9,519 research outputs found

    Common vocabularies for collective intelligence - work in progress

    Get PDF
    Web based applications and tools offer a great potential to increase the efficiency of information flow and communication among different agents during emergencies. Among the different factors, technical and non technical, that hinder the integration of an information model in emergency management sector, is a lack of a common, shared vocabulary. This paper furthers previous work in the area of ontology development, and presents a summary and overview of the goal, process and methodology to construct a shared set of metadata that can be used to map existing vocabulary. This paper is a work in progress report

    Interface refactoring in performance-constrained web services

    Get PDF
    This paper presents the development of REF-WS an approach to enable a Web Service provider to reliably evolve their service through the application of refactoring transformations. REF-WS is intended to aid service providers, particularly in a reliability and performance constrained domain as it permits upgraded ’non-backwards compatible’ services to be deployed into a performance constrained network where existing consumers depend on an older version of the service interface. In order for this to be successful, the refactoring and message mediation needs to occur without affecting functional compatibility with the services’ consumers, and must operate within the performance overhead expected of the original service, introducing as little latency as possible. Furthermore, compared to a manually programmed solution, the presented approach enables the service developer to apply and parameterize refactorings with a level of confidence that they will not produce an invalid or ’corrupt’ transformation of messages. This is achieved through the use of preconditions for the defined refactorings

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    ACADA: Access Control-driven Architecture with Dynamic Adaptation

    Get PDF
    Programmers of relational database applications use software solutions (Hibernate, JDBC, LINQ, ADO.NET) to ease the development process of business tiers. These software solutions were not devised to address access control policies, much less for evolving access control policies, in spite of their unavoidable relevance. Currently, access control policies, whenever implemented, are enforced by independent components leading to a separation between policies and their enforcement. This paper proposes a new approach based on an architectural model referred to here as the Access Controldriven Architecture with Dynamic Adaptation (ACADA). Solutions based on ACADA are automatically built to statically enforce access control policies based on schemas of Create, Read, Update and Delete (CRUD) expressions. Then, CRUD expressions are dynamically deployed at runtime driven by established access control policies. Any update in the policies is followed by an adaptation process to keep access control mechanisms aligned with the policies to be enforced. A proof of concept based on Java and Java Database Connectivity (JDBC) is also presented

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur
    • …
    corecore