogen are commonly added as fertilisers, and are the main 
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soil macro nutrients, affecting the severity of fungal diseases (Huber, 1980; Engelhard, 1989; 

Fageria and Baligar, 1997; Graham and Webb, 1991). Whilst fungal diseases have not been 

considered in this study, it would be interesting to involve them in further work, particularly 

with the yield variation attributed to Na by the VNRX models. 

The total contributions of the RF model to crop yield variability were 55.6% and 45.8% in 

2013 and 2014 cropping seasons, respectively. The VNRX-LN model that was more 

successful than the VNRX-L model in yield prediction contributed with similar percentages 

(52.23% and 50.66% for years 2013 and 2014 respectively) to those of the RF models. The 

total contribution of VNRX-LN models provides a greater consistency for high contribution 

to yield variation. However, the RF model was more consistent on the ranking of influencing 

soil properties of the yield variability. The consistency of the contribution of regression 

models to predict yield was an issue raised by Kravchenko and Bullock (2000). Their 

findings suggested that the capability of models to predict yield based on input soil properties 

is heavily variable. Whilst successful in explaining a substantial portion of the yield in some 

years, it is only capable of explaining a small portion of the yield variability in others. 

Consistency of model predictions is highly valued. Each of the models demonstrated some 

consistency between the two years, with RF being more consistent in ranking the influencing 

soil properties on yield variability. VNRX-LN predicted a much larger contribution of K to 

yield variation than the RF model, particularly in 2014. K is correlated to disease pressure, 

making the VNRX-LN model an interesting concept for further work, if disease data could be 

included. This study using parametric models, which could draw an understanding of ~50% 

of the variabilities affecting yield in this field, in the two studied years. However, for 

universal conclusions to be drawn, process based models, which consider climate data, crop 

specific input parameters, and temporal patterns of parameters would be required 
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3.2 A new non-linear parametric modelling method to quantify 

influence of soil properties on crop yields: Application to on-

line soil data 

Abstract 

There is a limited understanding of soil factors limiting crop yield, due to the complexity and 

variability of the system. High spatial sampling resolution data on soil properties, may 

contribute towards this, though soil properties are not the only factor affecting crop yield. 

This study attempts to use a novel data mining approach, based on non-linear parametric 

modelling, to study the effects of high resolution data of multiple soil properties on wheat 

yield in a 22 ha field in Bedfordshire, UK. A Volterra Non-linear Regressive with eXogenous 

inputs (VNRX-LN) model was introduced and tested in Part 1 of this study, where a limited 

number of soil data were considered in the analysis. In Part 2, moisture content (MC) along 

with the seven soil properties; total nitrogen (TN), organic carbon (OC), pH, available 

phosphorous (P), magnesium (Mg), calcium (Ca), and cation exchange capacity (CEC) were 

collected with an on-line (tractor mounted) visible and near infrared spectroscopy (vis-NIR) 

sensor and used as multiple-input to the VNRX-LN model, while crop yield represented the 

single-output in the system. 

Results showed that the largest contributors to wheat yield were CEC, Mg and TN, with error 

reduction ratio contribution (ERRC) values of 14.6%, 4.69% and 1%, respectively. The 

overall contribution (SEER) of the soil properties considered in this study totals a value of 

23.21%, which was surprisingly low as compared to 50-52% obtained in Part 1 with a limited 

number of soil samples analysed with laboratory standard methods. This was attributed to a 

large area of the studied field having been waterlogged, which masked the effect of soil 

nutrient properties on crop yield. The study recommends further validation on a greater 
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number of fields where additional crop yield affecting parameters are taken into account e.g., 

crop disease, pests, drainage, topography, and microclimate conditions. 

Keywords 

Yield limiting factors; proximal soil sensing; VNRX; NARMAX; non-linear parametric 

modelling. 

3.2.1 Introduction 

The world's population is expected to rise to 9 billion by 2050, hence, there is an increasing 

demand for land for the use of biofuels, and there is already a food shortage.  An increase in 

yield of 60% will be required to match these requirements (Hole et al., 2005; Godfray et al., 

2010). One way to increase yield may be through precision management of farm resources. 

The spatial variability in agricultural fields exists at different scales (Raun 1998; Dhillon et 

al., 1994), which requires careful management with the aim to increase yield at reduced input 

cost and related environmental impacts. This is hardly achievable by conventional agriculture 

that relies on homogeneous applications of external inputs. For example, current fertiliser 

applications are made based on an average soil sample collected per field or 1-3 ha in the best 

scenario, which ignore within field variability as the fertilisers are spread homogenously. 

This may result in over-application in rich zones, and under-application in poor zones in the 

field (i.e., nitrogen rich areas receiving high rates of nitrogen fertiliser, due to the field having 

nitrogen poor areas). In this context, recent years have seen a surge of variable-rate 

application technologies where external farm inputs are applied in response to input data 

from normalised difference vegetation index (NDVI), leaf area index (LAI), high resolution 

soil properties or a combination of these (Lowenberg-DeBoer and Aghib, 1999; Maleki et al., 

2008; Mouazen et al., 2009; Halcro et al., 2013; Mouazen and Kuang, 2016). Commercial 

fertiliser commonly contains nitrogen (N), phosphorus (P), and potassium (K). Other 
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nutrients such as, magnesium (Mg) and Calcium (Ca), are applied with less frequency. Mg 

and Ca, N, P, K are used in the structural component of proteins, energy conversion, chemical 

reactions in the plants, building components of the chlorophyll, respiration, and cell 

membrane permeability. In non-homogenous fields, precision management of fertilisers is the 

obvious way forward to increase crop yield. Understanding and quantifying the yield limiting 

factors is still a crucial research question to be answered, before variable rate applications can 

be optimised. 

Since spatial variability in the majority of agricultural fields exist, proximal sensor 

technologies are necessary to measure this variability accurately. This will require robust and 

reliable sensing platforms of crop and soil. Proximal (e.g., Crop Circle ACS 470, Holland 

Scientific, Lincoln, NE USA) and remote sensing (e.g., satellite imagery, unmanned aerial 

vehicles or aircrafts) both can provide high resolution data on crop canopy characteristics 

indicated e.g., as NDVI or LAI (Mulla, 2013; Kipp, Mistele, and Schmidhalter, 2014) and 

they are commercially available. However, remote sensing methods provide data on the top 

millimetres of soil and require a bare soil surface. Furthermore, due to the complex nature 

and vast variability of agricultural soils, the majority of proximal soil sensors are still 

premature to fulfil this requirement. Kuang et al. (2012) concluded in an extensive review 

that the most promising proximal sensing technologies for quantifying soil properties are 

electrochemical techniques and optical visible and near infrared (vis-NIR) spectroscopy. 

Although they are limited to particular research groups worldwide, on-line vis-NIR sensors 

(Shibusawa et al., 2001; Mouazen, De Baerdemaeker, and Ramon, 2006; Christy, 2008) 

enable the prediction of high sampling resolution (e.g. >500 samples per ha) of key soil 

properties (Kuang et al., 2012; Kodaira and Shibusawa, 2013; Kuang and Mouazen, 2013; 
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Kweon, Lund, and Maxton, 2013 Marin-González et al., 2013;), which are valuable sources 

of information to be utilised for the analysis of soil related crop yield limiting factors. 

The use of a simplified volterra non-linear regressive with eXogenous inputs (VNRX) model, 

also known as non-linear finite impulse response (NFIR) model, was proposed and 

implemented to understand the correlation between laboratory measured soil properties and 

crop yield in Part 1 of this study (Whetton et al., 2016a), where on-line soil data was not 

included in the analysis. In Part 1 of this study, VNRX accounting for both the linear and 

non-linear (VNRX-LN) variability was compared to random forest (RF) models, and results 

revealed VNRX-LN performed almost equally as good as RF in quantifying the total 

contribution of soil properties on yield variation. The VNRX-LN reported interesting results 

for field application. To our best knowledge, no literature about the use of a VNRX-LN 

model to predict crop yield based on on-line measured soil properties can be found in the 

literature. This is important to investigate, since on-line soil sensors provide high sampling 

resolution data (>500 samples per ha) to enable accounting for variability that exists within 

small scales (few meters), which cannot be obtained with the traditional soil sampling and 

laboratory analytical methods. 

The aim of this work is to explore the potential of the VNRX-LN model to quantify the 

individual, interaction and collective contribution of high sampling resolution data of eight 

selected soil properties collected with an on-line soil sensor on wheat yield Variability in one 

site in Bedfordshire, UK. It will be based on multiple input data of soil properties (e.g., total 

nitrogen (TN), organic carbon (OC), pH, available phosphorous (P), magnesium (Mg), 

calcium (Ca), moisture content (MC), and cation exchange capacity (CEC), and wheat yield 

used as the model output.   
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3.2.2 Materials and Methods 

3.2.2.1 Study site 

The study site was one field designated as Horns End, and located at a commercial farm, 

called Duck end farm, in Wilstead, Bedfordshire UK (52°5’52.087”W latitude and 

0°27’19.76”N longitude, according to the Universal Transverse Mercator (UTM). The field is 

about 22 ha area, with an average annual rainfall of 598 mm. The farm has a crop rotation of 

wheat, barley, and oilseed rape. The soil texture over the field down to 0.20 m is non-

homogeneous, including three textures of sandy loam, loam, and sandy clay loam according 

to the United State Department of Agriculture (USDA) texture classification system. Wheat 

was cultivated during the experiment in 2013, with Oilseed rape being previously cultivated.  

3.2.2.2 On-line collected data 

The on-line vis-NIR sensor (Mouazen, BE Patent No. WO/2006/015463, 2006) was used 

(Figure 6) to carry out the field measurement. It consists of a subsoiler that penetrates the soil 

to the required depth, making a smooth trench to the subsoiler (Mouazen, De Baerdemaeker, 

and Ramon, 2005).  
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Figure 6: Illustrated image of the tractor mounted on-line visible and near infrared 

spectroscopy (vis-NIRS) sensor (Mouazen, 2006). 

 

The optical probe, housed in a steel lens holder, was attached to the rear of the subsoiler 

chisel to acquire soil spectra in reflectance mode from the smooth bottom of the trench. The 

subsoiler, retrofitted with the optical unit, was attached to a frame that was mounted onto the 

three point hitch of the tractor. An AgroSpec mobile, fibre type, vis-NIR spectrophotometer 

(tec5 Technology for Spectroscopy, Germany) which is an active sensor, with a measurement 

range of 305-2200 nm was used to measure soil spectra in diffuse reflectance mode. A 

differential global positioning system (DGPS) (EZ-Guide 250, Trimble, California, USA) 

was used to record the position of the on-line measured spectra with sub-metre accuracy. A 

Panasonic semi-rugged laptop was used for data logging and communication. The 

spectrometer system, laptop and DGPS were powered by the tractor battery. A New Holland 
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T5000 tractor with 100 Ah battery was used. The total power consumption for all electrical 

parts of the on-line vis-NIR sensor was around 60 W. 

On-line soil measurement occurred in summer 2012 after the harvest of the previous crop, at 

parallel transects with an average forward speed of the tractor of 2 km h
-1

 and the 

measurement depth set at 150 mm. A few on-line collected vis-NIRS spectra are shown in 

Figure 7, as an example.  

 

Figure 7: Examples of the raw on-line soil visible and near infrared (vis-NIR) spectra, 

collected with the on-line sensor. Showing slight deviations in relative absorbance, across the 

wavelengths, which is dependent on the soil properties. 
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During each line measurement, two or three soil samples were collected from the bottom of a 

trench and the sampling positions were carefully recorded with the DGPS. Samples collected 

during the on-line measurement were analysed for calcium (Ca), cation exchange capacity 

(CEC), magnesium (Mg), phosphorous (P), pH, moisture content (MC), organic carbon (OC) 

and total nitrogen (TN). These samples were subjected to the same laboratory methods of soil 

analysis mentioned in Part 1 of this study. The laboratory measurement techniques varied for 

each value and the units they are presented in are in relation to this. MC, OC, and TN are 

given in % (ISO 10694:1995; British Standard BS EN 13654-2:2001). P, Ca, and Mg is given 

in mg/l (MAFF/ADAS, 198; Agilent Technologies, Inc. USA; Olsen, 1954). CEC is given in 

meq/100g (Chapman 1965). pH is given in log measure (DEFRA, 2010).  

Partial least squares regression (PLSR) based calibration models, developed with 

Unscrambler V9.8 software (Camo Software, Norway) were used to predict all eight soil 

properties using the on-line collected soil spectra (>500 samples per ha). More details about 

the on-line vis-NIR sensor and accuracy of measurement can be found in Kuang and 

Mouazen (2013) and Marin-González et al. (2013). 

Wheat yield data was collected in August, 2013 by the on-board yield sensor and GPS system 

of the farmer’s combine harvester (New Holland, CX8070 model), with a header width of 

7.25 m commonly used for barley and wheat harvest. In addition, the harvest was optimised 

to: I) record wheat yield when the machine header was full for the full length of the study 

area, and II) avoid the bare soil in the tramlines (by collecting harvest data only from a full 

header). Total yield was calculated from the mean yield (tonnes per hectare) of an area, 

multiplied by the size of the area (m
2
), which was derived using ArcGIS (Esri, USA). 



82 

 

3.2.2.3 Data processing 

Features in the environment, are the product of many interacting processes, including 

physical, chemical and biological. They are determined with exceedingly complex 

interactions. To overcome the difficulty of predicting this intricate distribution, it is required 

to treat the variation as if it is random (Matheron, 1963). The measurement points from the 

on-line soil sensor and yield sensor required a method of interpolation, to provide a 

continuous data set across the locations. Kriging was selected as a non-biased approach to 

predict the values between the sample points, where semi-variograms were first produced and 

then applied in Kriging interpolation calculations. The interpolated data were then converted 

into a common 5 m raster grid in ArcGIS (Esri, USA) in order to assist data fusion 

(Frogbrook and Oliver, 2007). The raster squares of the layers were converted into this 

common grid of points by extracting the value at the midpoint of each raster square. A 

smaller resolution has no practical implementation, due to the limitations of the size and 

response time of the precision farming equipment. The 5 m grid size provided a balance 

between adequately characterising the spatial variation and practical farm management. 

These steps ensured that all layers consisted of a common set of 5 m grid point-values, to 

allow the application of parametric modelling to be carried out. This method allowed data 

from a diverse range of soil and crop property surveys, measured at different resolutions, to 

be merged (Khosla R. et al., 2008). The different soil and crop layers of a 5 by 5 m grid were 

subjected to the VNRX-LN detailed in the following section. 

3.2.2.4 Volterra Non-linear Regressive with eXogenous Model 

In this study, the simplified VNRX-LN model, also known as NFIR model, introduced in Part 

1 of this study was used, to represent a multi-inputs and single-output system: 
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Equation 12 

[ 1] [ 1] [ 1]

1 2( ) = ( , ,..., ) ( )k k k

ry k f u u u k       
 

was considered to represent a multi-inputs and single-output system, where ( =1,2,...)k k  is a 

time index, r  is the number of the system inputs, f  is some unknown linear or non-linear 

mapping, which links the system output y  to the system inputs 1 2, ,..., ru u u ; ( )k  denotes 

the model residual. 

The on-line measured soil properties (i.e., TN, OC, pH, P, Mg, Ca, MC, and CEC) were 

normalised and used as inputs to the VNRX-LN model, whereas the model output was wheat 

yield. The analysis also included the interaction between pairs of soil properties and their 

contribution to crop yield. The aim was to investigate the contribution of each soil property 

and their pairwise interaction on crop yield variability. 

Parameters are estimated based on the observations, and these are determined by the 

structure, using the orthogonal least squares (OLS) estimation procedures. Adaptive-forward-

orthogonal least squares (AFOLS) was employed not only to determine the model structure 

but also to estimate the unknown parameters. More detailed description of this method can be 

found in Zhao et al.,(2012). More details about the VNRX-LN model is described in the Part 

1 of this study (Whetton et al., 2016a). 

 

Performance of VNRX-LN model output was evaluated by considering the value of error 

reduction ratio (ERR) for each parameter to the prediction of yield (system outputs). Values 

of ERR always range from 0% to 100%. The larger the ERR is, the higher the dependence is 

between this term and the output. It is, therefore, a very important index to indicate the 
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contribution of each term to the output. To calculate the contribution of each input variable to 

the output, the sum of ERR values (SERR) of all selected terms is used to describe the 

percentage explained by the identified model to the system output. If the considered inputs 

can fully explain the variation of system output, the value of      is equal to 100%. It is an 

indicator of model performance and uncertainty. The contribution of the     input variable to 

the variation of the system output, denoted as      , is defined as the sum of ERR values of 

the terms that include this input variable. The value of       should be always between 0% 

and 100%.  

3.2.2.5 Significance Test 

To determine the statistical significance of the contribution from each input to the system 

output, a threshold   , representing the level of contribution, above which value had less than 

a 5% probability of occurring by chance, requires being determined. The conventional 95% 

(0.05 significance level) confidence interval is not suitable for this study because the 

distribution of ERRC value is unknown, as the condition to use 95% confidence interval is 

that the value must follow the Gaussian distribution. As the distribution of ERRC value is 

unknown, a 95% confidence may produce biased conclusions. For this purpose, the following 

surrogate data technique was used. 

Assuming the signal   is a function of the signal  , this sort of dependence is destroyed when 

  is ordered randomly in some way while   keeps the same order. For this purpose, the order 

of the data in   was randomised by a shuffle procedure that saves the distribution properties 

of the   signal, but destroys the spatial relationship between   and  . This procedure was 

repeated 100 times and then the 95% quantile was determined as the threshold. A 
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significance threshold for each term is firstly calculated, and then the significance threshold 

for each input can then be derived by the same way to calculate      . 

3.2.2.6  Optimal spatial resolution of soil properties versus yield 

Since the spatial sampling resolutions of soil properties and crop yield are different, before 

applying the proposed VNRX-LN modelling method, the data must be re-sampled to 

establish the correspondence between the inputs and the output. Two re-sampling techniques 

have been used in this study. In the first technique, for each crop yield data           on a 

location        , the corresponding soil properties were approximated by the properties on 

the location that has the shortest distance to        , which must be smaller than a radius  . It 

is possible that some crop yield data cannot find corresponding soil properties if   is too 

small, for which scenario this yield data will be discarded. In the second technique, for each 

crop yield data         , each corresponding soil property was approximated by the 

averaging value of all values of this soil property inside a circle with a radius  . A small value 

of   leads to more accurate correspondence between yield and properties, but a lower number 

of samples included in the analysis. The former method of re-sampling is designated here as 

‘shortest distance approximation (SDA)’, whereas the latter method is designated as ‘circle-

based average approximation (CAA)’. 

3.2.3 Results and discussion 

The yield data from the 2013 harvest is given in Figure 8, along with the semi-variogram 

used for the interpolation. The yield data shows a consistently higher yield in the centre of the 

field compared to the E and W edge. This variability is partially due to the field being on 

reclaimed land, consisting of variable soil types as discussed earlier, but there is also an 

influence from the hedgerow surrounding the field. The impact from the hedgerow was not 
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Figure 8: Interpolated yield map (a) and exponential semi-variogram of 0.036, 0.817 and 20.358, 

representing, nugget, sill and range, respectively. Semi-variograms fit to the lag points which are 

distance classes, into which pairs of locations are grouped (shown by the small circles) (b) based 

on the 2013 harvest of wheat grain in tons per hectare. Lighter areas representing lower yield. 

observed in Part 1 of this study, which used a field in Germany (Whetton et al., 2016a), due 

to the field there having no hedgerow boundaries, as it was an area within a large continuous 

field (with multiple crop varieties). However, anomalies in yield data can occur, particularly 

towards the boundaries of the field (crop varieties) due to a decrease in combine speed, 

turning, and headers being cut separately. The noise and influence of these areas were 

removed from the yield data, but it is possible that there is still an artefact of this.  

 

 

 

 

 

 

 

 

 

(a)       (b) 

 

 

 

 

The on-line collected soil properties (shown in Figure 9 for moisture content, and in Figure 

10 for Mg, OC, P, CEC, Ca, TN, and pH) were achieved through applying PLSR models. A 

summary of the statistics and model accuracy can be found in Table 9. Further details about 

the development of these models can be found in Kuang and Mouazen (2013) and Marin-
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Figure 9: Measured transects (a), map of the soil moisture content (MC) measured with 

the on-line visible and near infrared spectroscopy (vis-NIRS) sensor after crop harvest 

in August, 2012 (b) respectively.  

González et al. (2013). The moisture content map is shown along with the measurement 

transects (Figure 9), where the spectral data was collected. Whilst MC is involved in the 

VNRX model this is sampled at the beginning of the growing season. The MC map highlights 

the moisture distribution spatial pattern in a field although the levels will vary in short 

periods of time (Vachaud et al., 1985). The studied field site has different soil property types, 

as areas of the field are on reclaimed land. It was noted through the growing season that there 

was a waterlogging problem on the west side of the field. 

 

 

 

 

 

  

    

(a)      (b) 

 

 

 

Figure 10 shows the on-line predicted soil properties (i.e., Mg, OC, P, CEC, Ca, TN, and pH), 

the semi-variogram results for the interpolated maps can be found in Table 9. General trends 

can be seen between the soil properties, with a low strip running through the centre of the 

field. The highest correlation seen is between moisture content and yield. However, Ca and 

Mg (Figure 10) show this same trend, being higher in nutrients in the areas of higher moisture 
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content, associated with low yield. Total nitrogen is in the highest concentrations in the NW 

of the field with a high band running through the S of the field, and phosphorus mimics this 

pattern. The lowest yield and highest moisture content are found in the NW of the field. 

Organic carbon appears to be homogenous through the field apart from a band in the centre, 

which is notably lower, with the NE and SW edge being slightly higher. PH is the lowest in 

the NW, with a low strip through the centre, but otherwise quite homogenous. A general 

trend can be seen between pH and CEC. Whilst an inverted pattern can be seen between pH 

and P. CEC is the highest on the SW and NE of the field. The most obvious spatial similarity 

is between yield and MC, where low yield (Figure 8) was seen in areas of higher moisture 

(Figure 9), suggesting a waterlogging problem effect on crop yield, which was confirmed by 

the farmer.  

  



89 

 

Figure 10: Soil property maps of the study field in Bedfordshire, UK; magnesium (Mg) 

magnesium in mg/l, organic carbon (OC) in % of dry matter, phosphorus (P) in mg/l, CEC in 

meq/100g, calcium (Ca) in mg/l, total nitrogen (TN) in % of dry matter, pH the log 

measurement of acidity. On-line spectral data was collected and applied to PLSR models 

developed by Kuang and Mouazen (2013) and Marin-González et al. (2013). 
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Table 9: Summaries of the statistics for the yield and on-line soil properties predicted in the 

field and the prediction results. The models were developed by Kuang and Mouazen (2013) 

and Marin-González et al. (2013). The semi-variogram results are also presented for each 

property c0 is nugget variance, c is sill, r is range, c0/c is proportion, and SSE is sum of squared error. 

Statistics pH P  TN 

(%) 

OC 

(%) 

Mg Ca MC 

(%) 

CEC Yield

d 
Max 8.04 29.08 0.81 2.12 3.43

0 

54.7

3 

35.47 24.83 9.32 

Min 5.58 10.12 0.11 0.75 0.13 17.4 5.60 6.74 0.29 

Mean 6.04 16.98 0.26 1.75 1.05 33.1

7 

16.55 13.5 6.13 

SD 0.49 3.46 0.07 0.33 0.44 9.36 3.29 2.69 2.12 

RMSEP 0.33 8.61 0.013 3.34 0.31 7.34 1.45 1.47 NA 

R
2
 0.86 0.69 0.72 0.75 0.88 0.76 0.56 0.72 NA 

RPD 2.37 1.77 1.85 2.36 2.55 1.87 1.49 1.70 NA 

c0 0.51 0.22 0.05 0.02 1.03 0.55 3.62 0.56 0.01 

r(m) 25.7 32.4 28.2 12.57 58.1

3 

67.8 18.74 36.1 67.3 

c 1.09 0.77 0.09 0.04 1.39 0.78 5.28 1.57 0.81 

c0/c (%) 0.47 0.29 0.55 0.5 0.74 0.71 0.69 0.36 0.01 

SSE 2.11 1.79 2.89 2.46 3.00 0.67 5.21 4.30 1.59 

OC is organic carbon, MC is moisture content, and TN is total nitrogen and are all in % of dry matter; P is 

extractable phosphorous in mg/l;, CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; Mg is 

magnesium in mg/l; and pH the log measurement of acidity.
 
RMSEP: Root mean square error of 

prediction, RPD is ratio of prediction deviation = standard deviation / RMSEP, c0 is nugget variance, c is sill, 

r is range, c0/c is proportion, and SSE is sum of squared error. 

 

3.2.3.1 Pearson correlations 

Pearson coefficient (r) values between pairs of soil properties suggest collective (positive) 

linear relationships to exist between Ca and CEC, MC, Mg, OC, pH and TN (r = 0.747 – 

0.519) and between CEC and Ca, Mg, MC and pH (r = 0.590 - 0.748). This may indicate that 

although Ca has no direct spectral response in the NIR range, it is measured with vis-NIR 

spectroscopy through covariation with MC and OC, both having direct spectral response 

(Stenberg et al., 2010; Kuang et al., 2012). However, CEC is measured through covariation 

with MC only. As expected, TN correlated with OC, which is in line with the reports 

(Carlyle, 1993; Kuang and Mouazen, 2011; Whetton et al., 2016a). 
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Examining r values between the eight on-line measured soil properties and yield, reveals 

negligible (negative) relationships (Table 10), which is in-line with results of Part 1 of this 

study (Whetton et al., 2016a), based on the correlation between laboratory measured soil 

properties and yield. If the relationship between variables is not linear, then the correlation is 

not strongly presented. The correlation could be affected by a third variable. The negative 

correlations of the soil properties to the yield could be explained due to the non-linearity of a 

soil system (Evans, 1996). The highest linear correlation is calculated between CEC and yield 

(r = -0.349). This again proves the complexity of the system and supports the interest in 

modelling techniques that account for both linear and non-linear interactions. As mentioned 

earlier, the interactions of soil properties that lead to their distribution are intricate and 

complex (Matheron, 1963). Ines et al. (2013) applied a simulation model where remotely 

sensed soil moisture, and LAI data were used to update the model variables for yield 

prediction of maize crop. Ines et al. (2013) model were process based which allowed the 

consideration of a large area, over multiple years. They found that in very wet conditions, a 

better accuracy was achieved with LAI parameters alone, and concluded that the water stress 

influence later in the season was negligible. Involving a process model in this study could 

have allowed a greater understanding and interpretation of the results, and would be 

interesting to involve in further modelling studies.   
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Table 10: Pearson correlation (r) between on-line measured soil properties in 2012 and 

wheat yield harvested in 2013. 

 Ca CEC MC Mg OC P pH TN Yield 

Ca 1.000 

 

       

CEC 0.733 1.000        

MC 0.519 0.748 1.000 

 

     

Mg 0.628 0.586 0.476 1.000      

OC 0.650 0.441 0.436 0.176 1.000 

 

   

P 0.163 0.216 0.019 0.042 0.027 1.000    

pH 0.747 0.590 0.492 0.348 0.432 -0.013 1.000   

TN 0.596 0.411 0.269 0.167 0.543 0.556 0.307 1.000  

Yield -0.321 -0.349 -0.209 -0.320 -0.199 -0.000 -0.152 -0.057 1.000 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry; P is extractable 

phosphorous in mg/l; CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; Mg is magnesium in 

mg/l; and pH the log measurement of acidity.  

 

3.2.3.2 Model output 

The detailed correspondence between inputs variables and soil properties are described in 

Table 11. 
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Table 11: The correspondence between inputs variables in Volterra Non-linear Regressive 

with eXogenous inputs (VNRX) model and soil properties 

Input Property Input Property Input Property Input Property 

   Ca    CEC    MC    Mg 

   OC    P    pH    TN 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry; P is extractable 

phosphorous in mg/l; CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; Mg is magnesium in 

mg/l; and pH the log measurement of acidity.  

 

The initial full model, based on quadratic terms, was chosen in this paper, which can be 

written as follows: 

Equation 13 

   
 

This model has 45 terms. All inputs and output were normalised (through maximum 

normalisation) before being applied to the model. The proposed method was then applied to 

calculate the ERRC of each term. Table 12 lists the first 10 terms selected using the SDA re-

sampling technique with a radius of 3 m. From this calculation it was observed that the 

contribution of CEC to the wheat yield variability was the largest (e.g. ERRC = 15.68%) 

among the 45 terms, including all soil properties and their interactions. This was followed 

successively by Mg (ERRC = 3.57%) and Ca * CEC (ERRC = 1.13%) terms. This is 

explained by the fact that although CEC is not a nutrient, it is a widely accepted measure to 

assess the fertility of the soil. In fact, CEC represents the soil ability to hold positively 

8 8 8

0

=1 =1
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charged ions e.g., exchangeable cations, which is directly linked to nutrients, hence, it is an 

important indicator of the availability of nutrients (Hazelton and Murphy, 2007). Its 

significant contribution to crop yield could be due to the quantity of nutrients being variable 

through the field (Table 9), with Ca, P, MC and CEC having the highest standard deviations 

successively. Mg was variable through the field with very low concentrations in some areas. 

Mg contributed highly in explaining yield variability, which is understood as Mg is the 

central part of a chlorophyll molecule and its availability can be limited by high availability 

of other nutrients (i.e., potassium) (Holmes 1962). Whilst Mg has been influential in this 

study to explaining yield variability in the field, it is not the most crucial nutrient to crop 

growth (Engelhard, 1989). The high influence of Mg on yield variability observed in this 

study could be attributed to it being a limiting factor in the field, rather than an essential 

nutrient for crop growth. Mg influence on yield variation may also be due to its interactions 

with Ca on the soil structure (with a recommended Ca:Mg ratio of around 5:1) (Rengasamy et 

al., 1986; Tiwari et al., 2010).  
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Table 12: The first 10 terms with corresponding error reduction ratio contribution (ERRC) 

values and coefficients based on the shortest distance approximation (SDA) re-sampling 

technique with a 3 m radius. 

Rank Term ERRC Coefficient    

1 CEC 15.68% -0.0948 

2 Mg 3.57% -0.4840 

3 Ca*CEC 1.13% -0.0025 

4 MC*Mg 0.72% -0.0558 

5 OC 0.78% -0.2056 

6 Mg*P 0.34% -0.9615 

7 Mg*TN 0.78% 5.0750 

8 pH*pH 0.39% -0.0670 

9 constant 0.82% 0.1917 

10 TN*TN 0.37% -8.5096 

TN is total nitrogen, OC is organic carbon, MC is moisture content are all in % of dry; P is extractable 

phosphorous in mg/l; CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; Mg is magnesium in 

mg/l; and pH the log measurement of acidity.  

 

Furthermore, CEC is an important indicator influencing soil structure stability, nutrient 

availability, soil pH and the soil’s reaction to fertilisers and other ameliorants (Hazelton and 

Murphy, 2007), which as a result will have a positive influence of crop growth and yield. 

Furthermore, CEC is also related to clay particles, which affect available water content 

(Bergaya and Vayer, 1997), hence, influencing crop growth and development. 
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By comparing the contribution of each soil property to the wheat yield with the 

corresponding significance threshold, the soil properties having significant contribution to the 

crop yield variability can then be highlighted as shown in Table 13. It can be clearly observed 

that among the eight studied soil properties, the following six soil properties e.g., CEC, Mg, 

TN, Ca, OC and MC have all significant influence on the crop yield variability, with 

declining order. However, the largest influence was attributed to CEC, followed successively 

by Mg and TN.  

It is worth noting that pH is normally associated with soil fertility (and CEC) but pH has one 

of the lowest influence on yield variation (Hazelton and Murphy, 2007). But, pH level 

directly affects nutrient availability and crop nutrient uptake (HGCA, 2014). With acidic soils 

(soil pH is smaller than 5), the pH would have negative influence on nutrient uptake. It is 

commonly stated in farmer’s guides that the optimum pH for soils under continuous arable 

cropping of cereal crops is between 6 and 7 with 6.5 being the ideal. However, in the Horns 

End experimental field, the pH value of the majority of the field area ranged between 5.6 and 

8, with the average being 6.04 and a SD of 0.49, which may explain the low contribution of 

pH to yield variability prediction (Bruulsema, 2015). However, all measured soil properties 

were included in the model, even those with low variability across the field. The model is not 

process based and does not produce universal truths, but reports the influence of influencing 

factors on the yield variability for this field, in this cropping season.  Similar observation can 

be made for P. Although P is a key nutrient for crop growth and development, no significant 

contribution to wheat yield variability was observed.  Mg, Ca, N, P, and K are used in the 

structural component of proteins, energy conversion, chemical reactions in the plants, 

building components of the chlorophyll, respiration, and cell membrane permeability 

(Epstein, 1972).  
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Table 13: Error reduction ratio contribution (ERRC) contribution of each soil property 

(input) to the crop yield (system output) with corresponding significance threshold based on 

the shortest distance approximation (SDA) re-sampling technique with a 3 m radius. 

