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Executive Summary

Today, an increasing number of organizations are considering NoSQL database engines as a migration target
for existing (relational-based) software systems or as a platform for planned future systems. Success stories
around the use of NoSQL systems have spurred widespread interest in these new technologies and even raised
the question as to whether there is a continued future role for relational databases. At the same time, the
hype surrounding NoSQL databases has created a significant amount of confusion about trade-offs between
relational and NoSQL-based solutions, and some projects that started with NoSQL found the need to migrate
parts of their system in the other direction, namely to a relational foundation.

The consensus that seems to be emerging from the relational/NoSQL debate indicates that the two types of
systems address substantially different classes of problems and that they should be selected accordingly. At the
same time, today’s information-intensive businesses often exhibit evolving data management requirements that
cross-cut the problem domains of relational and NoSQL systems. There is a lack of methodological guidance
and tool support for migrating data between relational and NoSQL systems and for effectively bridging both
types of systems in the context of data-intensive system evolution.

Migrating data from a database platform to another one should, in an ideal world, only impact the database
component of the software system. Unfortunately, the database most often has a deep influence on other
components, such as the application programs. Two reasons can be identified. First, the programs invoke data
management services through an API that typically relies on complex and highly specific protocols. Changing
the database platform, and therefore its protocols, requires to rewrite the database manipulation code sections.
Second, the database schema is the technical translation of its conceptual schema through a set of rules that is
dependent on the underlying data model of the database management system. Porting the database to another
database management system, and therefore to another data model, generally requires another set of rules, that
produces a significantly different database schema. Consequently, the code of the programs often has to be
adapted to this new schema. Clearly, this data migration process leads to non trivial database (schemas and
data) changes, as well as programs adaptations.

The TYPHON project, via its Work Package 6, has the ambition to develop a methodology and technical infras-
tructure to support the graceful evolution of hybrid polystores, where multiple, possibly overlapping relational
and NoSQL databases may co-evolve in a consistent manner. This includes, among others, the development
of methods and tools for (1) migrating data across paradigms and across platforms and (2) evolving the data
organisation and distribution in hybrid persistence architectures. The proposed approaches and supporting
tools aim to be as transparent as possible for the client application programs manipulating the evolving hybrid
polystores.

This document aims at identifying and discussing existing approaches, techniques and tools that could be
inspiring, reused or extended in order to address these challenges.
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1 Introduction

Today, an increasing number of organizations are considering NoSQL database engines as a migration target
for existing (relational-based) software systems or as a platform for planned future systems. Success stories
around the use of NoSQL systems have spurred widespread interest in these new technologies and even raised
the question as to whether there is a continued future role for relational databases. At the same time, the
hype surrounding NoSQL databases has created a significant amount of confusion about trade-offs between
relational and NoSQL-based solutions, and some projects that started with NoSQL found the need to migrate
parts of their system in the other direction, namely to a relational foundation [24].

The consensus that seems to be emerging from the relational/NoSQL debate indicates that the two types of
systems address substantially different classes of problems and that they should be selected accordingly. At the
same time, today’s information-intensive businesses often exhibit evolving data management requirements that
cross-cut the problem domains of relational and NoSQL systems. There is a lack of methodological guidance
and tool support for migrating data between relational and NoSQL systems and for effectively bridging both
types of systems in the context of data-intensive system evolution.

Migrating data from a database platform to another one should, in an ideal world, only impact the database
component of the software system. Unfortunately, the database most often has a deep influence on other
components, such as the application programs. Two reasons can be identified. First, the programs invoke data
management services through an API that typically relies on complex and highly specific protocols. Changing
the database platform, and therefore its protocols, requires to rewrite the database manipulation code sections.
Second, the database schema is the technical translation of its conceptual schema through a set of rules that is
dependent on the underlying data model of the database management system. Porting the database to another
database management system, and therefore to another data model, generally requires another set of rules, that
produces a significantly different database schema. Consequently, the code of the programs often has to be
adapted to this new schema. Clearly, this data migration process leads to non trivial database (schemas and
data) changes, as well as programs adaptations.

The TYPHON project, via its Work Package 6, has the ambition to develop a methodology and technical infras-
tructure to support the graceful evolution of hybrid polystores, where multiple, possibly overlapping relational
and NoSQL databases may co-evolve in a consistent manner. This includes, among others, the development
of methods and tools for (1) migrating data across paradigms and across platforms and (2) evolving the data
organisation and distribution in hybrid persistence architectures. The proposed approaches and supporting
tools aim to be as transparent as possible for the client application programs manipulating the evolving hybrid
polystores.

This document aims at identifying and discussing existing approaches, techniques and tools that could be
inspiring, reused or extended in order to address these challenges.

