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Abstract: Thermal and hyperspectral proximal disease sensing are valuable tools towards 
increasing pesticide use efficiency. However, some practical aspects of the implementation of these 
sensors remain poorly understood. We studied an optimal measurement setup combining both 
sensors for disease detection in leek and potato. This was achieved by optimising the signal-to-noise 
ratio (SNR) based on the height of measurement above the crop canopy, off-zenith camera angle 
and exposure time (ET) of the sensor. Our results indicated a clear increase in SNR with increasing 
ET for potato. Taking into account practical constraints, the suggested setup for a hyperspectral 
sensor in our experiment involves (for both leek and potato) an off-zenith angle of 17°, height of 30 
cm above crop canopy and ET of 1 ms, which differs from the optimal setup of the same sensor for 
wheat. Artificial light proved important to counteract the effect of cloud cover on hyperspectral 
measurements. The interference of these lamps with thermal measurements was minimal for a 
young leek crop but increased in older leek and after long exposure. These results indicate the 
importance of optimising the setup before measurements, for each type of crop. 
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1. Introduction 

The agricultural sector is under constant pressure to produce more efficiently and sustainably 
[1]. One of the most important factors for sustainable food production has always been disease 
management [2]. Now, globalisation has facilitated the spread of plant pathogens [3–5]. This, 
combined with changing climate conditions, poses great challenges for modern crop protection [6–
9]. Disease typically appears in patches, after which it starts spreading to the rest of the crop [10]. The 
ability to detect these infections and manage them site-specifically, i.e., in a precision agriculture 
approach, has the potential to significantly increase pesticide use efficiency and thereby reduce 
economic and environmental costs, compared to current full-field ‘homogeneous’ applications [8]. 
Thermal and hyperspectral sensors have been proposed as useful tools for site-specific crop 
management, in both aerial and ground-based measurements [11–16]. However, many practical 
aspects of using these sensors in proximal or remote disease detection in field conditions are not fully 
understood [17–19]. Researchers have compared the efficacy of disease detection for these sensors in 
general [11] or specifically for one disease [20]. It was found that the ability to measure dozens up to 
hundreds of wavebands in the visible and the near-infrared region of the spectrum is an important 
advantage of hyperspectral sensors. This makes it possible to analyse subtle changes in the spectrum 
related to for example leaf structure, cell components and photosynthetic capacity, making them a 
very versatile disease detection tool [21]. Thermal cameras are more specifically aimed at measuring 
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one parameter, for example temperature (through emission of radiation). They have been mainly 
used to detect abiotic stresses related to irrigation scheduling, although their use for biotic stress 
detection has also been shown, even post-harvest [22,11]. The combination of these two sensors in a 
data fusion approach could further increase disease detection capability [23]. For pharmaceutical 
applications, some research has been done to investigate practical difficulties of the use of 
hyperspectral imagery and practical solutions have been proposed [24]. Such a practical guideline 
does not yet exist—to the best of our knowledge—for disease detection, particularly for the fusion of 
thermal and hyperspectral sensors. Researchers have instead focused on determining the optimal 
setup for a single sensor for in-field measurement conditions. Franceschini et al. (2017) for example 
compared a handheld multispectral sensor to an airborne hyperspectral sensor to determine which 
of these setups performed best for measuring a series of vegetation indices [25]. Garzonio et al. (2017) 
and Vargas et al. (2020) further discuss the setup of a hyperspectral sensor for drone-based 
measurements [26,17]. Another recent example is the work of Thompson and Puntel (2020), which 
discusses the development of a practical decision support system based on drone-based multispectral 
measurements [27]. 

From literature, we see that several factors affect the quality of hyperspectral reflectance 
measurements. Factors related to incident solar radiation include the position of the sun, related to 
the crop and the viewing angle of the sensor, and cloud cover [28–30]. It is advised by some authors 
to work under cloudy conditions if possible, to counteract solar position variations [31], but this is 
not practical in most climates around the world. Plant-related properties affecting reflectance 
measurements include plant species, biotic and abiotic stresses, including drought, nutrients shortage 
and disease presence, within-crop shading and plant growth stage [28,32–35,19]. Finally, 
measurement height, exposure time (ET) of the sensor and angle and distance of artificial lights also 
affect reflectance measurements. Based on these interfering factors, Whetton et al. (2017) established 
a method to optimize the setup of a hyperspectral pushbroom camera for measuring a wheat canopy 
in field conditions based on maximising the signal-to-noise ratio (SNR), which is defined as the ratio 
of the mean to the standard deviation of the measurement data [19]. It was found for a wheat canopy 
that the most important parameters affecting SNR (that can be set at the start of the experiment) are 
the height of scanning, the off-zenith angle of the sensor and the ET [19]. The best SNR in their 
experiment was found for a height of 30 cm, a camera angle of 10° and an ET of 50 ms. The question 
remains whether the setup found for hyperspectral measurements of a wheat canopy can be 
extrapolated to other crops, e.g., potato and leek. In the interest of data fusion, it is also necessary to 
determine how to merge hyperspectral and thermal sensors into a single setup and subsequently 
analyse the data. Some research has been conducted towards combining thermal and hyperspectral 
sensors for nitrogen and irrigation management in a wheat canopy [23]. In this work, the sensors 
were placed side-by-side at a height of 2.5 m at a fixed angle, without artificial light. It is unclear what 
the effect would be if, similar to Fitzgerald et al. (2006), a thermal camera is added to the setup of 
Whetton et al. (2017) where artificial lights flank the camera [23,19]. 

This paper aims at providing practical recommendations for the use of hyperspectral and 
thermal proximal sensing side-by-side for canopy measurement in potato and leek. We first 
conducted a market study to find the optimal combination of a hyperspectral and thermal sensor for 
measuring crop diseases. Then, we applied the hyperspectral setup optimisation methodology [19] 
to potato and leek crops, taking the first step towards identifying similarities/differences between the 
optimal setup of three completely different crop types (broad leaves, narrow leaves and cereals). 
Finally, we studied the effect of artificial light on hyperspectral and thermal measurements under 
both sunny and cloudy conditions. 

2. Materials and Methods  

2.1. Materials  

Based on the setup used by Fitzgerald et al. (2006) and Whetton et al. (2017), we designed a new 
setup for disease detection in leek and potato that combines a thermal (Flir Systems, USA) and a 
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hyperspectral sensor with a spectral range of 400–1000 nm (Specim, Finland) into one portable, easy 
to use sensor box that can be placed on a variety of platforms (e.g., tractors, rovers, spray boom and 
fork lift) (Figure 1) [23,19]. 

 

Figure 1. Aluminium frame with free-moving wheels designed to move a sensor box over leek and 
potato rows in field conditions. The sensor box contains a pushbroom hyperspectral camera and a 
thermal camera flanked by two 500 W halogen lights. 