Rank Input ERRC (%) Significance threshold 

(%) 

Significant 

1 CEC 14.60 0.60 Yes 

2 Mg 4.69 0.52 Yes 

3 TN 1.00 0.50 Yes 

4 Ca 0.98 0.43 Yes 

5 OC 0.68 0.49 Yes 

6 MC 0.62 0.47 Yes 

7 pH 0.34 0.46 No 

8 P 0.30 0.56 No 

 Total 23.21 4.03  

OC is organic carbon in % of dry matter; P is extractable phosphorous in mg/l; MC is moisture content in %; 

TN is total nitrogen in % of dry matter, CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; 

Mg is magnesium in mg/l; and pH the log measurement of acidity. 

 

This is a contradictory result to that achieved in Part 1, where the VNRX model was applied 

to soil samples from a field in Germany, where P was the largest contribution soil parameter 

to crop yield across the two cropping seasons studied. P is not a limiting property in the 

Bedfordshire field, as manure is being frequently applied (Table 9) (Mouazen and Kuang, 

2016). Another reason might that a part of the field i.e., the NW part, experienced a water 
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lodging problem associated with a poor drainage system for many years. Whilst MC was 

mapped for the field prior to crop growth, the level of water will change throughout the 

growing season, though the distribution pattern will stay relatively constant, so issues which 

occur (such as waterlogging) after the data collection were not considered by the model. The 

low yield and high moisture content is demonstrated in Figures8 and 9 respectively). This 

impact could have been negated by establishing plot areas through the field, using a factorial 

approach with different quantities of soil properties. This should be considered in further 

work, as it could not be applied in this study, due to restrictions with it being a commercial 

farm.  

 A multiple linear regression analyses with least square estimation conducted by Kravchenko 

and Bullock (2000) found OC as the main and most consistent, positively correlated 

parameter with corn and soybean yield. Interestingly, they found that the contribution from 

K, CEC and P was mostly negligible, and this was attributed to K and P being ample in 

abundance in the soils. This finding is in line with those of the current work regarding the 

observed P values (as K was not considered in the work) However, Kravchenko and Bullock 

(2000) stated that the performance of crop prediction models varies from field to field across 

different cropping seasons. They could on average explain about 30% of yield variability 

(results from 5 to 71%), whereas the model presented in this study explained 23.21% of the 

yield variability.  

TN ranked as the third largest contributor to wheat yield variability.  A high influence of TN 

to a field’s variability is supported by previous research. It is known that nitrogen supply is a 

highly influential factor to crop yield (Agegnehu et al., 2016). The high contribution of TN to 

yield variability in this study, suggests nitrogen supply was not homogenous through the 

field. TN large variation is also shown by the soil maps in Figure10.  
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MC had only a minor influence on crop yield as it is ranked sixth among the eight soil 

properties included in the analysis. However, the yield was thought to be considerably 

impacted by the waterlogging problem associated with the poor drainage system in the NW 

part of the field (Figure 9), Ines et al.(2013) found a similar issue in very wet conditions. MC 

may be ranked low because it doesn’t capture the impact of water logging, and some of the 

crop nutrients (such as Mg and Ca), closely mimic MC spatial distribution. This may also 

explain the surprising high influence of Mg on the yield variability, which was ranked the 

second most influential property for yield variance. The ratio of Mg and Ca can affect soil 

conductivity (with a recommended Ca:Mg ratio of around 5:1). If Mg concentrations are high 

it can cause high Flocculation in clay particles, resulting in ponding in wet conditions 

(Rengasamye et al., 1986; Tiwari et al., 2010). Mg had particularly low values in some areas 

of the field, with the high areas correlating well with the high areas of moisture content. 

However, the high Ca areas were generally reflected in the high Mg areas, however this is not 

true throughout the field, and this could have potentially contributed to Mg high impact on 

yield variability.  

There is an optimum for soil moisture (varying with crop growth stage) being beneficial to 

crop yield. As MC increases it may become a hindrance to crop yield after reaching a 

threshold. The waterlogged areas are of high MC and nutrient concentrations but low in yield 

due to the water stress, which affects crop growth and yield. Waterlogged crop roots are 

unable to respire, as there is too little oxygen in the soil pores (Boyer, 1982). Water logging 

at grain filling stages can cause a significant loss in grain yield (Condon and Giunta, 2003).  

Kravchenko and Bullock (2000) commented that the capability of models to predict yield is 

heavily variable spatially and across different cropping seasons. Whilst successful in 

explaining a substantial portion of the yield variability in some years, they are only capable of 
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explaining a small portion of the yield variability in others. This could be due to not using 

process based models, whilst suitable in explaining the contribution of a properties variability 

to the yield variability in a specific field, it does not provide universal truths. Low variability 

of properties in a field, could reduce the amount of explainable yield variability.  

Along with the waterlogging issue in Horns End field encountered in Part 2 of this study, this 

goes further to suggest a reason why results in the Part 1 of this study (Whetton et al., 2016a) 

were more successful (e.g., SERR reaching 52%). Regression analyses between cotton yield 

and soil properties collected by a traditional soil sampling method (Corwin et al., 2003) 

suggested that issues surrounding moisture content, salinity and pH were the most significant 

influence on the yield outcome, which support the finding of the current work regarding the 

water logging problem.  

3.2.3.3 Model sensitivity 

All results discussed above are based on the SDA re-sampling technique with a 3m radius. To 

evaluate the sensitivity of the results to the selection of re-sampling technique and the size of 

radius, more tests where been performed, whose results are shown in Table 14, in which only 

the top 3 significant soil properties are presented. Inspection of Table 14 reveals that the top 

two soil properties (e.g., CEC and Mg) showed exactly same response for all tests, appearing 

at first and second factors affecting yield, respectively, whereas TN appears three times and 

Ca appears once in the third position. Additionally, the CAA re-sampling technique 

consistently had a larger total contribution (SERR = 22.97% for 3 m radius) to wheat yield 

than that of the SDA re-sampling technique (SERR = 20.29% for 3 m radius), which 

indicates the CAA technique may be more suitable for the high resolution soil and yield data, 

because the identified model explains more of the system output. Also, the total contribution 

to variability decreases, following the increase of the re-sampling radius, which is expected 
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because more samples in an area, should be more sensitive and indicate more spatial 

variations of the underlying rule (Billings 2013).  
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Table 14: Contribution of the top three significant soil properties in terms of the sum of error 

reduction ratio (SERR) on the crop yield, based on shortest distance approximation (SDA) 

and (CAA) sampling techniques calculated for different radius values. 

 

Re-sampling 

technique 

Re-sampling 

radius 

Sampled 

number 

Top three inputs Total Contribution 

(SERR) Inputs Contribution 

SDA 3 1377 

CEC 14.60% 

20.29% Mg 4.69% 

TN 1.00% 

CAA 3 1377 

CEC 16.54% 

22.97% Mg 4.00% 

TN 2.43% 

SDA 5 3605 

CEC 9.20% 

13.61% Mg 2.45% 

TN 1.96% 

CAA 5 3605 

CEC 12.90% 

15.87% Mg 3.02% 

Ca 2.65% 

 OC is organic carbon in % of dry matter; P is extractable phosphorous in mg/l; MC is moisture content in %; 

TN is total nitrogen in % of dry matter, CEC is cation exchange capacity in meq/100g; Ca is calcium in mg/l; 

Mg is magnesium in mg/l; and pH the log measurement of acidity. 
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Results showed that the overall contribution of the eight soil properties to wheat yield 

variability is 23.21%. One would expect that the contribution of soil properties to yield 

should be larger than the overall calculated contribution in the current work. Nutrients are 

required for healthy plants. This study has assessed the impact of the variabilities of eight soil 

properties through a field. It does not report the necessity of these nutrients, but has attempted 

to assess the variability of yield, attributed to the soil properties spatial variability. However, 

the results obtained confirmed this to be a significant contribution, but also shows that there 

is variability still at play, influencing the crop yield (e.g., crop disease, pests, topography, 

micro-climatic conditions etc.). For example, whilst TN and OC should have significant 

effects, and both are required by the crop for healthy growth and grain production, they can 

also increase and prolong the leaf area index of the crop, which in turn increases humidity, 

making the plant more susceptible to disease, hence, crop yield is negatively affected (Bryson 

et al., 1997). In wheat, epidemics can cause significant crop losses, pest damage, including 

weeds, and disease can result in global loss of around 50% (Bravo et al., 2003; Oerke 2006; 

Moss, 2013). Further work should expand by including additional variables, to account for 

more yield variability. 

3.3 Summary conclusions 

In part one of this study;  

The results showed that over the two years the VNRX-L models produced the poorest results 

for yield variability of 19.15% and 8.5% in 2013 and 2014, respectively. VNRX-LN model 

accounting for both linear and non-linear interactions, which was the reason why this model 

has explained 52.2% and 50.7% of yield variation in 2013 and 2014 respectively. The RF 

model produced the highest contribution of 55.6% in 2013, which dropped down 

considerably to 45.8% in 2014. Authors encourage further studies into the novel VNRX 
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modelling approach, for quantifying the individual and collective influences of soil properties 

on yield variability. 

In part two of this study; 

Results showed that the overall contribution of the eight soil properties (collected at high 

resolution) to wheat yield variability using a VNRX-LN model is 23.21%. There is a need for 

a future work to expand on the current data mining approach to quantify yield limiting 

factors, based on a greater number of fields with different crops and different agricultural 

systems. The study should also account for the other affecting factors of crop yield including 

crop disease, pests, topography, micro-climatic conditions etc., which was highlighted in 

work by Shearman et al. (2005) and Sylvester-Bradley et al. (1999).  
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4 Optimising the configuration of a hyperspectral imager for on-

line measurement of wheat canopies 

Chapter Synopsis; 

This chapter concerns the laboratory-based optimisation of measurement configuration of a 

hyperspectral imager for cereal crop canopy measurements. The optimal configurations are 

later applied in the recognition of yellow rust and fusarium head blight (FHB) at canopy 

level, under laboratory and field on-line measurement conditions to be discussed in chapters 5 

and 6, respectively.  

Abstract 

There is a lack of information on optimal measurement configuration of hyperspectral 

imagers for on-line measurement of a wheat canopy. This paper aims to identify this 

configuration using a passive sensor (400-750 nm). The individual and interaction effects of 

camera height (above the canopy) and angle, sensor integration time and light source distance 

and height on the spectra’s signal-to-noise ratio (SNR) were evaluated under laboratory 

scanning conditions, from which an optimal configuration was defined and tested under on-

line field measurement conditions. The influences of soil total nitrogen (TN) and moisture 

content (MC), measured with an on-line visible and near infrared (vis-NIR) spectroscopy 

sensor, on SNR were also studied. Analysis of variance and principal component analysis 

(PCA) were applied to understand the effects of the laboratory considered factors and to 

identify the most influencing components on SNR.  

Results showed that integration time and camera height and angle are highly influential 

factors affecting SNR. Among integration times of 10, 20 and 50 ms, the highest SNR was 

obtained with 1.2 m, 1.2 m and 10° values of light height, light distance and camera angle, 
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respectively. The optimum integration time for on-line field measurement was 50 ms, 

obtained at an optimal camera height of 0.3 m. On-line measured soil TN and MC were found 

to have significant effects on the SNR with Kappa values of 0.56 and 0.75, respectively. In 

conclusion, an optimal configuration for a tractor mounted hyperspectral imager was 

established for the best quality of on-line spectra collected for wheat canopy. 

Keywords 

Hyperspectral imager, signal-to-noise ratio, wheat canopy, principal component analysis, soil 

properties. 

4.1 Introduction 

Advanced methods for early disease detection in crops is vital for improving the efficacy of 

treatment, reducing infection and minimising losses to yield and quality. Traditionally, 

disease detection is carried out manually, which is costly, time consuming and requires 

special expertise (Schmale and Bergstrom, 2003; Bock et al., 2010). Developments in 

agricultural technology have led to demands for a non-destructive, automated approach for 

crop disease detection that should be ideally rapid, disease specific, and sensitive to early 

symptoms (López et al., 2003). Optical sensing methods are non-destructive, allowing 

repeated data acquisition throughout the growing season without inhibiting crop growth. 

Spectroscopy and imaging techniques have been used in disease and stress monitoring (Hahn, 

2009). However, their in-situ application although established in other industries (e.g. health 

services, pharmacology and food safety) is still rather limited. Both Lenk et al. (2007) and 

Sankaran et al. (2010) focused on implementing the technology in the field, as a mobile (on-

line) application for mapping crop disease. Yuan et al. (2016) have used high spatial satellite 

imagery in the detection of powdery mildew. Remote spectral sensing for identification of 
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weeds in wheat fields has been tested by means of ground collected data (Gómez-Casero et 

al., 2009). Herrmann et al. (2013) have applied proximal hyperspectral imagery in the field 

for weed detection (e.g., both broadleaf and grass weeds), reporting 85% accuracy. Okamoto 

and Lee (2009) collected in-situ hyperspectral images for the detection of green citrus fruits, 

reporting promising results for identification of citrus fruits from background objects. In 

contrast, non-mobile (off-line) and laboratory methods for disease classification and plant 

growing conditions have been studied and demonstrated (Roggo et al., 2003; Wu et al., 

2008).  

A UAV mounted with a multi-spectral camera was successfully applied in the detection of 

leaf stripe disease in grapevines when monitored with ground assessments (Di Gennaro et al., 

2016). Calderón et al. (2014) claimed accurate detection of downy mildew in opium poppy 

using unmanned aerial vehicles (UAV) technology and a combination of thermal and multi-

spectral cameras. With the inclusion of fluorescence indices, Calderón et al. (2013) could 

successfully detect verticillium wilt in olive trees.  

Hahn (2009) claims that spectroscopic and imaging techniques could be integrated with 

agricultural vehicles, providing non-invasive and reliable systems for the monitoring and 

mapping of crop diseases, with further potential for early disease detection. Moshou et al. 

(2005) have shown that hyperspectral imaging for the recognition of in-situ disease can 

provide identification with a high degree of accuracy. Depending on the method of analysis 

and data fusion, an error between 1 - 16.5% was reported.  

Spectral reflectance in vegetation canopies is dependent on several factors including the 

illumination angle, the canopy architecture and the radiative properties of the plants. The 

reflectance of crop canopies is non-lambertian scattering, varying with the sun position, view 
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positions and meteorological conditions including cloud cover (Pinter and Jackson, 1985; 

Asner, 1998). Plant species, maturity, phenology, level of foliage and nutrient status are plant 

properties affecting reflectance (Asner, 1998; Coops et al., 2003; Gnyp et al., 2014). 

Geometrical arrangement of objects can affect the spectral reflectance such as leaf 

orientation, which cannot be controlled during on-line measurements (Asner, 1998; Coops et 

al., 2003). This creates problems associated with reduced reflection from light scattering. 

Shadows at small scale can be reduced by additional light sources. Barbedo et al. (2015) 

found that opposing lighting can help reduce shadows. Oberti et al. (2014) argued that the 

angle between the canopy and camera in the range between 0° to 60° affects the sensitivity of 

a mounted on-line (mobile) sensor due to light backscattering, suggesting the potential of an 

oblique camera angle, to reduce the impact on signal-to-noise ratio (SNR) variation.  

A tractor mounted hyperspectral imager allows for on-line field crop canopy sensing and 

mapping, however, an optimal configuration of the camera, light source and integration time 

needs to be established for optimal quality of imagery and spectra to be collected. Spectral 

quality is predominantly affected by sensor integration time, camera orientation, and light 

height and angle from the object (leaf or canopy). Integration time is the period over which 

the detector collects photons of light. The greater the integration time and light intensity, the 

more reflected light is expected to be captured by the detector, providing a higher SNR and 

pronunciation of the spectral peaks. Though when relying on sun light, the intensity can be 

variable. Ideally the system could be run at night to exclude external variabilities, however 

this solution is not practical.  When applying a spectral technique to a forward moving 

platform (on-line measurement) longer integration times result in an average spectrum over a 

larger area, reducing the sensitivity. Furthermore, the greater the distance between the camera 

and its subject, the larger the area observed and captured by a single pixel, reducing spatial 
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resolution. Therefore, optimising the measurement configuration is essential before on-line 

field measurements can be successfully carried out. Furthermore, background soil influences 

canopy spectra, and efforts have been made to remove this influence (Huete, 1988). Based on 

remote sensing data of the surface soil, Demetriades-Shah et al. (1990) suggested using a 

second order derivative to remove deviations caused by the soil background. However, none 

of these studies have investigated the influences of on-line measured (at a depth of 15-20 cm) 

soil properties [e.g., moisture content (MC) and total nitrogen (TN)] on the quality of crop 

canopy spectra. 

This paper evaluates, under laboratory conditions, the individual and interaction effects of 

camera height and angle, integration time and light distance and height on the spectral SNR 

of a wheat plant canopy captured with a hyperspectral line imager. Furthermore, the influence 

of on-line measured soil MC and TN on SNR of plant spectra collected on-line in the field is 

also assessed. This was essential to inform optimal configuration and operational conditions 

for on-line field measurement of crop canopy and diseases.  

4.2 Materials and methods 

4.2.1 Hyperspectral configuration in the laboratory 

Winter wheat Triticum sativum (Solstice variety) was grown outdoors in 600 x 400 mm trays 

(depth of 120 mm) with 100 seeds evenly sown and spaced in 5 parallel lines. After seeding, 

the trays were predominantly rain fed, to reduce input of excess salts from treated tap water. 

As the crops were grown outside no artificial vernalisation was given. Three grams of 

Nitrogen (34%) fertiliser were added to each tray, the same composition as that applied 

during the field experiment (discussed below). A push broom hyperspectral imager 

(spectrograph) (HS spectral camera model from Gilden Photonics Ltd., UK) was used to 

capture high-resolution-line images with a resolution of 1,608 pixels over 1 second, using a 
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diode array detector. It is a 12 bit Basler piA 1600-35 gm camera, with Schneider-Kreuznach 

XNP1.4/23 lens and has a pixel pitch of 7.4 μm interpolated/averaged to 0.6 nm readings 

with a spectral range of 400 - 750 nm. The reflected light from the target travels through the 

lens, past an entrance slit through a series of inspector optics in the spectrograph and is then 

split by the prism dispersing element into different wavelengths. This sensor was chosen for 

its potential for being applied to crop canopy measurements, and was of low price compared 

to comparable sensors, commercially available in the market. 

The data captured is in the form of a line array, with each pixel containing a spectrum and 

one detector per pixel across the swath. In order to compile a full image, every line across a 

target must be captured (Gilden Photonics Ltd, Glasgow, UK). When conFigured on a 

consistent moving platform, the imager sweeps across an area to build up an image. Due to 

practical restraints of applying a consistent moving platform, the spectraSENS v3.3 (Gilden 

Photonics Ltd, Glasgow, UK) software was adapted to record a single line array, which 

required an additional RGB photo taken by a 5 megapixel camera with a 3.85 mm f/2.8 lens 

at the same time of image capture, so that the scanned area could be comprehended. Two 

laser pointers were added at each side of the hyperspectral imager to indicate the area of the 

canopy to be scanned. The laser pointers were shut off when the spectral image was captured 

to remove any interference. Before data analysis, the collected scans were corrected by means 

of a dark and white reference, which were collected just before spectral capture, and at 10 

minute intervals until scanning was completed. The white reference used was a commercially 

available Spectralon Teflon white calibration panel with 99.9% white reflectance value. The 

distance of the camera was set at variable heights from the top of the canopy, so crop height 

information was not included in the study.  
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Factorial analysis was undertaken to understand and quantify the influence of configuration 

parameters on SNR. The wheat was at growth stage 47 according to Zadoks scale (Zadoks et 

al., 1974) (whilst the head was booting, and the canopy had closed) at the time of scanning. 

The studied configuration parameters are shown in Table 15. 

 

Table 15: Factors included in configuring the hyperspectral imager measured in meters (m), 

degrees (°) and micro seconds (ms) (multiple configurations considered) 

 

The same area was scanned in triplicate for the different combination of configurations. The 

laboratory (simulated-field) measurement configuration is shown in Figure 11. For the indoor 

environment, two 500 watt diffused broad spectrum halogen lamps were positioned at either 

end of the crop sample tray with an average Lux measurement of 1650. The additional 

illumination used in the current work was shown by experience to reduce the influence of 

shadow within the complex and non-homogenous canopy structure. Imagery data was then 

captured at different camera and light heights, light distances, camera angles and integration 

times (measured in milliseconds (ms)), as illustrated in Table 15. Light angle was kept 

Camera angle, 

deg ° 

Light height, 

m 

Light distance, 

m 

Camera height, 

m 

Integration time, 

ms 

0 0.90 0.60 0.15 10 

5 1.2 0.90 0.30 20 

10 - 1.2 0.45 50 

- - - 0.60 1000 
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constant at 45°, which is debated as the optimal angle to provide the strongest response 

(Huadong, 2001). Additional opposing lighting was used to reduce shadows (Barbedo et al., 

2015). Four integration times of 10, 20, 50 and 1000 ms were adopted as these cover the most 

practical ranges. The 1000 ms integration time illustrates the highest potential time, during 

which the system will absorb the reflected light hence; this is expected to give the smoothest 

spectra. 

Having determined a suitable configuration in the laboratory, the next experiments were 

designed to apply the configurations to a field environment and assess the impact of the 

environmental factors; e.g., soil moisture and total nitrogen, on SNR. Field measurements 

were conducted in a 9 ha field at Duck End farm, Wilstead, Bedfordshire, UK (52°05'46.3"N 

0°26'41.4"W), with an average annual rainfall of 598 mm. The farm has a crop rotation of 

barley, wheat and oilseed rape. Wheat was cultivated during the experiment in the 2013 

cropping season (drilled in September 2013) with canopy measurements being taken in April 

2014. The dominant soil type in the field is a clay loam, but has a sand fraction due to 

underlying gravel deposits. 
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Figure 11: Schematic illustration of the laboratory (simulated field) configurations used and 

the variables implemented to obtain the hyperspectral data with the highest signal-to-noise 

ratio (SNR). The hyperspectral imager is a passive sensor, but has been applied with an 

external halogen light source. The Laser pointers allow to precisely position the hyperspectral 

imager over the target. 

4.2.2 On-line soil and crop measurements in the field  

The on-line field measurements included crop spectra and soil MC and TN. The reason why 

MC and TN were the selected soil properties, is that the former affects the soil physical and 

mechanical conditions, influencing the soil dynamic behaviour below the tractor tyres during 

the on-line measurement, whereas both may well be linked with crop growth (assuming that 

TN is directly linked to mineral nitrogen). It is worth mentioning that mineral nitrogen (e.g. 

nitrate and ammonia) cannot be measured with visible (400-780 nm) and near infrared (780-

2200 nm) (vis-NIR) spectroscopy, however analytical tests could be applied (Kuang et al., 

2012). Furthermore, the literature confirmed the potential of the vis-NIR to measure MC and 

TN, which is attributed to the direct spectral response of these properties in the NIR range 
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(Stenberg et al., 2010; Kuang et al., 2012). The SNR values from the canopy’s hyperspectral 

data was compared against the on-line measured soil properties at the same location via 

Kappa statistics and visual comparisons. This was essential to evaluate whether or not the 

optimal measurement configuration established in the laboratory was applicable in the field, 

and whether modifications should be considered. 

An on-line vis-NIR soil sensor developed by Mouazen (2006) was used in this study to 

measure soil MC and TN, with the objective of mapping the spatial variability of these two 

selected soil properties. The system consists of a subsoiler, opening a smooth trench at 15 cm 

depth (Mouazen et al., 2005). The sensor was mounted on a three-point linkage of a tractor 

travelling at a speed of 3 km h
-1 

and collecting spectral soil data at 10 m parallel intervals. In 

order to measure soil spectra, an AgroSpec mobile, fibre type, vis–NIR spectrophotometer 

(Tec5 Technology for Spectroscopy, Oberursel, Germany), with a measurement range of 

305–2200 nm and a light source of 20W tungsten halogen lamp were used (Kuang and 

Mouazen, 2013). A differential global positioning system (DGPS) (EZ-Guide 250, Trimble, 

California, USA) recorded the position of the on-line spectra with sub-meter accuracy. The 

collection of soil spectra and DGPS readings took place at 1 sec sampling resolution using 

AgroSpec software (Tec5 Technology for Spectroscopy, Oberursel, Germany).  

The same hyperspectral imager (Gilden Photonics Ltd, Glasgow, UK) as that used in the 

laboratory to optimise measurement configuration was used for on-line measurement of the 

wheat canopy in the field. The following hyperspectral measurement configuration was 

considered: an integration time of 50 ms, a camera height of 0.3 m and light height and 

distance of 1.2 m and a camera angle of 10°. The hyperspectral imager was mounted on a 

tractor boom (Figure 12) traveling at approximately 4 km h
-1

.  The direction and angle of the 

imager was kept consistent, and a day with uniformly overcast weather (complete cloud 
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cover) was selected (Figure 13), which helped prevent issues of moving shadows from lateral 

sun movement on the data (West et al., 2003). Nevertheless, a handheld LUX meter (RS 180 

– 7133, RS Components and Controls, India) was utilized to check the sunlight and readings 

ranged between 1950 and 2000 LUX, indicating no significant difference. Alternatively, to 

overcome sunlight issues the data collection could be conducted at night with the use of 

broad spectrum artificial lighting. The hyperspectral camera was mounted to the side of the 

tractor.  It captures images of 1608 pixels per line, over a one-second interval, which is 

subsequently logged and geo-located using a DGPS. The collected scans were corrected by 

means of a dark and a white reference (spectralon 99% white reflectance panel). The latter 

was used before spectral capture, and at a maximum of 30 minute intervals until scanning 

was completed.  

 

 

Figure 12: Illustrates the on-line field hyperspectral measurement using hyperspectral 

measurement configuration. 
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Figure 13: Example of the overcast sky at on-line hyperspectral imaging collection. 

 

4.2.3 Data analyses 

4.2.3.1 Spectrograph spectral data processing and evaluation 

Quality of the wheat canopy spectra (measured both in the laboratory and field) was 

evaluated by analysing SNR. The SNR is defined here as a ratio of the signal strength to that 

of unwanted interference. A strong signal devoid of interference is the desired outcome in 

measurements. If the data is too noisy it can hide key features of the spectrum, and data pre-

processing such as smoothing can result in them being removed (Dasu and Johnson, 2003). A 

noisy spectrum can result in poor calibration models, due to noise being considered as a 

feature. There are many applications for estimating the SNR from sources such as electrical, 

chemical, and spectral. Different methods are often applied to estimate the SNR value, 
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depending on the data input. Curran and Dungan (1989) used a bright homogenous surface to 

estimate the SNR and produced a method termed the geostatistical method for removal of 

periodic noise in images. Van der Meer (2000) used a method outlined by Lee et al. (1990) 

for remote spectral sensing, to assess SNR of Landsat Thematic imagery. Analysis of image 

SNR has also been conducted through production of histograms of an image (Ramamurthy et 

al., 2004). A similar approach was outlined earlier by Smith (1999), where spectra were 

collected from grayscale images. Smith (1999) exampled a SNR range between 0.5 and 2.0, 

stating that there is only an issue if the SNR value drops below 1.0. We have used a crop 

canopy in this study instead of a white or grey reference panel to calculate SNR, since the 

intension was to use the optimal configuration for on-line measurement of crop canopy in the 

field, where variations in canopy architecture and leaf orientation are foreseen. The same area 

of the canopy was used for all individual scans. In this case, whilst uniform intensity cannot 

be achieved across the spectrum in one scan, each pixel has almost the same target object 

throughout all the scans. Similar to the measurements curried out in the current work, 

Daumard et al. (2010) relied on crop canopy spectra to maximise SNR, although details of 

the calculation of SNR were not provided. However, they considered central pixels only in 

their calculations, whilst we have considered all pixels in a line image after removing non-

crop canopy spectra. The following assumptions were made in the current study to justify the 

selection of a crop canopy for achieving an optimal measurement configuration: 

1- Non-crop contaminated spectra including soil and soil-plant, etc. can be excluded from the 

analysis. This was done by calculating normalised differential vegetation index (NDVI) of all 

pixels. Spectra of pixels with NDVI values smaller than 0.3 were removed from the 

calculation of SNR. This method is used by Bravo et al. (2004) and Huete (1988). 
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2- Spectra of remaining pixels contain both residual noise and canopy signal, the intensity of 

which depends on the pixel position within a complex canopy structure of the crop. This will 

represent the measurement of a homogenous canopy (without soil spectra). 

3- Variation in position of pixels for a series of scans can be minimised by fixing the position 

of crop trays, so that line images are collected from the same target area for different 

measurement configurations. In this case, whilst uniform intensity cannot be achieved across 

the spectrum in one scan, each pixel has almost the same target object throughout all the 

scans. 

The calculation of the SNR was done in this study following a similar approach adopted by 

Ramamurthy et al. (2014) and described earlier by Smith (1999). As the data collected is 

single line 2-dimensional captures, the data was assessed as spectra rather than images. This 

method of SNR was selected as it could be used as a basis of comparison between individual 

spectral data captures. We calculated the SNR of individual wavelength (SNRw) as follows: 

Equation 14 

SNRw = Mw/SDw  

Where: Mw is the mean reflectance value of individual wavelengths through all the pixels, 

and SDw is the standard deviation of mean reflectance of individual wavelengths of all pixels 

explained in a schematic in Figure 14. It is worth noting that all pixels were considered 

important in the current work to calculate SNR. An alternative approach to this method 

would have been to select central pixels only to calculate SNR, a method applied by Daumard 

et al. (2010).   

The mean spectral signal describes what is being measured, whereas the standard deviation 

represents noise and other interference for each pixel (Smith, 1999). Mw values for different 
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wavelengths were calculated on the remaining 583 wavebands, after removing the spectral 

range outside of the 400 to 750 nm range, since they were found to be noisy. Once Mw and 

SDw are calculated for each individual wavelength, the SNR for a spectrum (SNRs) was 

calculated as follows (see Figure 14): 

Equation 15 

SNRs = Ms/SDs  

Where: Ms is mean reflectance of all wavelengths in a spectrum (a scan) and SDs is mean 

standard deviation of the reflectance of all wavelengths in a spectrum. The SNRs was used in 

this study to evaluate the strength of scans, hence, the quality of spectral signal. It is worth 

noting that SD is not important in itself, but only in comparison to the mean. Therefore, a 

strong SNR with pronounced absorption peaks provides increased recognition for the 

association of spectral signatures to a subject.  

 

Figure 14: Schematic illustration outlining how mean, standard deviation and signal-to-noise 

ratio for wavelength (Mw, SDw, SNRw, respectively) and a spectrum (Ms, SDs, SNRs, 

respectively) were calculated. 
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A principal component analysis (PCA) was also undertaken on laboratory measured 

hyperspectral data only using Statistica software (StatSoft inc., Oklahoma USA) to identify 

parameters with the greatest impact on SNR. PCA is a statistical method, which analyses the 

distribution of data in multidimensional space (principal components) or similarity maps, 

where similarities (within groups of a variable) and differences between groups can be 

evaluated (Dytham, 2011). In this instance, SNR, integration time, light height and distance, 

and camera angle and height were used as input variables for the PCA analysis. Additionally, 

a two-way analysis of variance (ANOVA) was carried out with RStudio software (RStudio 

Boston, MA) to estimate significant influences of individual variables and interaction 

between variables on SNR (Webster, 2007; Dytham, 2011).  

4.2.3.2 On-line soil sensor calibration  

Laboratory measurements of MC and TN were carried out using a standard reference method. 

Soil MC was measured with oven drying of samples at 105ºC for 24 h, whereas TN was 

measured with a TrusSpecCNS spectrometer (LECO Corporation, St. Joseph, MI, USA), 

using the Dumas combustion method (Dumas, 1826 as cited by Buckee, 1994). The on-line 

collected soil spectra were subjected to pre-processing before modelling. Pre-processing 

included noise cut by removing wavelengths smaller than 400 nm and larger than 1900 nm. 

Noise cut was followed successively by maximum normalisation, and Savitzky-Golay first 

derivative and smoothing was applied. The smoothing reduces noise in the spectrum, and the 

first derivative was used to eliminate the effect of the roughness of soil surface on the 

spectrums absorption (Shibusawa et al., 2000;Waiser et al., 2007), Partial least squares 

regression (PLSR) analysis with leave-one-out full cross-validation was carried out to 

establish correlations between soil spectra and laboratory measured MC and TN. Spectra pre-
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processing and PLSR analysis were carried out using Unscrambler 7.8 software (Camo Inc.; 

Oslo, Norway).  

4.2.4 Mapping 

Maps for on-line vis-NIR predicted MC and TN and on-line spectrograph measured wheat 

canopy reflectance were developed used ArcGIS 10 (ESRI, California, USA) software. 

Kriging was used to develop maps, assuming that the distance or direction between sample 

points reflects a spatial correlation that can be used to explain spatial variations. The 

advanced parameters option in ArcGIS 10 software (ESRI, California, USA) allowed control 

of the semi-variogram used for kriging, with spherical selected as the best fit. The semi-

variogram values were calculated in RStudio (RStudio, Boston, MA).  

The similarity assessment between maps can be performed by visual inspection and statistical 

tests (Tekin et al., 2013). The simplest way of comparing between maps is by visual 

inspection, to conclude whether similarities may exist or not. However, this is insufficient, as 

quantitative estimation of similarity is a more robust approach to adopt. To compare the 

statistical relationship of pairs of maps, Kappa statistics (Cohen, 1960) analyses were 

performed to calculate the Kappa value (κ), using SPSS (Statistical Package for the Social 

Sciences, IBM, Armonk, New York, USA). However, before running Kappa statistics, data 

was subjected to raster analyses to have the same 5 m by 5 m grid size for all maps, after 

which the data underwent maximum normalisation.  

