

Tilburg University

Evolving services from a contractual perspective

Andrikopoulos, V.; Benbernou, S.; Papazoglou, M.

Published in:
Proceedings of the 21st international Conference on Advanced Information Systems Engineering

Publication date:
2009

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Andrikopoulos, V., Benbernou, S., & Papazoglou, M. (2009). Evolving services from a contractual perspective. In
J. Mylopoulos, W. M. P. van Aalst, & R. Salay (Eds.), Proceedings of the 21st international Conference on
Advanced Information Systems Engineering (pp. 290-304). (Lecture Notes in Computer Science). Springer
Verlag. http://infolab.uvt.nl/pub/andrikopoulosv-2009-124.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420804896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/8660f572-ebf0-4d09-86fc-b95dc44e210b
http://infolab.uvt.nl/pub/andrikopoulosv-2009-124.pdf

Evolving Services from a Contractual
Perspective?

Vasilios Andrikopoulos1, Salima Benbernou2, and Mike P. Papazoglou1

1 ERISS, Tilburg University, Netherlands
2 LIRIS, Université de Lyon 1, France

{v.andrikopoulos, mikep}@uvt.nl, sbenbern@liris.univ-lyon1.fr

Abstract. In an environment of constant change, driven by competition
and innovation, a service can rarely remain stable - especially when it de-
pends on other services to fulfill its functionality. However, uncontrolled
changes can easily break the existing relationships between a service and
its environment (its customers and providers). In this paper we present
an approach that allows for the controlled evolution of a service by lever-
aging the loosely-coupled nature of the SOA paradigm. More specifically,
we formalize the notion of contracts between interacting services that en-
able their independent evolution and we investigate under which criteria
can changes to a contract-bound service, or even to the contract itself,
be transparent to the environment of the service.
Keywords: service evolution, service contracts, compatibility, contract
invariance, contract evolution

1 Introduction

A number of serious challenges like mergers and acquisitions, outsourcing pos-
sibilities, rapid growth, regulatory compliance needs and intense competitive
pressures require changes at the enterprise level and lead to a continuous busi-
ness process redesign and improvement effort. Service changes that are required
by this effort however must be applied in a controlled fashion so as to mini-
mize inconsistencies and disruptions by guaranteeing seamless interoperation of
business processes that may cross enterprise boundaries.

In general, we can classify service changes depending on their direct and side
effects [1] in shallow, where the change effects are localized to the service or
are strictly restricted to the clients of that service, and deep, that are cascading
types of changes which extend beyond the clients of a service, and possibly to
its entire value-chain, i.e., to clients of the service clients such as outsourcers
or suppliers. Shallow changes characterize both singular services and business
processes and require a structured approach and robust versioning strategy to
support multiple versions of services and business protocols. Deep changes on

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

the other hand are more intricate and require the assistance of a change-oriented
service life cycle where the objective is to allow services to predict and respond
appropriately to changes as they occur [1]. Due to the complexity and scope
of deep changes this paper discusses only shallow changes and more specifically
changes to the Structural layer elements of the Service Specification Reference
Model introduced in [2], i.e., to the message content, operations, interfaces, and
message exchange patterns (MEPs), roughly corresponding to WSDL artifacts.

The setting discussed has a number of similarities with the fields of evo-
lution transparency and interoperability preservation that have been discussed
in different forms in [3] and [4] (among others), and essentially boil down to
preventing incompatibility between interoperating (interacting) services. These
works though depend mainly on adaptation mechanisms to maintain interoper-
ability, and adaptation approaches are by definition a posteriori interventions
focusing on incompatibility identification and resolution by modification of a ser-
vice. In that sense, the adaptation process can not discern between shallow and
deep changes and is unable to prevent the propagation of changes throughout
the value chain, since the modification of a service may have unforeseen conse-
quences to the parties that interact with it. For that reason we are focusing on
identifying under which conditions changes to a service are shallow and discuss
an a priori approach that aims to prevent or at least predict and confine the
necessity for adaptation.