Both sensors were placed inside a waterproof box and connected to a laptop (Panasonic Belgium, 
Asse). The sensors were placed side by side, in the plane perpendicular to the direction of the crop 
row. To ensure both sensors were capable of scanning the same point directly beneath the sensor box, 
an 80° wide-angle lens was selected for the thermal camera so it could be placed next to the 
hyperspectral camera, whose narrower field of view required it to be above the crop row. The sensor 
box was installed in one of two ways: on an aluminium frame (Figure 1) or on a mini shovel 
(MultiOne, The Netherlands) (Figure 2). 

 
Figure 2. Close-up of mini shovel with aluminium beam supporting the sensor box. The box contained 
the hyperspectral and thermal sensor, flanked by two 500 W halogen lights and was moved over the 
row of potato test plots. A laptop was mounted on the side to allow control of the sensors. A generator 
mounted on the back of the mini shovel provided power for the lights, laptop and sensors. 

The aluminium frame formed an upturned U-shaped structure, which rested on four wheels. 
Between the supports of the frame, an aluminium bar with a length of 3 m was positioned at 
adjustable height. The sensor box was attached to this bar by a wheels-and-rail system. The 
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aluminium frame pieces and the aluminium bar could be dismounted and broken up into several 
smaller pieces for transport. The bar contained an electric motor that was powered by a 12 V battery. 
This motor moved the sensor box along the aluminium bar (in the direction of the crop row) at a pre-
set constant speed by means of a rubber driver belt, which was attached to the sensor box. Two 500 
W halogen lamps (Powerplus, The Netherlands) were attached on both sides of the sensor box to 
provide additional illumination for the hyperspectral camera. It was essential that these lamps were 
halogen, to ensure they emitted radiation with a similar spectral profile to that of the sun [19]. A 
generator was used to power the sensors and artificial lamps. The mini shovel was fitted with a 3 m 
aluminium beam that supported the sensor box. The laptop and power generator were attached to 
the mini shovel so that one person could operate both the platform and the sensor. A battery-powered 
pyranometer (Skye Instruments, UK) was used to measure incoming solar radiation for both the mini 
shovel and frame setups. 

2.2. Methods 

2.2.1. Test field 

Field experiments were conducted at the Bottelare experimental farm (Merelbeke, Belgium) of 
Universiteit Gent and Hogeschool Gent, between December 2018 and September 2019. The 
geographical coordinates are 50°57'45.2"N, 3°45'36.3"E. Leek plants of cultivar Pluston were 
pregerminated and grown in pots, after which they were transplanted to the field. Potato plants of 
cultivar Agria were also pregerminated but planted directly into the field. Both potato and leek plants 
were planted in ridges with a width of 75 cm and a height of 30 cm. Leek plants were planted at a 
within-row distance of 12 cm, while potatoes were spaced at 34 cm in the row. Leek plots were 
designed to be 3 by 3 m, whereas potatoes were planted in 3 by 5 m plots. All data storage was done 
on external solid-state drives, which are more resistant to vibrations and have a higher writing speed 
(necessary for the storage of large amounts of hyperspectral and thermal data) compared to older 
storage drive models. 

2.2.2. Availability of optical sensors in the market 

A market study of commercially available sensors was carried out to guide in the selection of 
the best combination of hyperspectral and thermal sensors. Although it was not needed for the set-
up optimisation, we included fluorescence sensors in this market evaluation as a comparison, since 
it has also been proposed as a promising sensor for proximal disease sensing [11,36]. We focused only 
on portable sensors that can be used in field conditions and are not clip-on, so they can work from a 
proximal sensing perspective. 

2.2.3. SNR based setup optimisation 

To determine the optimal setup, four ETs (1 ms, 10 ms, 30 ms and 50 ms), three heights (30 cm, 
70 cm and 110 cm) and three camera off-zenith angles (0°, 8° and 17°) were tested for scanning in 
conditions of 300–400 W/m2 for the leek canopy, which are fully sunny conditions during winter, and 
800–900 W/m2 for the potato canopy, which are fully sunny conditions during summer. For each of 
the 36 configurations, around 1000 linescans were taken with the hyperspectral camera at a framerate 
of 60 Hz. These scans were then stored in one data cube per setup through Lumo software (Specim, 
Finland). These cubes were subsequently corrected using Matlab software (The Mathworks, Inc., 
USA) using a white and dark reference value (Equation (1)). The pyranometer was placed in a fixed 
position before the measurements began and indicated whether a new white reference sample 
needed to be taken. The white reference target (SphereOptics, Germany, Alucore reflectance target, 
500 × 500 mm, 95% reflectance, calibrated) was measured with the hyperspectral camera to obtain a 
reference value at the start of each measurement and during measurements if the solar radiation 
varied more than 75 W/m2. This measurement was done in exactly the same conditions as those of 
the crop. The dark reference value was measured at the start of the experiment by closing the 
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hyperspectral camera shutter. These reference values were later used to correct the data using 
following equation: 

R_cor = (R_raw– R_dr)/(R_wr – R_dr ) (1) 

where R_cor is the corrected reflectance value of the measured sample, R_wr is the white reference 
value, or ‘maximum’ reflectance value, R_raw is the raw reflectance of the sample measured and 
R_dr is the dark, or minimum, reflectance value. In practice, the white reference value was not the 
maximum value even though it has a reflectance of 95%, because specular reflection could occur. We 
calculated the SNR using the method used in Whetton et al. (2017) [19]. The SNR of each scan was 
calculated by first correcting the hyperspectral data cube according to Equation 1, after which 
nonplant pixels were deleted based on the NDVI value [37,38]. We then, per wavelength, divided the 
mean of the reflectance values over all plant pixels of the image by the standard deviation over all 
reflectance values of all plant pixels of the image. This led to 224 SNR values, each belonging to one 
wavelength. Then, the average of these 224 SNR values was taken to yield one SNR value per scan 
(Figure 3). Scans were taken until each tested setup had hyperspectral data cubes containing at least 
30 leek or potato plants. 

To understand the individual effect of each setup parameter on the resulting SNR, principal 
component analysis (PCA) was carried out using RStudio (RStudio Inc., USA). The input of the PCA 
analysis was a matrix containing 36 rows (one for each tested setup) and 4 columns for the height, 
angle and ET of each setup, with the corresponding SNR value. No normalisation was performed on 
the SNR data, because tests indicated that each of the available normalisation algorithms in the 
FactoMineR R package lead to principal components (PCs) that represented less of the variability in 
the data compared to the PCs obtained without normalisation. The results were represented in PCA 
factor map plots, also using the FactoMineR R package. 

2.2.4. Effect of Artificial Lighting on Hyperspectral Measurements in the Field 

To evaluate the effect of artificial light, hyperspectral measurements were taken with the 
predetermined optimal setup from section 2, which consisted of an angle of 17°, an ET of 1 ms and a 
height of approximately 30 cm above a leek canopy. Exact height above crop canopy varied slightly 
due to the inhomogeneity of the leek plant height within each row and because the field was not 
perfectly level. Two measurements were taken, one in winter and one in early spring. The first 
measurement was taken on a day with clear weather, representing sunny conditions, whereas the 
second measurement was taken under fully overcast, cloudy conditions. The effect of the artificial 
light was determined by comparing the average reflectance values from crop canopy and white 
reference target measurements. To compare the shape of the reflectance curve between light on and 
off scenarios, the reflectance curves were normalised to have values in the 0 to 1 range by using (x-
min)/range. These spectra were analysed using Matlab software (The Mathworks, Inc., USA) and 
ENVI (Harris Geospatial, USA) software. 