4.3 Results and Discussion 

4.3.1 Spectral quality in the laboratory 

Typical wheat crop canopy spectra can be observed in Figure 15, which shows clear, noisy 

and saturated spectra. The clear and saturated spectra can be observed to be more 

pronounced, whereas a weak absorption in the spectral signature and interference in the noisy 
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spectrum leads to reduced quality, low SNR, masking detail in the signature and causing a 

loss of important spectral information through the entire spectral range studied. The clear 

spectrum is the best quality, and the target to be obtained. The noisy spectrum is caused by 

the low integration times, and greater distance of the Halogen light source. A strong SNR 

with pronounced absorption peaks would allow for a greater success in analysis of crop 

assessments and disease presence. Although, pre-processing of spectral data includes 

techniques such as smoothing, if the process of cleaning the data is intensive due to noisy 

spectra it can lead to the loss of important spectral features, and thus impact on the success of 

analysis (Dasu and Johnson, 2003).  

Saturation predominantly occurs within the central pixels associated with the highest 

reflectance, causing data in the peaks of the electromagnetic spectrum to be lost (starting 

around 650 nm). Leaf reflectance in the NIR range is affected by the structure of the plant 

leaves (Gates et al., 1965), and can be related to the leaf wax coating (Cameron 1970). In the 

case of spectral saturation the data becomes unusable. In the remaining parts of the spectrum, 

however, particularly the visible range (400–700 nm), there is a lower reflectance due to a 

larger absorption of the light, which is attributed to the photosynthetic pigments of the plants 

leaves,  (Gates et al., 1965). 



123 

 

 

Figure 15: Examples of smooth (the grey line with 1.6 signal-to-noise ratio (SNR), noisy (the 

black line with 1.2 SNR), and saturated (the dotted line with 1.8 SNR) spectra of wheat 

canopy. The saturated spectrum flattens off at 680-750 nm and important information is lost 

on the peak around 700 nm that is otherwise illustrated by the clear spectra. 

 

When analysing the entire spectral signature, saturation causes a reduction in sensitivity. 

Therefore, sensor configurations leading to saturated spectral data were removed from the 

analysis of SNR. All saturated data were obtained with integration time of 1000 ms, this is in 

line with the literature, where larger integration times can cause saturation of the data 

(Dell’Endice, 2008). 

4.3.2 Hyperspectral image configuration parameters; laboratory 

The integration time considerably affected the SNR, expressed as average and SD values (Eq. 

1), as shown in Table 16. 
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Table 16: Average and standard deviation (SD) values of the highest signal-to-noise-ratios 

(SNR) obtained with different integration times, camera settings and light source settings 

when scanning a wheat canopy. Theoretical forward distance travelled (and captured to a 

single data line) if applied on a moving platform at field scale. 

 

The longer the integration time, the greater the opportunity for more energy to be captured by 

the spectrograph. The 1000 ms configuration was the highest potential integration time and 

was trialled (under field simulations) to see the potential highest SNR, whilst the 

manufacturer recommended around 20 ms for laboratory use. The results from the 1000 ms 

integration time provided a high percentage of saturated results. The non-saturated recordings 

were of the same SNR values to that of the 50 ms integration times, so integration times 

higher than 50 ms were not trialled further. With varying the integration time, parameters had 

constant values apart from the camera height. The optimal camera height decreases with an 

increased integration time, the closer the camera to the object, the higher the integration time 

required. This may mean that the most influencing parameters on the SNR were the 

Average, 

SNR 

SD 

Integration 

time,  

ms 

Light 

height,  

m 

Light 

distance,  

m 

Camera 

height,  

m 

Camera 

angle, 

deg 

Distance 

travelled, 

m 

1.688 0.102 1000 1.2 1.2 0.15 10 4  

1.669 0.160 50 1.2 1.2 0.30 10 0.2  

1.471 0.103 20 1.2 1.2 0.45 10 0.08  

1.386 0.078 10 1.2 1.2 0.45 10 0.04  
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integration time and camera height. Other studies demonstrated that the movement 

(adjustments, bounce or vibration) between the imager and the subject during integration time 

can cause a compiled image to be warped or noisy (Zhong et al., 2011). For on-line 

measurements, the easiest variable to control is integration time, as angle and height can alter 

slightly as ground is uneven, crop stands vary and unavoidable movement occurs in 

mountings. It becomes necessary to have the optimal configurations set initially but to 

understand there would be slight deviations. A NADIR camera angle was selected, due to 

reports from Oberti et al. (2014) and Van Beek et al. (2013). 

ANOVA (appendix B) showed that all individual variables and interactions of variables had 

significant influences on SNR at the (0.05) 5% probability level, except for the interactions of 

light distance and integration time (0.01), and light distance, camera height and integration 

time (0.01) (Appendix B). Therefore, the null hypothesise ‘that variables and subsequent 

interactions of variables will have no significant effect on SNR’ can be rejected. 
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Figure 16: Principal component analysis similarity maps developed for principal components 

1 and 2 (a) and for principal components 1 and 3 (b). Input variables are camera and light 

height, light distance, camera angle, integration time and signal-to-noise ratio (SNR) 
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Principal component analysis, allows for a simpler visual understanding of a dataset as it 

emphasise patterns and variations, by expressing the variation in a minimal number of 

observations (Wold et al., 1987). Figure 16 illustrates the similarity maps of principal 

component (PC) 1 and 2 (a), and PC1 and 3 (b) accounting for 47.62% and 42.26% of 

variance, respectively. Examining the plot of PC1 vs PC2 one can observe that the integration 

time, SNR and camera height are gathered in one group, which explains these to be closely 

related. Integration time showed the strongest influence and correlation with SNR, whereas, 

camera height demonstrated the second closest corresponding variable on SNR with the latter 

having a weaker influence (Figure 16a). Light distance, light height and camera angle seem to 

have a smaller influence on SNR (compared to integration time and camera height), as they 

make a separate group associated with PC2 with minor variance associated with PC1. 

Disregarding other variables, it becomes clear that a longer integration time and a smaller 

camera height result in a higher SNR.  

Although the light distance and height are strongly associated in the PCA similarity maps 

(Figure 16 a and b), they have a negligible influence on the SNR. This does not mean that the 

absence of light would have no effect. As long as there was ample diffused light, in order for 

the detector to collect photons, light variables appeared to have little impact. Although the 

influence of camera height was the second largest in the PC1-PC2 similarity map, in the PC1-

PC3 similarity map, the camera height had little influence on SNR, similarly to the light 

variables. Furthermore, the close correlation between camera height and integration time 

shown in the PC1-PC2 similarity map is not observed in the PC1-PC3 similarity map. In the 

latter similarity map (Figure 16 b), the camera angle has the second largest influence on SNR 

after the integration time. This means that both camera height and angle have strong 

influences on the SNR. Under laboratory measurement conditions, larger camera angles were 
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reported to be beneficial for powdery mildew recognition in leaves of grape vines by Oberti 

et al. (2014). Smaller view angles are discussed by Pisek et al. (2009) to theoretically be 

better due to observing a larger area. Rautiainen et al. (2008) concluded greater nadir angles 

are more suitable for viewing the top canopy and had a very limited view of the understory. 

This is supported by the finding that 80% of the crop yield is calculated from the health of the 

top 3 leaves (HGCA, 2008). The correlation between green leaf retention and yield has been 

observed in a number of trials (Reynolds et al., 2009; Ali et al., 2010; Hunt and Poole, 2010) 

and can be observed with reference to trial work in barley conducted by the authors in 2009, 

where every 1% reduction in green leaf area on flag-1 at GS80 correlated to a 20 kg/ha loss in 

yield. This is true when applying a camera angle. But when assessing light conditions, an off-

nadir angle can create more lighting variability, due to shady and illuminated areas of the 

crop. Van Beek et al. (2013) found that for smaller off-nadir viewing angles (<20°) of the 

sensor, the sun orientation was found not to be important. This, along with issues of shadow 

from the infield mountings, is why small angles for the configurations were selected.  

To make a decision on an optimal configuration that would result in the highest SNR, was not 

a straightforward process. However, when SNR values are arranged according to the 

integration time (Table 16), a clear trend is observed. For example, SNR increased with 

integration time, where the highest values of SNR were obtained with an integration time of 

1000 ms, however, they were only marginally higher than the SNR values at 50ms. Since 

several variable combinations resulted in similar SNR values, it is perhaps premature to 

suggest the optimal configuration as the single highest, so configurations with SNR 

variability of less than 5% from the highest reading (of each integration time) were 

considered for further evaluation. The further analysis confirms that the highest SNR occurs 

with the same configurations of 1.2 m, 1.2 m, and 10° of light height, light distance and 
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camera angle, respectively. As stated earlier, the camera height is negatively correlated with 

the integration time (Table 16). A possible theory for reoccurrence of these configurations 

could be that they allow for the greatest amount of reflected light to be captured by the 

detector. Among the integration time steps of 10, 20, 50 and 1000 ms selected, a practical 

range for on-line measurement is between 10 ms and 50 ms, a range which is suggested by 

the manufacturers. Assuming that the best integration time for practical on-line (mobile) 

measurement in the field is 50 ms, the optimal configuration parameters of 1.2 m, 1.2 m, 0.3 

m and 10° are recommended for light height, light distance, camera height, and camera angle, 

respectively. The average SNR for this integration time is 1.669 (seen in Table 16), which in 

reference to Smith (1999) we believe is a strong signal for a crop canopy. These optimal 

configuration parameters were adopted for the on-line measurement of wheat canopy 

measurement in this study. 

4.3.3 Hyperspectral imager; on-line measurement 

During the on-line measurement, it was noticed that there was an unavoidable bounce in the 

boom observed to be at ±0.2 m of the original height of the mounting (set at 0.3 m above the 

crop canopy). On inspection of the data, the camera height from the object affected the 

uniformity of light intensity measured across the pixels, (particularly at the beginning and end 

of the captured line). Therefore, for calibrating the on-line hyperspectral scans, it is 

recommended to overcome this fluctuation by removing the first and last 320 pixels from the 

spectral data. This is specific to this hyperspectral imager but is an interesting factor for 

consideration.  
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Comparing the laboratory with on-line field measured canopy spectra, one can observe that 

the laboratory reflectance scans are of a higher relative reflectance than the on-line scans, 

specifically between 500nm and 700nm (Figure 17). The laboratory spectra are from tray 

grown crops, whilst the on-line scans highlight different spatial areas of a field. The 

reflectance difference between the laboratory and field scans could be also due to other 

influencing factors such as water stress. The laboratory spectra shown is an average spectrum 

from multiple trays. Although trays are reasonably deep (120 mm), they do not necessarily 

hold as much water as in the field and this is believed to be reflected by the laboratory spectra 

(Wang et al., 2014). Initially, the on-line spectra showed variation throughout the field, which 

appeared to be in response to different crop spatial conditions. For example, the field scan 1, 

refers to the canopy of water stressed wheat plants, whereas field scan 2 refers to healthier 

wheat plants. Crops start to show yellow colour as a symptom of water stress, which leads to 

reduce light absorption and increased reflectance as shown in field scan 1 (Figure 17). More 

detailed analysis of crop and soil properties needs to be assessed to understand differences in 

quality of canopy spectra collected in the field.  
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Figure 17: Comparison of canopy spectra of water stressed wheat crop obtained in the 

laboratory (the dashed line) and on-line in the field (the dotted and grey lines). The crop was 

of the same variety and at comparable growth stages. Laboratory and field scans were 

collected under the suggested optimal configurations. The on-line field scans are: 1) field 

scan (the grey line) is of a more water stressed plant and 2) field scan (the dotted line) is of a 

less water stressed plant. 

 

4.4 Influence of soil properties on signal-to-noise ratio during the on-line 

measurement 

The on-line measured soil MC and TN maps of the field provided a visual explanation 

(Figure 18) for a drop in reflectance within certain areas of the field. Comparing the MC map 

with the SNR map, one can draw a general conclusion that areas of low MC correspond with 

areas of high SNR, and vice versa (areas of high MC being of low SNR). This can be 

explained by the fact that soil deformation under the tractor tyre in wet soils is larger than 

that in drier soil conditions. A larger soil deformation should result in a larger fluctuation in 

camera height and angle, compared to the baseline setup, which may lead to reducing the 
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SNR. Work carried out by Söhne (1958) showed that an increase in the MC of a soil and the 

increase in payload on a tyre both increase the depth of soil deformation.  

Both on-line measured MC and TN were found to have significant effects on the SNR of the 

wheat canopy spectra at 95% confidence. The kappa values between the SNR map and TN 

and MC maps confirm spatial similarities within the field. Landis and Koch (1977) classified 

Kappa values into different categories: 0–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1, 

which indicate slight, fair, moderate, substantial, and almost perfect agreement, respectively. 

Results show that the Kappa value between TN and SNR is rather small (kappa = 0.56), 

indicating moderate similarity between these two maps. Since TN is the main source of 

mineral nitrogen essential for crop growth and development, it can be influential on the 

quality of the crop canopy and SNR. 
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Figure 18: Maps of on-line measured soil moisture content (MC) (a) total nitrogen (TN) (b), 

and the average signal-to-noise ratio (SNR) per scan (c). 

 

The kappa value between MC and SNR was much higher (kappa = 0.75) than that between 

TN and SNR map, confirming substantial similarity between the two maps. This supports the 

earlier suggestion about the influence of MC on soil deformation that changes the initial 

(optimal) hyperspectral measurement configuration obtained in the laboratory and 

implemented for on-line measurement in the field. To reduce the negative influence of soil 

deformation on SNR due to high soil MC during on-line scanning, proper spectra pre-

processing is recommended e.g., normalisation, derivation, and multiplicative scatter 

corrections. Further research is required to confirm this assumption, as when measuring on-
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line, deviations from the optimum configuration (due to tractor vibration, bounce in the boom 

and soil deformation) were unavoidable.  

4.5 Conclusions 

This study was undertaken to determine an optimal measurement configuration of a 

hyperspectral line imager (400-750 nm). The SNR was calculated on the hyperspectral 

measurement of a wheat canopy, under laboratory scanning conditions. The individual and 

interaction effects of the systems configurations were evaluated for the impact on the SNR. 

Optimal configuration was determined and implemented for on-line field measurement. The 

influence of on-line measured soil moisture content (MC) and total nitrogen (TN) on SNR 

was evaluated. Results allowed the following conclusions to be drawn:  

1- The integration time followed by the camera height and camera angle appeared to have the 

largest influence of the SNR. A long integration time (>50 ms) was of a negligible influence 

and only slightly increased the SNR, but resulted in spectral saturation, hence should be 

avoided. 

2- The PCA similarity map showed that the light height and distance have a strong 

correlation with each other but a minimal influence on SNR.  

3- Both on-line measured MC and TN were found to have significant effects on the SNR of 

the wheat canopy spectra at 95% confidence. The on-line soil measurements revealed 

stronger spatial similarity between the hyperspectral SNR and MC maps (kappa value = 

0.75), which was attributed to soil deformation below the tractor tyre.  

4- The variable reflected light intensity captured by the different pixels across the line 

imagery is an interesting factor to consider, due to the impact of varying camera height 
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during the on-line measurement. Whilst the solution suggested here is appropriate, it is 

camera specific.  

Further work is planned to overcome variation in SNR associated with camera height changes 

(vibration, bounce in the boom, and soil deformation during the on-line measurement) by the 

implementation of a proper spectra pre-processing. It is also planned to implement these 

hyperspectral measurement configurations for on-line measurements of crop canopy for 

detection of crop health and disease presence. 
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5 Hyperspectral measurements of yellow rust and fusarium head 

blight in cereal crops: Part 1: Laboratory study 

Chapter Synopsis; 

This chapter focuses on the application of the hyperspectral imager with the optimised 

configurations achieved in Chapter 4 for the detection of yellow rust and fusarium head blight 

(FHB) in wheat and barley canopies. This was done based on PLSR models developed for 

yellow rust and FHB quantitative prediction. The methods developed in this chapter will be 

applied in the following chapter (6) using on-line data. 

Abstract 

The aim of this study was to assess the potential use of a hyperspectral camera for 

measurement of yellow rust and fusarium head blight (FHB) in wheat and barley canopy 

under laboratory conditions. The plants were grown in trays and inoculated with different 

spore concentrations of the two studied pathogens. In order to account for water stress, trays 

were water stressed at the crop growth stage 45. Visual assessment of disease was made at 

four levels, namely, at the head (when present), at the flag leaves, at 2
nd

 and 3
rd

 leaves (mid 

canopy), and at the lower canopy. Partial least squares regression (PLSR) was implemented 

to establish calibration models to predict the percentage coverage and scale of infection (0-5 

for yellow rust and 0-2 for FHB). Results showed that a hyperspectral technique coupled with 

PLSR can be successfully used for the prediction of yellow rust in winter wheat and barley 

canopies. Ratio of prediction deviation (RPD) values of 2.25 (equivalent to an R²= 0.8)  and 

1.97 (R²= 0.77) were calculated for wheat and barley based on scale measurement and 2.04 

(R²=0.77) and 1.80 (R²=0.69) for percentage coverage, respectively, which were classified as 

good accuracy in wheat and as moderately accurate in barley. For FHB detection, results 

were less successful (RPD = 1.5 in wheat and 1.36 in barley, equivalent to an R² of 0.57 and 
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0.5, respectively). The standard deviation between 500 and 650 nm and squared difference 

between 650 and 700 nm can explain differences between healthy, yellow rust and FHB 

infected canopies. It is recommended to explore the potential of hyperspectral imaging for 

on-line measurement of studied diseases in cereals. 

Keywords 

Yellow rust, fusarium head blight, wheat, barley, crop canopy, partial least squares 

regression. 

5.1 Introduction 

With the world’s population estimated to reach 9 billion by 2050, sustainable approaches to 

increase crop yield is a necessity (Hole et al., 2005; Godfray et al., 2010). The majority of 

current farming practices are based on unsustainable production systems, relying on external 

inputs and high-yield varieties susceptible to disease (Hole et al., 2005). Advanced 

management (e.g., precision agriculture) of farm external resources such as fungicides, if 

applications were site specific, could result in increasing yield at a reduced amount of input 

and cost. This can be achieved by applying the full rate to areas of the field which would 

benefit from the resource, and by applying a reduced rate to areas of lower demand, which 

would reduce the quantity of input (Wittry and Mallarino 2004; Maleki et al., 2007). Among 

these resources, fungicide application may well be reduced by targeted site specific spraying 

(FRAC, 2010). However, accurate measurement of fungal diseases is a main requirement for 

sustainable application of fungicides, and is expected to contribute to the reduction and 

prevention of the spread of crop disease and the losses of quantity and quality incurred from 

them. 
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Fungal disease control is a large task for the successful production of cereals worldwide. 

Both yellow rust and fusarium head blight (FHB) are fungal diseases which infect small 

cereal crops, and are responsible for causing severe yield losses (De Vallavieille-Pope et al., 

1995; Bravo et al., 2003). Disease presence can vary considerably between plants. Yellow 

rust caused by Puccinia striiformis is a foliar disease, which can alone reduce crop yields by 

40%. Bravo et al. (2003) stated that reductions in the yield can be as high as 7 tha
-1

 in severe 

epidemics. Alternatively known as stripe rust, yellow rust produces yellow uredo spores on 

the leaves. Following infection, the disease starts with chlorosis occurring parallel to leaf 

veins, in a narrow 2 mm wide stripe, which develops later into multiple yellow coloured rust 

pustules (De Vallavieille-Pope et al., 1995). FHB is one of the most important pre-harvest 

diseases worldwide, reducing yield quantity and quality. The most aggressive and prevalent 

fusarium species is Fusarium graminearum, which is a highly pathogenic species. The 

pathogen can also produce mycotoxins, which can become a significant threat to both humans 

and animals. FHB symptoms in wheat and barley appear in the head and peduncle tissues, 

causing discolouration and early senescence. Legions can occur on the leaves during heavy 

infection and fusarium can also cause fusarium foot rot. Disease presence can vary 

considerably between plants (Rotter et al., 1996; Brennan et al., 2005; Desjardin, 2006; 

Leslie and Summerell, 2006), hence, it is required to adopt site specific treatments of fungal 

diseases.  

Advanced methods for disease detection in crops is vital for improving the efficacy of 

treatment, reducing infection and minimising the losses to yield and quality. Traditionally, 

disease detection is carried out manually, which is costly, time consuming and requires 

special expertise (Schmale and Bergstrom, 2003; Bock et al., 2010). Alternative methods of 

detection are needed to enable mapping the spatial distribution of yellow rust and FHB. 
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Among those methods, optical sensing methods are recommended candidates since they are 

non-destructive and allow for fast and repeated data acquisition throughout the growing 

season without inhibiting crop growth. It was recognised by West et al. (20003) that although 

optical technologies are available for development into suitable disease detection systems, 

many challenges are still needed to be overcome, and this is still arguably the case. 

Spectroscopy and imaging techniques have been used in disease and stress monitoring (Hahn, 

2009). One of the optical methods reportedly used to measure disease in crops is 

hyperspectral imagery in the visible (vis) and/or the near infrared (NIR) spectral ranges. The 

reflectance in the visible wavelength range is relevant to leaf pigmentation whilst infrared 

wavelength range provides information on the physiological condition of the plant. The 

wavelength function for light intensity in hyperspectral imaging adds the wavelength and 

spectrum (with its spatial position) to the brightness information of the spectral image, 

providing a rapid image-contrast, which would not be present in a conventional image 

approach (Huang et al., 2007). Within the visible spectrum, the radiation reflectance from an 

environmentally stressed plant will increase. This is due to an increase in the incidence 

reflection within the leaf of a stressed plant (Cibula and Carter, 1992). Bélanger et al. (2008) 

showed that disease could be quantified on detached leaves, finding that the ratio between 

blue (near 440 nm) and green (near 520 nm) intensity between the healthy and diseased tissue 

was significantly different shortly after inoculation. Using vis-NIR imaging, Bravo et al. 

(2003) detected early symptoms of yellow rust on winter wheat, with a quadratic discriminant 

model analysis, reporting a correct discrimination accuracy of 92–98%. To our knowledge 

none of the above studies incorporated water stress effects, in the prediction model of yellow 

rust and FHB intensity in cereal crops.  Some studies have focused on bringing the 

technology to the field. However, the first step towards field application is to test the 
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accuracy of the methods under laboratory conditions (allowing more control and observation 

of the crop), where disease and water stress are accounted for in one experiment. 

The aim of this paper is to assess the potential implementation and performance of a 

hyperspectral imager for recognition of yellow rust and FHB diseases in winter wheat and 

winter barley under laboratory conditions, with the intention to establish calibration models 

and spectral library for potential use under mobile on-line measurement conditions. Both 

diseases (yellow rust and FHB) and water stress were introduced and accounted for.   

5.2 Materials and methods 

5.2.1 Wheat and Barley cultivation and inoculation  

Treated seeds of winter wheat Triticum sativum (Solstice variety) and winter barley Hordeum 

vulgare L. (Carat Variety) were grown outdoors in 600 x 400 mm trays (depth of 120 mm), 

with 100 seeds evenly sown and spaced in 5 parallel lines. After seeding, the trays were 

predominantly rain fed, to reduce input of excess salts from treated tap water. Three 

treatments were adopted, where each treatment was triplicated in three separate trays. A total 

of 18 trays of wheat, and 18 trays of barley were grown for each of the following three 

treatments (illustrated in Figure 19); 

1) Treatment 1 – Naturally yellow rust infected: consisting of six trays that were not treated 

with fungicide, as these were to represent the more heavily infected yellow rust trays, and 

were not inoculated with fusarium.  

2) Treatment 2 – Healthy: consisting of six trays of each that were kept healthy by applying a 

broad spectrum fungicide, namely, Rubric (epoxiconazole) at a rate of 1 lha
-1

. 

3) Treatment 3 – Fusarium inoculated: consisting of six trays of each that were infected with 

fusarium as the crop reached anthesis growing stage (Figure 20).  
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When the crop growth reached ‘booting’ growth stage 45 on the Zadoks scale (Zadoks et al., 

1974), half of trays in each were water stressed using a transparent tarpaulin and water 

content was monitored throughout the growing season using a moisture-probe ML3 Thetakit 

(Delta-T Devices Ltd, Cambridge, UK).  

Yellow rust occurred naturally in the crops as early as growth stage 30. Therefore, half of the 

crop trays were treated early with fungicide to fulfil treatments 2 and 3. This allowed for a 

difference in intensity of yellow rust disease. Fusarium inoculation was applied to trays in 

treatment 3 at the anthesis crop growth stage. The spores were first cultivated in the 

laboratory by using the following method. A 2% wheat agar was produced using 100 ml 

distilled water, with 2 g agar and 2 g milled wheat. This was autoclaved at 120°C. Plates 

were poured to a consistent depth, and inoculated with Fusarium graminearum BFE1006 

isolated from infected wheat grain. The plates were grown for 5-7 days under near UV light 

as this was shown to help cause sporulation (Leach, 1967). The agar plates were subsequently 

agitated with distilled water to suspend the spores with the concentration increased as 

necessary by gentle use of the centrifuge. Spore concentrations were standardised at 

approximately 10
6
 ml

-1
 using serial dilutions and a haemocytometer. Every 1 m

2
 of crop ear 

was inoculated with 100 ml of the suspension, which is an adapted method from Lacey 

(1999). These trays were then kept under a high humidity conditions for 24 hours.  

Whilst it has been reported that fungicide has little to no effect on crop canopy reflectance, 

some azole fungicides can have a negative impact on crop growth and yield, when applied to 

small plants (Geis, 2014; AHDB, 2016). In this study, the epoxiconazole fungicide was 

applied at growth stage 32. Some symptoms of yellow rust disease were recorded in the 

fungicide treated trays. However, the fungicide treated trays remained healthier, and these 

were included in the PLSR models.  
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Figure 19: Schematic of tray replicates and treatments, showing winter barley and winter 

wheat, with yellow rust and fusarium head blight (FHB) diseases, and healthy crop, both rain 

fed and water stressed, in replicates of three. 
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Figure 20: Fusarium inoculation of wheat and barley trays in the 

laboratory. Inoculation took place at the anthesis crop growth stage. 

 

 

 

 

  

 

 

 

 

5.2.2 Disease assessments 

A common approach for disease assessments and general crop health is by visual inspection, 

known as diagnosis (Oberti et al., 2014). This is done based on both a percent coverage and a 

visual score, with a range between 0 and 5 (from less to more affected plots) where 0 is given 

when no disease is present, 1 for up to 5% cover, 2 for up to 10%, 3 for up to 30%, 4 for up to 

50% and 5 for >50%. This visual score can eliminate most of the variability of judgment 

between plots, which is a commonly used technique (Eby, 1996; Zhou et al., 2015). The scale 

groups of percentage classes were chosen due to bias in assessment of low infection. 

According to Parker et al. (1995), plants with smaller than 10% infection are the most 

misdiagnosed, and often estimated as having much higher disease infection.  

Two assessment methods for yellow rust and one of FHB were used (detailed below) on both 

wheat and barley trays. These methods are defined by Chiarappa (1981), as two distinct 

quantitative disease measurements: 1) Disease incidence, which is the number of individual 

plants affected as a ratio or percentage of the total number, 2) Disease severity which is the 

Fusarium 

suspension 

Inoculation tent 
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amount of expressed disease tissue of a plant. These disease parameters can be assessed with 

some objectivity, although they may well be subjected to some subjectivity. In the current 

work, each tray was assessed for both diseases at four levels, namely, at the head (when 

present), at the flag leaves, 2
nd

 and 3
rd

 leaves (mid canopy), and at the lower canopy 

explained as follows; 

1) For fusarium infection, only the head of the crop was assessed as we were assessing for 

FHB, which appears in the head and peduncle tissues, causing discolouration and early 

senescence. Earlier visual symptoms consist of a characteristic purple/pink 

discolouration. The seeds from FHB affected crops are often shrunken, with a bleached 

appearance (Andersen, 1948; Parry et al., 1995; McMullen et al., 1997; Goswami and 

Kistler, 2004). Impey (2012) confirmed the presence of fusarium leaf lesions in 

Herefordshire, the leaf lesions are very unusual, and found only in heavy infections. The 

assessment considered both early and later symptoms, and were assessed as either a 0 for 

no infection, 1 for mild infection (describing FHB  symptoms on up to 50 % of the ears, 

with the majority being symptoms of early infection), and a 2 for heavy infection 

(describing FHB infection in over 50% of the ears with the majority being early 

senescence), dependent on the ratio of occurrence of infected to healthy crops. 

2) For yellow rust infection, the three foliar stages were assessed for percent coverage of 

yellow rust lesions. Disease starts with chlorosis occurring parallel to leaf veins, in a 

narrow 2 mm wide stripe, developing into multiple yellow coloured rust pustules (De 

Vallavieille-Pope et al., 1995). Average disease coverage was given for all the plants 

in the assessment area at the 3 different stages, and a visual score was also given. As 

it’s needed for each ground truth plot to have a singular assessment for the later 

analysis, the data from each stage was combined and weighted appropriately 
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Figure 21: Illustrating influence of foliar health on yield (HGCA, 2008) 

according to HGCA (2008) recommendations; that 80% of a wheat yield can be 

calculated from the top 3 leaves (Figure 21). The weighting given in this study was as 

follows; flag leaf 55%, mid canopy 40%, and lower canopy 5%. This allowed a single 

yellow rust assessment to be associated to a tray. This was done for both wheat and 

barley crops. Barley has a much smaller flag leaf, representing about 4% of the leaf 

area. However, the health of the flag leaf is still considered to be significant in 

determining yield (Jebbouj and Yousfi 2006 and 2009), and due to the image being 

taken from above the canopy, the flag leaf will still be highly captured. Therefore, 

barley was also subjected to the same weighting. Two different quantitative 

assessments were recorded, one for the percent cover on the leaves and one recorded 

as a 0-5 scale, based on a similar approach to Bergamin Filho and Amorim (1996), 

Godoy et al.(2006) and Huang et al.(2007). 
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5.2.3 Hyperspectral data capture 

A push broom hyperspectral imager (spectrograph) (HS spectral camera model from Gilden 

Photonics Ltd., UK) was used to capture high-resolution (1,608 pixels) line images over 1 

second, using a diode array detector. It is a 12 bit Basler piA 1600-35 gm camera, with 

Schneider-Kreuznach XNP1.4/23 lens and has a pixel pitch of 7.4 μm interpolated/averaged 

to 0.6 nm readings with a spectral range of 400 - 1000 nm. The reflected light from the target 

travels through the lens, past an entrance slit through a series of inspector optics in the 

spectrograph and is then split by the prism dispersing element into different wavelengths. 

This sensor was chosen for its potential for being applied to crop canopy measurements, and 

was of a lower price compared to comparable sensors, commercially available in the market.  

The spectral data was captured at three separate places along the crop tray at slightly different 

positions. Captured in the form of a line array, each pixel has a spectrum and one detector per 

pixel across the swath. In order to compile a full image, every line across a target must be 

captured (Gilden Photonics Ltd, Glasgow, UK). When conFigured on a consistent moving 

platform, the imager sweeps across an area to build up an image. Due to practical constraints 

of applying a consistent moving platform, the spectraSENS v3.3 (Gilden Photonics Ltd, 

Glasgow, UK) software was adapted to record a single line array, which required an 

additional RGB photo taken by a 5 megapixel camera with a 3.85 mm f/2.8 lens at the same 

time of image capture, so that the scanned area could be comprehended. Two laser pointers 

were added at each side of the hyperspectral imager to indicate the area of the canopy to be 

scanned (Figure 22). The laser pointers were shut off when the spectral image was captured 

to remove any interference. The collected scans were corrected by means of a dark and a 

white reference (spectralon 99% white reflectance panel) providing the relative reflectance. 
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The latter was used before spectral capture, and at 10 minute intervals until scanning was 

completed.  

The optimal configuration of the push broom hyperspectral imager including light sources 

was optimised in the laboratory (Whetton et al., 2016b). A schematic illustration of the 

configurations can be observed in Figure 22, where two 500 watt diffused broad spectrum 

halogen lamps were positioned at either end of the crop sample tray. Light angle was kept 

constant at 45°, which is debated as the optimal angle to provide the strongest response 

(Huadong, 2001). The optimal configuration adopted included integration time, light height, 

light distance, camera height, and camera angle, of 50 ms, 1.2 m, 1.2 m, 0.3 m and 10°, 

respectively (Whetton et al., 2016b). These configurations were used in the current work, for 

crop canopy scanning that started at booting growth stage 43 on Zadoks scale and continued 

until reaching ripening at growth stage 90.  
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Figure 22: Schematic illustration of the laboratory configurations of hyperspectral camera 

and light source (Whetton et al., 2016b). 

 

5.2.4 Data pre-processing and modelling 

If the spectral data is too noisy, there is a risk that key features of the spectrum will be 

hidden, and data pre-processing such as smoothing is necessary to remove noise, but can 

remove significant features (Dasu and Johnson, 2003). Furthermore, a noisy spectrum can 

result in poor model performances, due to noise being considered as a feature. So the first 

step towards successful measurement should ensure obtaining a good quality spectrum, which 

was ensured in the current work by adopting the optimal configurations established in 

Whetton et al. (2016b).   

