
387

ACADA:
Access Control-driven Architecture with Dynamic Adaptation

Óscar Mortágua Pereira, Rui L. Aguiar

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
{omp,ruilaa}@ua.pt

Maribel Yasmina Santos
Centro Algoritmi

University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract— Programmers of relational database applications
use software solutions (Hibernate, JDBC, LINQ, ADO.NET) to
ease the development process of business tiers. These software
solutions were not devised to address access control policies,
much less for evolving access control policies, in spite of their
unavoidable relevance. Currently, access control policies,
whenever implemented, are enforced by independent
components leading to a separation between policies and their
enforcement. This paper proposes a new approach based on an
architectural model referred to here as the Access Control-
driven Architecture with Dynamic Adaptation (ACADA).
Solutions based on ACADA are automatically built to statically
enforce access control policies based on schemas of Create,
Read, Update and Delete (CRUD) expressions. Then, CRUD
expressions are dynamically deployed at runtime driven by
established access control policies. Any update in the policies is
followed by an adaptation process to keep access control
mechanisms aligned with the policies to be enforced. A proof of
concept based on Java and Java Database Connectivity
(JDBC) is also presented.

Keywords-access control;software architecture; adaptive
systems.

I. INTRODUCTION
Software systems have increasingly played a key role in

all dimensions of our existence as humans, such as transport
operators, financial movements, e-health, e-governance and
national/international security. They are responsible for
managing sensitive data that needs to be kept secure from
unauthorized usage. Access control policies (ACP) are a
critical aspect of security. ACP are aimed at preventing
unauthorized access to sensitive data and is usually
implemented in a three phase approach [1]: security policy
definition; security model to be followed; and, finally,
security enforcement mechanism. Security policies define
rules through which access control is governed. The four
main strategies for regulating access control policies are [2,
3]: discretionary access control (DAC), mandatory access
control (MAC), Role-based access control (RBAC) and
credential-based access control. Security models provide
formal representations [4-8] for security policies. Security
enforcement mechanisms implement the security policy
formalized by the security model. ACP exist to keep
sensitive data safe, mostly kept and managed by database
management systems. Among the several paradigms, the

relational database management systems (RDBMS) continue
to be one of the most successful one to manage data and,
therefore, to build database applications. Beyond RDBMS,
software architects use other current software solutions
(CuSS), such as JDBC [9], ODBC [10], JPA [11], LINQ
[12], Hibernate [13], ADO.NET [14] and Ruby on Rails [15]
to ease the development process of business tiers of database
applications. Unfortunately, CuSS were devised to tackle the
impedance mismatch issue [16], leaving ACP out of their
scope. Current mechanisms to enforce ACP to data residing
in a RDBMS consist of designing a separate security layer,
following one of two different approaches: traditional and
PEP-PDP:

1) The traditional approach is based on a security
software layer developed by security experts using RDBMS
tools. ACP architecture vary from RDBMS to RDBMS but
comprise several entities, such as users, roles, database
schemas and permissions. They are directly managed by
RDBMS and are completely transparent to applications.
Their presence is only noticed if some unauthorized access is
detected. Basically, before being executed, SQL statements
are evaluated by RDBMS to check their compliance with the
established ACP. If any violation is detected, SQL
statements are rejected, otherwise they are executed.

2) The PEP-PDP approach consists in a security software
layer with two main functionalities: the policy decision point
(PDP) and the policy enforcement point (PEP), as defined in
XACML [17] and used in [18], see Figure 1. The PEP
intercepts users requests for accessing a resource protected
by an ACP (Figure 1, 1) and enforces the decision to be
performed by PDP on this access authorization. PDP
evaluates requests to access a resource against the ACP to
decide whether to grant or to deny the access (Figure 1, 2). If
authorization is granted, the action is sent by the PEP to
RDBMS to be executed (Figure 1, 3) and, if no other

Business Logic

RDBMS

...
accessGranted =
If (accessGranted) {
 ...