2.2.5. Effect of Artificial Lighting on Thermal Measurements in the Field 

To test the effect of the artificial light on the thermal measurements, a series of images of the leek 
crop row were taken using the aluminium frame designed for the 3 by 3 m leek plots. These images 
were taken at 1 Hz. To compare between light on/off treatments, average temperature values were 
calculated with Flir Tools software (Flir Systems, USA), for each of the images. These values were 
then plotted using Excel software (Microsoft, USA). The ratio of crop to bare soil is not representative 
for normal field conditions for images captured at the edge of the crop row. We therefore compared 
treatments based on images of the middle of the row. It was not possible to reliably remove soil pixels 
from crop pixels in the thermal images, because there was a lot of overlap between the apparent 
temperature of the leaves and that of the soil. For this reason, we visually compared thermal patterns 
on the leaves. These patterns allowed us to see if the top of the crop canopy was heated by the artificial 
light. We also compared average temperature values over the entire image, since the same spot in the 
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field was measured over different setups (lamps on or lamps off). This means the amount of soil was 
the same for each setup and it was therefore possible to compare the effect of artificial light on the 
average apparent temperature between treatments. We followed the development of the crop over 
several weeks to determine whether any disease was naturally occurring during time of 
measurement. 

3. Results 

3.1. Multiple Sensor Setup 

The results of the market evaluation of available sensors are presented in Table 1. The 
combination of most promising sensors [11], namely, a snapshot hyperspectral, thermal and 
fluorescence sensor was found to cost well over 200.000 euro. Snapshot hyperspectral sensors were 
available from around 30.000 euro, while pushbroom hyperspectral sensors were available from 
around 10.000 euro. There were far more pushbroom sensors available than snapshot sensors, and 
not all suppliers offered snapshot sensors. Thermal cameras found here ranged from 4.000 to 20.000 
euro in price. Non-clip-on fluorescence sensors for use in field conditions were available as the 
CropObserver (Phenovation, The Netherlands), a point-measuring system that works with laser-
induced fluorescence, or as the Hyperspec sensor (Headwall, Germany), a camera system that has a 
video function as well as an imaging function. The point measurement system was available for 
around 40.000 euro, while the Hyperspec fluorescence sensor cost around 175.000 euro. 

3.2. Hyperspectral Setup Optimisation 

Figure 3 shows the normalised SNR values for a potato and a leek canopy for each of the 
measurement setups. 

 
Figure 3. Signal-to-noise ratio (SNR) calculated for the hyperspectral camera for different 
combinations of setup parameters of height (H), angle (A) and exposure time (ET). Values of SNR 
were calculated for each wavelength, over all pixels, and then averaged over all wavelengths. Both 
datasets (leek and potato) have been normalised to be between 0 and 1 using (x-min)/range. 

Each dataset was normalised (after SNR calculation) using the formula (x-min)/range, which 
leads to values between 0 and 1. It can be observed that different setups lead to different SNR values. 
The highest SNR value in the potato crop was obtained with an off-zenith angle of 8°, a height above 
crop canopy of 70 cm and an ET of 50 ms. A close second was the setup of an 8° angle, a height of 110 
cm and an ET of 50 ms. For leek, the best SNR was achieved with an angle of 17°, a height of 70 cm 
and an exposure time of 50 ms. Examining the SNR values of the potato, a clear trend of stepwise 
increasing SNR values with increasing ET could be observed. This differed from the leek SNR values, 
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which showed no clear trend. Figure 4 shows the PCA variables factor map plots on the plane formed 
by PC1 and PC2, and PC1 and PC3, respectively, for hyperspectral measurements of a potato crop. 
The plot on the plane formed by PC2 and PC3 showed no representation of the SNR vector, so it has 
been omitted. It can be seen on the axes that PC1 represented 48.67% of the total variance in the data, 
while the second and third PCs represented 25% of the variance each. The height vector was 
perpendicular to the SNR vector in the PC1–PC2 plane, indicating that height did not significantly 
affect SNR for the potato crop. This was confirmed by the plot of PC1 and PC3, where SNR was fully 
represented by a long vector, as opposed to height, which was not represented in this plane 
(indicating it is perpendicular to this plane). The angle and SNR showed no relation in the plot of 
PC1 and PC2, because angle was not represented in this plane. Looking at the projection on the plane 
of PC1 and PC3, it can be seen that the angle vector had a projection that was almost perpendicular 
to the SNR vector. This indicates that SNR was not closely related to camera angle for potatoes. The 
last variable, ET, was almost entirely congruent with the SNR vector in both the plot on the PC1 and 
PC2 plane and the PC1 and PC3 plane. This indicated that for potato crops, SNR was mostly 
influenced by ET. Figure 5 shows the PCA variables factor map plots for hyperspectral measurements 
of leek for the PC1 and PC2 plane, and the PC1 and PC3 plane. The plot on the plane formed by PC2 
and PC3 again showed no representation of the SNR vector, so it has been omitted. It can be seen that 
the first PC represented 36.75% of the total variance in the data, while the second and third PCs 
represented 25% of the variance each. In these plots, we saw that the relationship between SNR and 
the other variables was not as clear-cut compared to those of the potato canopy. Comparable to the 
potato canopy data, the projections of the angle vector were not concurrent with the leek SNR vector 
on either the PC1 and PC2 plot or the PC1 and PC3 plot. The projection of the height vector in this 
case seemed to indicate a more significant, negative relation to SNR compared to the potato dataset. 
ET again seemed to have a significant positive correlation with SNR. This positive correlation with 
ET was also observed in the SNR values in Figure 3, especially for potato scans. For leek scans, the 
SNR values are more variable, but still high ETs seemed to correspond to higher SNR values. 

 

Figure 4. Principal component analysis (PCA) variables factor map plots of a potato canopy, showing 
the projection on principal components (PC1 and PC2) (top) and PC1 and PC3 (bottom). The 
projection of each variable vector on the axis formed by the signal-to-noise ratio (SNR) vector gives 
an indication of the relation of this variable to SNR. 
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Figure 5. Principal component analysis (PCA) variables factor map plots of a leek canopy, showing 
the projection on PC1 and PC2 (top) and PC1 and PC3 (bottom). The projection of each variable vector 
on the axis formed by the signal-to-noise ratio (SNR) vector gives an indication of the relation of this 
variable to SNR. 
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Table 1. Available hyperspectral, thermal and fluorescence sensors, with key technical parameters and price ranges. The focus is on sensors that can be used in field 
conditions. 

HS is hyperspectral, on-the-go measurement is measurement while the sensor is moving on a piece of agricultural machinery, e.g., on a spray boom or a tractor. S is 
snapshot, P is pushbroom, H is hybrid, HS is hyperspectral, T is thermal, Chl-Fl is chlorophyll fluorescence and PSII is photosystem II. 