The goal of this work is therefore to allow the independent evolution of loosely
coupled interacting parties in a transparent manner so as to preserve their in-
teroperability. In this context, the parties involved in an interaction can either
be services, or services and client (service-based) applications. We only consider
bilateral interactions, and for each such interaction we distinguish two roles: that
of the producer and that of the consumer. It must be kept under consideration
that the role of a service, unlike that of an application that always acts as a con-
sumer, can vary depending on the interaction. An aggregate service for example
plays both roles: that of the producer for its clients, and that of the consumer
when it interacts with the aggregated services to compose a result. To achieve
meaningful interoperability in this context, service clients and providers must
come to a mutual agreement, a contract of sorts between them [5]. A contract of
this type formalizes the details of a service in a way that meets the mutual under-
standing and expectations of both service provider and service client. Building
around this idea, we are presenting mechanisms to effectively deal with the evo-
lution of the structural aspect of both parties, while preserving interoperability
despite the changes that may affect them. After we lay down this foundation we
discuss the evolution of interactions and contracts themselves.

The rest of the paper is organized as follows: section 2 presents a notation
for service description that leverages the decoupling of service providers and
clients through the introduction of the contract construct (section 3). Section
4 shows how the introduced notions can be used to control the evolution of
the interacting parties while maintaining a high degree of flexibility. Section 5
will briefly present related works, and section 6 discusses conclusions and future

work. To facilitate the conversation, we are using the simple service described
below as a point of reference:

Example 1 (Running Example). Let’s assume the case of a very simple inventory
service that checks for the availability of an item and responds that the purchase
order can be fulfilled or issues a fault stating that the order cannot be completed.
The WSDL file of this service is shown in listing 1.

...

<types>

<xsd:schema targetNamespace="http://e-grocery.com/InventoryService">

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="InventoryRequest">

<part name="inventoryItem" type="tns:inventoryItem"/>

</message>

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

</message>

<message name="InventoryFault">

<part name="faultMessage" type="xsd:string"/>

</message>

<portType name="InventoryServicePortType">

<operation name="checkInventory">

<input name="item" message="tns:InventoryRequest"/>

<output name="confirmation" message="tns:InventoryConfirmation"/>

<fault name="fault" message="tns:InventoryFault"/>

</operation>

</portType>

...

Listing 1: Inventory Service WSDL specification

2 Service Specifications

The WSDL description of the inventory service in listing 1 is far from complete in
describing the structural aspect of the service. In specific, apart from providing
an unambiguous schema for the service interfaces (the signature of the service)
to be used by its clients, it lacks completely in providing a) any information on
the services used by the service itself to fulfill its functionality (if any), and b)
the means to connect the information required and provided by its signatures

with that of the signatures of the other services it is using. It is therefore not
suitable for describing the interaction of the service with its environment and has
to be replaced by a declarative specification that fulfills this role. [2] provides
a more exhaustive discussion on the structure and content of such a service
specification scheme. For the purposes of this work, we will only define the
following constructs:

Definition 1 (Element). An element e of a service s is defined as a tuple
(a1, a2, . . . , an), the set of attributes that characterize the element. ai is either
an atomic attribute or another element ei of the service.

For example, InventoryRequest, checkInventory, and the rest of the WSDL
constructs in listing 1 can be represented as elements a1 =(inventoryItem),
a2 =(item, confirmation, fault), etc.

Definition 2 (Type extension). The specification E of a service is defined
by the set E = {ei, i ≥ 1} of its elements. We associate to E the reflexive and
transitive relation type extension ≤ on elements (E,≤) defined as: e ≤ e′ ⇔
{a1, . . . , an} ⊆ {a′

1, . . . , a
′
m},m ≥ n ∧ ai ≤ a′

j , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

If for example ∃a′
1 = (orderID,itemID,comment) (as in listing 2 in section 3.1)

then: (orderID,itemID) ⊆ (orderID,itemID,comment) ⇒ a1 ≤ a′
1, i.e., the

new (inventoryItem) is a type extension of the old one.
As discussed in the previous section, the approach discussed by this work

assumes that a) both producer and consumer are in the general case services, and
therefore use the same notation to describe their specifications, and b) a producer
in one interaction can also act as the consumer for another interaction. This latter
interaction may or may not be related to the producer’s function in the former.
Beyond this generic case, the same paradigm can also be applied to “simpler”
cases: autonomous services that implement all of their offered functionalities
without using other services act only as producers. Non-service clients (e.g., GUI-
supported applications) can be perceived as special cases of exclusive consumers.