PEP PDP
1 2

3
4

Figure 1. PEP-PDP approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15569525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

388

access control exists, the action is executed by the RDBMS
(Figure 1, 4). PDPs are designed and configured by security
experts and exist as independent components. PEPs are
intentionally inserted in key points of the source code to
enforce PDP decisions.

Both approaches impose a sharp separation between ACP
and the mechanisms responsible for their enforcement. This
fragility is also apparent in CuSS: security layers exist to
enforce ACP and CuSS exist to ease the development
process of database applications. This separation of roles
entails four important drawbacks regarding the usage of
current CuSS:

 1) For programmers who use CuSS, this separation
demands a complete mastering on the established ACP and
on their dependency on database schemas. This mastering is
very difficult to be sustained when the complexity of ACP
increases, usually coupled by an increase in complexity of
databases schemas.

2) Programmers who use CuSS are free to write any
CRUD expression opening a security gap. CRUD
expressions may be in compliance with the formalized ACP
but violating security rules that are not possible to be
formalized. ACP are suited to control the access to schema
objects but not to control the information SQL statements
may get from them. If a user has the permission to, for
example, read a set of columns from one or more tables, it is
not possible to prevent any SQL statement from reading that
data. Select statements may select raw data or may use
aggregate functions, for example, to select critical statistical
information, opening a possible security gap.

 3) Whenever ACP are updated, the correspondent access
control mechanisms have to be updated in advance. There is
no way to automatically translate ACP into access control
mechanisms of CuSS.

4) Some ACP need to be hard-coded to manage runtime
constraints. There is no way to automatically update these
scattered and hidden hard-coded access control mechanisms
in current CuSS.

To tackle the aforementioned drawbacks we propose a
new architecture for CuSS, herein referred to as Access
Control-driven Architecture with Dynamic Adaptation
(ACADA). Software solutions cease to be of general use and
become specialized solutions to address specific business
areas, such as accountability, warehouse and customers.
They are automatically built from a business architectural
model, enforcing ACP defined by a security expert. ACP are
statically enforced by typed objects driven by schemas of
Create, Read, Update and Delete (CRUD) expressions. Then,
CRUD expressions are deployed at runtime in accordance
with the established ACP. Any modification in the ACP is
followed by an adaptation process to keep access control
mechanisms aligned with the policies to be enforced. A proof
of concept based on Java, JDBC [9] and SQL Server 2008 is
also presented.

This paper is organized as follows: section II presents the
motivation and related word; section III presents the

proposed approach; section IV presents a proof of concept
and, finally, section V presents the final conclusion.

II. MOTIVATION AND RELATED WORK
CuSS have been devised to improve the development

process of business logic mainly for tackling the impedance
mismatch [16]. From them, two categories have had a wide
acceptance in the academic and commercial forums: 1)
Object-to-Relational mapping (O/RM) tools [19, 20] (LINQ
[12], Hibernate [13], Java Persistent API (JPA) [11], Oracle
TopLink [21], CRUD on Rails [15]) and 2) Low Level API
(JDBC [9], OBDC [10], ADO.NET [14]). Other solutions,
such as embedded SQL [22] (SQLJ [23]), have achieved
some acceptance in the past. Others were proposed but
without any general known acceptance: Safe Query Objects
[24] and SQL DOM [25].

Listing 1 shows the usage of four CuSS (JDBC,
ADO.NET, JPA and LINQ) for updating the attribute
totalValue returned by the query “select clientId, ttlValue
from Orders where date=2012-01-31”. Programmers are
completely free to edit any CRUD expression (CRUD
expressions are encoded inside strings), to execute it (line 2,
9, 20, 27) and to update the attribute ttlValue (line 4-5, 14-
16, 21-24, 28-29). There is no sign of any ACP: neither for
the CRUD expression being executed nor for the updated
attribute. Beyond updating totalValue, nothing prevents
programmers from writing source code to update any other
attribute. Programmers have no guidance either on the
established ACP or on the underlying database schema. Only
after writing and running the source code, programmers
become aware of any ACP violation or any database schema
nonconformity. Moreover, this same source code may be