The spectral data were averaged to reduce the number of wavelengths (variables), which was 

successively followed by maximum normalisation, Savitzky–Golay first derivative and 

smoothing (Mouazen et al., 2006). Maximum normalisation is typically used to get all data to 
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approximately the same scale, or to get a more even distribution of the variances and the 

average values. The maximum normalisation is a normalisation that “polarizes” the spectra. 

The peaks of all spectra with positive values scale to +1, while spectra with negative values 

scale to −1. Since all soil spectra in this study have positive values, the peaks of these spectra 

scaled to +1. This scaled spectra between 0 and +1. Using the Savitzky–Golay first derivative 

enables the computation of the first or higher-order derivatives, including a smoothing factor, 

which determines how many adjacent variables will be used to estimate the polynomial 

approximation used for derivatives. A second order polynomial approximation was selected. 

A 2:2 smoothing was carried out after the first derivative to decrease noise from the measured 

spectra. All pre-processing steps were carried out using Unscrambler 10 software (Camo Inc.; 

Oslo, Norway). 

Analysis of variance (ANOVA) was used to analyse two spectral indices captured at the 

growth stage 72. A factorial treatment structure was incorporated to test for differences 

between disease type (healthy, FHB, yellow rust), water treatment (watered, water-stressed) 

and crop type (barley, wheat). In addition, a contrast was used to test for differences between 

healthy and diseased trays and between the different diseases. Analysis of the index SD was 

done on a log scale, whilst analysis of SQdiff was done on a sqrt scale to ensure 

homoscedascity of variance. GenStat 18
th

 Edition (© VSN International Ltd, Hemel 

Hempstead, UK) was used to compute the ANOVA tables. 

PLSR analyses were applied to the hyperspectral data (Table 17) to establish quantitative 

models to predict yellow rust and FHB infection. Before PLSR analysis, data were 

divided into two sets of 80% (e.g., 174 samples for yellow rust and 129 for FHB) and 20% 

(e.g., 43 samples for yellow rust and 32 for FHB), representing the calibration and 

prediction data sets (Tables 17), respectively. The pre-processed spectra and visual 
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assessments of yellow rust and FHB of the calibration dataset were subjected to PLSR with 

leave-one-out full cross-validation to establish calibration models. The performance of 

these models was evaluated by predicting crop disease using the prediction dataset. Separate 

models for wheat and barley were developed and evaluated for yellow rust and FHB. PLSR 

analysis was carried out using Unscrambler 10 software (Camo Inc.; Oslo, Norway). The 

following models were developed and validated: 

1) Yellow rust prediction in wheat and barley, estimated as % of disease spread on the leaves. 

This was referred to as yellow rust in %. 

2) Yellow rust prediction in wheat and barley, estimated at 0 to 5 scales of the amount of 

disease spread on the leaves. This was referred as yellow rust scale. 

3) FHB prediction in wheat and barley estimated as either a 0 for no infection, 1 for mild 

infection and a 2 for heavy infection.  

For yellow rust, a LOGIT transformation of the % coverage response was also trialed to 

ensure homoscedascity of variance. The inverse LOGIT function (exp(p)/(1+exp(p)) was 

applied before assessment of the prediction results. PLSR analysis was carried out using 

Unscrambler 10 software (Camo Inc.; Oslo, Norway). Outliers were detected and removed to 

a maximum of 5% of the total input data. The model performance was evaluated in cross-

validation and prediction by means of coefficient of determination (R
2
), root mean square 

error of prediction (RMSEP) and ratio of prediction deviation (RPD), which equals standard 

deviation divided by the RMSEP. In order to compare between the performances of different 

models developed, we proposed classifying RPD values into the classes mentioned in Table 18. 

The entire pre-processed spectrum was used in the PLSR analyses. 
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Table 17: Statistics of samples used in the partial least squares regression (PLSR) models, 

with 80% and 20% of samples were considered for cross validation and prediction, 

respectively. The data has a normal distribution. Yellow rust % refers to the percent cover of 

yellow rust on the leaves (used for both % and the logit transformation). Yellow rust scale 

refers to classes of disease infection levels with 0 being none and 5 being >50%. Fusarium 

head blight (FHB) refers to number of infected ears compared to number of healthy ears with 

0 being healthy and 2 being >50%. 

 Wheat Barley 

Yellow 

rust (%) 

Yellow 

rust scale   

FHB  Yellow 

rust (%) 

Yellow 

rust scale   

FHB  

Cross-

validation 

      

Sample Nr. 174 174 129 174 174 129 

Maximum 70 5 2 60 5 2 

Minimum 0 0 0 0 0 0 

Mean 21 2.56 0.55 21.1 1.8 0.55 

SD 15 1.5 0.83 12.75 1.05 0.83 

Prediction       

Sample Nr. 43 43 32 43 43 32 

Maximum 40 5 2 60 4 2 

Minimum 1 1 0 10 0 0 

Mean 12 3.09 0.87 34 1.8 0.61 

SD 9.87 1.35 0.8 17 0.95 0.93 
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Table 18: Classes of the ratio of prediction deviation (RPD) and their suitability for 

predicting yellow rust and fusarium head blight (FHB) in cereal crops, and is based on the 

classifications from Rossel et al. (2006). 

RPD range Class and prediction capability 

< 1 Poor model predictions - not useful. 

1-1.5 Possibility to discriminate between low and high values 

1.5-2.0 Moderate prediction capability 

2.0-2.5 Good prediction capability 

2.5-3.0 Very good prediction capability 

>3.0  Excellent prediction capability 

 

Outliers were detected, and removed to a maximum of 5% of the total input data. These 

outliers were recognised by being distant from the other observations, either due to variability 

in the measurements or an error in data capture (e.g. missed in data cleaning). The model 

performance was evaluated in cross-validation and prediction by means of R² and root mean 

square error of prediction (RMSEP) and ratio of prediction deviation which equals standard 

deviation divided by the RMSEP. In order to compare between the performances of different 

models developed, we proposed classifying the ratio of prediction deviation (RPD) values 

into the classes mentioned in Table 17, calculated by dividing the RMSEP by the standard 

deviation of visually assessed infection. RPD values were used as they are more thorough in 

reporting the reliability of a model, than R². However, R² has been referenced through the 

text for use as a comparison. 
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5.3 Results 

5.3.1 Crop canopy spectra 

Crop canopy spectra for wheat and barley are shown in Figure 23. The spectral signatures were 

selected to demonstrate clearly the variations in shape. Arrows have been added to highlight 

important wavelengths, where the spectrum shows the most visible variation between the two 

crops (500, 650 and 700 nm). 

 

Figure 23: Example spectra of wheat and barley canopy at growth stage 72, after white and 

dark corrections. Arrows highlight areas of interest for indices to distinguish the health of the 

crop. 
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Average spectra of healthy, yellow rust and FHB infected wheat crop canopy at growth stage 

72, are plotted in Figure 24, and for barley in Figure 25. While plots a, b and c compares 

between watered and water stressed spectra, plot d compares between healthy and infected 

canopies under watered conditions. Slight differences in the shape of the reflectance spectrum 

can be observed in the healthy canopy (Figure 24 a) than in the water-stressed canopy. 

However, in the healthy barley canopy, the water-stressed spectrum shows less absorption 

than the watered canopy (Figure 25 a). The water-stressed spectra are less reflective than 

watered spectra, particularly for the yellow rust in both wheat and barley (Figure 24 b and 

Figure 25 b, respectively). Only a negligible deviation is observed between FHB infected 

spectra in both wheat and barley (Figure 24 c and Figure25 c, respectively), indicating a 

larger influence of yellow rust on crop canopy when combined with water stress, compared to 

FHB. A closer examination of Figure 24 and 25 (d) indicates differences in spectra between 

healthy, yellow rust and FHB infected crop canopy under watered conditions. Barley and 

wheat canopies show a similar high reflectance for yellow rust infected canopy, compared to 

those of FHB and healthy canopies. 
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Figure 24: Comparison of an average wheat crop canopy spectra between watered (-) and 

water-stressed (----) treatments for a) healthy, b) yellow rust infected and c) fusarium head 

blight (FHB) infected crop canopy. Plot (d) compares canopy spectra under watered 

conditions of healthy (---), yellow rust (---) and FHB (-).   
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Figure 25: Comparison of an average barley crop canopy spectra between watered (-) and 

water-stressed (----) treatments for a) healthy, b) yellow rust infected and c) fusarium head 

blight (FHB) infected crop canopy. Plot (d) compares canopy spectra under watered 

conditions of healthy (---), yellow rust (---) and FHB (-).   
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To quantify differences between healthy, yellow rust and FHB infected spectra, two indices 

were considered in this study, namely, standard deviation of all wavelengths in the 500-650 

nm range and squared difference of 650 and 700 nm, these areas are highlighted in Figure 23. 

In table 19, where spectral areas of interest (500 to 650 and 700nm) are assessed, and indices 

are created showing similar patterns in the watered and water stressed trays for each of the 

yellow rust infected, FHB infected, and healthy crop.  This is supported by the statistical 

analysis of the indices through ANOVA. The ANOVA results are shown in Table 20, which 

shows a clear difference in response, both in the different crops and the different treatments. SD 

revealed significant differences in response in barley and wheat, whereas SD along with SQdiff 

showed a large difference between healthy and diseased trays. SD and SQdiff both showed no 

evidence of an effect of water stress. 
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Table 19: Spectral differences indicated as standard deviation of the 500-650 nm range and 

squared difference of 650 and 700 nm, calculated for healthy, yellow rust and fusarium head 

blight (FHB) infected wheat and barley canopy under watered and water-stressed conditions, 

averaged from spectra captured at growth stage 70. One average spectra were produced per 

line scan, with 9 line scans being considered for each class. 

  

SD 500-650 

(nm)  

SQdiff 650 and 700 

(nm)  

W
h
ea

t 

Yellow rust watered 0.089 0.062 

Yellow rust water-

stressed 0.081 0.076 

Healthy watered 0.057 0.15 

Healthy water-stressed 0.063 0.14 

FHB watered 0.16 0.1 

FHB water-stressed 0.15 0.11 

B
ar

le
y

 

Yellow rust watered 0.056 0.08 

Yellow rust water-

stressed 0.061 0.077 

Healthy watered 0.051 0.15 

Healthy water-stressed 0.065 0.18 

FHB watered 0.15 0.25 

FHB water-stressed 0.13 0.18 

SD is standard deviation 
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Table 20: Analysis of Variance (ANOVA) table for the analysis of transformed spectral 

indices over the different treatments. Analysis of the index the squared difference of 650 and 

700 nm (sqDiff) was done on the square root scale, whilst analysis of the index standard 

deviation (SD) is done on of the range 500-650 nm. 

  

d.f. s.s. m.s. v.r. F pr. 

lo
g

(S
D

) 

Disease Status (Healthy vs Infected) 1 7.484 7.484 874.11 <.001 

Water (Watered vs Water stressed) 1 0.015 0.015 1.79 0.193 

Crop (Barley vs Wheat) 1 0.810 0.810 94.59 <.001 

Disease Status: Disease Class (Fusarium vs Yellow 

rust) 1 10.268 10.268 1199.23 <.001 

Disease Status:Water 1 0.274 0.274 31.98 <.001 

Disease Status:Crop 1 0.234 0.234 27.31 <.001 

Water:Crop 1 0.053 0.053 6.24 0.02 

Disease Status:Disease Class:Water 1 0.055 0.055 6.37 0.019 

Disease Status:Disease Class:Crop 1 0.324 0.324 37.8 <.001 

Disease Status:Water:Crop 1 0.002 0.002 0.22 0.641 

Disease Status:Disease Class:Water:Crop 1 0.052 0.052 6.05 0.022 

Residual 24 0.205 0.009 1.05   

sq
rt

(S
Q

d
if

f)
 

Disease Status (Healthy vs Infected) 1 0.118 0.118 12.66 0.002 

Water (Watered vs Water stressed) 1 0.001 0.001 0.07 0.799 

Crop (Barley vs Wheat) 1 0.071 0.071 7.61 0.011 

Disease Status:Disease Class (Fusarium vs Yellow rust) 1 0.310 0.310 33.29 <.001 

Disease Status:Water 1 0.000 0.000 0.05 0.827 

Disease Status:Crop 1 0.013 0.013 1.42 0.246 

Water:Crop 1 0.001 0.001 0.14 0.708 

Disease Status:Disease Class:Water 1 0.016 0.016 1.67 0.209 

Disease Status:Disease Class:Crop 1 0.092 0.092 9.88 0.004 

Disease Status:Water:Crop 1 0.012 0.012 1.31 0.264 

Disease Status:Disease Class:Water:Crop 1 0.013 0.013 1.34 0.258 

Residual 24 0.224 0.009 5.08   

 

5.3.2 Model performance for yellow rust and fusarium head blight 

detection 

The collected spectral data and field observations were subjected to PLSR with on-leave-out 

cross-validation. For the predicted results, this is data that was not included in the cross-

validation (20% of the calibration data sets size), (Figure 26). The PLSR results for yellow 



160 

 

rust detection in cross-validation and prediction are shown in Table 21. The cross-validation 

results indicate good model performance for yellow rust % cover and yellow rust scale in 

wheat with R
2
 values of 0.82 and 0.88 (significance level of <0.01), respectively, whereas 

model performance for barley is less successful (R
2
 = 0.72 and 0.80, respectively), with a 

significance level of <0.01. This is also indicated by a smaller root mean square error of 

cross-validation (RMSECV) calculated for wheat % cover (6.04) and a slightly larger 

RMSECV of 0.54 for yellow rust scale, as compared to barley (7.88 and 0.37, respectively). 

Yellow rust is a foliar disease, the reduction in prediction performance for barley may be 

attributed to the crop having smaller leaves, causing a smaller foliar area to be captured by 

the hyperspectral imager.   

Yellow rust % cover was also applied to the PLSR regressions after undergoing LOGIT 

transformation. The LOGIT transformation resulted in the cross-validation results in wheat 

being of 0.68 R², which is lower than both the yellow rust percent and the yellow rust scale. 

However, using the LOGIT transformation in the percent yellow rust coverage in barley, 

allowed for a slightly higher R² of 0.74, as compared to the yellow rust coverage, though it 

was still lower than the yellow rust scale. 

The PLSR result for FHB assessments in both wheat and barley are poor. However, much 

better results can be observed in cross-validation (R
2
 = 0.67 for wheat and 0.54 for barley) 

(Table 21). Prediction results in Table 21 demonstrate the reliability of the PLSR models 

when data independent from the models creation is applied (Figure 26). The yellow rust 

model performance in prediction showed a similar performance to that in cross-validation 

(Table 21 and Figure 26). 
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Table 21: Summary of model prediction performance of yellow rust and barley in cross-

validation and prediction showing the R
2
, root mean square error of the prediction (RMSEP) 

and cross validation (RMSECV), and the ratio of prediction deviation (RPD). Results are 

shown for yellow rust coverage (aa % coverage and the LOGIT transformation), yellow rust 

scale a class of 0 to 5 with 0 being healthy and 5 being >50% covered leaf area), and 

fusarium head blight (FHB) severity (severity and ratio of infected ears to healthy, 0 being 

healthy and 2 being >50%). 

 

RMSECV is root mean square error of cross validation; RMSEP is root mean square error of prediction; RPD is 

ratio of prediction deviation = standard deviation / RMSEP; The R² report significance level of <0.01 for each 

regression. 

 

  Wheat Barley 

  

Yellow 

rust 

coverage  

Yellow 

rust 

coverage 

Logit 

Yellow 

rust 

scale  

FHB severity 

 

Yellow 

rust 

coverage  

Yellow 

rust 

coverage 

Logit 

Yellow 

rust 

scale  

FHB severity 

 

Cross- 

validation 

R
2
 0.82 0.68 0.88 0.67 0.72 0.74 0.80 0.54 

RMSECV 6.04 0.60 0.54 0.50 7.88 0.52 0.37 0.56 

Prediction 

R
2
 0.77  0.43 0.80 0.57 0.69  0.79 0.77 0.5 

RMSEP 4. 84  9.76 0.6 0.54 9.49  13.7 0.48 0.68 

 RPD 2.04  1.2 2.25 1.50 1.80  1.4 1.97 1.36 
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Figure 26: Scatter plots of predicted versus reference measured (based on 20% prediction 

set) yellow rust coverage in wheat (a), yellow rust coverage in barley (b), yellow rust scale in 

wheat (c), yellow rust scale in barley (d), fusarium head blight (FHB) severity in wheat (e), 

FHB severity in barley (f), wheat yellow rust logit (g), barley yellow rust logit (h). The R² 

report significance level of <0.01 for each regression. 
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To compare between the performances of different models, RPD was used in this work. 

According to the RPD classes proposed in the current work (Table 21), the prediction of both 

the yellow rust coverage (RPD = 2.04; R²=0.77 and yellow rust scale (RPD = 2.25; R²=0.8) is 

of good performance in wheat. These models again suffered deterioration in prediction 

performance in barley, where moderate prediction performances are recorded (RPD = 1.80 

and 1.97, and R²= 0.69 and 0.77, respectively). The R² and RPD have declined for yellow rust 

coverage in wheat by applying the LOGIT function with an R² of 0.68 for cross validation 

and in prediction to an R² of 0.43 and RPD of 1.2. The barley results for the LOGIT 

transformation of yellow rust coverage have increased using the LOGIT for cross validation 

and predictions with R² of 0.74 and 0.79 respectively. However, the RPD calculated for 

prediction has declined to 1.4, indicating that the LOGIT function was only able to 

distinguish between high and low yellow rust infections. The FHB prediction accuracy based 

on RPD values was again of a poor result of 1.5 (R²=0.57) for wheat and 1.36 (R²=0.5) for 

barley, suggesting the performance to be classified as moderately accurate and able to useful 

to distinguish between high and low infection (Table 18). 

5.4 Discussion 

5.4.1 Crop canopy spectra 

The spectra shown in Figure 23 are to clearly demonstrate the shape of the spectral 

signature. The reflectance intensity between wheat and barley was witnessed to be similar 

through the scans, which is also described by Wilson et al. (2014), with only minor variations 

being seen in the NIR spectrum attributed to growth stage (rate of senescence) and the 

physical structure of the ears. Wilson et al. (2014) also discuss that growth stages 67–73 

are best for making this separation. Within the visible range of 400–550 nm, there is a low 

reflectance due to a larger absorption of the light, attributed to the photosynthetic pigments of 
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the plants leaves, governed by the abundance of chlorophyll, absorbing most of the light 

radiation (Gates et al., 1965; Thomas and Gausman, 1977). Both plant chlorophylls and 

carotenoids have strong absorption at 480 nm, the waveband associated with blue colour 

(Hunt et al., 2013). Another interesting band around 670 nm, is linked with Chlorophyll a 

absorption (Hunt et al., 2013), the latter wavelength is designated as the green leaf 

reflectance (Buscaglia and Varco, 2002 and Zhao et al., 2005). A small absorption appears at 

the red edge around 715 nm, with deeper absorption in a barley spectrum than in wheat. 

Raper and Varco (2015) found that the strongest wavelength correlations with leaf nitrogen 

concentration, lint yield and plant total nitrogen content to be near 700 nm. Further analysis 

of these bands, as linked with crop diseases studied, is discussed below. 

In Figure 24 generally all spectra are similar, although slight differences can be observed by 

close examining of individual plots (Figure 24, b and c). The water-stressed spectra are less 

reflective than watered spectra, particularly for the yellow rust (Figure 24 b). Slight 

differences in shape of the reflectance spectrum can be observed in the healthy canopy (a) 

than in the water-stressed canopy, which is in line with the findings from Earl and Davis 

(2003) who attributed these differences to alterations in leaf internal structure, variations in 

leaf angle (due to wilting) and leaf area index. Smaller reflectance at the green edge (500-570 

nm) and red edge (670-750 nm) can be attributed to the water stress. However, these slight 

differences may indicate that water-stress has only slight influence on crop canopy 

reflectance, hence, on the performance of PLSR models in predicting yellow rust and FHB. 

The influence of water stress on the yellow rust infected crop canopy was more obvious, 

where the water stressed spectrum is consistently of lower reflectance (higher absorption) 

than the watered spectrum throughout the entire waveband (Figure 24 b). This indicates that 

water stress may have a considerable influence on yellow rust prediction. However, spectra 
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pre-processing e.g., maximum normalisation used in this study will eliminate differences in 

reflectance e.g., due to scattering, as all spectra will be scaled between 0-1. However, only a 

negligible deviation is observed between FHB infected spectra (Figure 24 c), indicating 

negligible effect of water stress on FHB prediction.  

Figure 24 d shows spectra of each category (healthy, yellow rust, and FHB infected) for 

watered crops. The healthy spectrum is of a lower reflectance than both infected spectra in 

the range between 400 to 700 nm. The yellow rust infected crop spectra has the highest 

increase between 400 and 700 nm, whilst FHB infected crop spectra has a flatter (linear) 

curve in the 500 to 650 nm area.  

The lower reflectance of the healthy canopy can be attributed to larger absorption by 

photosynthetic pigments of the plants associated with chlorophyll (Gates et al., 1965; Thomas 

and Gausman, 1977). Cibula and Carter (1992) reported larger reflectance in infected leaves 

than healthy leaves, which is in line with findings of the current study. Indeed, after crop 

infection by foliar pathogens such as yellow rust, noteworthy visual symptoms can usually be 

observed. Early symptoms such as chlorosis, associated with a reduction in chlorophyll 

results in increasing reflectance due to a reduction in light absorption (Lorenzen and Jensen, 

1989). Therefore, the sharpest increase in reflectance from 650 to 700 nm takes place in the 

healthy plant reflection spectrum.  

Figure 25 compares between the average spectra of healthy, yellow rust and FHB infected 

barley canopy at growth stage 72. The water-stressed canopy spectrum shows more reflection 

or less absorption than the watered canopy spectrum for the healthy canopy in Figure 25a. 

This may reflect the darker (greener) canopy of the watered canopy resulting in larger 

absorption of light. This is in line with findings of other researchers, who have attributed the 

increased reflectance of the healthy canopy to early senescence caused by drought, and a 
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reduction in chlorophyll absorption (Jamieson et al., 1995; Hunt et al., 2013). With the 

yellow rust infected canopy (Figure 25b), the opposite trend can be observed, where higher 

reflectance is shown for the water-stressed canopy. This trend is observed in both the wheat 

(Figure 24b) and barley (Figure 25b) canopies, indicating a larger influence of yellow rust 

on crop canopy when combined with water stress, compared to FHB (Figures 24c and 25c), 

where the differences between watered and water-stressed are minimal. As for the wheat 

canopy, the yellow rust infected canopy has again the highest reflectance, compared to those 

of FHB and healthy canopies (Figure 25d). The % coverages of yellow rust and FHB is 

larger in wheat than in barley. In wheat, the yellow rust watered canopy had an average 

infection of 42%, yellow rust water stressed averaged 45%, Yellow rust watered averaged 

63%, and FHB water stressed canopies averaged 66% infection, whereas, in barley, these 

were 36%, 33%, 48% and 52%, respectively.   

Moshou et al. (2004) recommended the use of a wavelength range between 460 and 900 nm 

for successful yellow rust detection. Bauriegel et al. (2011) recommends spectral analysis 

using the range intervals of 500–533 nm (green), 560–675 nm (yellow to red), 682–733 nm 

(red edge) and 927–931 nm (far red) for recognition of FHB infection (in growth stages 71–

85, according to Zadoks scale). Krishna et al. (2014), suggested particularly useful spectra 

wavelengths of 428, 672, and 1399, for quantitative detection of yellow rust from a healthy 

crop. 

Table 19 refers to two indices, SD and SQdiff. SD refers to the standard deviation of each of 

the wavelengths between 500 and 650nm. SQdiff refers to the squared difference between 650 

and 700nm wavelengths. These two proposed indices show clear differences in response both 

in the different crops and the different treatments. The largest differences were observed 

between infection type, observing a significant F statistic of F1,24=1199 (p<0.001) and F1,24=33 
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(p<0.001) for the comparison between FHB infection and yellow rust infection, for index SD 

and SQdiff, respectively.  Analysis of the index SD revealed significant differences in response 

in barley and wheat (F1,24=94.59, p<0.001) and big differences between healthy and diseased 

trays (F1,24=874.11, p<0.001). The largest differences were observed between FHB infection 

and yellow rust infection (F1,24=1199.23, p<0.001). In contrast, there was no evidence of a 

significant effect of water stress (F1,24= 1.79, p=0.193), meaning that on average (over all 

disease types and crops) there is no evidence of a difference in the SD index for watered and 

water stressed trays. However, analysis of the index SD does demonstrate a significantly 

different response to water stress both within different crops and under different disease 

infections (full ANOVA table is given in Table 20), i.e. the response to water stress is not the 

same in the different conditions. Analysis of the index SQdiff revealed significant differences 

between healthy and diseased trays (F1,24=12.66, p=0.002) and also significant differences 

between FHB infection and yellow rust infection (F1,24=33.29, p <0.001). Moreover, different 

responses in the different crops were observed (F1,24=7.61, p=0.011) with a significant 

interaction between crop type and disease type indicating the index SQdiff responds differently 

to disease type in the different crops (F1,24=9.88, p=0.004). There was no evidence to suggest a 

differing response to water treatment (F1,24=0.07, p=0.799).  

Although the largest SD in reflectance between 650 and 700 nm was observed for the healthy 

canopy (both watered and water-stressed), the smallest SD was observed for yellow rust 

(Table 19).  For the barley canopy, the largest SD and SQdiff can be observed for FHB 

infected canopies, indicating that these proposed two indices respond differently for different 

crops (Table 19). Consequently, the two indices adopted in the current work highlight a 

distinguishable difference between the yellow rust, FHB and healthy wheat and barley 

crop canopies. It is important to mention that whilst these indices have worked in 
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establishing a difference between yellow rust, FHB and a healthy canopy at growth stage 72 

in this work, it may be specific to the method and equipment used. Further work should be 

undertaken to assess the reliability of such indices, if captured at different growth stages, 

under different circumstances, with alternative equipment.  

5.4.2 Model performance for yellow rust and fusarium head blight 

detection 

It is well known in spectral analysis that successful measurement of a concentration, be it soil 

properties or other, depends on presence of variability of that said concentration. For 

example, Kuang and Mouazen (2011) reported that although larger R
2
 and RPD values can be 

obtained with larger variability in soil analysis, larger RMSEP is to be expected. The RMSEP 

values in wheat were smaller for yellow rust coverage and larger for yellow rust scale 

detection, as compared to the corresponding RMSEP for barley. However, RMSEP is a 

valuable index for assessing individual model performance, but is not recommended to 

compare between models (e.g., those for wheat and barley), due to the different data range. A 

data set with a small variability, could result in a weak or even no correlation being 

established with PLSR, so that no models could be developed. However, this could be 

improved with the incorporation of extra data, with a larger variability. Having said that, we 

believe that the scale of variability in yellow rust is small (Table 17), although a reasonably 

high infection was recorded, this occurrence was infrequent, and the average was weighted 

by a few heavily infected trays. The small variability may be possibly due to the experiment 

being run in trays under rather controlled conditions, where only water is varied artificially. 

These controlled conditions may well lead to rather small variability in yellow rust (Table 

17).  FHB’s result might be due to the full line scan being used, while the ear of the crop is 

captured only by a small section of the line image, compared to the foliage of the crop, which 

was used more successfully for yellow rust modelling and detection. This may suggest the 
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need to isolate segments in the line image that capture fusarium as the disease appears mainly 

in heads (Impey, 2012). This can be potentially implemented by splitting the crop canopy 

spectra into 10 cm increments, similar to the approach mentioned in Broge and Mortensen 

(2002) for canopy chlorophyll density, or that of Moshou et al. (2005), for disease detection 

with a data fusion technique. The few classes used for the FHB infection in the current work 

(Table 17) may have also contributed to lower detection accuracy. The FHB classes were no 

infection, mild infection (describing FHB symptoms on up to 50 % of the ears) and heavy 

infection (describing FHB infection in over 50% of the ears with the majority showing early 

senescence). The scale for FHB was classified in this manner because most ears became 

infected through the inoculation process. Another reason believed to have influenced the 

FHB model performance is the smaller number of data points considered in the PLSR cross-

validation modelling, as compared to yellow rust (Table 17). Fusarium symptoms appear on 

crop heads at a late stage in the crop growing season (normally only after anthesis, but 

potentially at head emergence), allowing for a limited number of scans to be collected.  

Bauriegel et al. (2010) claimed that FHB can be detected by spectral analysis in the spectral 

range of 400–1000 nm, with an identification accuracy of 87%. These authors advised that 

the ideal timing for measurement was at the medium milk stage (growth stage 75), though the 

scans were based on the crop ears against a black background. The scans conducted in this 

study, for FHB, were taken from anthesis at growth stage 61, to grain hardening at growth 

stage 90. Delwiche et al. (2011) successfully differentiated between healthy kernels from 

FHB infected, reporting a 95% classification accuracy between 8 groups, containing 

approximately 60 seeds each. 

The percentage of disease coverage, a method discussed by Chiarappa (1981) and defined as 

“disease severity”, is the amount of expressed disease tissue of a plant. This method can be 
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objective, but is not free of subjectivity. In the current study, all assessments were made by 

just one individual, which increases subjectivity and potentially RMSEP for both yellow rust 

and FHB detection. The more spectral wavelength indices captured and accounted for, the 

greater understanding of the object (Gilchrist, 2006). However, for noisy spectra there is a 

need to minimise noise in the signal, by adopting an optimised measurement configuration 

(Whetton et al., 2016b) and suitable spectra pre-processing.  

Furthermore, stresses in the field are combined and might include water stress, nitrogen 

stress, disease stress, and other stresses that are mainly reflected on crop canopy as a 

yellowing of the leaves. In the current work, we have combined water stress and yellow rust 

infection in the tray experiments, to evaluate the prediction accuracy of the yellow rust 

models. The result obtained is satisfactory (RPD > 2.0 for wheat and > 1.8 for barley) to 

encourage exploring the goal of the current study, which is on-line measurement of yellow 

rust in the field using the hyperspectral imager (400 – 750 nm). However, additional affecting 

parameters exist in the field on top of the water stress accounted for in the current study, 

which should also be evaluated. Using wheat trays under glass house controlled conditions, 

Moshou et al. (2014) reported successful discrimination of water-stressed from healthy plants 

with 99% accuracy. Their approach was based on a combination of hyperspectral (460–

900 nm) and fluorescence imagery and least squares support vectors machine learning 

models, for automated recognition of different biotic and abiotic stresses, of crop canopies 

under greenhouse conditions. 

The early success in field studies for hyperspectral imager’s detection of yellow rust disease 

such as Moshou et al. (2004) and Bravo et al. (2003), focused on the presence of yellow rust 

in the field, not necessarily the severity. Commonly, disease recognition attempts with 

hyperspectral and multispectral imagery are targeted to leaves rather than the canopy (Bock 
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et al., 2010). Whilst recent attempts such as Zhou et al. (2015) studying wheat resistance, 

have used RGB images for quantification of disease, which is of lower cost but with larger 

error margins. Compared to other studies, the current work achieved good to very good 

accuracy based only on a relatively cost-effective hyperspectral camera in the visible and the 

NIR range. In addition, in the current work, the effect of water stress was also taken into 

consideration in the experimental trial, hence, this effect was accounted for in the PLSR 

models 

This study used triplicate trays of each of the considered crops, disease, and conditions, with 

9 scans captured across 3 locations of each tray, through multiple growth stages. The 

observations discussed in this paper for the development of FHB models, suggest the need for 

a larger dataset to be accounted for in the PLSR analysis and to explore new methods of data 

analysis based on machine learning and/or image processing. It is also suggested to adopt a 

data fusion approach of both spectra and images, which is expected to provide improved 

model prediction performance. Ideally the requirement is a method which incorporates not 

just the percentage of fusarium infected heads to healthy heads, but the coverage of the plot 

by the ear. A method such as a camera image with a 100-point dot grid overlay of the 

assessment area, discussed by Knight et al. (2006), could be a potential method, and should 

be further assessed.  

5.5 Summary conclusions 

A hyperspectral line image camera was implemented successfully under laboratory 

conditions for the measurement of yellow rust and FHB in wheat and barley. The standard 

deviation (SD) of the wavelength range from 500 to 650 nm and the squared difference 

between 650 nm and 700 nm are of interest in discrimination between healthy, and yellow 

rust or FHB infection in a wheat or barley canopy. Yellow rust prediction models performed 
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more accurately than FHB models. Further work needs to consider a larger dataset in the 

PLSR analysis, and the exploration of new methods of data analysis based on machine 

learning and/or image processing, particularly for FHB detection. 
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6 Hyperspectral measurements of yellow rust and fusarium head 

blight in cereal crops: Part 2: on-line field measurement  

 

Chapter Synopsis; 

This chapter investigates the applicability of the optimal hyperspectral imaging configuration 

reached in Chapter 4 for on-line measurement of yellow rust and fusarium head blight (FHB) 

using PLSR analysis in three fields of winter wheat and one field with winter barley.  

Abstract 

This study implemented a hyperspectral line imager (spectrograph) for on-line measurement 

of yellow rust and fusarium head blight (FHB) in wheat and barley fields. On-line 

measurements were carried out in four arable fields in Bedfordshire, the UK. Disease 

recognition consisted of visual field assessments and photo interpretation based on 100-point 

grid overlaid on RGB images. The spectral data and disease assessments were subjected to 

partial least squares regression (PLSR) analysis with leave-one-out cross-validation using 

calibration sets, consisting of 70% of samples. The developed recognition models were then 

validated with a non-mobile (25%) and mobile (5%) prediction data sets.  