Manufacturer/ 
Distributor Sensor Spectral Range (nm) or 

Parameter Measured 
Number of 

Bands 
Data 

Acquisition 
On-the-Go 

Measurement Sensor Type Price (excl. 
VAT, 2018) 

Cubert S185 – FireflEYE SE 450–950 125 S Yes HS € 39.900 
Carbonbee VNIR 300–1000 256 S Yes HS / 

IMEC VNIR 470–900 150 H No HS € 15.575 

Corning microHSI 410 
SHARK 400–1000 120 P Yes HS $ 30.000 

 
HySpex 

 

VNIR series 400–1000 108–186 P Yes HS / 
ODIN VS-1024 400–2500 427 P Yes HS / 
Mjolnir series 400–1000/2500 200–490 P Yes HS / 

Bayspec OCI-U-2000 600–1000 25 S Yes HS $ 24.980 
 OCI-U-1000 600–1000 100 P Yes HS $ 19.980 

Senop Rikola 500–900 50 S Yes HS € 32.000 
Mosaicmill Rikola 500–900 50 S Yes HS € 40.500 

Resonon Pika L 400–1000 281 P Yes HS € 13.640 
 Pika XC2 400–1000 447 P Yes HS € 24.582 

Polytec Nano 400–1000 270 P Yes HS € 32.860 

Specim 
FX10e 400–1000 220 P Yes HS € 11.690 

IQ 400–1000 204 P Yes HS € 15.950 

PhenoVation CropObserver / / LP No 
PSII efficiency 

(Chl-Fl) 
€ 38.000 

Headwall Hyperspec 
Fluorescence 670–780 nm 2160 S Yes Chl-Fl € 174.000 

Flir 
DUO PRO R 336 7.5–13.5 µm / S,V Yes Thermal  € 4.339 
DUO PRO R 640 7.5–13.5 µm / S,V Yes Thermal € 6.342 

A655sc 7.5–14 µm / S, V Yes Thermal € 20.000 
Workswell WIRIS Emissivity / S, V Yes Thermal € 13.375 
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3.3. Effect of Artificial Lighting on Hyperspectral Measurements of a Crop Canopy in the Field  

Figure 6 shows the average reflectance curves for the scans of a leek row, with artificial light 
on/off under sunny and cloudy conditions. The curve related to sunny conditions (Figure 6A) showed 
that although measurements were taken on an exceptionally sunny day (for winter conditions), the 
lamps still contributed to reflectance. This is in contrast with the results under cloudy conditions 
(Figure 6B), in which it can be observed that the added illumination apparently decreased reflectance 
values, especially in the NIR range. The normalized reflectance curves of the on/off treatments were 
less similar to each other during cloudy conditions compared to sunny conditions (Figures 6C,D). 
The normalized reflectance curves of the sunny condition experiment appeared very similar in the 
visible region of the spectrum, while the cloudy conditions curve showed differences, especially in 
the red colour region of the spectrum (600–680 nm). In the NIR region, the on/off curves of under 
sunny conditions are inconsistent. During cloudy conditions, the light-on-treatment’s reflectance 
curve is consistently below that of the off-treatment in the NIR region, up to +/-930 nm, after which 
differences are inconsistent. A depression in the reflectance curve appeared around 950 nm, for 
cloudy conditions, which did not appear for sunny conditions for both the raw and normalised 
spectra. 

Looking at the increased reflectance of the white reference as a result of switching on the light 
under sunny conditions (Figure 7A), a mild increase can be seen more or less uniformly over the 
entire spectrum, with a bigger increase in the middle part of the spectrum compared to the edges at 
400 and 1000 nm. It is clear that the halogen lights cause a reflectance pattern that is very similar to 
the natural light conditions. However, looking at the cloudy white reference reflectance data (Figure 
7B), the additional lighting appeared to mainly increase the reflectance values at higher wavelengths, 
with the largest increase again occurring in the middle part of the spectrum. However, in cloudy 
conditions, the difference between the light on and light off for white reference curves is much more 
significant, both in terms of shape of the curve and magnitude of reflectance (Figure 7B). The white 
reference reflectance curve without artificial light was less bell-shaped and more skewed under 
cloudy conditions (Figure 7B) compared to that without artificial lights under sunny conditions 
(Figure 7A), indicating the effect of cloud cover on the reflectance spectrum. 

  
(A) (B) 

(C) (D) 

Figure 6. Average reflectance curve of a leek canopy with artificial light (two 500 W halogen lamps) 
on (dashed blue line) and light off (full green line) scenarios under sunny (A) and cloudy (B) weather 
conditions. Normalised spectra plots also shown for sunny (C) and cloudy (D) conditions. 
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(A) (B) 

Figure 7. White reference signal curve with artificial light (two 500 W halogen lamps) on (green line) 
and lights off (blue line) scenarios under sunny (A) and cloudy (B) scanning conditions. Raw sensor 
signal is shown. 

3.4. Effect of artificial lighting on thermal measurements of a crop canopy in the field 

Figure 8 compares thermal images measured in conditions with and without artificial light, 
under sunny (8.1) and cloudy (8.2) conditions. 

 

Figure 8. Figure 8.1 shows thermal images of a leek ridge in the middle of the row (Figure 8.1A,C) 
and at row edge (Figure 8.1B,D). Scans were taken during cloudless, sunny conditions, with 
additional lighting (Figure 8.1A,B) and in natural light (Figure 8.1C,D). Figure 8.2 shows thermal 
images taken on a cloudy day, comparing lights on (Figure 8.2A) with lights off (Figure 8.2B). Red 
circles indicate the areas studied for comparison of hot spot formation. Rightmost red circles of Figure 
8.2 (A and B) show the bend of a leaf, which shows up as a hot spot due to physical damage caused 
by the bending/cracking of the leaf. 

Comparing Figure 8.1B,D with Figure 8A,C, it can be seen that the ridge at the edge of the row 
was slightly slanted, causing it to receive less radiation, which resulted in a decreased average 
temperature measured in these frames (Figures 8.1B,D). It can further be observed that the prolonged 
exposure to the halogen lights at the row edge caused a temperature increase in the top parts of the 
crop canopy, which is closest to the lamps (Figure 8.1B). This leads to ‘hot spots’ that were not 
necessarily related to disease or other types of plant stress, since no disease appeared during the 
weeks following measurement and the hot spots appeared only after the halogen lamps were turned 
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on. There was no clear formation of hot spots in the middle of the crop row during the light-on 
treatment (Figures 8.1A,C). The temperature difference seemed to mainly stem from absorption of 
radiation by the soil. Figure 8.2 shows the effect of additional lighting during cloudy conditions. This 
measurement was later in the growing season, when dense weed cover started appearing on the 
ridges. It is clear from the thermal images that weeds significantly affect measured temperature 
patterns, as weed temperature was cooler than that of the soil but generally hotter than the leek. No 
apparent average temperature increase was observed when switching on lights, considering the 
entire thermal image, with even some minor temperature decrease. The red circled areas on Figure 
8.2A show that during this measurement, the artificial light caused hot spots even during movement 
of the sensor box. This was repeatedly observed in different locations throughout the measured leek 
rows. These hotspots seemed to be located around sharp bends in the leaves or on lower leaves, which 
were older and decaying. Looking at healthy leaf tissue (areas outside the red circles), there was no 
effect of additional light, even on parts of the leek crop that were higher compared to the hotspots. 
Figure 9 shows the average temperature measured over two rows of leek plants, in conditions with 
and without artificial lights. There was approximately a 1 °C increase in average temperature due to 
the addition of artificial light, during sunny conditions. The images taken in the middle of the crop 
row (image series number 4–8) showed a higher average temperature compared to those at the row 
edge. 