 1 // JDBC - Java
 2 rs=st.executeQuery(sql);
 3 rs.next();
 4 rs.updateFloat(“ttlValue”, newValue);
 5 rs.updateRow();
 6
 7 //ADO.NET – C#
 8 SqlDataAdapter da=new SqlDataAdapter();
 9 da.SelectCommand=new SqlCommand(sql,conn);
10 SqlCommandBuilder cb=new SqlCommandBuilder(da);
11 DataSet ds=new DataSet();
12 da.Fill(ds,"Orders");
13 DataRow dr=ds.Tables["Orders"].Rows[0];
14 dr["ttlValue"]=totalValue;
15 cb.GetUpdateCommand();
16 da.Update(ds,"Orders");
17
18 // JPA - Java
19 Query qry=em.createNamedQuery(sql,Orders.class);
20 Orders o=(Orders)qry.getSingleResult();
21 em.getTransaction().begin();
22 o.setTtlValue(value);
23 em.persist(o);
24 em.getTransaction().commit();
25
26 //LINQ – C#
27 Order ord=(from o in Orders select o).Single();
28 ord.ttlValue=value;
29 db.SubmitChanges();

Listing 1. Examples using CuSS

389

select o.clientId,SUM(o.ttlValue) as ttlValue
 from Orders as o
 where o.date between '2012-01-01' and '2012-01-31'
group by o.clientId
order by o.clientId desc

Listing 2. CRUD expression with aggregate function.

used to execute an infinite number of different CRUD
expressions requiring the same ACP, such as the one shown
in Listing 2. There is no way to avoid this type of security
violation. Even if a PEP was used, it would not solve any of
the hurdles previously presented. An example of the need for
evolving ACP, is the designation of a secretary Susanne to be
temporally allowed to update clients’ ttlValue. Her role has
to be changed but roles of other secretaries are to be kept
unchanged. ACP foresee this possibility by using the
delegation concept. The problem is the lack of preparedness
of CuSS to accommodate this situation. Source-code needs
to be modified to accommodate the new permission for
Susanne. The situation will further deteriorate if the
permission is to be only granted while she is within the
facilities of the company. The use of hard-coded mechanisms
to enforce ACP entails maintenance activities on source-code
of client-side components of database applications whenever
ACP evolve. CuSS and current access control mechanisms
are not prepared to seamlessly accommodate and enforce
these evolving ACP.

To address these issues several solutions have been
proposed.

SELINKS [18] is a programming language in the type of
LINQ and Ruby on Rails which extends Links [26]. Security
policies are coded as user-defined functions on DBMS.
Through a type system named as Fable, it is assured that
sensitive data is never accessed directly without first
consulting the appropriate policy enforcement function.
Policy functions, running in a remote server, check at
runtime what type of actions users are granted to perform,
basically controlling more efficiently what RDBMS are
currently able to do, and this way not tackling the need to
master ACP and database schemas. Moreover, if ACP evolve
there will be no way to automatically accommodate the
modifications in the client-side components.

Jif [27] extends Java with support for information access
control and also for information flow control. The access
control is assured by adding labels that express ACP. Jif
addresses some relevant aspects such as the enforcement of
security policies at compile time and at runtime. Anyway, at
development time programmers will only be aware of
inconsistencies after running the Jif compiler. In spite of its
valuable contribution, Jif does not address the announced
goals of this research.

Rizvi et al. [28] uses views to filter contents of tables and
simultaneously to infer and check at runtime the appropriate
authorization to execute any query. The process is
transparent for users and queries are rejected if they do not
have the appropriate authorization. This approach has some
disadvantages: 1) the inference rules are complex and time
consuming; 2) security enforcement is transparent, so users
do not know that their queries are run against views; 3)

programmers cannot statically check the correctness of
queries which means they are not aware of either the ACP or
the underlying database schema.

Morin et al. [29] uses a security-driven model-based
dynamic adaptation process to address simultaneously access
control and software evolution. The approach begins by
composing security meta-models (to describe access control
policies) and architecture meta-models (to describe the
application architecture). They also show how to map
(statically and dynamically) security concepts into
architectural concepts. This approach is mainly based on
establishing bindings between components from different
layers to enforce security policies. Authors didn´t address the
key issue of how to statically incorporate the established
security policies in software artifacts.