We define two orthogonal views on E (see figure 1a): the expositions/expectations
view and the required/provided view:

(a) Both views (b) XPO/XPE view (c) REQ/PRO view

Fig. 1: Views on the service specification

These views provide us with reference points in disambiguating the roles and
functions of elements in a service specification like listing 1. More specifically:

2.1 Exposition/Expectation view

This view (figure 1b) classifies the elements within a service specification with
respect to whether they are offered as an interface to the environment or they
are “imported” into the service specification, referring to interface elements of
other services. In the former case, the service acts as a producer; in the latter as
a consumer. Elements of a service specification can therefore fall into one of the
following categories:

– Exposition Expo: the set of elements that describe the offered functionality
of the service.

– Expectation Expe: the set of elements describing the perceived offering of
functionality to the service by other services.

The WSDL file of the inventory service for example in listing 1 contains the
information on how to access the elements that constitute the inventory service
and what information is exchanged while accessing it. From the perspective of
the producer of the service, this file specifies what the producer will offer to
the service customers: if the checkInventory operation is invoked using the
InventoryServicePortType and the message payload defined, the generated
result or fault message will be a simple string. The elements of the file are in
that sense in the exposition subset of the service producer specification.

On the other hand, when a consumer of this service builds and/or uses an
application that incorporates an invocation of this service, the consumer refers
to what it perceives to be a set of elements that allow it to access the service.
To put it simply, the client is built on the premise of a particular specification
of the provided interface, being bound for example to the service of listing 1.
These elements are therefore contained in the expectation subset of the consumer
specification. What becomes apparent from this is that the same elements can
either be expositions or expectations; it only depends on the adopted viewpoint.

Ideally, this perceived specification and the actual specification of the pro-
vided service are the same - and that is so far the fundamental assumption in
service interactions. But changes to either side, as we will discuss in the follow-
ing sections, could lead to inconsistencies - in other terms incompatibilities -
between those two.

2.2 Required/Provided view

The division enforced by this view (figure 1c) is much more straightforward:
it provides the means to cleanly separate input from output in a service spec-
ification (irrespective of whether it acts as a producer or a consumer). More
specifically:

– Required Ereq: contains the input-type elements of the service specification.

– Provided Epro: contains the output-type elements.

InventoryRequest for example is clearly a required element for the producer:
it is the input message type for the service. At the same time it is a provided
element for the consumer since it has to be provided to the producer in order to
use the respective operation. InventoryConfirmation and InventoryFault are
respectively provided elements for the producer - they are produced as output by
the service in one way (normal result) or another (fault message) - and required
elements for the consumer (input to it).

2.3 Combining the views

Since the two views are orthogonal, they can be used in conjunction to describe
the elements of a service specification: Expo ∪ Expe = Ereq ∪ Epro = E (figure
1a).

Example 2. Figure 2 shows how an invocation of the inventory service of listing 1
by a Web services client can be described using the classification presented. Due
to the request-response messaging pattern of the checkInventory operation, the
interaction between the service and its client is broken down into two phases:
in the first phase, the consumer (client) is using the expectation element (1) to
invoke the exposition element (2) of the producer (service). Since (1) is an output
for the consumer it belongs to the Epro

consumer set, and (2) is in the Ereq
producer as

the input of the service. The situation is inversed for the second phase, where
the producer uses (3) to call back (4) in the consumer side.

Element

1 Consumer:InventoryRequest

2 Producer:InventoryRequest

3 Producer:InventoryResponse

4 Consumer:InventoryResponse

Fig. 2: Service Interaction

3 Contracts

This section builds on the notation and classification presented in the previous
section to discuss the interaction of parties in a loosely-coupled environment
and introduce the notion of contracts as the means to leverage the decoupling
between producer and consumer.