Results showed that yellow rust can be measured with an on-line hyperspectral imagery 

system with better accuracy than FHB, and that the performance was better in wheat, as 

compared to barley. It was found that photo interpretation was most applicable and accurate 

for the on-line measurement of FHB, where it was classified as a good prediction accuracy in 

wheat (ratio of prediction deviation (RPD) and R2 values of 2.27, and 0.82, respectively) and 

a moderately accurate in barley (RPD of 1.56 and an R² of 0.61). However, visual scale 

analysis was most suitable for yellow rust based models, where model performance was 
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classified as moderately accurate in barley (RPD = 1.82; R²=0.72) and good in wheat (RPD = 

2.5; R²=0.81). It was recommended to adopt the proposed on-line measurement technique 

coupled with PLSR to map the spatial variability in yellow rust and FHB in wheat and barley, 

although further analyses that include advanced image processing or machine learning 

techniques may further improve the current results.  

Keywords 

On-line measurement, Yellow rust, fusarium head blight, wheat, barley, mapping, and partial 

least squares regression. 

6.1 Introduction 

Fungal disease control is a large task for the successful production of cereals worldwide. For 

example, yellow rust (Puccinia striiformis) is a foliar disease, common in cool climates, one 

of the most devastating diseases of wheat worldwide, and reported to reduce crop yields by 

up to up to 7 tha
-1

 in severe epidemics (Ma et al., 2001; Bravo et al., 2003). In 2009, yellow 

rust mutations have enabled the disease to attack several widely grown genetically resistant 

cereal crop varieties, including Solstice (Milus et al., 2009). Another important fungal disease 

that attacks cereal crops is fusarium head blight (FHB), which is caused by multiple species. 

Fusarium graminearum is a highly aggressive and prevalent species.  Fusarium graminearum 

along with other fusarium species can cause mycotoxin production in grain (Rotter et al., 

1996; Brennan et al., 2005; Desjardin, 2006; Leslie and Summerell, 2006). Fusarium 

predominantly affecting the ear of the crop, causing FHB. FHB is one of the most important 

pre-harvest diseases worldwide. Like yellow rust, FHB also causes reduction in yield quantity 

and quality and when producing mycotoxins, it becomes a significant threat to both humans 

and animals. FHB is a sporadic disease, that is dependent on warm humid weather conditions 
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(Rossi et al., 2001; Xu, 2003), causing variability of disease presence and level of infection 

across regions, and years (Jelinek et al., 1989). Both yellow rust and fusarium species can 

survive in soil and weeds occurring in the hedgerows and borders of a field, fusarium also 

survives within plant residues even after 2 years, acting as a source of inoculum (Jenkinson 

and Parry, 1994; Champeil et al., 2004; Imathiu et al., 2013). Therefore, control of 

mycotoxins caused by fusarium fungi is required to prevent toxic contamination reaching the 

food chain either in milling grain (for human consumption) or as cattle feed (Magan et al., 

2002).  

Traditionally, disease detection is carried out manually by human experts using visual 

assessments of disease coverage throughout the field, a process that may be lengthy, 

subjective and tiresome (Schmale and Bergstrom, 2003; Bock et al., 2010). These methods 

are limited in providing high sampling resolution data on spatial variability of crop disease. 

Therefore, on-line mobile systems are necessary to inform site specific application of 

fungicides.  

It has been stated that optical technologies are available for development into suitable disease 

detection systems, but with many challengers still required to be overcome (West et al., 

2003). Although on-line applications are still rather limited, optical techniques have the 

potential to be integrated with agricultural vehicles. Optical (both remote and proximal) 

methods provide non-invasive and high sampling resolution data necessary for monitoring 

and mapping of crop diseases. Among optical sensing methods, hyperspectral and 

multispectral imaging techniques are the best candidates as they acquire high resolution data, 

at multiple points simultaneously, and have already been used in disease and stress 

monitoring (Hahn, 2009), Non-mobile (off-line) field and laboratory methods for disease 

classification and plant growing conditions have been studied and demonstrated (Roggo et 
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al., 2003; Wu et al., 2008). The early success in field studies for a hyperspectral imager’s 

detection of yellow rust, focused on the presence of yellow rust in the field, not necessarily 

the severity. Moshou et al. (2005) implemented a data fusion approach of a hyperspectral 

(450-900 nm) and flouresence (550-690 nm) imaging for yellow rust detection in winter 

wheat reporting 94.5% accuracy. Other common attempts with hyperspectral and 

multispectral imagery are targeted to leaves rather than the canopy (Bock et al., 2010). Huang 

et al. (2015) successfully provided quantitative assessment of yellow rust in winter wheat, by 

hyperspectral measurement of individual infected leaves. Zhou et al. (2015) used low cost 

RGB images for quantification of yellow rust, reporting 74% and 81% detection accuracy. 

Zhao et al. (2016) focused on two sensitive bands (558 nm and 856 nm) in the wavelength 

ranges of 550-680 nm and 750-1300 nm to detect yellow rust with 90.6% accuracy. Krishna 

et al. (2014) used remote hyperspectral data in 350 to 2500 nm range for quantitative 

identification of yellow rust. Whilst mobile techniques have been successfully applied, these 

were instruments attached to hand moved frames. On-line here is defined as attached to an 

agriculture vehicle, where measurement is being taken on the move. Moshou et al., in 2011 

looked at a wheat crop, for both yellow rust and septoria, using an on-line method with a 

multi-spectral camera. To the best of our knowledge, there are few reports in the literature of 

on-line (mobile, using agricultural vehicles) application of proximally captured hyperspectral 

imagery, for simultaneous recognition and mapping of yellow rust and FHB in both wheat 

and barley.  

A hyperspectral imager was applied to winter wheat and barley plants, grown in trays under 

laboratory conditions in Part 1 of this study (Whetton et al., 2016c). Plants were subjected to 

variable water stress, and inoculated with yellow rust and FHB, these diseases were selected 

as their presence had been reliably witnessed in previous years. Results confirmed that 



177 

 

reliable models for yellow rust detection could be produced, but highlighted an alternative 

technique and modelling approach should be applied for FHB disease detection. However, 

the Part 1 of this study suggested exploring the potential of this approach for on-line field 

measurement. The aim of this paper is to implement a hyperspectral imager for on-line 

measurement of yellow rust and FHB in wheat and barley grown commercially outdoors in 

fields.  

6.2 Materials and methods 

6.2.1 Field sites   

Field measurements were conducted in four different field sites through the 2015 cropping 

season. These sites were located at Duck End farm, Wilstead, Bedfordshire, UK 

(52°05'46.3"N 0°26'41.4"W), with an average annual rainfall of 598 mm. The farm has a 

three year crop rotation of oilseed rape, winter wheat and winter barley. Fields varied in size 

between 12 ha, 10 ha, 7 ha and 4 ha (Table 20), to allow for pattern identification of diseases 

with different field size. This is because yellow rust and FHB occurrence in the field often 

begins nearer the hedgerows, and the spread pattern throughout the growing season may well 

depend on the shape and size of the field. Winter wheat was grown in three fields, whereas 

winter barley was grown in the 10 ha field only. The largest and smallest winter wheat fields 

were scanned at two different intervals. Timing and growth stage of measurement in each 

field is shown in Table 22. Growth stage in this study refers to the Zadok’s scale (Zadoks et 

al., 1974). The dominant soil texture types in the fields are shown in Table 22, with sand 

fractions due to underlying gravel deposits.  
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Table 22: Experimental fields, scanning time and growth stage identified according to the 

Zadok’s scale (Zadoks et al., 1974). The soil type is presented for northern (N), southern (S) 

or eastern (E) and western (W) parts of a field. 

 

Field 

Number 

Field 

area 

(ha) 

Crop Soil type Date of scanning Crop stage 

1 4 Winter wheat 

Solstice Variety 

Sandy clay 04/06/2015 

30/06/2015 

booting (43) 

anthesis (61) 

2 10 Winter barley 

Carat  

Variety 

N: Clay 

S: Sandy clay 

27/05/2015 anthesis (61) 

3 12 Winter wheat 

Solstice Variety 

E: Clay 

W: Sandy clay loam 

22/05/2015 

01/07/2015 

booting (43) 

milk (70) 

4 7 Winter wheat 

Solstice Variety 

E: Clay loam 

W: Sandy clay loam 

01/07/2015 milk (70) 
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Hyperspectral imager 

Laptop DGPS 

Broad spectrum diffused light 

source 

6.2.2 Hyperspectral on-line data capture 

A push broom hyperspectral imager (spectrograph) (HS spectral camera model from Gilden 

Photonics Ltd., UK) and light source were mounted on a tractor by means of a metal frame 

(Figure 27). Optimal hyperspectral measurement configurations set by Whetton et al. (2016b) 

were considered in the design and manufacturing of this on-line measurement system of crop 

canopy. These include an integration time of 50 ms, a camera height of 0.3 m and light height 

and distance of 1.2 m and a camera angle of 10°. The on-line measurements were carried out 

at a travel speed of approximately 4 km h
-1

. The hyperspectral imager’s line capture occurs at 

1 second intervals, which is subsequently logged and geo-located with a sub-meter accuracy, 

using a differential global positioning system (DGPS) (EZ-Guide 250, Trimble, California, 

USA). The direction and angle of the imager was kept consistent, and a day with uniformly 

overcast weather was selected, which helped prevent issues of moving shadows from lateral 

sun movement on the data (West et al., 2003).   

Figure 27: Hyperspectral imagery system mounted on a metal frame attached to the 

side of a tractor, ready for on-line canopy measurement. 
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The same hyperspectral imager used in Part 1 of this study was used for on-line field 

measurement, along with two external halogen lamps (Figure 27). It consists of 1608 pixels, 

with a spectral range of 400 - 1000 nm. More details about the hyperspectral imager’s 

properties can be found in Whetton et al. (2016b). A schematic showing an overview of the 

methodology can be seen in Figure 28. 

 

Figure 28: Schematic of work flow from data capture to production of PLSR models, 

validation, and on-line prediction for production of maps 

 

In order to compile a full image from a set of line imagery, a steady moving platform is 

needed to sweep across the target object to capture every line (Gilden Photonics Ltd, 

Glasgow, UK). However, due to practical constraints of applying a consistent moving 

platform, the spectraSENS v3.3 software (Gilden Photonics Ltd, Glasgow, UK) was adapted 

to record a single line array. Before data capture, measurements from a white and dark 

reference were collected, and subsequently repeated at 10 minute intervals until the scanning 
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was completed. The white reference used, was a commercially available Spectralon Teflon 

white reflectance panel with 99.9% white reflectance value. The collected on-line data, was 

corrected by the white and dark scans after data collection was complete, providing the 

relative reflectance.  

6.2.3 Moisture content measurement 

An on-line visible and near infrared (vis-NIR) spectroscopy soil sensor developed by  

Mouazen (2006) was used in this study to measure gravimetric soil moisture content (MC) in 

field 4, with the objective of studying the influence of MC on crop disease spatial 

distribution. This data was collected at beginning of the growing season in September 2014. 

Although MC may change daily, the distribution pattern through the field will remain 

consistent through the multiple seasons (Vachaud et al., 1985; Mouazen et al., 2005).  The 

system consists of a subsoiler, opening a smooth trench at 15 cm depth (Mouazen et al., 

2005). The sensor was mounted on a three-point linkage of a tractor travelling at a speed of 3 

km h
-1 

and collecting spectral soil data at 10 m parallel intervals. In order to measure soil 

spectra, an AgroSpec mobile, fibre type, vis–NIR spectrophotometer (Tec5 Technology for 

Spectroscopy, Oberursel, Germany), with a measurement range of 305–2200 nm and a light 

source of 20W tungsten halogen lamp were used (Kuang and Mouazen, 2013). A differential 

global positioning system (DGPS) (EZ-Guide 250, Trimble, California, USA) recorded the 

position of the on-line spectra with sub-meter accuracy. The collection of soil spectra and 

DGPS readings took place at 1 sec sampling resolution using AgroSpec software (Tec5 

Technology for Spectroscopy, Oberursel, Germany). A previously developed MC model 

(Halcro et al., 2013) was used to predict MC based on on-line collected spectra in the field. 
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6.2.4 Disease recognition in the field 

During field scanning with the hyperspectral imager, ground truth spots were selected 

randomly, at a rate of five samples per hectare (Figure 29), and a series of five hyperspectral 

images were collected per ground truth location, each covering 1 m².  

The measurement position was recorded with a DGPS. The disease assessment was assigned 

to each of the five scans. In order to assist in disease and crop health assessments a 

photograph was collected at each position using a RGB, 5 megapixel camera with a 3.85 mm 

f/2.8 lens at the same time of hyperspectral image capture. The 1 m² ground truth spots were 

used for disease recognition. 
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Figure 29: on-line hyperspectral measurement lines and position of ground truth plots, 

collected at five samples per ha, in the four fields. Fields 1 and 4 were validated at the same 

locations at two time intervals. 

 

Disease assessments were based on the following two methods:  

1- photo interpretation: Photos collected from the ground truth plots were used in this photo 

interpretation to assess crop disease coverage (severity), and incidence of disease, defined by 

Chiarappa (1981) as the percentage cover of disease, and the occurrence of disease in a field, 

respectively. Images were overlaid with a 100-point grid at equal spacing as illustrated in 

Figure 30, adopting a similar approach to that proposed by Knight et al. (2006). At the centre 
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of each point, the object and health status were recorded and used to calculate the percent 

coverage of infection, or incidence of disease. This approach was adopted for both the yellow 

rust and FHB assessment. 

2- Visual assessment: Although visual assessment of crop diseases was deemed to be 

subjective, it is the most common and adopted by partitions. Visual assessment of both 

diseases at the ground truth plots were made at four levels, namely, the head (when present), 

at the flag leaves, at 2
nd

 and 3
rd

 leaves (mid canopy), and at the lower canopy. Details on this 

method can be found in Part 1 of this study (Whetton et al., 2016c). Depending on the 

disease, two visual assessment approaches were considered in the current work. The 

assessment for FHB considered both early and later symptoms on heads, and were assessed 

as either a 0 for no infection, 1 for less than 5% individual infected heads, 2 for up to 10%, 3 

for up to 30%, 4 for up to 50%, and 5 being a heavy infection over 50% infected heads, 

dependent on the ratio of FHB infected to healthy crops. For yellow rust, two different 

quantitative assessments were recorded, one for the percent cover on the leaves and one 

recorded as a 0-5 scale, which is explained by Oberti et al.(2014). The scale between 0 and 5 

(from less to more affected plots) was given the same ratio as that for FHB. For example, 0 is 

given when no disease is present, 1 for up to 5% cover, 2 for up to 10%, 3 for up to 30%, 4 

for up to 50% and 5 for >50%.  
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Figure 30: Example of photo interpretation to assess yellow rust and fusarium head blight 

(FHB) coverage based on a 100-point grid. 

 

6.3 Data analyses 

6.3.1 Crop canopy spectral data pre-processing 

The first step of spectra pre-processing included removing noisy wavelengths larger than 750 

nm. Following the suggestion made in Whetton et al. (2016b), the first and last 320 pixels 

were removed from each line scan. Noise removal was followed successively by reducing the 

number of variables by averaging three neighbouring wavelengths, maximum normalisation, 

first derivative and smoothing. The first derivative was used to eliminate the effect of the 

roughness of soil surface on the spectrums absorption (Shibusawa et al., 2000; Waiser et al., 

2007). All spectra pre-processing was carried out using Unscrambler 10 software (Camo Inc.; 

Oslo, Norway). Although pre-processing of spectral data includes techniques such as 

smoothing, if the process of cleaning the data is intensive due to noisy spectra, it can lead to 
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the loss of important spectral features, and thus impact on the success of analysis (Dasu and 

Johnson, 2003). Therefore, a gentle smoothing of 2:2 was implemented during the first 

derivative and smoothing using the Savitzky–Golay algorithm (Savitzky and Golay 1964). 

Detailed information about the spectra pre-processing steps can be found in Martens and 

Naes (1989). 

6.3.2 Evaluation of model performance 

For yellow rust analysis, the data from the five scans from the three wheat fields and the one 

scan from the barley field was considered (Table 22). However, FHB models were developed 

based on the one later data capture of each field. This is because FHB only occurs at a later 

crop growth stage, when the ear emerges (growth stage 51, according to Zadok’s scale) 

(Zadoks et al., 1974). The potential infections can occur when the plants are booting (growth 

stage 43) by washing into the sheath (Anand et al., 2003). Five  models were developed and 

validated in cross-validation, non-mobile validation and on-line (mobile) validation. The 

validation methods are summarised in Table 23, and the models produced are summarised in 

table 24.  
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Table 23: Explanation of validation sets in cross-validation, non-mobile and on-line, along 

with the datasets included and the methods for each. 

Validation Dataset  Method  

Cross-validation 70% ground truth locations, 

empirical and spectral data.  

Cross-validation is included 

with the PLSR models, 

which is trained on all the 

data except for one point 

each time, and the average 

errors from those 

calculations, evaluates the 

models. 

Non-mobile validation PLSR models.  

25% (model excluded) 

ground truth locations, 

empirical and spectral data.  

The non-mobile validation 

refers to the application of 

excluded data to the model, 

where the empirical values 

are compared to the 

predicted. 

On-line (mobile) validation PLSR model predicted on-

line data.  

5% (model excluded) 

empirical ground truth 

locations.  

On-line (mobile) validation 

refers to the use of the on-

line predicted data, (where 

on-line data was applied to 

the models) and compared by 

location to the empirical 

values of the remaining 

model excluded data. 
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Table 24: Summary of the models produced for the yellow rust and fusarium head blight 

(FHB) models. Showing the datasets used, the achieved outcomes and validations.   

Model Dataset  Outcome  Validations  

Yellow rust 

Visual coverage 

analysis  (%) 

Yellow rust visual assessments, as % of 

disease spread on the leaves. 

Spectral data from ground truth plots 

On-line spectral data 

Offline and on-line 

PLSR model for 

predicting % cover of 

yellow rust 

 

Wheat Cross validation.  

Wheat non-mobile validation. 

Barley and wheat on-line 

validation 

Yellow rust 

scale (0-5) 

Yellow rust visual assessments, on a 0 to 5 

scale of disease severity on the leaves. 

Spectral data from ground truth plots 

On-line spectral data 

Offline and on-line 

PLSR model for 

predicting 0-5 scale 

cover of yellow rust 

Wheat Cross validation.  

Wheat non-mobile validation. 

Barley and wheat on-line 

validation 

Yellow rust 

photo 

interpretation 

(%) 

Yellow rust assessments, from photo 

interpretation for disease severity on the 

leaves %. 

Spectral data from ground truth plots 

On-line spectral data 

Offline and on-line 

PLSR model for 

predicting 0-5 scale 

cover of yellow rust 

Wheat Cross validation.  

Wheat non-mobile validation. 

Barley and wheat on-line 

validation 

FHB Visual 

coverage 

analysis  

(%) 

Yellow rust visual assessments, as % of 

disease spread on the leaves. 

Spectral data from ground truth plots 

On-line spectral data 

Offline and on-line 

PLSR model for 

predicting % cover of 

FHB  

 

Wheat Cross validation.  

Wheat non-mobile validation. 

Barley and wheat on-line 

validation. 

FHB photo 

interpretation 

(%) 

Yellow rust assessments, from photo 

interpretation for disease severity on the 

leaves %. 

Spectral data from ground truth plots 

On-line spectral data 

Offline and on-line 

PLSR model for 

predicting 0-5 scale 

cover of FHB 

Wheat Cross validation.  

Wheat non-mobile validation. 
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Statistics of samples used for yellow rust and FHB modelling and validation in wheat is 

shown in Table 25 and Table 26, respectively. However, sample statistics of on-line dataset 

in barley is shown in Table 27. Before running the analysis, each yellow rust dataset was 

divided into calibration (70%, e.g., 940 samples), non-mobile validation (25%, e.g., 235 

samples) and on-line validation (5%, e.g., 47 samples) sets. A Similar division of samples 

was done for FHB data, although fewer samples were available, due to FHB only occurring at 

a later growth stage, hence, only fewer late scans were collected (Table 26). Partial least 

squares regression (PLSR) analysis with leave-one-out cross-validation was carried on 

calibration datasets. The input variables to PLSR were wavelengths (400-750 nm) and 

disease, assessed as coverage and category scale, as per five models described above. As for 

spectra pre-processing, PLSR analyses were carried out using Unscrambler 10 software 

(Camo Inc.; Oslo, Norway). Outliers were detected, and removed to a maximum of 5% of the 

total input data. These outliers were recognised by being distant from the other observations, 

either due to variability in the measurements or an error in data capture (e.g. missed in data 

cleaning). The wheat data was used to establish the PLSR calibration models and underwent 

both cross-validation and independent validations (both non-mobile and on-line). Although as 

mentioned, no barley data was considered in the cross-validation, on-line predictions in 

barley data were carried out using the wheat models (Table 27). 
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Table 25: Statistics of samples used for the assessment of yellow rust in wheat by partial 

least squares (PLSR) regression analysis. Data is shown in cross-validation, non-mobile and 

on-line predictions.  

 Visual coverage analysis 

(%) 

Visual scale analysis  

(0-5) 

Photo interpretation (%) 

Item Cross-

val 

Non-

mobile 

On-

line 

Cross-

val 

Non-

mobile 

On-

line 

Cross-

val 

Non-

mobile 

On-

line 

Nr  940 235 47 940 235 47 940 235 47 

Max 90 65 50 5 4 5 60 65 50 

Min 0 2 2 0 0 0 0 2 2 

Mean 15 20 20 2 1.9 2.2 7 10 10 

SD 17 18 13.4 1.3 1.4 1.5 14 12 16 

SD is standard deviation 

The performance of PLSR models were validated using the remaining 20% samples, which 

were not considered in the cross-validation stage. Validation was done using non-mobile 

collected spectra and the on-line collected data in the field using the mounted hyperspectral 

imager.  For the on-line validation, predicted and assessed values were overlaid at the same 

or a very close position. However, the position of the on-line data did not always perfectly 

align to the ground truth spot position, due to the capture rate of the hyperspectral imager, 

and the accuracy of the DPGS system. Therefore, for validating the on-line predictions, a 

scanned area of 5 m² was considered, and the ground truth spot was located in the middle. 

This meant that for some ground truth points there was up to 3 on-line predicted values, 

where we select the point providing the greatest match. This was done with ArcGIS 10 

software (ESRI, California, USA). 
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Table 26: Statistics of samples for the assessment of fusarium head blight (FHB) in wheat 

used in the partial least squares (PLSR) regression analysis. Data is shown for cross-

validation, non-mobile and on-line predictions.  

 Visual cover analysis (%)  Photo interpretation (%) 

Cross-val Non-mobile On-line Cross-val Non-mobile On-line 

Nr  620 155 31 620 155 31 

Max 5 3 5 3 2 3 

Min 0 0 0 0 0 0 

Mean 0.9 0.5 0.6 0.7 0.5 0.6 

SD 1.7 0.9 1.4 1.3 0.7 1.4 

 

Table 27: Statistics of samples used for on-line prediction of yellow rust and fusarium head 

blight (FHB) in barley by partial least squares (PLSR) regression analysis. Data is shown in 

on-line predictions. 

 FHB Yellow rust 

 Visual 

coverage 

analysis (%) 

Photo 

interpretation 

(%) 

Visual coverage 

analysis (%) 

Visual scale 

analysis  

(0-5) 

Photo 

interpretation 

(%) 

Nr  50 50 50 50 50 

Max 5 3 40 4 58 

Min 2 1 0 0 3 

Mean 2.6 1.9 5 1.9 20 

SD 1.3 1.5 9 1.3 13 

SD is standard deviation 
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The model performance was evaluated in cross-validation, non-mobile validation and on-line 

validation by means of R², root mean square error of prediction (RMSEP) and ratio of 

prediction deviation (RPD), which is the standard deviation divided by RMSEP. In order to 

compare between the performances of different models developed we used the classification 

scale proposed by Whetton et al. (2016c) for crop disease analysis (Table 28). 

Table 28: Ranges of the ratio of prediction deviation (RPD) and their suitability for 

predicting yellow rust and fusarium head blight (FHB) in cereal crops, proposed by which 

was proposed in Whetton et al. (2016c), and is based on the classifications from Rossel et al. 

(2006). 

RPD range Class and prediction capability 

< 1 Poor model predictions - not useful. 

1-1.5 Possibility to discriminate between low and high values 

1.5-2.0 Moderate prediction capability 

2.0-2.5 Good prediction capability 

2.5-3.0 Very good prediction capability 

>3.0  Excellent prediction capability 

 

6.3.3 Mapping 

Maps for the on-line predicted yellow rust and FHB were developed with ArcGIS 10 

software (ESRI, California, USA). Kriging was used to develop maps from the data collected 

from the tramlines illustrated in Figure 29, assuming that the distance or direction between 

sample points reflects a spatial correlation that can be used to explain spatial variations. To 

distinguish these spatial variations, semi-variograms were developed in Rstudios (RStudio, 
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Boston, MA) and then applied to the kriging by utilising the advanced parameters option in 

ArcGIS 10 software (ESRI, California, USA).  

6.4 Results 

6.4.1 Crop canopy spectra analysis 

Figure 31 and Figure 32 show typical spectra collected at early (booting) and late (milk) 

growth stages of wheat and barley, respectively, comparing on-line and non-mobile (off-line, 

in the field) spectra. In Figure 31, the early on-line spectra had the lowest reflectance through 

the spectral signature, whilst the late non-mobile had the highest reflectance through the 

spectral signature apart from that at 710nm for the early non-mobile spectra, which has the 

second highest absorption at the rest of spectra. Late on-line spectra closely resemble late 

non-mobile spectral signature apart from having a slightly lower reflectance between 580 and 

650. The spectra of a barley canopy are shown at the anthesis growth stage for on-line and 

non-mobile measurement (Figure 32), the similarity is clear although slight differences in 

reflection can be observed at 520 – 550 nm and at 670 - 750 nm spectral ranges. 
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Figure 31: Indicative spectra of wheat canopy collected at early (booting) and late (milk) 

growth stages, comparing on-line and non-mobile (off-line ground truth) spectra as: (-) late 

non-mobile (---) early non-mobile (…) early on-line, and ( _ _ ) late on-line. 

 

Figure 32: Indicative spectra of barley canopy collected at anthesis growth stage, comparing 

between on-line (--) and non-mobile (-) spectra. 
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6.4.2 Evaluation of model performance  

The cross-validation results (Table 29) indicate accurate predictions, with high R² values 

(above 0.74), with FHB models appearing slightly higher than yellow rust, with photo 

interpretation for FHB being the marginal highest at 0.87 R², and visual scale being the 

highest for yellow rust at 0.82 R². The independent validation based on non-mobile collected 

spectra (Table 29) in the field indicates an opposite trend to cross-validation, where 

measurement of yellow rust (RPD = 1.3, 2.14, 2.55 and R² = 0.005, 0.78 and 0.82 for photo 

interpretation, visual coverage in %, and visual scale, respectively) is more successful than 

FHB (RPD = 1.4 (R²=0.71) and 2.31 (R²=0.85) for visual coverage in %, and image scale 

analysis, respectively). The independent (non-mobile) models based on visual scale analyses, 

provide improved prediction performance (RPD = 2.55, R²=0.82) for yellow rust, as 

compared to the % coverage model (RPD = 2.14, R²=0.78). The image scale analysis is the 

worst performing in yellow rust prediction (RPD = 1.30, R²=0.005), whereas the opposite is 

true for FHB (RPD = 2.31, R²=0.85). 

  



196 

 

Table 29: Summary of model prediction performance of yellow rust and fusarium head 

blight (FHB) in wheat in cross-validation and non-mobile independent validation. Models 

were developed with the five on-line scanning occasions in three wheat fields. The five 

models are; FHB visual cover analysis (%), FHB photo interpretation (%), Yellow rust visual 

coverage analysis (%), Yellow rust visual scale analysis (0-5) Yellow rust photo 

interpretation (%).  

 

The R² are significant to <0.01. RMSECV is root mean square error of cross validation; RMSEP is root 

mean square error of prediction; RPD is ratio of prediction deviation = standard deviation / RMSEP 

 

Scatter plots of on-line predicted versus reference assessed (both % coverage and scale) 

yellow rust and FHB (photo interpretation) are shown in Figure 33. Photo interpretation for 

yellow rust and visual analysis for FHB were excluded from Figure 33, due to their poor 

results, however, their results are summarised in Table 30. Table 30 also shows the PLSR 

results for on-line prediction, where R², RPD, and RMSEP are provided for wheat and barley 

for each model. The photo interpretation provides very poor on-line predictions of yellow 

rust, as compared to those for FHB in both barley and wheat fields. The visual scale analysis 

is again (like in cross-validation and non-mobile validation) more accurate for on-line yellow 

  

FHB Yellow rust 

  

Visual 

scale 

analysis  

 

photo 

interpretation 

Visual 

coverage 

analysis  

 

Visual 

scale 

analysis 

photo 

interpretation 

Cross 

validation 

R² 0.86 0.87 0.79 0.82 0.74 

RMSECV 0.51 0.25 8.19 0.59 8.21 

Non-

mobile 

validation 

R² 0.71 0.85 0.78 0.82 0.005 

RMSEP 0.5 0.39 8.2 0.55 9.2 

RPD 1.4 2.31 2.14 2.55 1.3 
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rust prediction, which can be classified as good for wheat (RPD = 2.5, R²=0.81) and a 

moderate for barley (RPD = 1.82, R²=0.72). The visual analysis of FHB is very poor (RPD = 

0.47 (R²=0.09) and 0.75 (R²=0.04) for barley and wheat, respectively). The photo 

interpretation model offers an improvement of model prediction performance, which can be 

classified as good for wheat (RPD = 2.27, R²=0.82) and moderate for barley (RPD = 1.56, 

R²=0.61). For both non-mobile and on-line validation scenarios, yellow rust models based on 

visual coverage analyses outperformed the corresponding FHB models (Table 29 and Table 

30). The photo interpretation is more accurate for FHB prediction, whereas both the visual 

analyses are more efficient for yellow rust prediction.  
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Figure 33: Scatter plots for the on-line predicted versus reference assessed diseseas. On-line 

predictions was based on partial least squares regression model developed, based on visual yellow rust 

coverage in wheat (a), visual yellow rust coverage in barley (b), visual yellow rust scale in wheat (c), 

visual yellow rust scale in barley (d), image fusarium head blight (FHB) scale in wheat (e) and image 

FHB scale in barley (f).  
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Table 30: On-line validation results based on–line spectral data collected from three wheat 

fields and one barley field. The five models are; Fusarium head blight (FHB) visual cover 

analysis (%), FHB photo interpretation (%), Yellow rust visual coverage analysis (%), 

Yellow rust visual scale analysis (0-5) and Yellow rust photo interpretation (%).  

RMSEP is root mean square error of prediction; RPD is ratio of prediction deviation = standard deviation / 

RMSEP the R² are significant to <0.01 

 

 

6.4.3 Maps 

Table 31 Summarises the mapped ground truth data for each field, for FHB the photo 

interpretation is shown and for yellow rust the visual scale analysis is shown. The ground 

truth data were interpolated through Inverse distance weighting, and extracted at a 10m by 

10m resolution, and are presented as maps in Figure 34 for FHB and Figure 35 for yellow 

rust. The maps use different scales to highlight the change in disease levels through the field. 

If they all used the same scale, the distribution pattern would be masked. Figure 34 shows the 

highest FHB infection towards the edges of the field for all fields, apart from Field 1, which 

is the smallest at only 4 ha, where FHB appears towards the centre and west side. The highest 

infection levels are seen in field 4 and field 3 in the NE corner. 

  

FHB Yellow rust 

  

Visual 

coverage 

analysis  

Photo 

interpretat

ion 

Visual 

coverage 

analysis  

Visual scale 

analysis 

Photo 

interpretation 

Wheat 

R² 0.04 0.82 0.78 0.81 0.06 

RMSEP 1.93 0.63 6.13 0.59 22.88 

RPD 0.75 2.27 2.19 2.5 0.7 

Barley 

R² 0.09 0.61 0.72 0.72 0.045 

RMSEP 2.69 0.93 5.39 0.69 26.59 

RPD 0.47 1.56 1.67 1.82 0.49 
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 The yellow rust maps are shown for the four studied 4 fields, with early scans shown for 

fields 1 and 3 (Figure 34). Field 4 shows heavy yellow rust infection in the centre and west 

side of the field. All other yellow rust field maps show heavy disease spread towards the 

edges of the fields. 

 

Table 31: Summary statistics of the ground truth assessments of fusarium head blight (FHB) 

by photo interpretation and early and late yellow rust by yellow rust scale coverage. 