Differential-privacy [30] has had significant attention
from the research community. It is mainly focused on
preserving privacy from statistical databases. It really does
not directly address the point here under discussion. The
interesting aspect is Frank McSherry’s [31] approach to
address differential-privacy: PINQ - a LINQ extension. The
key aspect is that the privacy guarantees are provided by
PINQ itself not requiring any expertise to enforce privacy
policies. PINQ provides the integrated declarative language
(SQL like, from LINQ) and simultaneously provides native
support for differential-privacy for the queries being written.

III. ACADA: PROPOSED APPROACH
In this section a new architecture, ACADA, is proposed

for CuSS. We first introduce an overview for the proposed
approach. Then we introduce some relevant aspects of CuSS
from which ACADA will evolve. Then, CRUD Schemas are
presented as key entities of ACADA. Finally, ACADA is
presented.

A. Overview
ACADA is an architecture for software solutions used in

business tiers of database applications. Each software
solution derived from ACADA, herein known as Access
Control-driven Component with Dynamic Adaptation

a)

+ACADA

ACCDA

Static
ACP

Running Platform

Monitoring
Framework

Dynamic
ACP

Running database application

ACCDA b)

Figure 2. Proposed approach for the adaptation of ACCDA a) static
composition and b) dynamic adaptation.

390

(ACCDA), is customized to address a specific need of a
business area, such as accountability, warehouse and sales.
Then, at runtime, they are dynamically adapted to be kept
aligned with the established ACP. This approach combines a
static composition of ACCDA and a dynamic adaptation to
the running context as shown in Figure 2. During the static
composition, Figure 2 a), static parts of ACP are used to
build an ACCDA based on an architectural model
(ACADA). Static parts of ACP comprise the information
needed to build the business logic to manage CRUD
expressions. Any modification in the static parts compels to a
new static composition. During the dynamic adaptation, see
Figure 2 b), CRUD expressions are dynamically assigned
and unassigned to running ACCDA in accordance with ACP
defined for each user. This process is continuous and may
have as input data from a monitoring framework and from
security experts. Security experts modify ACP, for example,
to allow secretary Susanne to update clients’ ttlValue and,
therefore, to use the necessary business logic and necessary
CRUD expressions. Monitoring framework updates ACP, for
example, only to allow Susanne to update clients’ ttlValue
while she is within the facilities of the company.

B. Relevant Aspects of CuSS
To proceed with a more detailed presentation it is

advisable to learn and understand CuSS and the context in
which CRUD expressions are executed. Identifying a
common base for current approaches is a key aspect to
devise ACADA. The following shared functionalities are
emphasized:

1) To promote reusability of CRUD expressions,
parameters may be used to define runtime values. Parameters
are mainly used to define runtime values for clause
conditions and for column lists. Listing 3 shows an Update
CRUD expression with four parameters: a, b and c are
columns and d is a condition.

update table set a=?, b=?, c=? where d=?

Listing 3. CRUD expression with parameters.

 2) If CRUD expression type is Insert, Update or Delete,
its execution returns a value indicating the number of
affected rows.

3) Data returned by CRUD expressions of type Select is
managed by a local memory structure (LMS) internally
created by CuSS. Some LMS are readable only and others
are readable and modifiable. Modifiable LMS provide
additional functionalities to modify their internal content:
update data, delete data and insert new data. These actions,
are equivalent to CRUD expressions and the results are
committed into the host RDBMS.

Thus, CRUD expressions are used at two levels: at the
application level and at the LMS level. At the application
level CRUD expressions are explicitly used, while at the
LMS level CRUD expressions are implicitly used. In both
cases, to guarantee compliance with established ACP and
with database schemas, CRUD expressions need to be

emanated from the established ACP and from database
schemas and not from programmers’ will. In reality, CRUD
expressions and LMS are the key assets of CuSS to interact
with RDBMS. They are the entities used to read data from
databases and to alter the state of databases.