By the term contract we do not refer to the legal documents that describe a
binding agreement, but we use the term in the same manner as the (software)
contracts in the Eiffel language [6]. The contracts in this context are documents

that record the benefits expected by each party from their interaction, and the
obligations that each party is prepared to carry out in order to obtain these
promised benefits. In that sense, the contract protects both sides by clearly
defining what is the acceptable contribution and result for a task described by
the contract. Our approach applies the same paradigm on services specifications,
using the different views discussed above to distinguish between those benefits
and obligations, depending on the role that the service plays.

In specific, there is an important distinction in the way that the producer
and the consumer of a service are perceiving a service specification document:
the producer promises to offer the service in the manner specified in it (the
expositions set), and the consumer accepts this promise and builds a client for
it based on this promise (the expectations set). In most contemporary SOA
implementations, by using for example Web services technologies, this funda-
mental difference is bridged by accepting one perspective, that of the producer,
and shifting the consumer side perspective accordingly. But in this case the con-
sumer has to adopt any changes and assumptions that are done by the producer.
Failure to comply with the producer means that the consumer is unable to use
the offered functionality, which explains why producer updates typically fail on
the client side.

In order to amend this situation, we propose to use a construct (the contract)
that bridges the two perspectives and allows for mapping from and to it by
either party. This contract is nothing more than an intermediary specification,
containing a set of commonly agreed elements specified in a party-independent
way. By providing a neutral mapping procedure from each party to the contract
we minimize the producer/consumer coupling. Furthermore, given a contract,
we allow for reasoning by each party in isolation, enforcing the separation of
concerns and responsibilities in service design and operation. In the following we
formally define the contract construct and describe how to formulate a contract
between two parties.

3.1 Contract Definition

In principle only a part of the offered service functionalities may be used by a
specific client; on the other hand, a client may depend on a number of disparate
services in order to achieve its goals. Thus we need a way to identify and isolate
the parts of the interacting parties that actually contribute to the interaction. For
that purpose we will denote with P ⊆ Expo

producer and C ⊆ Expe
consumer the subsets

from the producer and consumer specifications respectively that participate in
the interaction.

Following on we define a binding function ϑ that reasons horizontally between
the elements of parties P and C:

Definition 3 (Service Matching). A service matching is a binding function
defined as ϑ : P × C → U,U = P ∪ C such that

ϑ(x, y) = {z ∈ U/
{
x ≤ z ≤ y, x ∈ P req, y ∈ Cpro

y ≤ z ≤ x, x ∈ P pro, y ∈ Creq } (1)

Example 3. Let’s assume that P contains the elements of listing 1 and let’s
denote by x ∈ P req the InventoryItem element: x = (a1, a2), a1 = (orderID)
and a2 = (itemID). A consumer of this service that is bound to listing 1 uses
all elements as they are defined in the listing (that is: P ≡ C) and therefore
∃y ∈ Cpro/y = x⇒ ϑ(x, y) = z = (a1, a2). This reasoning holds also for the rest
of the elements of P and C and the service matching is in that case trivial.

Now consider the case of another consumer C ′ that is bound to listing 2 that
differs from listing 1 in the definition of InventoryItem: y′ = (a1, a2, a3), a3 =
(comment) to allow for attaching notes to items. By its definition ϑ(x, y′) = z′

returns two possible values: z′ = (a1, a2) or z′ = (a1, a2, a3). By selecting the first
value (reflecting the assumption that P can ignore this extra argument in the
requests of C ′) we observe that the previous service matching between P and C
persists for P and C ′ despite the changes in consumer C. The actual selection of
the binding function value during the contract formulation is a matter of policy
(see following section for a further discussion on this subject).

...

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

<xsd:element name="comment" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

...

Listing 2: Alternative inventory item definition

Binding function ϑ is acting in the same manner as a schema matching func-
tion would. Schema matching aims at identifying semantic correspondences be-
tween elements of two schemas, e.g., database schemas, ontologies, and XML
message formats [7]. It is necessary in many database applications, such as
integration of web data sources, data warehouse loading and XML message
mapping. In most systems, schema matching is manual or semi-automatic; a
time-consuming, tedious, and error-prone process which becomes increasingly
impractical with a higher number of schemas and data sources to be dealt with.
In our case though, the matching function relies on the type extension relation
to automatically identify elements on either party that are semantically related
to each other according to their respective schemata.