  

Early yellow 

rust  

Late yellow 

rust FHB 

Field 1 

Max 3.00 5.00 1.00 

Min 0.00 1.00 0.00 

Average 2.29 3.24 0.48 

SD 0.46 0.82 0.31 

Field 2 

Max NA 4.00 1.00 

Min NA 1.00 0.00 

Average NA 3.02 0.40 

SD NA 0.71 0.30 

Field 3 

Max 3.00 5.00 2.00 

Min 0.00 1.00 0.00 

Average 2.04 2.72 0.57 

SD 0.66 0.65 0.35 

Field 4 

Max NA 4.00 3.00 

Min NA 1.00 0.00 

Average NA 2.2 1.23 

SD NA 0.76 0.67 
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Figure 34: Maps of % disease cover of fusarium head blight (FHB) of ground truth data 

obtained with photo interpretation at a 10 by 10 m resolution. Maps are shown for the four 

experimental fields; Field 1 with wheat (a) (4 ha anthesis), field 2 with barley (b) (10 ha 

anthesis), field 3 with wheat (c) (12 ha Milk), and field 4 with wheat (d) (7 ha Milk).   
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Figure 35: Maps of yellow rust classed in the 0-5 scale of ground truth data at a 10 by 10 m 

resolution. Maps are shown in the four experimental fields: (a and b) refer to maps of early 

stage scans in field 1 with wheat (4 ha booting) and field 3 with wheat (12 ha booting), 

respectively. Maps of late stage scans are shown by (c) for field 3 with wheat (12 ha Milk), 

(d) for field 4 with wheat (7 ha Milk) (e) for field 1 with wheat (4 ha anthesis) and (f) field 2 

with barley (10 ha anthesis). 
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The best on-line PLSR models (e.g., photo interpretation for FHB and visual analysis for 

yellow rust) were selected and used to develop corresponding maps. The best fit of the spatial 

data for both diseases in all fields was obtained with spherical semi-variograms, whose 

parameters are shown in Table 32. 

Table 32: Semi-variogram model parameters of each mapped disease in the four fields. The 

best fit was achieved with spherical models. Yellow rust early and late and fusarium head 

blight (FHB), showing nugget (c0), sill (c), range (r m), proportion (C0/ C %), and the sum of 

square error (SSE) 

  

Semi-variogram parameters  

  

c0 r (m) C (c0/c) (%) SSE 

F
H

B
 

 

Field 1 0.12 86.39 0.71 5.51 2.95 

Field 2 0.37 99.46 0.83 1.70 1.41 

Field 3 0.11 97.02 0.89 8.02 3.32 

Field 4 0.04 75.62 0.77 18.98 0.01 

Y
el

lo
w

 r
u

st
 e

a
rl

y
 

Field 1 0.001 77.75 0.002 1.001 3.383 

Field 2 0.001 68.1 0.003 2.002 8.029 

Field 3 0.0001 78.34 0.001 9.0009 2.56 

Field 4 0.02 76.63 0.043 1.173 0.0021 

Y
el

lo
w

 r
u

st
 

la
te

 Field 1 0.01 77.75 0.022 1.212 2.11 

Field 3 0.01 92.57 0.039 2.929 1.534 

M
C

 

Field 4 2.02 65.01 3.52 0.57 5.29 

c0 is nugget variance, c is sill, r is range, c0/c is proportion, and SSE is sum of squared error. 
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The semi-variogram represents the spatial correlation of empirical values from sample points. 

The empirical values of each point were plotted into lag points, and a spherical model was 

fitted to them. The nugget value is attributed to small sampling intervals or measurement 

errors. The sill represents the semi-variance value of when the model first flattens out. The 

range reports when this sill occurs and gives the variance in meters, anything beyond the 

range is not spatially correlated (Bohling, 2005).  This translates into the maps shown in 

Figures 36 and 37 for on-line FHB and yellow rust, respectively, where the on-line predicted 

data from the hyperspectral imager is interpolated using kriging, from the spatial parameters 

(nugget, range and sill) based on the semi-variagram data (Table 32). 

On-line maps of FHB and yellow rust are shown in Figure 36 and Figure 37. FHB Figures 

shows a clear spatial pattern of high disease towards the edge of the fields in fields 2, 3, and 4 

(Figure 36). In the earlier scans of yellow rust (Figure 37), high infection along the edges of 

the fields 1 and 3 is also recorded. This pattern of disease distribution is also noticed in field 

2 in the later yellow rust scans. The late scans also show higher concentrations of yellow rust, 

specifically in fields 1, 3 and 4. In fields 1 and 3 it’s possible to see the change in distribution 

from the early infection, which is towards the edge of the field, and the later infection which 

covers a larger area. However, this disease distribution pattern is not necessarily the case for 

the smallest field 1 with four ha area, as in this field, significantly lower spatial variability in 

disease pressure was observed, with high levels of the disease appear within the middle parts 

(Figures 36 and 37).  
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Figure 36: On-line measured % infection of fusarium head blight (FHB) maps using photo 

interpretation in the four experimental fields; Field 1 with wheat (a) (4 ha anthesis), field 2 

with barley (b) (10 ha anthesis), field 3 with wheat (c) (12 ha Milk), and field 4 with wheat 

(d) (7 ha Milk).  
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Figure 37: On-line measured yellow rust maps, classed in the 0-5 scale (0 is given when no 

disease is present, 1 for up to 5% cover, 2 for up to 10%, 3 for up to 30%, 4 for up to 50% 

and 5 for >50%) in the four experimental fields: (a and b) refer to maps of early stage scans 

in field 1 with wheat (4 ha booting) and field 3 with wheat (12 ha booting), respectively. 

Maps of late stage scans are shown by (c) for field 3 with wheat (12 ha Milk), (d) for field 4 

with wheat (7 ha Milk) (e) for field 1 with wheat (4 ha anthesis) and (f) field 2 with barley 

(10 ha anthesis). 



207 

 

Figures 34 and 35, and Figures 36 and 37 show maps of ground truth data, and on-line 

predictions, each for FHB and yellow rust, respectively. In general, good spatial similarities 

can be overserved between measured (ground truth) and on-line predicted corresponding 

maps. However, the spatial resolution of the ground truth maps shown in Figures 34 and 35 

are of much lower spatial resolution. The good spatial similarity is particularly true for FHB, 

showing a very good comparison of high and low areas. However, the level of disease does 

not match well, as the model tends to over predict FHB observations, apart from field 3, 

where it was under predicted. The range of prediction to the reference values can be seen for 

the online data in figure 33. The yellow rust maps also show a good similarity, with the main 

difference is the central area of field 1, which seems to be healthier in the ground truth maps. 

Again, different classes are used for each field and map, a decision that was attributed to the 

need to show and compare the spatial variation of disease between measured and on-line 

predicted maps. If all maps were on the same scale much of this detail would have been lost.    

The largest yellow rust infection can be observed on the SW part of the field (Figures 35 and 

37), whereas FHB spatial distribution follows an opposite trend (Figures 34 and 36), where 

the highest infection is observed on the NE part of the field. The MC map in field 4 shows 

higher MC in the NE part of the field compared to the SW part. The MC spatial distribution 

in this field matches that of FHB. Although moisture content values will vary from day to 

day, the spatial distribution pattern will remain almost constant (Vachaud et al., 1985; 

Mouazen et al., 2005).  

 

 



208 

 

 

Figure 38: Soil moisture content map and images of measured with the on-line visible and 

near infrared spectroscopy sensor (Mouazen, 2006) in field 4. 

 

6.5 Discussion 

6.5.1 Crop canopy spectra analysis 

Figures 31 and 32 both showed similar spectral features to those reported by Whetton et al. 

(2016c) under laboratory scanning conditions. However, the difference between 650 and 700 

(nm) in field spectra is much larger than that in the laboratory spectra (in part 1 of the study), 

which may indicate larger absorption in the 400-650 nm range by the darker canopy colour 

associated with larger intensity of Chlorophyll in leaves. This large absorption in the 400-

650nm wavelength range is linked to absorbance from chlorophyll a (Hunt et al., 2013).  

Zhang and Zhang (2016) recommend the use of the spectral range of 470 to 800 nm, which 

chlorophyll is sensitive to, to monitor crop diseases. Reduced absorption can be observed for 

a late stage captured spectra, as compared to an early stage, which may be attributed to a 

reduction in leaf area due to increased yellow rust infection or as Xavier et al. (2006) suggest 
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it’s attributed to the increase of senescent leaves. Furthermore, both on-line and non-mobile 

spectra captured late in the growing season were more similar to each other than they were to 

the early spectra (Figure 31). The early spectra both on-line and non-mobile show a very 

similar pattern through the spectral signature. However, a more noticeable difference in 

relative reflectance can be seen from 670nm onwards. This difference could be due to the 

individual plant, or the amount of foliage being captured by a moving platform, as from 

700nm onwards greater foliage has a greater reflectance. This large similarity in spectra 

(Figure 31) is a first indication of a good quality canopy spectra collected in this study under 

mobile conditions. the high similarity between the on-line and non-mobile spectra seen in the 

barley canopy (Figure 32) is a good indication of the hyperspectral system stability in 

providing high quality spectra to enable modelling yellow rust and FHB with desirable 

accuracy, to be evaluated in the following section. There was a slightly lower reflectance 

recorded for both (early and late) non-mobile wheat spectra, however, the barley has a 

slightly higher reflectance for the non-mobile spectra. The differences between the on-line 

and non-mobile spectra are attributed to the moving platform. As the on-line captures are 

steadily moving and thus capturing an average over a small distance, as opposed to capturing 

just a small area (a line) like the non-mobile spectra. The spectra between wheat and barley 

appears similar in Figures 31 and 32. Wilson et al. (2014), found only minor differences in the 

spectra of wheat and barley and attributed these small differences to the physical structure of 

the ears. 
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6.5.2 Evaluation of model performance  

The highest independent validation of yellow rust obtained with the visual scale assessment 

(RPD = 2.55, R²=0.82) can be classified as very good prediction performance, whereas the 

highest performance for FHB was obtained with image scale analysis (RPD = 2.31, R²=0.85), 

which can also be classified as good prediction ability (Table 28). The implication of this is 

that both an image and visual assessments should be collected for accurate disease models. 

An RGB image might not capture yellow rust in the low canopy layers. This is the reason 

why Zhao et al. (2016) recommended investigating the disease development for different leaf 

layers. FHB seems to be better captured in the RGB image than yellow rust as the disease 

appears on heads that present at the top of the crop canopy; hence, FHB disease is unlikely to 

be obscured like yellow rust, allowing for an accurate count and representation to be made 

with the photo interpretation. The photo interpretation also removes the potential of 

subjectivity between assessments. Due to yellow rust being a foliar disease and leaf 

overlapping occurring in a canopy, the level of disease could be hidden in an RGB image. 

Whilst it’s arguable that the RGB photograph would be representing the same area seen by 

the hyperspectral imager, the latter may pick up alterations in the crop’s reflectance due to 

yellow rust, which can be captured by the spectral data. 

Huang et al. (2015) successfully assessed yellow rust in winter wheat, reporting a high R² 

value of 0.88, based on hyperspectral measurements of individual infected leaves, which is of 

limited use as compared to canopy measurement adopted in the current work. Peteinatos et al. 

(2016) measured spectral reflectance using two hand-held passive spectrometers and one 

fluorometer, and concluded that early detection of yellow rust was possible. Adopting a data 

fusion approach of hyperspectral data (450 – 900 nm) and fluorescence data (550 – 690 nm), 

Moshou et al. (2005), reported a high accuracy (94.5 %) of detecting yellow rust in winter 
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wheat. They needed two detection technologies to achieve this accuracy, increasing the cost 

for field application. Similar reliable results for quantitative identification of yellow rust in 

winter wheat have been demonstrated by Krishna et al. (2014), achieving high R² and RPD 

values of 0.90 of 3.8, respectively. However, they have to include the entire visible and near 

infrared range (e.g., visible and near infrared (VNIR) and short wavelength infrared (SWIR) 

of 350 to 2500 nm) to reach this accuracy, whereas the current work achieved good (RPD = 

2.14, R²=0.78) to very good (RPD = 2.55, R²=0.82) prediction accuracy, based on a mobile 

relatively cost-effective hyperspectral camera, in the visible range only. 

There is limited literature for FHB detection in the field, which may be attributed to the 

difficult detection of symptoms appearing on ears. Polder et al. (2005) reported successful 

detection of fusarium in single kernels, by using both spectroscopy and imaging. Similarly, 

Delwiche and Kim (2000) successfully used a hyperspectral imager at 435 – 860 nm and 

machine learning for fusarium detection in wheat kernels. Bauriegel et al. (2011) utilised a 

hyperspectral imager, based on wavelength range intervals of 500–533 nm (green), 560–

675 nm (yellow to red), 682–733 nm (red edge) and 927–931 nm (NIR), to identify the 

percent coverage of fusarium disease in ears, achieving average recognition accuracy of 67% 

and as high as 87%. Oerke and Steiner (2010) utilised an infrared thermography method for 

in-situ detection of FHB symptoms at a canopy level, by detecting a significantly higher 

temperature in infected ears. 

The non-mobile independent validation results (Table 29) were better than those of the on-

line validation (Table 30), particularly for yellow rust. This is expected as during on-line 

measurement, uncontrollable external conditions such as vibrations and variations in camera 

and light source heights and angles, negatively affect the measurement accuracy. Since 

fusarium infects the ear as opposed to the foliage, the impact of fusarium symptoms on 
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spectra in less pronounced in early growing stages (Rossi et al., 2001; Xu, 2003), hence, can 

only be applied to the data collected later in the season. Prediction of FHB infection in wheat 

(Table 30) is more accurate than in the barley, as the wheat data for the FHB models were 

collected at milk (70) in field 1 and 2 and at anthesis (61) in field 4 for wheat, compared to 

just anthesis (61) for barley (Table 22).  Though FHB was only detected later in the season, 

its recognition can still be useful for selective harvest (see next Chapter), and perhaps for the 

last fungicide application, which is usually targeted towards maintaining the health of the 

crops ear (Pillinger et al., 2004).  

 

The improved models performance is in line with the findings of Part 1 of this study 

(Whetton et al.,(2016c), and could be attributed to the reduction in the subjectivity effect on 

the assessments, by grouping readings within 5 different groups of infections detailed above. 

The on-line prediction performance of percent coverage, obtained with the visual analysis of 

FHB is very poor (RPD = 0.47 (R²=0.09) and 0.75 (R²=0.04) for barley and wheat 

respectively). There is very limited literature about on-line measurement of cereal disease, 

particularly for FHB. Examining the on-line validation in Table 30 suggests that FHB should 

be detected by the RGB photo interpretation, whereas yellow rust by the visual analyses, both 

the percent coverage and scale. This is true for both wheat and barley. On-line predictions in 

wheat were better that those in the barley field, which is expected as models were created 

using data from wheat fields and then applied to predict disease presence in the barley field to 

test robustness.  
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6.5.3 Maps 

From the maps developed, it can be generally observed that higher disease is located towards 

the edges of the fields, where hedgerows and borders of a field act as a source of inoculum of 

yellow rust and fusarium species (Jenkinson and Parry, 1994; Champeil et al., 2004; Imathiu 

et al., 2013). Initial infections of soil-borne pathogens, commonly result from infected plant 

residues left over from the previous year’s harvest. Fusarium fungi survive over winter on 

plant residues (as mycelium), which can produce ascospores that infect the flag shoot (Sutton, 

1982; Oberti et al., 2014). The late (second) scans of the 10 and 4 ha fields (Figure 37) show 

the yellow rust spreads further towards the centre of the field. Figure 39 shows yellow rust 

and FHB infection from the RGB images captured in the late scans. 

 

 

 

 

 

 

 

 

 

 

A)                                                        B)   

Figure 39: Images of wheat crop at the field site in Bedfordshire, UK. Wheat was at 

growth stage 72 (Milk). Part A) Fusarium head blight infection (FHB), and part B) 

Yellow rust infection. 
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Fields 1 and 2 (Figure 36) were classed at anthesis growth stage. FHB infection can occur at 

the booting growth stage. However, it’s unlikely to see symptoms until after anthesis (Anand 

et al., 2003; Reis et al., 2016). Development of crop is heavily affected by temperature, 

which can vary through a field due to microclimate. The majority of the crop in field 1 and 2 

was at the anthesis growth stage however, there are areas in the field that were further 

developed. The infection witnessed in field 1 and 2 were the first symptoms of FHB, being a 

pink tint in some of the ears. The majority of field 2 had a very low infection, particularly 

towards the centre of the field. Field 1 however, had a more homogenous distribution of 

FHB. (Dammer, 2003; Saiyed et al., 2009; AHDB 2015).   

It is important to point out here that the 7 ha field 4 can be split according to soil type into 

almost two halves, with the NE half being of a heavier soil (clay loam), whilst the other SW 

half being of a much lighter soil (sandy clay loam). This field was only scanned in one 

occasion at the milk (grain filling) stage on 1
st
 July, 2015, which is quite late in the season. 

The largest yellow rust infection can be observed on the SW part of the field (Figure 35), 

whereas FHB spatial distribution follows an opposite trend, where the highest infection is 

observed on the NE part of the field (Figure 34). Due to the dry but warm conditions of 2015 

spring, FHB infection was low in general. It is of interest to mention that May according to 

the UK metrological office was particularly dry, and record breaking temperatures had been 

reached later on in the season. This resulted in half of the field being under substantially more 

water stress (SW) than the other wetter half (NE), due to the difference in the soil type and its 

ability to retain soil moisture. Subsequently, this soil type and moisture retention differences 

between the two halves affected the crop canopy, and substantially impacted on the 

microclimate conditions of the crop. It was reported that a variation in soil texture can lead to 

variations in soil properties. 
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For example, an increase in nitrogen will increase the duration and green area index of the 

canopy, which further affects the microclimate conditions (Stokes et al., 1997; Sylvester-

Bradley and Kindred, 2009). The underlying spatial distribution of moisture content in field 4 

(Figure 38) confirms the NE part to have a larger moisture content than the SW part. This is 

resulted as plants in the NE part being a denser, thicker and greener canopy (Part B in Figure 

38), than plants in the dryer SW part (Part A in Figure 38). Whilst moisture content will vary 

quickly, the underlying spatial distribution pattern of water presence will remain similar 

through the season (Vachaud et al., 1985). 

Local climate and weather conditions are considered the most influential factor regarding the 

distribution and severity of fungal infections in a crop stand. Under clear weather conditions 

in spring and summer, areas of the field with a lower crop density will warm up and cool 

down faster than those with dense canopies. Temperature in a wheat field’s microclimate 

could have an inter-canopy variation of up to 7.5°C (Dammer, 2003), depending on crop 

canopy density and soil moisture content. Therefore, different soil texture type and 

subsequently moisture content encountered in this study may have affected crop canopy 

density and humidity and crop health under the exceptionally dry conditions in the spring of 

2015, which led to the different disease spread pattern in among the two parts of the Field 4.  

Literature demonstrates that epidemics of fungal diseases are strongly influenced by the local 

environment, persistence and adaption of the pathogen and the crop’s variety and 

physiological condition (Dammer, 2003). Therefore, variation in one of more of these will 

possibly affect disease distribution, which we believe to be the case in the 7 ha, field 4. The 

conidial fusarium spores are commonly transported by rain drop splashes, though this 

depends on the species (Parry et al., 1995). Variability of disease presence is common for 

FHB. This is due to infection being dependent on warm humid weather conditions, which 
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may explain why the NE part of field 4 had higher fusarium disease ranges than the dryer SW 

part (Jelinek et al., 1989; Rossi et al., 2001; Xu, 2003). In the NE part, the crop canopy was 

denser due to heavier texture and larger MC which resulted in a higher humidity. However, 

the higher infection with yellow rust in the dryer SW part of this field can be attributed to the 

fact that yellow rust spores are predominantly dispersed by wind but require moisture to 

infect the crops leaves. The less dense canopy of the SW part, as compared to the NE part 

(Figure 38) may have allowed for better penetration of yellow rust spores by wind, hence 

increase infection rates in this part. This is an interesting point to consider in plant protection 

against yellow rust and FHB, although further investigations are necessary. 

Examining the spatial distribution of the on-line FHB (Figure 36) and yellow rust (Figure 37) 

maps, one can observe the high infection concentrated at the hedgerows and borders of fields. 

This suggests the need for site specific application of fungicides that should target these 

highly infected edge parts, and that application should take place at earlier growing stages. 

This will prevent or at least reduce the possibility of diseases to expand towards the inner 

parts. The on-line measured disease maps become more important at late growing stages once 

diseases spread over the field, and site specific spraying becomes more important to adopt. 

Further work will need to use these maps for site specific fungicide applications, followed by 

cost-benefit and life cycle analysis to evaluate the economic and environmental benefits as 

compared to the traditional homogeneous applications adopted by majority of farmers today. 
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6.6 Summary conclusions 

This Chapter introduces the work related to the on-line measurement of yellow rust and 

fusarium in four fields using the optimal measurement set up of the hyperspectral line image 

camera, obtained in Chapter 4. The results from this study show that on-line hyperspectral 

measurement and mapping of yellow rust (using visual assessments) and FHB (using image 

interpretation) is possible, with moderate accuracy in barley and good accuracy in wheat. The 

spatial distribution of yellow rust, and FHB, were impacted by both soil texture and moisture 

content. This will allow for future work to be carried out on on-line measurement for both 

crop diseases to guide site specific fungicide application or selective harvest, to be discussed 

in the next Chapter. 
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7 Management zone maps for variable fungicide application and 

selective harvest 

Chapter Synopsis; 

This chapter focuses on data fusion of disease data (yellow rust and fusarium head blight 

(FHB)), along with canopy and soil properties, to produce management zones (MZ) in winter 

wheat. The chapter introduces theoretical MZ methods of selective harvest (SH) (so grain can 

be separated in relation to quality) and variable fungicide application (VRFA) of application 

rates dependent on the severity of disease. The MZ approaches are compared to conventional 

methods by means of virtual cost-benefit analyses, under certain assumptions. The data is 

collected through the methods introduced and discussed in chapters 3, 4, 5, and 6. 

Abstract 

Currently the majority of crop protection approaches are based on homogeneous application 

of fungicides over the entire field area. With the increasing pressures on fungicide 

applications, associated with increased environmental impact and cost, an alternative 

approach based on site specific fungicide application and selective harvest (SH) is needed. 

But, to achieve this goal high resolution data on the affecting factors in the system is needed 

to allow accounting for the within field variability in the analysis. High sampling resolution 

data on crop growth and diseases, soil properties and yield were subjected to k-mean cluster 

analysis to develop management zone (MZ) maps for one experimental field in Bedfordshire, 

UK. Cost-benefit analyses for variable rate fungicide application (VRFA) and SH were 

performed at T1, T2 and T3 growth stages of wheat. Results showed that with VRFA, when 

compared to homogeneous rate fungicide application (HRFA), reductions in fungicide 

application of 22.24% at T1 and T2 and 25.93% at T3 are expected. SH reduced the risk of 

market rejection due to low quality and high mycotoxin content. Total profit of combining 
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SH and VRFA was £83.35 per hectare, divided into £48.04 ha
-1

 for SH, £17.6 ha
-1

 for each 

VRFA at T1 and T2 growth stages and £17.7 ha
-1 

at T3. We recommend adopting this MZ 

concept for VRFA and SH, as economic and environment viability is feasible. 

Keywords 

Yellow rust, Fusarium head blight, Hyperspectral imager, Management zones, Cost-benefit 

analysis, Selective harvest, Variable rate fungicide application, Canopy humidity, canopy 

temperature, k-mean clustering. 

 

7.1 Introduction 

Ideally, high crop yields would need to be produced with minimal impact on the environment 

(Pimentel et al., 1997; Tilman, 1999). Although intensive conventional agriculture based on 

unsustainable management of external inputs has led to increasing yields, it has posed severe 

environmental problems (Pimentel et al., 1995; Hole et al., 2005). But, varieties with high 

productivity are associated with higher sensitivity to disease leading to yield loss, which 

necessitates a sustainable approach for managing farm external inputs in a site specific way. 

In order to achieve this goal, data on all affecting factors in the system should be collected at 

high sampling resolution. This is possible today for specific diseases, crop canopy and soil 

properties, using on-line crop and soil sensors (Kuang et al., 2012; Kuang and Mouazen, 

2013; Whetton et al., 2016a). Fusing these different layers of information is a main 

requirement for creating management zones (MZ), to explore the potential of VRFA and SH. 

A balanced availability of soil nutrition contributes to disease resistance and susceptibility. 

Nitrogen and phosphorus are the main soil macro nutrients affecting the severity of fungal 

diseases, whilst micronutrients (e.g. Ca, Mg, Zn, B, Mn, Mo, Ni, Cu, Fe, S, and Si) are also 

known to affect various diseases in plants (Engelhard, 1989; Fageria and Baligar, 1997; 
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Graham and Webb, 1991; Huber, 1980). For example, high potassium in crops reduces the 

incidence of diseases (Perrenoud 1990; Prabhu et al., 2007). When considering a method for 

disease control, it is important to acknowledge its interaction with nitrogen. Increases in 

nitrogen will increase the green area index and duration of the canopy, which in turn affects 

the microclimate of the crop and increases the likelihood of infection (Stokes et al., 

1997; Sylvester-Bradley and Kindred, 2009). Therefore, information about key soil properties 

and their effect on crop disease spread is essential for site specific plant protection. 

Fusarium head blight (FHB) is a sporadic disease, causing variability of disease presence and 

level of infection across regions, and years (Jelinek et al., 1989). FHB can result in yield 

losses, leading to both direct and indirect economic losses and negative influences on human 

and animal health (Paul et al., 2005). The direct economic loss is attributed to reduced grain 

quantity and size, whereas the indirect loss is due to mycotoxin contamination (a secondary 

metabolite of the fusarium mould), associated with market rejection or downgrading of grain 

quality (Parry et al., 1995). Yellow rust is a foliar fungal disease that is also linked with a 

long history of yield loss. The loss due to yellow rust is mostly attributed to a reduction in the 

number of grains per ear, and weight of the individual grains (Herrera-Foessel et al. 2006). 

Across the globe, yield losses due to yellow rust are reported to be between 10 and 70% 

(Chen, 2005). Doodson et al. (1964) reported yield losses of 64.5% in individual severely 

infected plants. Doling and Doodson (1968) also remarked substantial yield loss, but with a 

maximum of 30% reduction, which was attributed to the extensive cultivation of resistant 

spring and winter wheat varieties. Singh et al. (2012) witnessed severe epidemics of yellow 

rust infection in various cultivars that were formerly protected by resistance genes. It is still a 

major contributor to yield loss, with large variations in yield reduction observed between 

susceptible and resistant varieties, often being >50% (Safavi, 2015).  
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Fungicides can be organic (contain carbon atoms) or inorganic (do not contain carbon). Some 

of the oldest fungicides were inorganic and based on heavy metals. Fungicides can be contact 

or systemic. Contact fungicides (protectants) work on the surface of the plant, whereas 

systemic (penetrants) are absorbed. Fungicides damage the cell membranes of fungi, or 

interfere with processes (by inactivating enzymes, or prevent energy production or 

respiration). Fungicides can also be grouped as narrow spectrum - affecting only a few 

related pathogens and are often systemic, or broad spectrum - affecting a wide range of 

pathogens and often contact based. Contacts are generally applied as preventatives, while 

systemic fungicides can be applied as both preventive and curative. Contacts are often 

reapplied to protect new growth of the plant. Depending on the type of fungicide, and the 

targeted disease, the timings and number of fungicide applications will vary. Typically, there 

are up to four timings of fungicide application to control foliar diseases of wheat, with the 

fourth application also being aimed at ear diseases. T0 (Timing 0) is applied between growth 

stage 25 and 30 (Zadoks scale). Its application is usually a preventative in historically 

problematic fields, or if early disease is observed. T1 (GS 31-33) and T2 (GS 37-39) are 

applied to keep the third, second and flag leaves healthy, as these heavily influence yield in 

wheat. The T3 application (GS 52-60) can also be an “ear wash”, and is usually applied to 

preserve the quality of the grain. T2 is commonly considered the most crucial application and 

is the most frequently followed, due to the importance of maintaining flag leaf health. T1 is 

considered secondary in importance followed by T3 and then T0 (HGCA 2008; Clark, 2016). 

In some regions of Europe, there have been trials to reduce the number of fungicide 

applications. The fungicide applications are applied after growth stage 31, but only if 

infection levels reach a defined threshold (Verreet et al., 2000; Falisse and Meeus 2002).  
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Therefore, information about crop disease in the field, collected at high sampling resolution, 

is another essential step towards site specific plant protection. But sole information about 

crop disease is not sufficient for an integrated decision support system, due to the influence of 

other factors e.g., relevant soil properties, microclimate conditions and crop canopy 

characteristics (Huber, 1980; Engelhard, 1989; Graham and Webb, 1991; Fageria and 

Baligar, 1997; Stokes et al., 1997; Sylvester-Bradley and Kindred, 2009).  

The aim of this paper is to propose and implement a multi-sensor and data fusion approach 

for the delineation of management zone (MZ) maps. The MZ map will be used for creating 

recommendations for VRFA and SH. A cost-benefit analysis will evaluate whether this 

approach has economic benefits. To our best knowledge, no reports have been produced for 

assessing the environmental and economic benefits of VRFA and SH based on data fusion of 

high sampling resolution spectral data, collected with on-line soil and crop sensors. This 

study focuses on the potential economic benefits of non-homogenous fungicide applications 

and selective harvest based on high sample data, compared to a conventional practice. 

However, the study will not ask the question about when and which fungicide should be 

applied. 

7.2 Materials and methods 

7.2.1 Field site 

One study field of 10.8 ha with cereal crop production was selected for this study. It is 

located at Duck End Farm, a commercial family farm in Wilstead, Bedfordshire, UK 

(52°05'46.3"N 0°26'41.4"W), with an average annual rainfall of 598 mm. The fields N part is 

of a clay soil, whereas the S part is of a sandy clay soil. The farmer uses a 3-year crop 

rotation of barley, wheat and oilseed rape. The experiment was carried out in 2015, when the 

crop grown was winter wheat (solstice variety). Yellow rust and FHB were observed in the 
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field, and blackgrass presented in small patches in the NE of the field. Dates of measurement 

of soil, crop canopy, diseases, micro-climate conditions, and yield in relation with growth 

stages are shown in Table 33 Detailed information about the collection of each dataset is 

described below. 

Table 33: Date of different measurement as related to crop growth stages according to the 

zadok’s scale (Zadoks et al., 1974). 

Parameter Date of measurement  Growth stage  

Yield September, 2015 NA 

NDVI and LAI May, 2015 43 

Soil properties (MC, TN, OC, 

CEC) 

September, 2014 NA 

Yellow rust early May, 2015 43 

Yellow rust late July, 2015 70 

Fusarium head blight July, 2015 70 

Canopy data (humidity, 

temperature) 

May, 2015 43 

 NDVI is normalised difference vegetation index; LAI is leaf area index; MC is moisture content; TN: is total 

nitrogen; CEC is cation exchange capacity; OC is organic carbon 
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7.2.2 Disease and canopy property data collection 

A push broom hyperspectral imager (spectrograph) (HS spectral camera model from Gilden 

Photonics Ltd., UK) with a spectral range between 400 and 750 nm, and a halogen light 

source were mounted on a tractor by means of a metal frame for on-line measurement of 

yellow rust and FHB (Whetton et al., 2016a). Measurement was carried out at a forward 

travel speed of approximately 4 km h
-1

, and line images were captured at 1 sec frequency, 

which was subsequently logged and geo-located with a sub-meter accuracy, using a 

differential global positioning system (DGPS) (EZ-Guide 250, Trimble, California, USA). 

The methodology followed the optimal configurations discussed in Whetton et al. (2016b). 

These include an integration time of 50 ms, a camera height of 0.3 m and light height and 

distance of 1.2 m and a camera angle of 10°.   

At 5 locations per hectare, ground truth plots were selected (Figure 40), where manual 

disease assessment and recognition of yellow rust and FHB were made according to methods 

discussed in detail by Whetton et al. (2016a and 2016c). The assessment for FHB considered 

both early and late symptoms on heads, and were assessed as either a 0 for no infection, 1 for 

less than 5% individual infected heads, 2 for up to 10%, 3 for up to 30%, 4 for up to 50%, 

and 5 being a heavy infection over 50% infected heads, dependent on the ratio of FHB 

infected to healthy crops. Similarly, for yellow rust, a 0-5 scale was applied, similar to the 

approach adopted by Oberti et al. (2014). A scale between 0 and 5 (from less to more 

affected plots) was given the same ratio as that for FHB. 
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At the same ground truth locations, data of leaf area index (LAI) was collected with use of a 

Sunscan (V1, Delta-T devices, Cambridge, UK) sensor, whereas air humidity and 

temperature were measured with a hand held device (Testo 610, Hampshire, UK), positioning 

the sensor just under the flag leaf. Yield was measured with on-board yield sensor of the 

farmer’s combine harvester (New Holland, CX8070 model), whereas normalised differential 

vegetation index (NDVI) was measured with a Crop Circle sensor (Crop Circle ACS 470, 

Holland Scientific, Lincoln, NE USA). 

 

Figure 40: Map of the experimental field where ground sample locations (5 per hectare, 

n=60) are shown. 
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7.2.3 On-line soil measurement 

An on-line visible and near infrared (vis-NIR) spectroscopy sensor (Mouazen, 2006) was 

used for the measurement of soil total nitrogen (TN), organic carbon (OC), moisture content 

(MC) and cation exchange capacity (CEC). It consists of a mobile, fibre type, AgroSpec 

visible and near infrared (vis-NIR) spectrophotometer (tec5 Technology for Spectroscopy, 

Germany) with a measurement range of 305-2200 nm, and a differential global positioning 

system (DGPS) (EZ-Guide 250, Trimble, California, USA) to record the position of the on-

line measured spectra with sub-metre accuracy. The spectrophotometer is linked to an optical 

probe by means of two optical fibres. The optical probe is attached to the back side of a 

subsoiler that penetrated the soil and opened a smooth trench, which is illuminated by a 20 W 

light source, while diffuse reflected spectra is collected at 1 sec frequency. A detailed 

description of the system can be found in Kuang, and Mouazen, (2013). On-line measurement 

was carried out in 2014, after the harvest of the previous crop at parallel transects of about 10 

m apart and at 2 km forward speed, setting the sensor at 15 cm depth.  