 

Figure 9. Average T calculated over a series of thermal images captured over two leek crop rows 
under sunny conditions. Images captured with (on) and without (off) artificial light. Background soil 
temperature was lower compared to leek temperatures, meaning that lower temperatures correspond 
to areas with relatively few leek plants, while higher temperature corresponds to the centre of the leek 
row. 

4. Discussion 

4.1. Multiple Sensor Setup Selection 

The combination of a snapshot hyperspectral, thermal and fluorescence sensor would cost over 
200.000 euro. The biggest cost is the snapshot fluorescence camera, at around 175.000 euro. To the 
best of our knowledge, this is the only sensor of its type available on the market today. The cheapest 
combination of all three sensors would cost approximately 55.000 euro (Table 1) and consists of a 
pushbroom hyperspectral sensor, a snapshot thermal camera, and a point measurement fluorescence 
sensor. It is on the other hand possible to combine a hyperspectral and thermal sensor for under 
20.000 euro. The high cost of fluorescence sensors might lead researchers to opt for a cheaper version, 
such as the handheld MultispeQ clip-on fluorescence sensor (PhotosynQ, USA), which costs around 
1000 euro. However, clip-on sensors cannot be used for on-the-go scanning, requiring researchers to 
invest a lot of time for manual measurements. We therefore believe that for practical applications in 
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precision agriculture, the combination of hyperspectral and thermal sensors provides a good starting 
point, with relatively low investment costs and less complexity compared to a system including a 
fluorescence sensor as well. This led to the choice to use a snapshot thermal sensor and a pushbroom 
hyperspectral sensor for this experiment, both costing no more than 20.000 euro each. 

4.2. Hyperspectral Setup Optimisation 

The results from Figures 2 and 3 and Figures 4 and 5 confirmed that the method used for 
optimising the hyperspectral sensor setup for a wheat canopy can likewise be used to optimise the 
setup for a potato and leek canopy. The most optimal setups in potato and leek consisted of an ET of 
50 ms (Figure 3). There was also a clear trend in the potato SNR values indicating a positive 
correlation with ET, which is in agreement with results found in a wheat canopy [19]. For leek, values 
appeared more variable. The effect of each variable is shown in the PCA factor map plots of Figures 
4 and 5. Both figures indicated that height seemed less important for SNR. The angle also showed no 
clear correlation to SNR in either of the figures. However, the ET vector was clearly congruent with 
the SNR vector in the potato PCA factor map plots (Figure 4). Together with the values presented in 
Figure 3, it is reasonable to conclude that ET was the most important factor affecting SNR for this 
experiment. This is in agreement with the findings in wheat, where ET was also found to be the most 
important factor determining SNR values [19]. However, the results in leek were less clear-cut 
compared to those of potatoes and wheat. This crucial difference means that researchers must always 
determine the optimal setup for the crop under observation, before measurements. In our results, the 
optimal setups consisted of an angle of 8°, a height of 70 cm and an ET of 50 ms for potatoes and an 
angle of 17°, a height of 70 cm and an ET of 50 ms for leek (Figure 3). The optimal setup for leek also 
registered as the 5th best setup for potatoes. Theoretically, the best measurement setup (of the ones 
tested in this experiment) for both crops therefore lies at an ET of 50 ms, a height of 70 cm and an off-
zenith angle of 8° to 17°. However, some practical constraints have to be considered. First, we 
observed the occurrence of saturation at ETs of 30 and 50 ms in potato and leek, respectively, similar 
to the results in wheat [19], but there for a much higher ET of 1000 ms. Only the 1 and 10 ms 
treatments did not show saturation. It is further important to note that a lower ET results in a higher 
possible framerate. For some measurement conditions, there is a minimum speed at which the 
measurement needs to be done (e.g., due to time restrictions, operating speed of a treadmill or driving 
speed of a tractor). This speed correlates to a minimum framerate necessary to obtain a scan of the 
full sample, which in turn is associated to a maximum possible ET. From Figure 3, it can be concluded 
that theoretically the optimal height of scanning of both studied crops seemed to be 70 cm. However, 
since the variability in potato SNR values and to a lesser extent in leek is mainly caused by ET, the 
choice of measurement height needs to depend on other factors than the SNR values. We propose 
that measurement height is determined mainly by pixel resolution and scanning width needed in the 
experimental context. For example, if the main goal is to scan as large a crop area as possible in a 
limited amount of time (e.g., farmer field scans), then a height above the crop of 110 m is beneficial. 
However, if the aim of the experiment is to detect small symptoms (e.g., rust pustules) on the leaves 
of an experimental leek plot in early stages of infection, a height of 30 cm above the crop is preferable, 
since this will yield a higher image resolution. 

The off-zenith angle shows no clear correlation to SNR like that of the ET, except for leek in the 
PC1–PC2 plot (Figure 4). The complex interaction between viewing angle and reflectance has been 
studied for forest canopies [39]. It was found that for white backgrounds, the reflectance decreased 
with increasing off-zenith measurement angle, while for dark backgrounds the opposite occurred, 
with increasing reflectance at higher off-zenith viewing angles. In a mixed system such as a crop 
canopy that contains brighter areas (e.g., phytophthora or other wilting symptoms) and also darker 
areas (e.g., dark spots or shaded areas), it is difficult to theorise on the effect of viewing angle on 
reflectance and SNR. Results in pine forests showed that there was a specific angular effect on the 
reflectance of the red and red edge bands for coniferous trees, possibly due to their canopy structure 
[40]. Such an angular effect due to canopy structure could contribute to the difference between the 
results for potato and leek, since angle only seemed to contribute to SNR for leek canopy 
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measurements. This is supported by the clear difference between the oblique growth pattern of a leek 
canopy, where angular differences are significant between leaves, compared to the relatively 
homogenous growth pattern of a dense potato canopy, where angular differences might be more 
easily averaged out. It has further been shown that the angle significantly affects certain canopy 
measurements, for example of vegetation indices [41]. This is relevant when performing image 
analysis on, for example, single leaves. In such case, the effect of geometry on reflectance can be 
modelled to improve data analysis [41–44]. The same applies to satellite imagery, where the 
modelling of the solar off-zenith angle is crucial [45]. However, for practical applications in proximal 
crop sensing, such complex crop geography modelling techniques are often omitted, and it is 
assumed that the effect can be neglected, or vegetation indices are used that are resistant to these 
effects [41,46]. We therefore propose that the measurement angle needs to be estimated based on the 
disease of interest. Ideally, scans should be taken perpendicularly to the plane, in which symptoms 
occur, to maximize the chance of scanning the infected area. If the disease is for example known to 
manifest on the bottom of the stem, a 0° off-zenith angle will have no chance of detecting it, as 
opposed to a 17° angle, which makes it possible to scan the lower canopy. Results for powdery 
mildew detection in grapes also supported the use of higher off-zenith angles [35]. This leads us to 
advise an off-zenith angle of 17° to detect symptoms on the bottom of the leek stem and lower leaves. 
Phytophthora damage tends to appear at leaf tips, but also on the base of the leaf where spores are 
splashed onto the plant from the soil [47]. To detect symptoms on lower leaves of the potato canopy, 
an angle of 17° is again advised, especially in dry growing conditions that cause the leaves to sag, 
causing the symptoms to be in the vertical plane perpendicular to the soil. 