Based on the matching function ϑ we can define the Contract R between two
parties as a service mapping:

Definition 4 (Service Mapping). A Service mapping is a Contract R defined
by a triplet < P,C,Θ > between the two parties that is defined as their image

under ϑ, i.e., Θ = {ϑ(x, y)|x ∈ P, y ∈ C}. The elements that comprise R are
called the clauses of the contract.

The mapping therefore consists of the results of the binding function for all
possible pairs in the producer/consumer sets and is formulated by reasoning
vertically through the parties. The contract that is produced by this mapping
identifies and represents the mutually agreed specification elements that will
be used for the interaction of the parties. Figure 3 demonstrates the relation
between P , C, and R graphically.

Fig. 3: Producer/Consumer/Contract relation

Example 4. Following the previous example, the service mapping between P and
C (consumer using listing 1) would consist of the contract R =< P,C,Θ >,P ≡
C ≡ Θ.

For the service mapping between P and C ′ (consumer using listing 2) we are
presented with two options: either we opt for z′ = (a1, a2) and since the rest of
the elements remain the same then Θ′ ≡ Θ ⇒ R′ ≡ R, or in the case of selecting
z′ = (a1, a2, a3) then a new contract R′ =< P,C ′, Θ′ > has to be formulated.

3.2 Contract Formulation and Management

The definition of contractR between two parties as a service mapping< P,C,Θ >
allows for a straightforward formulation of the contract: given the two parties’
specifications P and C, each of which defines the elements through which the
interaction is achieved, Θ can be calculated directly by applying the match-
ing function ϑ to them. The issue of contract development therefore shifts in
producing P and C from the service provider Expo

producer and client Expe
consumer

specifications respectively.
Due to the fact that the service provider is unaware of the internal workings

of the service client (represented by the Expe
consumer set) the process of contract

formulation is consumer-driven; more specifically, the steps to be followed are:

1. The consumer decides on the functionality offered by the producer that will
be used (if more than one is offered).

2. The set of elements from Expo
producer that fulfill this functionality (e.g., the

port type and the associated structural elements) are identified.
3. The identified elements are either copied to the (initially empty) Expe

consumer

set or the existing Expe
consumer set is used.

4. The image of P and C under ϑ set is calculated. If the resulting set is empty
then the image is attempted to be re-calculated using alternative values from
ϑ (or cancelled in case all possibilities have been exhausted); otherwise the
contract R =< P,C,Θ > is produced.

5. The consumer submits the formulated contract R to the producer for pos-
terity and begins interaction with producer.

The formulating, storing, and reasoning aspects of the proposed solution
can be incorporated in the service governance infrastructure that supports each
party. Since ϑ may return one or more possible values, depending on the type
extension ’distance’ in the element definition between the producer and consumer
specification, a minimum level of ’insight’ on the consumer side is required in
selecting the appropriate elements from the producer and in assigning values to
the binding function ϑ:

Conservative selection policies would opt for the values contributed by the
consumer to the calculation of ϑ, trying to protect the consumer from pos-
sible changes to the producer.

Liberal selection policies on the other hand would pick the values contributed
by the producer and allow for the possibility of the consumer evolving in the
future.

The type of policy to be followed is therefore largely a design and governance
issue and has to be dealt as such. The solution presented assumes that producers
and consumers have the means to formulate, exchange, store, and reason on the
basis of contracts. In absence of these facilities from one or both parties the
interaction between them reverts to the non contract-based modus operandi that,
as we have discussed above, can not guarantee interoperability. The exchange of
contracts requires the existence of a dedicated mechanism for this purpose that
is not part of the service specification.

4 Contract-Controlled Service Evolution

The previous section discussed how to leverage the loose coupling of the producer
and the consumer by means of the contract construct. The following section
discuss how this design solution enables evolutionary transparency that preserves
(under certain conditions) the producer/consumer interoperability.