7.2.4 Spectral modelling of disease and soil properties 

The pre-processing of the soil and canopy spectral data was carried out following an 

approach outlined in Mouazen et al. (2006). The first step was to remove noisy wavelengths 

at the two far edges of spectra, before they underwent averaging of neighbouring wavebands, 

maximum normalisation, first derivative calculation and smoothing, successively. All spectra 

pre-processing was carried out using Unscrambler 10 software (Camo Inc.; Oslo, Norway).  

The hyperspectral imager data set was randomly divided into two sets of 80% and 20%, 

representing the calibration and validation data sets, respectively. The pre-processed canopy 

spectra and manual assessments of disease were subjected to partial least squares regression 
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(PLSR) analysis with full-cross validation using the calibration set (80%). PLSR analyses 

were carried out using Unscrambler 10 software (Camo Inc.; Oslo, Norway). The models’ 

performance was evaluated using the on-line validation set (20%). More detailed information 

about the calibration and validation of the FHB and yellow rust models can be found in 

Whetton et al. (2016a). The same approach was used for the calibration and validation of 

models to predict soil properties (e.g., MC, OC, TN and CEC). More detailed information 

about the calibration and validation of these models can be found in Halcro et al. (2013) for 

TN, OC and MC and Marin-González et al. (2013) for CEC.  

 

The calibration models for FHB and yellow rust were used to predict these two diseases using 

on-line collected hyperspectral data in 2015 (Table 33). Yellow rust prediction was made 

twice for early scanning (May, 2015) and late scanning (July 2015), whereas FHB was 

measured at the late scanning only, as this disease affects the crop heads, at a late growing 

stage. The calibration models developed earlier for OC, TN and MC (Halcro et al., 2013) and 

CEC (Marin-González et al., 2013) were used to predict soil properties using the on-line 

measured soil spectra after crop harvest in September, 2014 (Table 33). 

Since the canopy properties apart from NDVI, including LAI, humidity and temperature were 

measured only at 60 locations shown in Figure 40; these limited data were used for further 

analysis. However, a much larger number of data points was obtained of the on-line predicted 

crop yellow rust and FHB, on-line predicted TN, OC, MC and CEC, measured NDVI and 

yield. 
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7.2.5 Mapping 

Maps for the measured NDVI and yield and the on-line predicted yellow rust, FHB, soil TN, 

OC, MC and CEC were developed using ArcGIS 10 software (ESRI, California, USA). The 

first step in the development of maps was the creation of semi-variograms in R-studio 

(RStudio, Boston, MA). After an optimal semi-variogram (smallest sum of square error) was 

established for a given property, kriging was applied to develop a full point map using 

ArcGIS 10 software (ESRI, California, USA). A different number of data points was 

considered in the semi-variogram development and kriging, hence, the quality of maps differs 

among different maps, although the best fit was found with spherical semi-variogram models 

for all properties investigated.  

7.2.6 Management zone maps 

The on-line predicted soil properties and crop diseases, measured canopy and yield and 

microclimate conditions were pulled into one matrix by means of Statistica software (StatSoft 

inc., Oklahoma USA), before running k-means clustering. The k-mean cluster analyses were 

performed for the following applications to produce three different MZ maps, with a different 

number of MZ, depending on variability resulting from the different input data used:  

1) Selective harvest: In this case, only the on-line predicated FHB and late yellow rust data 

were included in the k-mean clustering to produce a MZ map for SH. 

2) T1 and T2 variable fungicide applications: The k-means cluster analysis here aimed at 

producing MZ maps for VRFA at growth stages 31 to 39, applied as a foliar disease 

preventative. In this case, the on-line predicted early yellow rust and soil properties (MC, OC, 

TN and CEC) and canopy properties (NDVI, LAI, canopy humidity and temperature) were 

included in the analysis. 
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3) T3 variable rate fungicide applications: The k-means cluster analysis produced a MZ map 

for the growth stage 52-60, where fungicides are usually applied to preserve the grain quality. 

Input data included the on-line predicted FHB and soil properties (MC, OC, TN, and CEC), 

canopy properties (NDVI, LAI, canopy humidity and temperature). 

7.2.7 Eventual calculation of cost-benefit analysis 

The following assumptions were made in this study for the cost-benefit analyses; 

1) The cost of implementing the different sensing technologies and data mining was not 

taken into consideration. 

2) FHB presence is directly linked to mycotoxin presence, which is in line with Paul et 

al. (2005) who reported a mean correlation of R² of 0.73 between deoxynivalenol 

(DON) level and fusarium observed in 163 studies in the USA. Turner and Jennings 

(1997) reported the occurrence of mycotoxins in UK cereals was lower than expected 

due to M. nivale (Microdochium species which hold no mycotoxin risk), which 

supressed the infection of Fusarium species. However, a correlation was still 

observed.  

3) VRFAs would not reduce the efficiency of disease control obtained with 

homogeneous applications, an assumption supported by a practical note that reduced 

doses of fungicide should be applied in low disease pressure areas (FRAC, 2010) and 

vice versa. 

4) Wheat grain would be sold at a lower price due to fusarium contamination of 

mycotoxins. This assumption is supported by the European commission imposed 

upper limits of the DON mycotoxin in cereal grain for human consumption. 
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5) A uniform application of fungicide was proposed for the T0 growing stage, as it is 

usually a preventive treatment and at this early growth stage disease sensing would be 

difficult, as the canopy is sparse.  

Two fungicides commonly used in fungicide control were selected in this study (chemical 

labels are available in Appendix C). Adexar (epoxicoazole) is suitable for the treatment of 

many fungal disease infections and is particularly common for FHB treatment. It is used at a 

maximum of 2 litres per hectare (lha
-1

), with a maximum of 2 applications per annum for 

wheat in Europe. The current price is £34 per litre. Proline 275 (prothioconazole), is suitable 

for many fungal disease infections but it is particularly used for treatment of early yellow 

rust. It is applied at a maximum of 0.72 lha
-1

 per dosage, with a max total of 2.16 lha
-1

 per 

year for wheat treatment in Europe. The current price is between £52.5 and £59 per litre
1
. The 

following two cost-benefit analyses were carried out for the VRFA and SH;  

1- The cost-benefit for the variable fungicide treatments (T1, T2 and T3) was applied using 

ArcGIS 10 software (ESRI, California, USA), by dividing the field area into high infection 

risk (HIR) and low infection risk (LIR) zones, taking into consideration the boom width 

relative to the position of tramlines. Zones of HIR were virtually subjected to a full 

application rate, whereas the LIR zones were given a 50% application rate. For T3 the 

medium infection zones (MIF) were subjected to 75% dosage rate. All MZ were considered 

in the analysis, and the amount of fungicide per area was calculated. The overall applied 

amount of fungicide was then compared to that of a conventional full homogenous 

application, and the potential savings or losses were calculated.  
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2- The cost-benefit analysis for SH was calculated in a similar manner to that of VRFA using 

ArcGIS 10 software (ESRI, California, USA). MZ were classified into HIR and LIR. This 

was made by proposing separate harvest of the HIR (low quality) from that of the LIR (high 

quality) zones. All MZ were considered in the analysis, and their corresponding area was 

calculated, so as the average yield per zone could be calculated. The total prices of wheat 

grain obtained from Farmer’s Weekly (FWI 2016) were £145 and £135 per tonne, for the 

high-quality and low-quality yield, respectively. The SH was compared with the 

homogeneous harvest of the entire field area, sold at the lower price of £135. 

7.3 Results and discussion  

7.3.1 Spatial variability of different properties   

The analysis for semi-variogram of different soil and crop properties indicated that the best 

approximation can be achieved with spherical models, whose properties can be found in 

Table 34. The largest sum of square error is calculated for TN followed by MC. The small 

values of the proportion between the nugget (attributed to small sampling intervals, or 

measurement errors) to sill variation (less pairs of points separated by far distances) indicate 

the autocorrelation between different properties studied, because this proportion is an 

important parameter to quantify short-distance autocorrelation or the degree of spatial 

dependency for a variable (Cambardella et al., 1994; Chang et al., 2014). Cambardella et al. 

(1994) defined three categories of spatial dependency of high, moderate, and weak with ratios 

of less than 25%, between 25% and 75%, and greater than 75%, respectively. Ranges of 

spatial dependency are wider than the sampling interval of on-line soil measurement (10 m), 

disease, LAI, humidity and NDVI (24 m), and yield (12 m), confirming the effectiveness of 

geostatistical analysis adopted in this study (Chang et al., 2014). The only exception is for the 

NDVI measurement (Table 34.). 
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Table 34: Properties of the spherical semi-variogram obtained for yellow rust early (YR 

early) and late (YR late) scans, fusarium head blight (FHB), soil moisture content (MC), 

organic carbon (OC), total nitrogen (TN), cation exchange capacity (CEC), leaf area index 

(LAI) and normalised difference vegetation index (NDVI), crop humidity and temperature. 

Showing nugget (c0), sill (c), range (r m), proportion (C0/ C %), and the sum of square error 

(SSE) 

c0 is nugget variance, c is sill, r is range, c0/c is proportion, and SSE is sum of squared error. 

 

Figure 41 shows the spatial distribution of FHB, early scanned and late scanned yellow rust. 

As a general observation, the crop was healthier towards the centre of the field. This was 

particularly evident in the early yellow rust map, whereas the late yellow rust map is more 

heavily infected towards the centre of the field. This is an expected spatial pattern, as yellow 

rust and fusarium spores are both wind borne, and can survive in soil and weeds occurring in 

the borders of a field, acting as a source of inoculum for the next cropping season (Jenkinson 

Property c0 r (m) c c0/c (%) SSE 

FHB 0.11 97.02 0.89 8.02 3.32 

YR early 0.00 78.34 0.02 9.00 2.56 

YR late 0.01 92.57 0.04 2.93 1.53 

OC 0.00 9.60 0.01 9.55 2.65 

TN 0.00 23.04 0.01 3.00 12.46 

MC 4.43 15.52 5.09 0.81 6.23 

CEC 0.73 24.71 1.48 1.78 4.20 

NDVI 0.061 4.45 0.21 2.6 2.15 

Yield 3.24 98.36 6.49 4.25 1.68 

LAI 1.08 68.04 2.07 1.9 3.06 

Humidity 0.17 102.96 1.07 6.19 0.57 

Temperature 0.1 83.09 1.06 10.05 0.51 
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and Parry, 1994; Champeil et al., 2004; Imathiu et al., 2013). Between the early and late scan 

of yellow rust, some areas have increased in yellow rust severity whilst other areas have 

decreased, such as the SE of the field. This reduction in disease severity could be due to 

additional crop growth, from later tillers and secondary tillers, and in damaged crop regrowth 

(McCormick et al., 2014; Livingston et al., 2016).  

Figure 42 shows maps of canopy properties (collected in May), measured at high sampling 

resolution (e.g., NDVI), and low (60) sampling resolution (e.g., humidity, temperature and 

LAI). The NE edge of the field has large values of both NDVI and LAI. Similar observation 

for NDVI and LAI can be made through the field (Figure 42). The central part of the field is 

of low LAI, which coincides well with low concentrations of both FHB and early yellow rust 

spatial distribution pattern in the field (Figure 41). Visually, LAI and temperature appear to 

have similar spatial distribution pattern, but of inverse magnitude. The same is true for NDVI 

(Figure 42). NDVI and LAI is related to canopy density that affects a canopies temperature. 

Areas of the field with a lower crop density will warm up and cool down faster than those 

with dense canopies (Dammer, 2003). Differences in a wheat field’s canopy temperature 

could have an inter-canopy variation of up to 7.5°C (Dammer, 2003), a variation of 5.4°C (at 

canopy level) was recorded during the field scan in May. The lower temperatures were found 

in denser canopies, highlighting the differences in microclimate through the field.  

Figure 43 shows the spatial distribution of the four on-line predicted soil properties (CEC, 

TN, MC and OC), indicating small spatial variability, hence, might not have effect on crop 

diseases, an assumption to be tested further below. Clear similarity between crop yield 

(Figure 44) and NDVI (Figure 42) can be observed. The highest yield is recorded in the 

middle part of the field, which coincides with the NDVI map. This is in line with other 
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studies, reporting that NDVI of previous years can be used as an indicator for yield in the 

following years (Mkhabela et al., 2011). 

 

 

Figure 41: Disease severity; On-line predicted maps of fusarium head blight (FHB) 

measured at milk growth stage 72 (july 2015), early yellow rust measured at booting growth 

stage 43 (may 2015), and late yellow rust measured at milk growth stage 72 (july 2015). The 

disease is classified on a 0 to 5 scale, where 0 indicates low disease presence and 5 indicates 

high disease. 
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Figure 42: Properties attributed to the canopy; On-line measured normalised difference 

vegetation index (NDVI), along with the 60 samples based developed maps for leaf area 

index (LAI), canopy air temperature and humidity. These data were all collected at the 

booting growth stage 43, in May 2015. 
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Figure 43: Soil properties; On-line predicted soil cation exchange capacity (CEC in 

Cmol/kg), total nitrogen (TN in %), moisture content (MC in %) and organic carbon (OC in 

%). The soil properties were collected before the seed was drilled in September 2014. 



237 

 

 

Figure 44: Yield map of wheat measured in September 2015. 

 

Blackgrass (Alopecurus myosuroides) is a widespread perennial weed, which is notoriously 

difficult pest in temperate cereal crops. Blackgrass was noted in small patches within the 

field, specifically in the north part of the field, corresponding to areas of low quantity grain 

(Figure 44) and high LAI (Figure 42).  In severe epidemics, blackgrass can cause up to 50% 

yield losses in winter wheat (Moss, 2013) 

7.3.2 K-means clusters  

A k-means cluster is an unsupervised learning algorithm, which partitions multiple 

observations into a suitable number of clusters, and a data point is classified into a cluster 

point based on the cluster with the nearest mean (MacQueen, 1967), which allowed MZ 

based on multiple properties to be delineated, for VRFA and SH.  

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html#macqueen
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The K-mean clustering carried out for 1) SH, (Figure 45) 2) T1 and T2 variable fungicide 

applications (Figure 46) and 3) T3 variable fungicide application resulted in different 

numbers of clusters (Figure 470).  For SH, where on-line predicted FHB and late yellow rust 

were included in the analysis, the k-mean clustering resulted in two classes (Figure 45). 

Cluster 1 (Figure 45) demonstrated high normalised means associated with high yellow rust 

and FHB spread, whereas cluster 2 associated with lower spread of both diseases. Therefore, 

it is a straightforward decision of be made for classifying the wheat yield into high quality 

and low quality, associated with the cluster 2 and cluster 1, respectively. This classification is 

made assuming that FHB presence relates to mycotoxin accumulation and can cause 

downgrading of grain on the market, causing economical loss (Parry et al., 1995). Yellow 

rust was included in the classification, as infection reduces quantity but also affects grain 

filling. Yield losses in wheat from yellow rust infections are usually the result of reduced 

kernel number per ear and low weight (Prescott et al., 1986). Small grains are associated with 

low flour extraction rates (during milling), and low energy contents for livestock feed 

(Gooding and Davies 1997; Rose et al., 2001). Grain protein content is often reduced with 

infection by rust (Dimmock and Gooding, 2002). A higher protein content in the grain can 

fetch higher prices (Devadas et al., 2014) 

http://onlinelibrary.wiley.com/doi/10.1111/mpp.12116/full#mpp12116-bib-0107
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Figure 45: K-means cluster analysis based on the on-line predicted late yellow rust and 

fusarium head blight (FHB) showing two classes to be adopted for the selective harvest (SH). 

 

The k-mean cluster analysis for T1 and T2 variable fungicide applications using on-line 

predicted early yellow rust, and the four soil properties, NDVI, LAI, temperature and 

humidity has resulted in two clusters (Figure 46). It was necessary to rank these two clusters 

into highly and poorly infected. In cluster 1, high yellow rust is associated with low NDVI 

and LAI, indicating degraded crop growth (Figure 46). A smaller crop density (smaller LAI 

and NDVI) could permit a greater penetration and distribution of the yellow rust spores 

(Whetton et al., 2016d). However, moisture is essential for yellow rust infection. Yellow rust 

is most likely to occur in areas with a cool and moist environment during the growing season, 

with the optimum temperature for urediniospore germination being between 7 and 12°C 

(Schröder and Hassebrauk, 1964; Chen et al., 2014). A denser canopy is more likely to 

http://onlinelibrary.wiley.com/doi/10.1111/mpp.12116/full#mpp12116-bib-0113
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maintain a higher humidity, but to heat up and cool down slower compared to a sparse 

canopy (Dammer, 2003). The cluster analysis demonstrates no influences of the on-line 

predicted soil properties, as no clear differences in the normalised mean values for the four 

soil properties can be observed between the two clusters. This is expected due to the small 

variability measured throughout the field area. Only minor differences can be attributed to 

MC and CEC. Due to the higher yellow rust spread of cluster 1, a high fungicide application 

rate would be proposed, whereas a low application rate would be proposed for cluster 2.  

 

 

Figure 46: K-means cluster analysis for variable rate fungicide application (VRFA) at the T1 

and T2 growing stages. Input data were measured normalised difference vegetation index 

(NDVI), air temperature, air humidity, leaf area index (LAI), on-line predicted soil organic 

carbon (OC), total nitrogen (TN), moisture content (MC) and cation exchange capacity 

(CEC), and on-line predicted early yellow rust disease. 
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The K-mean cluster analysis for T3 variable fungicide application results in three clusters 

(Figure 47). Similar to that for T1 and T2 growing stages and due to the small spatial 

variability range, the effect of on-line predicted soil properties on FHB spread is negligible, 

although minor differences in normalised means can be observed for MC and CEC. Again 

lower LAI and NDVI (lower crop density) of cluster 1 associate with higher air temperature 

and lower air humidity than those of clusters 2 and 3. This has resulted in cluster 1 having the 

largest FHB pressure, and has negatively affected the crop growth indicated as low NDVI 

and LAI. The clear majority of cluster 2 areas are along the edge of the field, where it is 

understood that there is a higher risk of inoculation, due to the hedgerow (Jenkinson and 

Parry, 1994; Champeil et al., 2004; Imathiu et al., 2013). Due to the degree of FHB pressure, 

clusters, 1, 2 and 3 have been classified at the highest, medium and lowest risks for FHB 

severity. Whilst soil properties have little influence on crop disease severity in this study 

field, it is suggested to continue accounting for them in future, particularly in fields with high 

variability in soil properties. 
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Figure 47: K-means cluster analysis for variable rate fungicide application (VRFA) at the T3 

growing stage. Input data were measured normalised difference vegetation index (NDVI), air 

temperature, air humidity, leaf area index (LAI), on-line predicted soil organic carbon (OC), 

total nitrogen (TN), moisture content (MC) and cation exchange capacity (CEC), and on-line 

predicted fusarium head blight (FHB) disease. 

 

7.3.3 Treatment maps 

MZ maps for the SH developed by k-mean cluster analysis using on-line predicted late 

yellow rust and FHB show two distinctive MZs (Figure 45 and Figure 48). Based on this MZ 

map, the field was divided into experimental plots of 12 m width to match the width of the 

cutting head of a combine harvester, which would be used for performing SH. The owner of 

the Duck End Farm (the study farm) claimed that in recent years increasing levels of 

mycotoxin have been witnessed. Therefore, a variable harvest will enable reducing the 

economic loss and increase efficiency by separating the harvested wheat grain into two 

categories of high and low quality and selling it separately. This SH would also reduce the 
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mycotoxin levels in grain and toxic influences on human health. MZ1(Figure 48) associated 

with cluster 1 in Figure 45 is with high FHB presence and  high risk for mycotoxin presence 

and toxic effects on human health, whereas MZ 2 associated with cluster 2 is of low risk of 

mycotoxin presence and the grain can be sold at a higher price than that in MZ1. 

Figure 49 and Figure 50 illustrate spatial distribution MZs and the division of the field area 

into 24 m width plots, responding to a fungicide sprayer boom width of 12 m either side of a 

tramline. West et al. (2003) discussed the highest benefit to variable fungicide applications is 

in diseases, which make a small number of large areas, with a boom containing separately 

controllable sections. However, at the commercial farm this technology was not available, so 

the VRFA maps are based on 24m widths (with the standard being 12m on either side). MZ 2 

in Figure 49, associates with cluster 2 in Figure 46 indicates low disease in the centre, 

whereas MZ 1 at the field hedges linked with cluster 1 refers to high yellow rust. It’s 

proposed that this MZ map is adopted for VRFA for T1 and T2 growing stages. The MZ map 

(Figure 50) for VRFA for the T3 application stage shows three MZs of high (northern and 

southern edge areas), medium (east and west edge areas) and low (central areas) FHB spread, 

associated with cluster 1, cluster 2 and cluster 3, respectively (Figure 47). The general shape 

of the MZ map here (Figure 43) is similar to that of the one developed for yellow rust for T1 

and T2 application times (Figure 46), but the former is divided into three MZs not two as for 

the latter map.  
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Figure 48: Management zone (MZ) maps for selective harvest (SH), The map on the left 

shows high disease infection (MZ 1) and low disease infection (MZ 2) which is obtained by 

k-means clustering that included on-line predicted fusarium head blight (FHB) and late 

yellow rust.  With the right map showing high and low infection zones on the right, with the 

field being split into plots of 12 m (due to the combine harvest cutting head). 
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Figure 49: Management zone (MZ) maps for variable rate fungicide application (VRFA) at 

the T1 and T2 growing stages. The map on the left show low yellow rust (MZ 1) and high 

yellow rust (MZ 2), which is obtained by k-means clustering that included, measured canopy 

properties (normalised difference vegetation index (NDVI), air temperature, air humidity, and 

leaf area index (LAI)), on-line predicted soil (organic carbon (OC), total nitrogen (TN), 

moisture content (MC) and cation exchange capacity (CEC)), and on-line predicted early 

yellow rust disease.  With the right map showing high and low infection zones on the right, 

with the field being split into plots of 24 m (due to the boom width). 
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Figure 50: Management zone (MZ) maps for variable rate fungicide application (VRFA) at 

the T3 growing stages, The map on the left show high fusarium head blight (FHB) (MZ 1) 

and medium FHB (MZ 2), and high FHB (MZ3), which is obtained by k-means clustering 

that included, measured canopy properties (normalised difference vegetation index (NDVI), 

air temperature, air humidity, and leaf area index (LAI)), on-line predicted soil (organic 

carbon (OC), total nitrogen (TN), moisture content (MC) and cation exchange capacity 

(CEC)), and on-line predicted FHB.  With the right map showing high and low infection 

zones on the right, with the field being split into plots of 24 m (due to the boom width). 

 

Grain is commonly tested for mycotoxin content at or post-harvest, where time consuming 

and expensive laboratory tests are needed (HPLC, serological rapid tests, Fast-DON-

ELISA-test) (Thate et al., 2008). Fusarium damaged wheat grains can be detected by 

hyperspectral imaging with an accuracy of up to 95%. Mycotoxin content detection 

depended on important wavelengths in the NIR range of 1204, 1365 and 1700 nm, whereas 

spectral differences in the ranges between 1425 to 1440 nm and 1915 to 1930 nm are 
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important for the detection of mycotoxin DON in the grain (Delwiche 2003; Singh et al., 

2007; Peiris et al., 2009). However, it is uncertain to how well different fungi may be 

distinguished using NIR (Peiris et al., 2009). 

The downgrading of grain can be in response to a percentage of the harvested grain, which 

reduces the quality or surpasses mycotoxin health limits. However, the BoMill TriQ 

(Bowmill AB, Sweden) was studied and showed the capability in bulk separating good 

quality wheat grain from downgraded fusarium infected grain, using crude protein content 

(Kautzman et al., 2015). With the increased awareness of food security, and the knowledge 

that one third of food is currently lost or wasted, innovative studies are needed to maximise 

yields reaching the market (Gustavsson et al., 2011). 

 

7.3.4 Economic benefits 

Table 35 summarises the yield and average disease development in each MZ. For SH, the MZ 

2 (low disease pressure shown in Figure 48 and Figure 45) associates with a higher average 

yield (8.2 tha-1) and lower average late yellow rust (1.9) and FHB (0.54), as compared to MZ 

1 (6.9 tha
-1

, 2.9 and 0.87, respectively). Similarly, for VRFA at T1 and T2 growing stages, 

MZ 2 (lower early yellow rust pressure shown in Figure 46 and Figure 49) is associated with 

higher average yield (8.3 tha
-1

) and lower early yellow rust pressure (1.2), as compared to MZ 

1 (6.7 tha
-1

 and 2.2, respectively). For the variable fungicide application at the T3 growing 

stage, the MZ 3 (lowest FHB pressure as shown in Figure 47 and Figure 50) has the highest 

average yield (8.3 tha
-1

) and lowest FHB (0.54), followed by MZ 2 and MZ 1, respectively 

(Table 35). The consistent link between the yield and disease pressure in the three studied 
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cases proves the correct classification of the field area into proposed MZs, so that MZs with 

high disease pressure associate with low yield and vice versa.  

 

Table 35: Statistics of yield and disease pressure (fusarium head blight (FHB), early and late 

yellow rust (YR)) of each management zone (MZ), for the variable rate fungicide 

applications (VRFA) at growing stage T1 and T2 (which consider soil properties, canopy 

properties and early yellow rust); at growing stage T3 (which consider soil properties, canopy 

properties, and FHB); for the selective harvest (SH) (late yellow rust and FHB). For the VR 

T1 and T2 applications two MZ are considered; MZ1 (high yellow rust disease) and MZ2 

(low yellow rust disease). For the VR T3 applications three MZ are considered; MZ1 (high 

FHB disease) and MZ2 (medium FHB disease) MZ3 (low FHB disease). SH considers two MZ; 

MZ1 (lower quality crop) and MZ2 (higher quality crop). 

 MZ Total 

cluster 

area, ha 

Total 

yield, t 

Average 

Yield,  

tha
-1

 

Average 

early YR 

Average 

late YR 

Average 

FHB 

SH MZ1 4.5 33.2 6.9 NA 2.9 0.87 

MZ2 6.3 51.9 8.2 NA 1.9 0.54 

VR T1 

and T2 

MZ1 4.8 36.5 7.6 2.2 NA NA 

MZ2 6 49.8 8.3 1.2 NA NA 

VR T3 MZ1 3.6 26.3 7.3 NA NA 0.8 

MZ2 3.2 25.9 8.1 NA NA 0.71 

MZ3 4 33.2 8.3 NA NA 0.54 
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The cost-benefit analysis of SH based on two MZs proposed in this work (Table 36) reveals 

that a total saving of £519 per field (£48.05 ha
-1

) would be gained, as compared to the 

homogeneous harvest of the entire field area. This is because of the higher price that the SH 

could provide for almost 59% of the field area with high quality of grains (FWI, 2016) 

harvested from MZ2 with low FHB spread or low mycotoxin concentration. 

Table 36: Cost-benefit analysis results comparing the selective harvest (SH) with the 

homogeneous harvest (HH), based on on-line available prices of grain (FWI, 2016). 

Management zone (MZ) 2 being of high quality grain (low fusarium head blight (FHB) 

spread and low mycotoxin concentration) and MZ1 being of low quality grain (high FHB 

spread and high mycotoxin concentration).   

Harvest 

type 

MZ Total 

area, 

ha  

Total 

yield, 

t 

Price, 

£/t 

Price 

per 

MZ, £ 

Total 

field 

price, £ 

Difference 

(HH – SH) 

for field, £ 

Difference 

(HH – SH), 

per ha, £ 

SH MZ1 4.55 33.2 135 4482 12007.5 519 48.05 

MZ2 6.35 51.9 145 7525.5 

HH All 

field 

10.8 85.1 135 11488.5 11488.5 

 

VRFA at the T1 and T2 growth stages aimed at protecting the third, second, and flag leaves 

from foliar diseases, such as yellow rust. In this study, VRFA is split into two areas of high 

and low disease pressure as compared to a homogenous rate application applied as the full 

dose. The calculated potential benefit of the VRFA at the T1 and T2 was £95.04 per 

application for this field (£190.08 for the T1 and T2 applications), with an average saving of 

£8.8 per ha per application (or £17.6 for two applications) (Table 37), compared with the 

homogeneous application. This is based on the assumption that yellow rust has a direct link 
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with grain yield, and that a lower dose would not have significant negative impacts. The 

homogenous rate would consume 7.776 L Proline 275 per application for the 10.8 ha field, 

whereas the variable rate would need 6.048 L, suggesting a potential reduction of 1.73 L per 

application (or 3.46 L for the two applications). This reduction would sum up to a 22.24% 

reduction in fungicide application by adopting the variable application method, as compared 

to the homogeneous application. 

The VRFA at the T3 application stage is usually an ear wash aimed at preserving grain 

quality from diseases such as FHB. This application in the study field would be based on 3 

rates according to the three MZ delineated by the k-mean clustering (Figure 47 and Table 37). 

Treatments proposed are of full dose for the heavily infected MZ1, 75% dose for the medium 

infected MZ2 and 50% dose for the low infected MZ3, compared to the full dose rate for the 

homogenous application proposed for the entire field area. The per field potential saving of 

the VRFA at the T3 growth stage is £191.2, with an average saving of £17.7 ha
-1

 (Table 37). 

The homogenous rate would consume 21.6 l Adexar per 10.8 ha total field area, whereas the 

VRFA would consume 16 l, with a potential reduction of 5.6 l per application, or 25.93% to 

be expected by adopting the VRFA, as compared to the uniform application. 
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Table 37: Cost-benefit analysis results for variable rate fungicide application (VRFA) at T1 

and T2 growth stages, and at T3 growth stage, as compared to homogeneous application 

(HA). Management zones (MZs) 1, 2 and 3 refer to high dosage rate, medium rate and low 

rate, respectively. Fungicide used is Proline 275 (£34 per litre) for T1 and T2 application and 

Adexar (£55 per litre) for T3 application. 

 Total 

area, 

ha 

Total 

yield 

Application 

rate, lha
-1

 

Price of 

chemical 

l
-1

, £ 

Price of 

chemical 

ha
-1

, £ 

Cost per 

treatmen

t, £ 

Difference 

(HA – 

VR) for 

field, £ 

Difference 

(HA – 

VR), ha
-1

, 

£ 

T1andT

2 

MZ1 

high 

6 46 0.72 55 

 

 

39.6 237.6 95.04 8.8 

MZ2 

low 

4.8 39.8 0.36 19.8 95.04 

HA 10.8 85.8 0.72 39.6 427.68 

T3 MZ1 

high 

3.6 26.3 2 34 

 

68 244 191.2 17.7 

MZ2 

mid 

3.2 25.9 1.5 51 163.2 

MZ3 

low 

4 33.2 1 34 136 

HA 10.8 85.4 2 68 734.4 

 

By combining he SH with the VRFA at T1 and T2 and at T3 application times, a potential 

saving of £900.18 is expected for this field, which is an average of £83.35 per ha. It is 

possible to consider both methods as a combined economic benefit as the SH is considering 

the savings from preventing down grading of the grain, if the full field were to be collected 

homogenously, whilst the variable fungicide applications consider the savings from fungicide 

costs compared to a full homogenous rate. VRFA are here assumed to maintain the grain 
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quality and quantity by applying higher rates on needed areas, compared to a full rate, and not 

improve the quality. VRFA would only be assumed to improve grain quantity and quality if 

compared to a homogenous reduced or half rate. Thus, SH would still be required to separate 

the higher quality grain from the lower quality areas. The current technology of fungal 

disease treatment based on the CROP-meter offers economic benefits by just reducing 

fungicide input, but does not necessarily increase crop quality or quantity (Ehlert et al., 

2003). The suggested methodology in the current work may lead to not only economic, but 

environmental and social benefits. The potential reduction in the amount of fungicide applied 

(Table 37) would lead not only to reducing the environmental impact due to reduced soil and 

water contamination, but improve the quality of grain harvest, by targeting areas of risk to 

fungicide pressure with the larger fungicide concentrations. The social benefit is associated 

with less mycotoxin concertation in human consumed grain obtained with SH. This could be 

considered from the other perspective, that if a field has generally a low disease spread, and 

the farmer or agronomist would otherwise prescribe a half dose for the field, they can add a 

full dose in the areas recognised to be at risk. The reason this is of interest is better control of 

the disease (by applying higher rates on risk areas than lower rates homogenously), and 

lowering the chance of the efficacy of the fungicide product being reduced in the long term, 

as fungal strains adapt and develop increased immunity (FRAC, 2010).  