Although the use of artificial lights has certain advantages (see subsection 3 of the discussion), 
it also increases the risk of saturation, especially at low measurement heights. The choice of the 
optimal measurement setup is therefore not only based on the best SNR but is far more complex and 
should be discussed from practical perspective, taking into account the specific case of each disease 
or crop under observation. A balance needs to be found between high ET, resulting in better SNR 
values, while taking into account saturation, pixel size, measurement speed and the structure of the 
pathosystem. Specifically, for leek, white tip disease (Phytophthora porri) symptoms can easily cause 
saturation at low scanning heights because of their proximity to artificial lights, even at low ETs. The 
trade-off between the risk of saturation (at high ETs) and the risk of noisy data (at low ETs) can partly 
be overcome by spectra preprocessing techniques, which can, to some extent, deal with noisy spectra 
[48]. It is important to note that the reflectance values in the visible part of the spectrum are much 
lower compared to the near-infrared part of the plant canopy spectrum [49]. This means that 
saturation could primarily occur in the near-infrared part of the spectrum, while a low ET and 
subsequent noisy data could occur more easily in the visible part of the spectrum. Depending on 
which part of the spectrum is mainly of interest, the saturation/noise trade-off might be different. For 
proximal disease detection in experimental conditions for leek and potato, we advise a height of 30 
cm (instead of the SNR optimum of 70 cm) above the crop canopy, to maintain a high resolution. 
Because of the risk of saturation at this height, an ET of 1 ms is advised for both leek and potato, 
instead of the SNR optimum of 50 ms (for both leek and for potato). This needs to be increased if 
spectra appear “flat”, with minor or without features. However, saturation should be absolutely 
avoided. Since no clear influence was observed for the angle, it is recommended to use the 17° angle 
because it can measure symptoms on lower canopy parts. This was the theoretical optimal angle for 
a leek canopy, but for a potato canopy the theoretical optimum was an 8° angle. 

4.3. Effect of Artificial Lighting on Hyperspectral Measurements of a Crop Canopy in the Field 

To explain the phenomenon that the added light seemed to decrease reflectance of spectra 
collected from a canopy on a cloudy day (Figure 6B), the spectral profile of the white reference was 
investigated (Figure 7). At wavelengths up to +/-470 nm, the difference between the light on/off white 
reference reflectance curves under cloudy conditions (Figure 7B) was minimal, similar to sunny 
conditions (Figure 7A). At higher wavelengths, the difference increased. Without additional light, the 
white reference reflectance curve under cloudy conditions was skewed compared to the curve under 
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sunny conditions (due to the effects of cloud cover), leading to an inappropriate correction at high 
wavelengths. The corrected spectrum of wavelengths > 470 nm was ‘stretched’ compared to those at 
lower wavelengths. This is due to lower white reference reflectance values, which increases the final 
corrected value according to Equation (1). This explains why in Figure 6B, the added light under 
cloudy conditions caused a decrease in reflectance compared to the light-off scenario. Turning on the 
artificial light increased the white reference to such a degree that it counteracted the increased 
reflection from the crop canopy (due to added artificial radiation), resulting in ultimately lower 
reflectance values. If there would have been no artificial illumination during experiments, the skewed 
white reference values on cloudy days would cause the final reflectance in the >470 nm range to be 
relatively stretched (as shown in Figure 6B) compared to the same target measured on a sunny day 
(Figure 6A), independent of the crop health status. The added light helped to counteract this problem. 

After normalisation, the shapes of the light on/off canopy reflectance curves are similar under 
sunny conditions (Figure 6C), with only a small difference in the NIR part of the spectrum that could 
be amended by further preprocessing [50]. The difference between light on/off canopy reflectance 
curves is much more severe under cloudy conditions, especially around 680 nm. This is an important 
region for disease detection, so it is essential that any change in reflectance is the result of disease, 
rather than cloud cover variation [11]. The apparent increase in Figure 6D between 600 to 680 nm 
could be misinterpreted as an increased ‘red-orange’ colour, which could be interpreted as rust 
disease symptoms (results not shown). The addition of artificial light helps counteract this effect to 
some extent, but it is still important to keep this in mind for further data analysis. This area, especially 
the red colour band at 680 nm, is well documented in literature as being a spectral feature indicating 
chlorophyll absorption, making it one of the most important features in crop health sensing [19]. The 
drop in measured reflectance at +/-930 nm appears in both the lights on and lights off curves during 
cloudy conditions, which suggests that this is a feature, rather than purely the result of variations in 
solar radiation intensity due to cloud cover (Figure 6D). The fact that this drop occurred only in 
cloudy conditions lead us to look at the absorbance spectra of cloud cover reported in literature [51]. 
These authors reported a significant absorption band around 940 nm for stratus clouds, which could 
possibly explain the decrease in reflectance. This could indicate that the artificial light was not strong 
enough to compensate for the absorption caused by cloud cover in this spectral region. 

Another important aspect of the artificial light is that the angle of reflectance is different 
compared to that of natural solar radiation [18]. During sunny conditions, the light strikes the crop 
at a certain angle, depending on the solar radiation. With the artificial light, the light strikes the crop 
from both sides (because two lamps are used in the present work), at a constant angle to the sensor. 
This means that the light not only counteracts the effect of cloud cover but also provides a constant 
source of illumination that helps mitigate the effects of changing solar angle. It is therefore advisable 
to use as much artificial lights as possible, to reduce the effect of solar radiation variation. 