In the initial ’static’ state of two interoperating parties P and C, and after
a contract R =< P,C,Θ > has been formulated and accepted between them, it
holds in general that P ≡ Θ ≡ C. For example, when a simple client is using
the service described in listing 1 it is safe to assume that due to the granularity
of the service, the client will be using the one (and only) functionality provided

by it. That in turn means that it will refer to all the elements contained in the
WSDL file. Therefore, P ≡ C and by the definition of the contract construct,
P ≡ Θ ≡ C, as we have seen in the previous section.

But since either party can, or at least should be able to evolve independently
of the other, shifts from this state can occur. When changes for example occur to
the producer then it may hold that P ′ 6≡ Θ ≡ C, or for the consumer side P ≡
Θ 6≡ C ′, or both. These latter states reflect situations of incompatibility between
producer and consumer and they have to be prevented from occurring in order
to avoid the occurrence of deep changes in the context of the interacting parties.
The introduction of a contract between them allows us to reason about the
contribution of each party to the interaction without directly affecting the other
party, ensuring that each party is able to evolve independently but transparently,
that is without requiring modifications, to each other.

For that purpose we will distinguish shallow changes occurring to a party
in two categories: those that respect the contractual invariance and those that
require contractual evolution. Changes to a party that fall in the former category
do not affect the existing contract between the parties. Changes in the latter
category require modifications to the contract but nevertheless do not require
changes to the other party.

4.1 Contract Invariance

Taking advantage of the ability to reason exclusively on one party given an exist-
ing contract, without the need for the other party to participate in this reasoning,
exemplifies the notion of independence in evolution. In order to show how this is
accomplished we will first formally define what it means for a (modified) party
specification to respect, or to be compliant with a contract:

Definition 5 (Compliance to Contract). A version of a party, e.g. version
P ′ of producer P , is said to be compliant with respect to an existing contract
R =< P,C,Θ > with a consumer C denoted by P ′ �R C iff

∀z ∈ Θ/∃x′ ∈ P ′, ϑ(x′, y) = z, y ∈ C (2)

Corollary 1. Consequently, P ′ violates R, and we write P ′ 2R C, iff ∃z ∈
Θ/∀x′ ∈ P ′, ϑ(x′, y) 6= z, y ∈ C.

The definition above allows for a simple algorithm to check for the compliance
of a new version of a party in the producer-consumer relationship: as long as there
is a mapping produced by ϑ to all clauses of the contract from the elements of
the new specification, the two versions are equivalent or compatible with respect
to the contract - or more formally:

Definition 6 (Compatibility w.r.t. existing Contract).

1. Given a party, e.g. consumer C, then two versions of the other party, P and
P ′, are called compatible w.r.t. a contract R denoted by P 7→R P ′ iff they
are both compliant to R: P �R C ∧ P ′ �R C.

2. Two versions of a party S and S′ are called fully compatible iff they are com-
patible for all contracts Ri, i ≥ 1 that they participate in, either as producers
or consumers: S 7→Ri S

′ ∀Ri.

Example 5. Consider the modifications applied to the service specification as de-
picted in listing 3. Let’s assume that these changes are applied to P ; in that case
P ′ is compatible with P , since they are both compliant to the same contract R.
To prove that, we start with the observation that element x =(InventoryConfir-
mation) in listing 1 is in the P pro set, and therefore contributes to the second
leg of the binding function (1) which means that

∃y ∈ Creq, z ∈ Θ/y ≤ z ≤ x. (3)

Let’s denote with x′ the changed element from listing 3. It holds that x ≤ x′

and in conjunction with (3) we get: ∃y ∈ Creq, z ∈ R/y ≤ z ≤ x′. Thus,
ϑ(x′, y) = ϑ(x, y), and since the rest of the matchings remain unchanged, by (2)
we can deduce that P ′ �R C.

If listing 3 though is depicting changes to the consumer side, then by the
same reasoning we can easily prove that C and C ′ are not compatible, since
P 2R C ′.

...

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

<part name="confirmationDate" type="xsd:date"/>

</message>

...