C. Crud Schemas
CRUD expressions and LMS are two key entities of

ACADA. They are the entities used to interact with
databases and, therefore, the privileged entities through
which ACP may be enforced. To this end, ACADA
formalizes CRUD expressions and LMS using a schema
herein known as CRUD schema. A CRUD schema is a set of
services needed to manage the execution of CRUD
expressions and the associated LMS (only for Select CRUD
expressions). It comprises four independent parts: a) a
mandatory type schema – the CRUD type - query (Select) or
execute (Insert, Update or Delete); b) an optional parameter
schema – to set the runtime values for the conditions used
inside SQL clauses, such as the “where” and “having”
clauses and runtime values for column lists (only for Insert
and Update CRUD expressions); c) mandatory result
schema for Insert, Update and Delete CRUD expressions – to
handle the number of affected rows during the CRUD
expressions execution and, finally, d) a mandatory LMS
schema for Select CRUD expressions – to manage the
permissions on the LMS.

Table I shows a possible definition for the permissions on
an LMS derived from the CRUD expression Select a,b,c,d,e
from table. This access matrix [32] like representation,
defines for each attribute of this LMS, which LMS
functionalities (read, update, insert, delete) are authorized.
delete action is authorized in a tuple basis and, therefore, it is
executed as an atomic action for all attributes.

TABLE I. TABLE OF PERMISSIONS IN A LMS

 a b c d
Read yes no yes yes
Update no yes no yes
Insert yes yes no no
delete yes

D. ACADA Presentation
Figure 3 presents a class diagram for an ACADA model,

for building ACCDA. Figure 3 a) presents the entities used to
define CRUD schemas. Figure 3 b) presents the final class
diagram of ACADA. There are six types of entities: ILMS,
ICrudSchema, Manager, IFactory, IConfig and CrudSchema:

ILMS (used for Select CRUD expressions only) defines
the permissions on LMS, following the approach presented
inTable I: IRead defines the readable attributes, IUpdate
defines the updatable attributes, IInsert defines the insertable
attributes and IDelete defines if LMS’s rows are deletable.
Aditionally, ILMS also uses IScroll to define the scrollable
methods to be made available.

ICrudSchema is used to model the business logic for each

391

«interface»
ILMS

IRead IUpdate

IInsert
IDelete

IScroll

Only if readable and
only readable attributes

Only if insertable and
only insertable attributes

Only if deletable

Only if updatable and
only updatable attributes

+execute(in param_1,...,param_n)

«interface»
ICrudSchema

ILMS Only if Select

Only if Insert or
Update or Delete

IResult

a)

b)

+addCRUD(in crudId : int, in crud : string, in crudSchemaId : int)
+removeCRUD(in crudId : int, in crudSchemaId : int)

«interface»
IConfig

#CrudSchema_1(in conn : Connection, in crud : string)

CrudSchema_1
ICrudSchema_1

#CrudSchema_n(in conn : Connection, in crud : string)

CrudSchema_n
ICrudSchema_n

+CrudSchema_1(in crudId : int) : ICrudSchema_1
+...()
+CrudSchema_n(in crudId : int) : IBusinessContract_n

«interface»
IFactory

+getInstance(in username : string, in password : string, in url : string, in port : int) : IFactory

Manager

*
1

1 *

Figure 3. Class diagram for ACADA: a) entities used to define schemas of CUD expressions; b) final class diagram of ACADA.

CRUD schema instance – see ICrudSchema_1, …,
ICrudSchema_n, in Figure 3 b). It comprises a mandatory
method, execute(param_1,…,param_n), to set the parameter
schema and to execute CRUD expressions, and two optional
interfaces: ILMS and IResult. IResult (for Insert, Update and
Delete CRUD expressions only) implements the result
schema.