4.4. Effect of Artificial Lighting on Thermal Measurements of a Crop Canopy in the Field  

If the crop temperature would increase significantly during sensor movement due to the added 
radiation, it would be most apparent on the top leaves, which receive most of the radiation. During 
sunny conditions, hot spot formation was only apparent at the edge of the crop row, where the sensor 
box stayed stationary for more than 10 seconds (Figure 8.1B). This indicates that even though there 
was a temperature difference during these measurements, it was mainly caused by absorption of 
radiation by the soil, not the crop. Otherwise, hot spot formation would occur on the top leaves 
during measurements (and not only when the box was stationary). Note that this implies that 
correcting for the temperature difference caused by artificial light is difficult because not every part 
of the crop row heats up equally. The assumption that bare soil is mainly responsible for the 
temperature difference between light on/off is also supported by the fact that average measured 
temperatures varied between the edge and the middle of the crop row, where the soil-to-crop ratio is 
different (Figure 9). An important observation is that during cloudy conditions (Figure 8.2), there was 
no apparent temperature increase compared to 1 °C for sunny conditions (Figure 8.1). There was even 
a small apparent decrease (0.5 °C or less) after turning on the lights for some images during cloudy 
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conditions. The temperature decrease is possibly due to the effect of variations in cloud cover, which 
are difficult to record during the time of one scan. The lack of temperature difference could also be 
explained by the dense weed cover that covered the darker soil later in the growing season during 
the measurements under cloudy conditions. This suggests that it is possible to use halogen lamps in 
combination with a thermal sensor for weed or crop cover assessment. 

During cloudy conditions, hot spot formation in the middle of the crop row was observed during 
measurements, not only when the sensor box was stationary (Figure 8.2A). The leek crop was older 
during this measurement, showing signs of wilting on older leaves in places where the leaves were 
bent or cracked. It was in here that hot spot formation occurred, even when the sensor box passed 
over the crop in a matter of seconds. This indicates that artificial light interacts differently with 
diseased or damaged and healthy parts of the crop and that this difference can be observed with 
thermal cameras. This feature could assist in disease detection using thermal cameras in addition to 
the fact that these sensors can measure the temperature differences due to evapotranspiration. It is 
also important to note that the interaction between artificial light and damaged crop areas occurred 
even over a matter of seconds, which is much faster than the rate at which evapotranspiration changes 
occur [52]. This could provide new research opportunities, for example by placing thermal cameras 
with artificial lights at the back of weeders for detecting mechanical damage after passage, which 
would take longer to show if no artificial light is present. 

5. Conclusions 

The cost of fluorescence sensors is close to ten times that of a hyperspectral or thermal sensor, 
leading researchers to favour thermal and hyperspectral imaging. However, very few research 
groups studied the use of a combination of these two sensors in different applications in crop 
monitoring and sensing. Our results showed that the setup optimisation method for a pushbroom 
hyperspectral camera, based on maximum signal-to-noise ratio (SNR), tested in wheat can be 
extrapolated to other crops. However, different set up parameters should be implemented for 
different crops to allow successful measurement in practice. The optimal set up parameters found in 
the present study for potatoes and leek are a camera height of 30 cm, a 17° camera angle and an 
exposure time (ET) of 1 ms. In line with camera set up results for wheat, ET was the most important 
parameter affecting SNR, with higher ETs leading to higher SNRs. Measurements in different 
cropping systems need to be done to determine general applicability of the optimal setup findings. 
We further concluded that the addition of artificial lights helps counteract the effect of cloud cover 
on reflectance measurements, aiding disease detection. The temperature difference caused by the 
additional light appeared to mainly vary with the plant to bare soil ratio. Possible practical 
applications regarding weed and crop cover assessment with thermal measurements need to be 
further investigated. Hot spot formation due to artificial light could possibly be used to assess disease 
stress of certain diseases, due to differential heat absorption of healthy versus diseased crops. A 
comparison between healthy and diseased plants is needed to confirm the hypothesis that disease 
detection capabilities increase with the addition of artificial light, for both thermal and the 
hyperspectral sensing. 

Author Contributions: Conceptualization, S.A., J.P. and A.M.; methodology, S.A., A.G., J.P. and A.M..; 
validation, S.A., J.P. and A.M.; formal analysis, S.A. and S.N.; investigation, S.A.; resources, A.G.; data curation, 
S.A.; writing—original draft preparation, S.A.; writing—review and editing, S.A., J.P. and A.M; visualization, 
S.A.; supervision, J.P. and A.M.; project administration, A.M.; funding acquisition, A.M. All authors have read 
and agreed to the published version of the manuscript.  

Funding: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or 
publication of this article: This work was supported by the Research Foundation - Flanders (FWO) for Odysseus 
I SiTeMan Project [Nr. G0F9216N]. 

Acknowledgments: Apart from the people listed on this paper, a big thanks to the people at Bottelare 
experimental farm, UGent mechanical workshop and my colleagues who helped me in the field. 

Conflicts of Interest: The authors declare no conflict of interest. 
  



Remote Sens. 2020, 12, 1939 17 of 19 

References 

1. Armengol, J.; Weigand, S.; Von Tiedemann; A.; Kreiter, S.; Duso, C. Education in crop protection: Erasmus 
Mundus Joint Master Degree–European Master Degree in Plant Health in Sustainable Cropping Systems. 
J. Biotechnol. 2019, 305, S8. 

2. Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; Volume 
26–27, pp. 398–401. 

3. Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious 
diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 
19, 535–544. 

4. Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. 
Plant Pathol. 2008, 57, 792–808. 

5. Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging 
fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186. 

6. Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 
23, 1398–1407. 

7. Coakley, S.M. Variation in climate and prediction of disease in plants. Ann. Rev. Phytopathol. 1988, 26, 163–181. 
8. Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging 

technologies in phytopathology: State of the art. Ann. Rev. Phytopathol. 2018, 56, 535–558. 
9. Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; 

implications for food production, plant diseases, and pests. Glob. Chang. Human Health 2001, 2, 90–104. 
10. Bohnenkamp, D.; Behmann, J.; Mahlein, A.K. In-Field Detection of Yellow Rust in Wheat on the Ground 

Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. 
11. Mahlein, A.K. Present and Future Trends in Plant Disease Detection. Plant Dis. 2016, 100, 1–11. 

doi:10.1007/s13398-014-0173-7.2. 
12. Nigon, T.J.; Yang, C.; Dias Paiao, G.; Mulla, D.J.; Knight, J.F.; Fernández, F.G. Prediction of Early Season 

Nitrogen Uptake in Maize Using High-Resolution Aerial Hyperspectral Imagery. Remote Sens. 2020, 12, 1234. 
13. Shen, L.; Gao, M.; Yan, J.; Li, Z.-L.; Leng, P.; Yang, Q.; Duan, S.-B. Hyperspectral Estimation of Soil Organic 

Matter Content using Different Spectral Preprocessing Techniques and PLSR Method. Remote Sens. 2020, 
12, 1206. 

14. Jin, X.; Li, Z.; Atzberger, C. Editorial for the Special Issue “Estimation of Crop Phenotyping Traits using 
Unmanned Ground Vehicle and Unmanned Aerial Vehicle Imagery”. Remote Sens. 2020, 12, 940. 

15. Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A Novel Approach for Estimation of Above-Ground 
Biomass of Sugar Beet Based on Wavelength Selection and Optimized Support Vector Machine. Remote 
Sens. 2020, 12, 620. 

16. Jiang, Y.; Snider, J.L.; Li, C.; Rains, G.C.; Paterson, A.H. Ground Based Hyperspectral Imaging to 
Characterize Canopy-Level Photosynthetic Activities. Remote Sens. 2020, 12, 315. 