Listing 3: New inventory Service WSDL specification

4.2 Contract Evolution

The previous section discussed the criteria under which changes to one party can
leave the contract between them intact, essentially ensuring that these changes
are shallow. This does not necessarily mean that all changes that do not re-
spect this criteria are deep. The existing interaction between the parties can be
preserved in certain cases despite the necessity to modify the contract due to
changes to one or both of the parties involved, defined as backward and forward
compatibility preserving cases:

Definition 7 (Backward Compatibility). Two contracts R =< P,Θ,R >
and R′ =< P,Θ′, C ′ > are called backward compatible and we write R 7→b R

′

iff ∀x ∈ P/∃z′ ∈ Θ′,∃y′ ∈ C ′, z′ = ϑ(x, y′).

In that case changes to the consumer side leave the producer unaffected. The
(new) consumer will use the producer in the same manner as the old consumer
did.

Definition 8 (Forward Compatibility). Two contracts R =< P,Θ,R > and
R′ =< P ′, Θ′, C > are called forward compatible and we write R 7→f R′ iff
∀y ∈ C/∃z′ ∈ Θ′,∃x′ ∈ P ′, z′ = ϑ(x′, y).

Forward compatibility therefore allows for the seamless interoperation of the
new producer with the old consumer without the former party to have to be
modified in any way.

It must be noted that these definitions following [1] are using the vantage
point of the consumer to discuss changes: a change to a contract is backwards
compatible if it allows the consumer to accept input from older devices (ver-
sions of the producer). Similarly, a forwards compatible contract means that the
consumer can accept input from newer versions of the producer. Consider for
example the discussion in section 3.1 on the possibilities for service matching
and mapping: if we choose to create a new contract R′ then it can be easily
shown that this contract is backward compatible to R and therefore the new
consumer C ′ can still use the old producer P .

Furthermore, by combining the two definitions we can define when two con-
tracts are compatible:

Definition 9 (Contract Compatibility). Two contracts R =< P,Θ,R >
and R′ =< P ′, Θ′, C ′ > are called compatible and we write R 7→ R′ iff they are
both backward and forward compatible: R 7→b R

′ ∧R 7→f R
′.

Contrary to the case of contractual invariance, evolution of the contract itself
requires of the parties to exchange a new contract and replace the old contract
with the new one. This creates an additional communication overhead that nev-
ertheless has to be weighted against the cost of possible inconsistencies in the
current and future interactions of the parties due to the discrepancy between
the contract versions.

5 Related Work

The term ’contract’ and the approach of introducing contracts in software com-
ponents design stems from the Eiffel language [6], [8]; the core ideas of that work
have greatly influenced our approach.

There are a number of works discussing the introduction of adapters between
interacting parties to ensure their interoperability: [9], [10], [3], [11], [12], and [4]
among others. Of specific interest to us is the work in [13], since they also make
a clear distinction between the service producer and service consumer interfaces
and protocols and use mappings to bridge them. Then they proceed to describe
how to semi-automatically identify and resolve incompatibilities (mismatches)
on interface and protocol level. Our approach extends this idea of separating
producer and consumer specifications, but discusses how to avoid mismatches
altogether instead of resolving them.

Furthermore, the W3C Technical Architecture Group has published an edito-
rial draft on the extensibility and versioning of XML-based languages [14]. Their

findings build on a number of previously developed theories and techniques like
[15], [16] and draw lessons from the HTML and HTTP standards. They show
how compatibility can be defined in terms of set theory, using super-sets and sub-
sets to ensure compatibility. Our approach follows a similar way in dealing with
the issue of compatibility, but instead of allowing the direct producer/consumer
interaction, it introduces the contract as an intermediary to further decouple
them.

The notion of service mapping comes from the field of schema evolution, i.e.,
the ability to change deployed schemas - metadata structures formally describing
complex artifacts such as databases [17],[18],[7], messages, application programs
or workflows. Typical schemas thus include relational or object-oriented (OO)
database schemas, conceptual ER or UML models, ontologies, XML schemas,
software interfaces and workflow specifications. Effective support for schema evo-
lution is challenging since schema changes may have to be propagated, correctly
and efficiently, to instance data, views, applications and other dependent system
components. Our approach provides the means to identify schema changes that
do not result in propagation of changes.