CrudSchema is used to implement ICrudSchema. The
arguments conn and crud are a connection object to a
database and the CRUD expression to be managed,
respectively. Each CrudSchema is able to manage any
CRUD expression with equivalent schema. CRUD
expressions with the same CRUD Schema are herein known
as sibling CRUD expressions. Listing 4 presents two simple
sibling CRUD expressions: both are Select, both have the
same select list, none has column list or condition list
parameters. This property is an opportunity to extend the
adaptation capability of ACADA. In practice each
CrudSchema is able to manage an infinite number of sibling
CRUD expressions. Thus, any CrudSchema used by UserA
is able to manage not one CRUD expression but one set of
sibling CRUD expressions and the same CrudSchema may
be used by UserB to manage a different set of sibling CRUD
expressions.

Select * from table;
Select * from table where id=10;

Listing 4. 2 Sibling CRUD expressions.

 Manager implements two interfaces (IFactory and
IConfig) and is the entry point for creating instances of
ACCDA (using getInstance, authentication is required). url
and port are used to connect to a component responsible for
the dynamic adaptation process and for the authentication of
users.

IConfig is used to dynamically adapt running instances of
ACCDA to users previously authenticated. The dynamic
process comprises the deployment of CRUD expressions and
also the required information to set the connection to
RDBMS (not shown). Each CRUD expression is assigned to
a CrudSchema responsible for its management. IConfig is
implemented using a socket to decouple ACCDA from
components responsible for managing the dynamic
adaptation process.

 IFactory is used to create instances of
CrudSchema.Users request the access to a CrudSchema and
to a CRUD expression. The access is granted or denied
depending on the ACP defined by the dynamic adaptation
process.

IV. PROOF OF CONCEPT
In this section a proof of concept based on Java and

JDBC (sqljdbc4) for SQL Server 2008, is presented. A
component, herein known as ACEngine, was developed to
automatically create releases of ACCDA. The biggest
challenge was centered on the approach to be followed to
formalize CRUD schemas to be used to define the target
business area. Several approaches were considered, among
them XML and standard Java interfaces. In spite of being
less expressive than XML, Java interfaces proved to be an
efficient and effective approach. Programmers do not need to
use a different development environment, interfaces are basic
entities of any object-oriented programming language and
are widely used, interfaces are easily edited and maintained
and, finally, CRUD schemas have also been defined as
interfaces, see Figure 3. These were the fundamental reasons
for having opted for Java interfaces in detriment of XML.

ACEngine accepts as input, for each CRUD schema, one
interface extending all the necessary interfaces as defined in

392

ICrudSchema and shown in Figure 3. Then, through
reflection, ACEngine detects which interfaces are defined
and which methods need to be implemented to automatically
create the source code.

A component for the dynamic adaptation process was
also created. The main information is organized around
users. For each user it is defined its authentication
parameters (username and password), the assigned CRUD
expressions and the correspondent CrudSchemas. Any
modification in this information is immediately sent to users
running ACCDA instances.

The example to be presented is based on the Select and
on the permissions used in Table I.

Figure 4 shows the four interfaces used to formalize the
LMS’s permissions, which are in agreement with Table I.
CuSS use the same access methods for updating and for
inserting attributes. This approach prevents the separation
between update permissions and insert permissions.
Therefore, to overcome this limitation, access methods of
IUpdate and IInsert have been given different names.
IUpdate use a prefix u and IInsert use a prefix i. Some
additional methods, such as uUpdate() and iBeginInsert() are
used to implement the update and insert protocols defined by
JDBC for LMS.

Figure 4. IRead, IUpdate, IInsert and IDelete interfaces.

Figure 5 presents the usage of ACCDA from a
programmer’s perspective. An attempt is done to create a
new ACCDA instance (line 29). It will raise an exception if a
connection to ACDynam fails or if authentication fails.
Authentication is processed by ACDynam and if it
succeeds, ACDynam transfers to ACCDA all the CRUD
expressions, in accordance with the ACP assigned to the
authenticated user. Then, an attempt is made to create an
instance of a crudSchema for managing the CRUD
expression identified by token 1 (line 30). As previously
mentioned, programmers cannot edit CRUD
expressions.They are only allowed to use CRUD expressions
made available by ACDynam, overcoming this way the
security gap of CuSS. If it fails (user is not authorized to