17. Vargas, J.Q.; Bendig, J.; Mac Arthur, A.; Burkart, A.; Julitta, T.; Maseyk, K.; Thomas, R.; Siegmann, B.; 
Rossini, M.; Celesti, M.; et al. Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced 
Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art. Remote Sens. 
2020, 12, 1624. 

18. Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range 
hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. 

19. Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Optimising configuration of a hyperspectral imager for on-
line field measurement of wheat canopy. Biosyst. Eng. 2017, 155, 84–95. 
doi:10.1016/j.biosystemseng.2016.12.006. 

20. Joalland, S.; Screpanti, C.; Liebisch, F.; Varella, H.V.; Gaume, A.; Walter, A. Comparison of visible imaging, 
thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on 
sugar beets. Plant Methods 2017, 13, 73. 

21. Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2012. 
22. López-Maestresalas, A.; Keresztes, J.C.; Goodarzi, M.; Arazuri, S.; Jarén, C.; Saeys, W. Non-destructive detection 

of blackspot in potatoes by Vis-NIR and SWIR hyperspectral imaging. Food Control 2016, 70, 229–241. 
23. Fitzgerald, G.J.; Rodriguez, D.; Christensen, L.K.; Belford, R.; Sadras, V.O.; Clarke, T.R. Spectral and 

thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agric. 
2006, 7, 233–248. 



Remote Sens. 2020, 12, 1939 18 of 19 

24. Amigo, J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 
2010, 398, 93–109. 

25. Franceschini, M.H.; Bartholomeus, H.; Van Apeldoorn, D.; Suomalainen, J.; Kooistra, L. Intercomparison 
of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring 
in organic potato production. Sensors 2017, 17, 1428. 

26. Garzonio, R.; Di Mauro, B.; Colombo, R.; Cogliati, S. Surface reflectance and sun-induced fluorescence 
spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 2017, 9, 472. 

27. Thompson, L.J.; Puntel, L.A. Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a 
Practical Decision Support System for Precision Nitrogen Management in Corn. Remote Sens. 2020, 12, 1597. 

28. Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 
1998, 64, 234–253. 

29. Pinter Jr, P.J.; Jackson, R.D.; Elaine Ezra, C.; Gausman, H.W. Sun-angle and canopy-architecture effects on 
the spectral reflectance of six wheat cultivars. Int. J. Remote Sens. 1985, 6, 1813–1825. 

30. Whetton, R.L.; Waine, T.W.; Mouazen, A.M. A Practical Approach to In-Situ Hyperspectral Imaging of 
Wheat Crop Canopies. In Proceedings of the 13th International Workshop on Advanced Infrared 
Technology Applications, Pisa, Italy, 29 September–2 October 2015; Volume: ISBN: 978-88-7958-025-0. 

31. Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium 
head blight in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. 

32. Barbedo, J.G.; Tibola, C.S.; Fernandes, J.M. Detecting Fusarium head blight in wheat kernels using 
hyperspectral imaging. Biosyst. Eng. 2015, 131, 65–76. 

33. Bousquet, L.; Lachérade, S.; Jacquemoud, S.; Moya, I. Leaf BRDF measurements and model for specular 
and diffuse components differentiation. Remote Sens. Environ. 2005, 98, 201–211. 

34. Coops, N.C.; Smith, M.L.; Martin, M.E.; Ollinger, S.V. Prediction of eucalypt foliage nitrogen content from 
satellite-derived hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1338–1346. 

35. Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Borghese, A.N. Automatic detection of powdery 
mildew on grapevine leaves by image analysis: Optimal view-angle range to increase the sensitivity. 
Comput. Electron. Agric. 2014, 104, 1–8. 

36. West, J.S.; Bravo, C.; Oberti, R.; Lemaire, D.; Moshou, D.; McCartney, H.A. The potential of optical canopy 
measurement for targeted control of field crop diseases. Annual review of Phytopathology, 2003, 41, 593–614. 

37. Bravo, C.; Moshou, D.; Oberti, R.; West, J.; McCartney, A.; Bodria, L.; Ramon, H. Foliar disease detection in 
the field using optical sensor fusion. Agri. Eng. Int. CIGR J. Sci. Res. Dev. 2004, Manuscript FP 04 008. Vol. VI. 

38. Rouse, J.W.; Jr. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; 
Texas A&M Univ., College Station: Texas, TX, USA, 1974. 

39. Pisek, J.; Chen, J.M.; Miller, J.R.; Freemantle, J.R.; Peltoniemi, J.I.; Simic, A. Mapping forest background 
reflectance in a boreal region using multiangle compact airborne spectrographic imager data. IEEE Trans. 
Geosci. Remote Sens. 2009, 48, 499–510. 

40. Rautiainen, M.; Lang, M.; Mõttus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lükk, T. Multi-angular reflectance 
properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens. Environ. 2008, 112, 
2627–2642. 

41. Behmann, J.; Mahlein, A.K.; Paulus, S.; Kuhlmann, H.; Oerke, E.C.; Plümer, L. Calibration of hyperspectral 
close-range pushbroom cameras for plant phenotyping. ISPRS J. Photogramm. Remote Sens. 2015, 106, 172–182. 

42. Clarke, T.A.; Fryer, J.G. The development of camera calibration methods and models. Photogramm. Record 
1998, 16, 51–66. 

43. Horaud, R.; Mohr, R.; Lorecki, B. On single-scanline camera calibration. IEEE Trans. Robot. Autom. 1993, 9, 
71–75. 

44. Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: Amsterdam, The 
Netherlands, 2006. 

45. Grosvenor, D.P.; Wood, R. The effect of solar zenith angle on MODIS cloud optical and microphysical 
retrievals within marine liquid water clouds. Atmos. Chem. Phys. 2014, 14, 7291–7321. 

46. Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem water potential monitoring in pear orchards through 
WorldView-2 multispectral imagery. Remote Sens. 2013, 5, 6647–6666. 

47. Declercq, B. Integrated Disease Management Based on the Life Cycle of Phytophthora Porri. Ph.D. 
Dissertation, Ghent University, Ghent, Belgium, 2009. 

48. Dasu, T.; Johnson, T. Exploratory Data Mining and Data Cleaning; John Wiley Sons, USA: 2003; Volume 479.  



Remote Sens. 2020, 12, 1939 19 of 19 

49. Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral properties of plants. Appl. Opt. 1965, 4, 11–20. 
50. Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for 

near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. 
51. Kindel, B.C.; Pilewskie, P.; Schmidt, K.S.; Coddington, O.; King, M.D. Solar spectral absorption by marine 

stratus clouds: Measurements and modeling. J. Geophys. Res. Atmos. 2011, 116, doi:10.1029/2010JD015071. 
52. Marín, D.; Martín, M.; Serrot, P.H.; Sabater, B. Thermodynamic balance of photosynthesis and transpiration 

at increasing CO2 concentrations and rapid light fluctuations. Biosystems 2014, 116, 21–26. 
 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