6 Conclusions & Future Work

In the work presented in the previous sections we discuss an approach that allows
for transparency in the evolution of a service as viewed from the perspective of
both clients and providers, in the context of the loosely-coupled nature of the
SOA paradigm. For that purpose we introduce the contract construct as the
means to leverage the decoupling of the interacting parties. We present a con-
tract constructing function that bridges the gap between service matching and
service mapping. Following on, we build on contractual invariance and contrac-
tual evolution to show how to effectively deal with shallow changes to the service
provider and client interaction - without the need for adaptation which may lead
in turn to deep changes.

There are of course a number of issues that are briefly discussed by our
approach that we plan to work on in the future. The matter of management of
the contracts and its relationship to service governance mechanisms is the most
important issue at hand, since it can provide further insights on the proposed
solution. Furthermore, the binding function ϑ value selection policy has to been
further investigated. Using a static selection policy can be very restricting; a
balancing mechanism for example can be applied for a more dynamic approach,
expressed for example by negotiation between the parties in deciding the terms
of the contract. Such a negotiation process during the formulation of the contract
could result in the offering of additional or more specialized functionalities by the
producer and could add a feedback loop to the presented algorithm for contract
formulation. A promising direction when it comes to the implementation of our
approach is to see whether it is possible to use techniques like the mapping
constraints and tools developed by the schema mapping community like ToMAS
[7].

The preservation of interoperability enforced by our approach is only the
foundation in discussing the evolution of the interaction of parties. Following
on, we plan to investigate how we can build on this work to deal with deep
changes and the propagation mechanisms that run through them. On the other
hand, another of the limitations of this work, the focus on the structural aspect
of the service specification has also to be investigated, and examined if it is
possible to apply the same approach to business protocols and policy-related
constraints.

References

1. Papazoglou, M.P.: The challenges of service evolution. In Bellahsene, Z., Léonard,
M., eds.: CAiSE, Springer (2008) 1–15

2. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of
service specifications. In Bellahsene, Z., Léonard, M., eds.: CAiSE, Springer (2008)
359–374

3. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web
services, Toronto, Canada, Springer-Verlag New York, Inc (2004) 331–351

4. Senivongse, T.: Enabling flexible cross-version interoperability for distributed ser-
vices, IEEE Computer Society (1999) 201

5. Papazoglou, M.P.: Web Service: Principles and Technology. Prentice Hall. Addison-
Wesley (E) (2007)

6. Meyer, B.: Applying ”design by contract”. Computer 25 (1992) 40–51
7. Velegrakis, Y., Miller, R.J., Popa, L., Mylopoulos, J.: Tomas: A system for adapting

mappings while schemas evolve. In: ICDE. (2004) 862
8. Meyer, B.: Object-Oriented Software Construction (2nd ed.). 2nd edn. Prentice

Hall PTR, Upper Saddle River, NJ, USA (1997)
9. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19 (1997) 292–333
10. Evans, H., Dickman, P.: Drastic: A runtime architecture for evolving, distributed,

persistent systems. Lecture Notes in Computer Science 1241 (1997) 243–275
11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing

adapters for web services integration. In: CAiSE, Springer (2005) 415–429
12. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented

framework for service adaptation. (2006) 15–26
13. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-

automated adaptation of service interactions, Banff, Alberta, Canada, ACM (2007)
993–1002

14. Orchard(edt.), D.: Extending and versioning languages: Terminology (2007) W3C
Technical Architecture Group.

15. Orchard, D.: A theory of compatible versions (2006) Published: xml.com article.
16. Hoylen(edt.), S.: Xml schema versioning use cases (2006) Published: W3C XML

Schema Working Group Draft.
17. Miller, R.J.: Retrospective on clio: Schema mapping and data exchange in practice.

In: Description Logics. (2007)
18. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L.:

Nested mappings: Schema mapping reloaded. In: VLDB. (2006) 67–78