Figure 5. ACCDA from the programmer’s perspective.

execute the CRUD expression), an exception is raised. If not,
CRUD expression is executed (line 31) and LMS is scrolled
row by row (line 32). The dynamic adaptation is on behalf of
ACDynam that, at any time, may modify the permission to
use this CRUD expression. There is no need to update any
source-code this way overcoming CuSS to be adapted to
evolving ACP. The three readable attributes are read (line
33-35). Update protocol is started (line 36). Auto-completion
window (line 38-43) shows the available methods to update
attributes of LMS, relieving programmers from mastering the
established ACP and database schema. This type of guided-
assistance is available for all operations involving ACCDA,
this way overcoming the need for mastering ACP and
database schemas when using CuSS.

V. CONCLUSION
In this paper a new architecture (ACADA) was presented

to devise solutions driven by ACP and able to be
dynamically adapted to deal with evolving ACP. The
adaptation process of each ACCDA release is achieved in a
two phase approach: static composition and dynamic
adaptation. Static composition is triggered whenever a
maintenance activity is necessary in CRUD Schemas.
Dynamic adaptation is a continuous process where CRUD
expressions are deployed to running ACCDA instances in
accordance with ACP. ACP are dynamically updated by a
monitoring framework and/or by security experts.

Source code is automatically generated from an
architectural model and from ACP defined by a security
expert. In opposite to CuSS, programmers using ACCDA are
relieved from mastering ACP and database schemas, and
also from writing CRUD expressions. Security is ensured by
preventing programmers from writing CRUD expressions
and by controlling dynamically, at runtime, the set of CRUD
expressions that each user may use. Evolving ACP are
seamlessly supported and enforced by ACCDA. An
independent and external component keeps the access control
mechanisms of ACCDA updated at runtime by assigning and
unassigning CRUD expressions. This adaptation capability
of ACCDA avoids maintenance activities in the core client-
side components of database applications when ACP evolve.
The adaptation capacity is significantly improved by

393

CrudSchema design which, theoretically, is able to manage
an infinite number of sibling CRUD expressions.

Summarizing, ACADA overcomes the four drawbacks of
CuSS. This achievement is mostly grounded on its two phase
adaptation process: static composition and dynamic
adaptation.

It is expected that this work may open new perspectives
for enforcing evolving ACP in business tier components of
database applications.

REFERENCES
[1] P. Samarati and S. D. C. d. Vimercati, "Access Control: Policies,

Models, and Mechanisms," Foundations of Security Analysis and
Design, pp. 137-109, 2001.

[2] P. Samarati and S. D. C. d. Vimercati, "Access Control: Policies,
Models, and Mechanisms," presented at the Revised versions of
lectures given during the IFIP WG 1.7 International School on
Foundations of Security Analysis and Design on Foundations of
Security Analysis and Design: Tutorial Lectures, 2001.

[3] S. D. C. d. Vimercati, S. Foresti, and P. Samarati, "Recent Advances
in Access Control - Handbook of Database Security," M. Gertz and S.
Jajodia, Eds., ed: Springer US, 2008, pp. 1-26.

[4] D. Basin, J. Doser, and T. Lodderstedt, "Model Driven Security: From
UML Models to Access Control Infrastructures," ACM Transactions
on Software Engineerig and Methodology, vol. 15, pp. 39-91, 2006.

[5] R. Breu, G. Popp, and M. Alam, "Model Based Development of
Access Policies," International Journal on Software Tools for
Technology Transfer, vol. 9, pp. 457-470, 2007.

[6] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl, "MAC and UML
for Secure Software Design," presented at the Proceedings of the 2004
ACM Workshop on Formal Methods in Security engineering,
Washington DC, USA, 2004.

[7] I. Ray, N. Li, R. France, and D.-K. Kim, "Using UML to Visualize
Role-based Access Control Constraints," presented at the Proceedings
of the ninth ACM Symposium on Access Control Models and
Technologies, Yorktown Heights, New York, USA, 2004.