There is a need to recognise the current work’s proposed method of SH and VRFA. However, 

before the current work can be adopted in practice, further work is needed to account for 

cost-benefit analysis, which includes the cost of data collection and application of the 

process. The costs of implementing both SH and VRFA have not been discussed. It is 

important to acknowledge that initially extra costs would be incurred in fuel consumption and 

grain storage. However, if such methods prove to be beneficial, agricultural equipment could 
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be modified or developed to accommodate both methods, eliminating the need for additional 

driving and grain storage trailers. Purchasing the equipment would have an initial cost, which 

will vary depending on the specifications of the imager (size, wavebands, resolution, etc.), 

with a low spatial and spectral resolution camera being more affordable. As the field 

develops, options of leasing equipment are also increasing. Details on hyperspectral imager 

costs are by request and vary between suppliers. For an imager with similar spec to the one 

used in this study costs of around £10,000 should be expected. Whilst the cost of the 

hyperspectral equipment has not been included in this study, through further work we aim to 

investigate if the economic and environmental benefits would support the expense. However, 

many of the issues that West et al. (2003) highlighted with predicting economic benefit are 

still relevant today, with limitations of farming equipment being common i.e., boom length 

and variable section control. Furthermore, costs of fungicide and prices of grain continue to 

vary (FWI 2016). Predicting economic benefit becomes further taxing when considering the 

increasing legislation on the choice of fungicides, mutations of fungicide resistant disease, 

and the impacts of climate change, the efficacy of disease control, and the response to 

fungicide treatment (Sung and Cook, 1981; De Vallavieille-Pope et al., 1995; Rossi et al., 

2001; Xu, 2003; Dufault et al., 2006; FRAC, 2010; Mielecki, 2011). 

The current work assesses the use of high spatial resolution data to compare the economic 

and environmental benefit of a VRFA and a SH to a conventional homogenous practice. 

Whilst the study found initial economic savings of £83.35 per ha, the results are specific to 

this field, crop and year. For a decision tool that would recommend a time of spraying and 

VRFA, further components would need to be considered such as the use of air sampling for 

the detection of airborne pathogens. West et al. (2008) combined air sampling with 

polymerase chain reaction analysis, for the quantitative identification of Pathogens. A process 
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based model including climate data would create a robust decision tool, where parameters 

could be considered relating to fungicide applications. In conventional farming, fungicides 

are often applied in response to agronomists’ visual assessments. An example of prescribed 

fungicides can be found in Appendix D. This study has highlighted the potential economic 

benefit of the disease mapping methodology for VRFA and SH, compared to conventional 

methods. However, further work should consider a combination of disease mapping, 

pathogen sensor technologies, and temporal data (such as plant growth, and climate data) in a 

process based model, for production of a robust decision tool.  

7.4 Summary conclusions 

The study explores the virtual cost-benefit analysis results of variable rate fungicide 

applications for yellow rust, compared to the conventional method of homogenous full rate 

application. This analysis has also included selective harvest against homogeneous harvest 

when fusarium head blight disease protection concerned. The virtual total calculated profit of 

combining selective harvest and variable rate fungicide application is £83.35 per hectare and 

an environmental benefit of fungicide reduction of was found to be around 25%. Air 

sampling for pathogens should also be considered in future work for a dynamic decision tool 

of disease site specific management. 

  



255 

 

8 Conclusions and further work 

Chapter Synopsis; 

This chapter includes a short discussion about some recent publications, revisits the 

hypotheses, aims, and objectives of the thesis, and discusses and highlights the previous 

chapter’s conclusions and further work. Drawing attention to the recognised gaps in 

knowledge, and how the thesis has tried to address them. Discussing the potential further 

work which could take the data introduced and discussed in this thesis, to further develop and 

full fill the gaps in knowledge.   

8.1 Recent publications 

Bhattarai et al. (2017) used Multivariate and cluster analysis in distinguishing soil limiting 

factors and grouping types of coffee farms. Where they attempted to understand variations 

and yield gaps from farm resources. Highlighting multiple farm variations influencing yield 

variations, soil properties were one of the major contributors in yield variability, specifically 

noting the (Ca + Mg)/K ratio, and soil Fe content. However, Chenu et al. (2017), encourages 

the use of process based models for understanding crop growth and yield gaps, which should 

be based on worldwide climate data, soil properties and characteristics, cropping practices 

and local conditions. Supporting that the studies on yield limiting factors (in chapter 3), 

whilst interesting for the field studied to understand field level yield variations, process based 

models are required for a more global application.  

Pantazi et al. (2017) were capable of distinguishing between yellow rust and nitrogen stress at 

canopy level with an accuracy of over 95% for three techniques of hierarchical self-

organizing classifiers. Which highlights the importance of distinguishing between biotic and 

abiotic factors and the potential of a hyperspectral imager to do so. Masri et al. (2017) found 
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the use of thermography was useful in detecting the advancement of FHB after inoculation. 

Finding that air temperature to fusarium infected ears was negatively correlated. This would 

be an interesting aspect to involve and improve FHB detection which was investigated in this 

thesis (chapters 5, 6 and 7).  

A review by Mahlein (2016), discusses the use of optical sensors for the recognition of crop 

disease. Thermography and chlorophyll fluorescence is sensitive to early stress symptoms in 

plants, however, they are not alone capable of being used for specific disease detection. 

Suggesting a data fusion and combined use with RGB images and hyperspectral techniques, 

highlighting the development process that the imaging technologies need to undergo. This is 

a subject touched upon through the thesis, particularly chapter 4, which focuses on the current 

limitations of applying on-line a proximal hyperspectral imager, to a cereal crop canopy.  

Mahlein (2016) encourages future use of date fusion, from different sensors in the 

understanding of the plant-pathogen systems. Whilst this thesis attempted the use of multiple 

sources of data, and the fusion of data (chapter 7) for a greater understanding of disease 

management, there are still many more technologies that could be incorporated in future 

work. It also highlights the potential use of different platforms of data, which could be 

utilised to overcome some of the current limitations. 

 

8.2 Objectives and chapter conclusions 

The Introduction in Chapter 1 brings attention to areas of particular interest, which have 

limited published knowledge, they are discussed further in chapter 2. This chapter aims to 

summarise the conclusions found in the previous chapters and how they fulfil the highlighted 

objectives.  
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 The aim of this study;  

To apply a hyperspectral imager on-line application to cereal crop disease recognition, 

critically appraising the existing technology. It also investigates a novel modelling approach 

for quantifying the crop yield limiting factors. The key aim is to produce management zone 

maps for variable rate fungicide application and selective harvest, in response to crop disease 

pressures, soil characteristics and micro-climatic conditions.  

Yellow rust and fusarium head blight (FHB) was selected to be the two diseases studied 

through the thesis, as they have a history of occurrence at the studied farm. The selection also 

meant that both a significant foliar disease (yellow rust) and a significant ear disease (FHB) 

could be included in the study.  

This aim has been broken into five objectives, which are stated and discussed below; 

8.2.1 Objective 1:  

“To critically appraise different approaches, and identify the best configuration for the 

hyperspectral imaging systems for in-situ and on-line field measurement of crop disease.” 

Conclusions of Chapter 4;  

Whilst progress has been made in disease recognition in the field, there are few on-line (in-

situ and applied with a moving platform, e.g. an agricultural vehicle) yellow rust specific 

identification systems and none for fusarium head blight (FHB). Objective 1 was designed to 

address this observation in literature. And is addressed within the literature review and further 

assessed in chapter 4; “optimising the configuration of a hyperspectral imager for on-line 

measurement of wheat canopy”. The literature review summarises the current approaches and 

developments in on-line spectroscopy and hyperspectral imaging. Chapter 4 focuses 

specifically on hyperspectral imaging and evaluates the individual and interaction effects of 
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the system, and the parameters that are of interest. Resulting in an optimal configuration for a 

high quality spectra assessed by signal-to-noise ratio (SNR) for an on-line hyperspectral 

imager, the influence of on-line measured soil moisture content (MC) and total nitrogen (TN) 

on SNR was also evaluated. This allowed for the following conclusions to be drawn:  

1) The integration time followed by the camera height and camera angle appeared to 

have the largest influence on the SNR. As integration, increased SNR increased, 

however a long integration time (>50 ms) was of a negligible influence and only 

slightly increased the SNR, but result in spectral saturation, hence should be avoided. 

An increase in camera angle benefitted SNR, however a decrease in camera height 

benefitted SNR. 

2)  The PCA similarity map showed that the light height and distance have a strong 

correlation with each other but a minimal influence on SNR.  

3) Both on-line measured MC and TN were found to have significant effects on the SNR 

of the wheat canopy spectra at 95% confidence. The on-line soil measurements 

revealed stronger spatial similarity between the hyperspectral SNR and MC maps 

(kappa value = 0.75), which was attributed to soil deformation below the tractor tyre.  

4) The variable reflected light intensity captured by the different pixels across the line 

imagery is an interesting factor to take into account, due to the impact of varying 

camera height during the on-line measurement. Whilst the solution suggested here is 

appropriate, it is camera specific.  

Further work is planned to overcome variation in SNR associated with camera height changes 

(vibration, bounce in the boom, and soil deformation during the on-line measurement) by the 

further investigation in spectra pre-processing. It is also planned to implement these 
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hyperspectral measurement configurations for on-line measurements of crop canopy for 

detection of crop health and disease presence, which is approached in chapters 5 and 6. 

8.2.2 Objective 2:  

“To evaluate the individual and interaction effects of parameters limiting crop growth and 

yield”. 

Conclusions of chapter 3; 

To the best of our knowledge, no previous studies have utilised high sampling resolution data 

on multi-soil properties collected with a vis-NIRS on-line sensor to quantify crop yield 

limiting soil factors using a VNRX model. Assessing the contribution of disease collected 

through high resolution hyperspectral imaging, in comparison with nutrient factors collected 

through high resolution vis-NIR as a yield limiting factor has not yet been approached in 

literature. Whilst studies have been undertaken to assess yield limiting factors, few have used 

high resolution spectroscopy. Studies in the area have historically used sub plots within a 

field, as (Sylvester-Bradley and Kindred, 2009). An alternative to this would be to consider 

the entire field, this, however, requires a higher sampling resolution of environmental 

parameters, crop disease, and yield mapping.  This is partially addressed by Objective 2, 

approached in chapter 3, yield limiting factors. This chapter is presented in two parts. Part 1 

“A new non-linear parametric modelling method to quantify influence of soil properties on 

crop yields - Methodology”, which focused towards the quantification of soil related yield 

limiting factors. This was based on a parametric modelling technique of a Volterra non-linear 

regressive with eXogenous inputs (VNRX) technique which was applied and compared with 

a random forest technique through two cropping seasons of 2013 and 2014. And Part 2 “A 

new non-linear parametric modelling method to quantify influence of soil properties on crop 

yields - Application to on-line soil data” where the parametric modelling technique of a 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2010.02276.x/full#b34


260 

 

Volterra non-linear regressive with eXogenous inputs (VNRX) technique was applied to 

NIR-Vis on-line collected soil data. 

Concluding that; 

1) The results of VNRX-LN model accounting for both linear and non-linear interactions 

explained 52.2% and 50.7% of yield variation in 2013 and 2014 respectively, which 

were much higher than those obtained with VNRX-L (total contributions of 19.15% 

and 8.5% in 2013 and 2014, respectively), accounting for the linear interaction only.  

2) The contribution of the RF model produced the highest contribution of 55.6% in 

2013, which dropped down considerably to 45.8% in 2014. 

3) The VNRX-LN model indicated that P, CEC and OC are the highest contributors to 

oilseed rape yield variability in 2013 and P, Na and OC to wheat yield variability in 

2014. TN was surprisingly a small contributor particularly in 2013. It was observed 

that P and OC are consistently the highest contributors to yield variability through all 

VNRX models. Light, N, P, and K are the main factors affecting crop yield, the 

results in this chapter are specific to the yield variability and were attributed to the 

properties being more limited in the field, it did not measure for factors that were not 

limiting (such as N which was applied as ferteliser). 

4) The RF analysis presented OC and TN to be the highest contributors to yield in both 

studied cropping seasons.  

5) The RF and VNRX-LN models were comparable in predicting contribution of soil 

properties to yield variation, with VNRX-LN being slightly higher, however the RF 

model provided a higher consistency for individual soil property importance.  

6) Yield variability for the VNRX-LN model showed a higher variability contribution 

from P and K and Na than the RF model, whilst P and K contribute to yield (P has a 
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direct link with crop yield), Na can have negative effects on moisture uptake, and can 

inhibit enzyme activities.  

The RF model is an established method, whilst the application of the VNRX-LN was a novel 

approach introduced in this thesis. It’s for these reasons that we will conduct further studies 

in quantifying yield variability with the new VNRX-LN method. 

The further work highlighted in the first part of this subchapter included the use of high 

resolution data on soil chemical properties, which is addressed in part two of the chapter; 

which further explores the objective of yield limiting factors within the field, drawing the 

following conclusions: 

1. The VNRX-LN model can be successfully used to quantify the influence of multi-soil 

properties, collected at high sampling resolution with an on-line soil sensor, on crop 

yield. 

2. The effect of soil properties on crop yield varied with soil property, with the largest 

contribution observed for CEC, Mg and TN, with error reduction ratio contribution 

(ERRC) values of 14.6%, 4.69% and 1%, respectively.  

3. The overall contribution of the eight soil properties sums up to an ERRC value of 

23.21%. This value was found to be surprisingly low, a large part of the studied field 

suffers from a drainage problem, and this is thought to have masked some of the 

effects of soil properties on crop yield, and contributed to the low value.   

The application of a VNRX to soil property, yield and NDVI data has been applied in chapter 

3 part 1 and 2. Showing there is still a significant variability in yield and NDVI, that has not 

been accounted for, the further work is to apply the method to more study sites and include 

other variables. Sites of variable Nitrogen should also be considered, as the model is limited 

to detecting the influence of limited and variable properties on the yield. This is believed to 
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be the main reason for the impact on yield variability from Mg. Appendix A demonstrates the 

initial results of disease (late yellow rust and FHB) contribution to yield and NDVI 

prediction, which is the same 10 ha field considered in chapter 7. Though in this model, soil 

properties were reduced to just 4 properties (OC, TN, MC, CEC) and had little impact on the 

yield and NDVI predictions, this is understandable as in chapter 7 the same properties are 

reviewed and had little variation through the field. Reinforcing that variable/precision 

agriculture is only appropriate for non-homogenous crop stands.   

8.2.3 Objective 3: 

“To create a spectral library using hyperspectral data to identify and quantify specific crop 

diseases (yellow rust and fusarium head blight) independent from water stresses”. 

 

Conclusions of Chapter 5; 

The monitoring and detection of stress and diseases in plants is vital for sustainable 

agriculture practice. This observation was considered best approached by first developing a 

technique for disease recognition independent of water stress, and is captured by objective 3 

“Chapter 5; Hyperspectral measurements of yellow rust and FHB in cereal crops: Part 1: 

Laboratory study”, addresses this objective by exploring the potential of a hyperspectral line 

imager (400-750 nm) with the use of linear partial least squares regression (PLSR) analysis, 

concluding 5 main points: 

1) The standard deviation (SD) of the wavelength range from 500 to 650 nm and the 

squared difference between 650 nm and 700 nm are of particular interest in 

discrimination between healthy, and yellow rust or FHB infected sites in a wheat and 

barley canopy. With the lowest 500-650 nm SD, and highest 650-700 nm squared 

difference being attributed to healthy crop, a noticeably lower 650-700 nm squared 
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difference attributed to yellow rust infected crop, and a noticeably higher 500-650 nm 

SD attributed to FHB infected crop.  

2) Yellow rust models performed more accurately than FHB models, which was 

attributed to the fact that yellow rust is a foliar disease, which has larger chance to be 

captured by the hyperspectral line image, as compared to FHB being head disease that 

appear late in the growing season.  

3) Scale-based assessment of yellow rust, based on 0-5 classes, produced a marginally 

more reliable model performance than the percent coverage data set.  

4) Modelling of yellow rust in wheat is rather more accurate than in barley, which is 

possibly due to wheat having larger leaves. Prediction results indicated moderate 

prediction accuracy for barley (RPD = 1.80 - 1.97; R²= 0.69 – 0.77) and good 

accuracy for wheat (RPD = 2.04 - 2.25; R²= 0.77 – 0.80). Therefore, it can be 

concluded that yellow rust can be detected with appreciable accuracy and reliability in 

both wheat and barley. Whilst the Logit scale applied for yellow rust for wheat and 

barley was able to distinguish between high and low (RPD = 1.2 and R² = 0.43, and 

RPD = 1.4 and R² = 0.79, respectively) 

5) Results for FHB prediction were of moderate accuracy for wheat (RPD = 1.5; R²= 

0.57) and able to distinguish between high and low values (RPD = 1.36; R²= 0.5) for 

barley, suggesting the need for a more effective measurement and modelling 

approaches for barley. FHB models were able to predict FHB infection severity, to an 

accuracy of low and high infection. Further work should be done to enable assessment 

of % FHB coverage.  

The laboratory trials in this study have been designed to emulate a field. The data used in the 

models was all collected from the wheat and barley trays, designed to simulate a field 
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canopy, so the variance of reflectance due to canopy is included in the models. Whilst other 

properties such as illumination angle, view positions, shadows, plant species, maturity and 

phenology can be controlled under the laboratory conditions, these parameters will have 

considerable influences under field conditions. Their on-line application is considered in 

chapter 6 which is the second part of this study.   

8.2.4 Objective 4:  

“To implement the hyperspectral imager for on-line detection and mapping of the spatial 

distribution of yellow rust and fusarium head blight in winter wheat and barley”. 

Conclusions of chapter 6; 

To the best of our knowledge, there are few on-line spectral recognition systems, which are 

capable of being disease specific for yellow rust, and none for FHB. Presenting a gap in 

knowledge for an on-line hyperspectral recognition system, capable of differentiating 

between water stressed, yellow rust and FHB infected crops. In addition to the necessity of an 

on-line disease recognition system, it has been reported that a greater occurrence of fungal 

diseases is observed in denser canopies, although a conclusive regression has not been 

obtained. This was approached in chapter 6 “Hyperspectral measurements of yellow rust and 

FHB in cereal crops: Part 2: on-line field measurement” to obtain objective 4. The chapter 

considers the potential of a hyperspectral line imager (400-750 nm) for the on-line 

measurement and mapping of yellow rust and FHB in wheat and barley, and discusses the 

impact of soil moisture and crop density on the disease distributions. Results reported 

allowed the following conclusions to be made; 

1. On-line hyperspectral measurement and mapping of yellow rust and FHB is possible 

with moderate accuracy in barley and good accuracy in wheat.  
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2. Yellow rust is more accurately measured, based on models developed with visual 

disease assessment, whereas assessment of FHB required photo interpretation to 

provide more accurate measurement. This is believed to be due to fusarium symptoms 

on ears being better captured in an RGB image, than yellow rust attacking the foliage. 

3. Photo interpretation-based on-line measurement of FHB was classified as good in 

wheat (RPD = 2.27; R²= 0.82) to moderately accurate in barley (RPD = 1.56; R²= 

0.61), whereas good (RPD = 2.5; R²=0.81 in wheat) and moderate (RPD = 1.82; R²= 

0.72 in barley) measurement accuracy was achieved for yellow rust by means of 

visual scale assessment. 

4. On-line maps developed in this study support that in large fields, disease 

concentration is higher at the edges of the field and then expand towards the inner 

parts through the growing season. However, the findings suggest that disease 

pressures in the smaller field were more evenly distributed across the entire field area, 

than the larger fields. 

5. A PLSR model developed for recognition of FHB and yellow rust in wheat, can be 

applied to barley with a slight reduction in accuracy. 

6. Soil texture and moisture content affect and canopy density and subsequently 

humidity, which in turn affect FHB and yellow rust spatial pattern. 

The suggested further work highlighted by this chapter, is approached in chapter 7 

“Management zone maps for variable fungicide application and selective harvest”. The 

suggestions being; to evaluate the impact of on-line maps of yellow rust and FHB on site 

specific recommendations of fungicides, and to adopt a management-zone concept for site 

specific applications and selective harvest.    
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8.2.5 Objective 5:  

“To adopt a data-fusion approach for delineation of management zones for variable rate 

fungicide application and selective harvest.” 

Conclusions of chapter 7; 

Diseases such as yellow rust can vary considerably in very short distances and reduce yields 

by up to 7 tha
-1

 (Bravo et al., 2003). The crop density could reflect multi-stresses occurring at 

the same time e.g. water, nutrients, temperature, disease etc. crop density is also dependent 

upon the climatic conditions each year and associated crop variety. The CROP-meter 

optimizes fungicide control by reducing fungicide input and maintains control, but does not 

increase crop quality or quantity, highlighting an un-met demand where quality and quantity 

of yield is improved by considering environmental parameters. To the best of our knowledge 

there are no proposed methods of precise management of fungal diseases, which takes into 

account a high spectral sampling resolution, of disease pressure and canopy and soil 

properties. This was approached in chapter 7 “Management zone maps for variable fungicide 

application and selective harvest” to obtain objective 5. 

The study proposed the delineation of management zone maps for variable rate fungicide 

application and selective harvest in one field with wheat subjected to yellow rust and FHB 

spread. A k-mean cluster analysis was explored to divide the experimental field into 

separated clusters (zones) based on on-line predicted FHB and yellow rust (measured with a 

hyperspectral imager), on-line predicted soil total nitrogen (TN), organic carbon (OC), 

moisture content (MC) and cation exchange capacity (CEC) (using an on-line visible and 

near infrared (vis-NIR) spectroscopy sensor), measured crop canopy normalised difference 

vegetation index (NDVI) and leaf area index (LAI), yield, and air humidity and temperature. 

The main findings highlight the following conclusions: 
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1) The field was divided into a different number of management zones depending on the 

input data layers used for the k-mean cluster analysis. Management zones with high 

disease pressure associated with low NDVI and LAI, and high air temperature and 

vice versa for low disease pressure management zones. 

2) Average overall reductions in fungicide of 22.24% (for T1 and T2 growth stages 

applications) and 25.93% (for T3 growth stage application) were calculated for the 

entire field area of 10.8 ha for variable rate fungicide application as compared to 

homogeneous application. 

3) The selective harvest of high quality grain from low quality grain would result in less 

risk of mycotoxins affecting human health. 

4) The virtually total calculated profit of combining selective harvest and variable rate 

fungicide application is £900.18 per field or £83.35 per hectare, divided into selective 

harvest of £48.04 ha
-1

, variable rate fungicide application at T1 and T2 growth stages 

of £17.6 ha
-1

 each and; T3 £17.7 ha
-1

). 

Future work should focus on the implementation of the proposed methodology in the field, to 

allow actual cost-benefit analysis to be carried out. The cost of collecting the multi-layer data 

on crop and soil characteristics and microclimatic conditions and yield responses should be 

accounted for in the cost-benefit analysis. Additional sensors could be involved, to produce a 

more robust decision support tool, and additional vegetation indices could be considered.  
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8.3 Hypothesis consideration 

The thesis suggested two hypotheses; 

 “Proximal hyperspectral imagery is capable of detecting specific crop diseases (e.g. 

Fusarium head blight and yellow rust) and applied on-line can be used to quantify their 

distribution pattern.” 

And; 

“Multi-sensor and data fusion of crop disease, and canopy and soil properties 

collected at high sampling resolutions, contribute to the quantification of the yield limiting 

factors, which can be utilised in variable management zones.” 

The first hypothesis has been proven true for the detection of only two diseases. To fully 

understand if the disease recognition is specific further diseases such as septoria should be 

considered. This would allow the current system to be tested on its capability to distinguish 

specific diseases, not just on the presence of a particular symptom, as septoria disease can 

also cause similar chlorosis symptoms to that of yellow rust. Chapters 5 and 6 show that with 

suitable disease assessments and PLS regressions, with hyperspectral data collected at an 

optimal configuration (chapter4), a good accuracy of prediction can be obtained for yellow 

rust infection and a moderate accuracy for FHB infection on-line.  

The second hypothesis has also been found true (though some variability still needs to be 

accounted for, such as disease and pest presence) through chapter 3, where VNRX modelling 

was utilised on soil properties to predict Yield (and further explored in the data provided in 

Appendix A), and the production of management zones through K-means clustering in 

chapter 7, where the potential cost benefits of applying the selective harvests and variable 

fungicide applications are discussed. 
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8.4 Contributions to knowledge 

Methods of yield variability have been assessed and found a possibility of attributing 55.6% 

(through VNRX modelling) and 52% (from RF modelling) of yield variability, from soil 

properties alone, both having a significance level of <0.01. The further work for this is to 

include disease data. Initial findings for this are provided in Appendix A, where they show a 

significant contribution of yield and predictions based on NDVI can be attributed to late 

yellow rust and FHB presence. A yield gap exists between current production and the 

maximum yield potential of a crop. Further work with detecting and mapping the crop and 

soil qualities, could help towards better management of crop limiting factors, to reduce the 

current yield gap. 

An optimal configuration for the application of a push broom hyperspectral imager to a cereal 

crop canopy has been suggested. With configurations of 0.3 m, 1.2 m, 1.2 m and 10° values 

of camera height, light height, light distance and camera angle, respectively. The optimum 

integration time for on-line field measurement was 50 ms.  

A hyperspectral technique coupled with PLSR can be successfully used for the estimation of 

yellow rust in winter wheat and barley canopy. At tray level ratio of prediction deviation 

(RPD) values of 2.25 (R²= 0.80) and 1.97 (R²=0.77) were calculated for wheat and barley 

based on scale measurement, and 2.04 (R²=0.77) and 1.80 (R²=0.69) for percentage coverage, 

respectively, which were classified as good accuracy in wheat and as moderately accurate in 

barley. FHB detection, results were less successful RPD = 1.5 (R²=0.57) (just at the edge of 

moderately accurate) in wheat and RPD= 1.36 (R²=0.5) (differentiate between high and low 

values) in barley). However, the disease recognition needs further applications to establish its 

reliability in the presence of additional crop diseases, such as septoria. Currently, it was 

trialled upon yellow rust (a foliage disease) and FHB (an ear disease), further applications 
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should be made on detecting these whilst other diseases are known to be present. i.e. 

detection of yellow rust in a yellow rust and septoria affected crop stands. This would allow 

greater understanding if the system is capable of being disease specific. 

It was found that photo interpretation was the most applicable and accurate for on-line 

measurement of FHB, which was classified as a good to moderately accurate recognition 

method, since the ratio of prediction deviation (RPD) values were 2.27 (R²=0.82) for wheat 

and 1.56 (R²=0.61) for barley. For yellow rust significantly improved results for the PLSR 

models were obtained when the ground truths were based on visual scale assessment, where 

model performance was classified as moderately accurate in barley (RPD = 1.82; R²=0.72) 

and good in wheat (RPD = 2.5; R²=0.81). 

A method of selective harvest has been suggested, with potential cost benefits (under certain 

assumptions) with Financial savings of £900.18 for the 10.8 ha field, with an average of 

£83.35 per hectare (harvest = £48.05 ha
-1

; T1andT2 = £8.8 ha
-1

 each and; T3 £17.70 ha
-1

) 

8.5 Further work 

The chapters have addressed the objectives, and aimed towards contributing to the current 

gaps in knowledge. However, each chapter has highlighted further work, which would 

contribute to knowledge. These have not been obtained in this thesis due to either being 

outside of the study’s focus, or due to time restraints. The recommended further work is 

summarised in 3 parts; yield limiting factors, hyperspectral imaging of disease, and 

management zones. 

8.5.1 Yield limiting factors 

Further work is suggested to validate the concept of Volterra Non-linear Regressive with 

eXogenous inputs (VNRX) models to study and quantify the effect of soil properties on crop 
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yield, on a larger number of fields. Where other affecting parameters such as, crop diseases 

(from the methods highlighted in Chapter 5), environmental factors (e.g., pests, topography, 

microclimate conditions), and soil physical properties (e.g., soil compaction, hydraulic 

conductivity, etc), should be considered in the analysis, to take into account the full picture of 

yield limiting factors. 

8.5.2 Hyperspectral imaging of disease 

Further work is planned to overcome variation in SNR associated with camera height changes 

(vibration, bounce in the boom, and soil deformation during the on-line measurement) by 

investigating further the variations of spectra pre-processing.  

8.5.3 Management zones 

This chapter suggests theoretical methods of selective harvest and fungicide application, 

using collected data from soil and canopy properties, and disease data compared to harvest 

data. Suggesting potential economic and environmental benefits under certain assumptions. 

The further work will be focused on applying these methods in practice. Air sampling for 

pathogens should also be considered for a dynamic decision tool, for disease management. 

8.6 Concluding remarks 

The homogenous application of chemicals throughout a field to control crop disease has been 

in practice in agriculture for nearly a century. There is an ever-growing demand for food. As 

the population growth continues to escalate, and the competition for agricultural land for 

alternative use rises, the pressure for maximizing yield increases. Fungicides are being 

removed from the market due to environmental concerns, they, along with disease resistant 

strains of crop, are succumbing to mutating fungal strains. It has become imperative to move 

away from conventional farming methods, and find a more sustainable approach. Whilst 
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research into alternative methods, such as precision agriculture is becoming more of a focus, 

there are still limitations, gaps in knowledge, and the application of this knowledge. Whilst 

it’s been recognised for a while that optical technologies are suitable for disease detection 

systems, no sensor-based technologies for disease detection commercially exist, that are 

directly related to a diseases presence within a field. This thesis has focused towards moving 

the technology to the field, to understand the yield limiting factors at high sample rates, 

recognise disease (yellow rust and FHB) in cereal crops (winter wheat and winter barley) and 

apply the technology on-line. This has been combined into approaches of variable fungicide 

applications and a selective harvest approach, which will hopefully contribute towards 

confidence in variable applications, and quantify the potential environmental and economic 

benefits. 
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APPENDICES 

 

Appendix A; yield limiting factors  

 
Yield NDVI 

Soil properties 9.99% 10.09% 

Soil properties and fusarium 28.24% 21.30% 

Soil properties and yellow rust 26.80% 26.65% 

Soil properties and fusarium and yellow 

rust 39.43% 40.26% 

Figure A: NARMARX model results, for soil properties and disease, for percentage 

contribution to yield and NDVI. 

 

Appendix B; ANOVA results 

    Df 
Sum 
Sq 

Mea
n Sq F value Pr(>F)   

light_h   1 1 1 
2.81E+

01 
1.14E

-07 *** 

light_d   1 1706 1706 
6.76E+

04 
< 2e-
16 *** 

camera_h   1 726 726 
2.87E+

04 
< 2e-
16 *** 

camera_angle   1 
1037

7 
1037

7 
4.11E+

05 
< 2e-
16 *** 

integration_time   1 
1688

00 
1688

00 
6.69E+

06 
< 2e-
16 *** 

light_h:light_d   1 587 587 
2.33E+

04 
< 2e-
16 *** 

light_h:camera_h   1 1 1 
5.81E+

01 
2.48E

-14 *** 

light_d:camera_h   1 1 1 
2.63E+

01 
2.97E

-07 *** 

light_h:camera_angle   1 1889 1889 
7.48E+

04 
< 2e-
16 *** 

light_d:camera_angle   1 477 477 
1.89E+

04 
< 2e-
16 *** 

camera_h:camera_angle   1 21 21 
8.39E+

02 
< 2e-
16 *** 

light_h:integration_time   1 30 30 
1.19E+

03 
< 2e-
16 *** 

light_d:integration_time   1 0 0 
7.87E+

00 
0.005

02 ** 

camera_h:integration_time   1 126 126 5.00E+ < 2e- *** 
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03 16 

camera_angle:integration_time   1 893 893 
3.54E+

04 
< 2e-
16 *** 

light_h:light_d:camera_h   1 43 43 
1.70E+

03 
< 2e-
16 *** 

light_h:light_d:camera_angle   1 325 325 
1.29E+

04 
< 2e-
16 *** 

light_h:camera_h:camera_angle   1 50 50 
1.98E+

03 
< 2e-
16 *** 

light_d:camera_h:camera_angle   1 8 8 
3.11E+

02 
< 2e-
16 *** 

light_h:light_d:integration_time   1 87 87 
3.45E+

03 
< 2e-
16 *** 

light_h:camera_h:integration_time   1 10 10 
3.80E+

02 
< 2e-
16 *** 

light_d:camera_h:integration_time   1 0 0 
4.66E+

00 
0.030

8 * 

light_h:camera_angle:integration_time   1 316 316 
1.25E+

04 
< 2e-
16 *** 

light_d:camera_angle:integration_time   1 120 120 
4.75E+

03 
< 2e-
16 *** 

camera_h:camera_angle:integration_time   1 20 20 
7.92E+

02 
< 2e-
16 *** 

light_h:light_d:camera_h:camera_angle   1 94 94 
3.72E+

03 
< 2e-
16 *** 

light_h:light_d:camera_h:integration_time   1 1 1 
4.89E+

01 
2.69E

-12 *** 
light_h:light_d:camera_angle:integration_ti
me me 1 73 73 

2.89E+
03 

< 2e-
16 *** 

light_h:camera_h:camera_angle:integration
_time ime 1 28 28 

1.12E+
03 

< 2e-
16 *** 

light_d:camera_h:camera_angle:integration
_time ime 1 14 14 

5.59E+
02 

< 2e-
16 *** 

light_h:light_d:camera_h:camera_angle:int
egration_time 

rati
o 1 2 2 

7.14E+
01 

< 2e-
16 *** 

Residuals   
13892

10 
3506

9 0       

Figure B: ANOVA results, considering parameters of light hight and distance, integration 

time, camera height and angle, for optimal configurations. Showing the significance of each 

parameter and there interactions. 
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Figure C-1: Proline 275 chemical label part 1 

 

 

Figure C-2: Proline 275 chemical label part 2 
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Figure C-3: Adexar chemical label part 1 
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Figure C-4: Adexar chemical label part 2 
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Appendix D: Example of agronomists notes  

 

Figure D: Example of Agronomy notes for the T2 application 

 

 

 

 

 

 

 

 