[8] OASIS, "eXtensible Access Control Markup Language (XACLML),"
ed: OASIS Standard.

[9] M. Parsian, JDBC Recipes: A Problem-Solution Approach. NY, USA:
Apress, 2005.

[10] Microsoft. (2011 Oct). Microsoft Open Database Connectivity.
Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[11] D. Yang, Java Persistence with JPA: Outskirts Press, 2010.
[12] M. Erik, B. Brian, and B. Gavin, "LINQ: Reconciling Object,

Relations and XML in the .NET framework," in ACM SIGMOD
International Conference on Management of Data, Chicago,IL,USA,
2006, pp. 706-706.

[13] B. Christian and K. Gavin, Hibernate in Action: Manning Publications
Co., 2004.

[14] G. Mead and A. Boehm, ADO.NET 4 Database Programming with C#
2010. USA: Mike Murach & Associates, Inc., 2011.

[15] D. Vohra, "CRUD on Rails - Ruby on Rails for PHP and Java
Developers," ed: Springer Berlin Heidelberg, 2007, pp. 71-106.

[16] M. David, "Representing database programs as objects," in Advances
in Database Programming Languages, F. Bancilhon and P. Buneman,
Eds., ed N.Y.: ACM, 1990, pp. 377-386.

[17] OASIS. (2012 Feb). XACML - eXtensible Access Control Markup
Language. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[18] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, Label-based
Security Enforcement for Web Applications," presented at the
Proceedings of the 35th SIGMOD International Conference on
Management of Data, Providence, Rhode Island, USA, 2009.

[19] W. Keller, "Mapping Objects to Tables - A Pattern Language," in
European Conference on Pattern Languages of Programming
Conference (EuroPLoP), Irsse, Germany, 1997.

[20] R. Lammel and E. Meijer, "Mappings Make data Processing Go
'Round: An Inter-paradigmatic Mapping Tutorial," in Generative and
Transformation Techniques in Software Engineering, Braga, Portugal,
2006.

[21] Oracle. (2011 Oct). Oracle TopLink. Available:
http://www.oracle.com/technetwork/middleware/toplink/overview/ind
ex.html

[22] J. W. Moore, "The ANSI binding of SQL to ADA," Ada Letters, vol.
XI, pp. 47-61, 1991.

[23] Part 1: SQL Routines using the Java (TM) Programming Language,
1999.

[24] R. C. William and R. Siddhartha, "Safe query objects: statically typed
objects as remotely executable queries," in 27th International
Conference on Software Engineering, St. Louis, MO, USA, 2005, pp.
97-106.

[25] A. M. Russell and H. K. Ingolf, "SQL DOM: compile time checking
of dynamic SQL statements," in 27th International Conference on
Software Engineering, St. Louis, MO, USA, 2005, pp. 88-96.

[26] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, "Links: Web
Programming Without Tiers," presented at the Proceedings of the 5th
International Conference on Formal Methods for Components and
Objects, Amsterdam, The Netherlands, 2007.

[27] D. Zhang, O. Arden, K. Vikram, S. Chong, and A. Myers. (2011 Dec).
Jif: Java + information flow. Available: http://www.cs.cornell.edu/jif/

[28] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, "Extending Query
Rewriting Techniques for Fine-grained Access Control," presented at
the Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, Paris, France, 2004.

[29] B. Morin, T. Mouelhi, F. Fleurey, Y. L. Traon, O. Barais, and J.-M.
Jézéquel, "Security-Driven Model-based Dynamic Adaptation,"
presented at the Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
2010.

[30] C. Dwork, "Differential Privacy: A Survey of Results," presented at
the Proceedings of the 5th International Conference on Theory and
Applications of Models of Computation, Xi'an, China, 2008.

[31] F. McSherry, "Privacy Integrated Queries: An Extensible Platform for
Privacy-preserving Data Analysis," Commun. ACM, vol. 53, pp. 89-
97, 2010.

[32] B. W. Lampson, "Protection," SIGOPS Operating Systems Review,
vol. 8, pp. 18-24, 1974.