1.1 Purpose of the deliverable

This document presents the work that has been done with respect to the following task of Work Package 6 as
presented in the TYPHON Description of Work:

Task 6.1: This task will identify, analyze and compare existing techniques and tools for cross-database data
migration. Although such an analysis has already been performed at the proposal preparation stage, an
additional survey will be necessary at the start of the project to ensure the timeliness of subsequent work in
this work package.

27 June 2018 Version 1.0
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As described in the Description of Work, this deliverable will consist of a detailed report about the existing
techniques and tools for cross-database data migration.

1.2 Structure of the deliverable

The remainder of this deliverable is structured as follows:

1. Section 2 introduces the main concepts used in this document and defines the main artifacts and pro-
cesses involved in database evolution in general and database migration in particular;

2. Section 3 elaborates on general methodologies and approaches to database evolution/migration, consid-
ering the entire evolution process;

3. Section 4 describes possible approaches to database reverse engineering, which often constitutes the
initial phase of the database evolution/migration process;

4. Section 5 elaborates on existing approaches and techniques related to intra-paradigm database evolution
scenarios, i.e., without database platform change;

5. Section 6 presents existing approaches and techniques related to inter-paradigm database evolution
scenarios, i.e., involving a database platform change;

6. Section 7 focuses on approaches and techniques supporting the sub-process of adapting application
programs and queries to an evolving database;

7. Section 8 summarizes and classifies the surveyed approaches by means of a comparative table;

8. Section 9 gives concluding remarks.

1.3 Relationship to other TYPHON deliverables

The approaches, techniques and tools described in the present deliverable will be inspiring when designing
the Hybrid Polystore Schema Evolution Methodology and Tools (deliverable D6.2), the Hybrid Polystore Data
Migration Tools (deliverable D6.3) and the Hybrid Polystore Query Evolution Tools (deliverable D6.4). This
document also relates to the (upcoming) deliverables of other TYPHON work packages, in particular those
related to the TyphonML modeling language (WP2), the TyphonQL query language (WP4) and the hybrid
polystore monitoring tools (WP5). The deliverables from WP2 will trigger/instruct the needed data migrations
with respect to schema evolutions defined at TyphonML level. The deliverables from WP4 will constitute the
basis to develop the data and query migration tools. The deliverables from WP5 will be used to automatically
recommend polystore reconfigurations by enabling data access analysis.

1.4 Contributors

The main contributor of this deliverable is University of Namur. All project partners contributed to this deliv-
erable, by collaboratively eliciting the use case and technical requirements for Work Package 6, as well as by
providing feedback on earlier versions of this document.

Page 2 Version 1.0
Confidentiality: Public Distribution

27 June 2018



D6.1 Cross-Database Data Migration Techniques Analysis Report

Figure 1: Standard database design processes.

2 Preliminaries

This section aims at providing the reader with an introduction to the main concepts used in this document.

2.1 Database design

The process of designing and implementing a database that has to meet specific user requirements has been
described extensively in the literature [8] and has been available for several decades in standard methodologies
and CASE tools. As shown in Figure 1, database design is typically made up of four main subprocesses:

(1) Conceptual design is intended to translate user requirements into a conceptual schema that identifies
and describes the domain entities, their properties and their associations in a platform-independent way.
This abstract specification of the database collects all the information structures and constraints of in-
terest.

(2) Logical design produces an operational logical schema that translates the constructs of the conceptual
schema according to a specific technology family, in principle, without loss of semantics.

(3) Physical design augments the logical schema with performance-oriented constructs and parameters,
such as indexes, buffer management strategies or lock management policies. The output of this process
is the physical schema of the database.

(4) Coding translates the physical schema (and some other artefacts) into the DDL (Data Definition Lan-
guage) code, compliant with the target database management system. Structural DDL declaration code
as well as components such as checks, triggers and stored procedures are written/generated to imple-
ment the information structures and constraints of the physical schema.

Database schemas express the structures and constraints of a database. As mentioned above, they are usually
classified according to the level of abstraction they belong to: conceptual, logical and physical.

• Conceptual schemas A conceptual schema is a platform-independent model of the database. It mainly
specifies entity types, relationship types and attributes. Entity types represent the main concepts of
the application domain. They can be organized into is-a hierarchies, organizing supertypes and sub-
types. Relationship types represent relationships between entity types. Attributes represents common
properties of the entity type instances.

27 June 2018 Version 1.0
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Figure 2: Example of conceptual, logical and physical schemas of a relational database.

• Logical schemas A logical schema is a paradigm-dependent data structure definition, that must comply
with a given data model. The most commonly used families of models include the relational model,
the network model (CODASYL), the hierarchical model (IMS), the standard file model (COBOL, RPG,
BASIC, etc.), the shallow model (TOTAL, IMAGE), the XML model, the object-oriented model, the
object-relational model and the NoSQL models (column-oriented, graph-oriented, document-oriented,
etc.).

• Physical schemas A physical schema is a logical schema enriched with all the information needed to
implement efficiently the database on top of a given data management system. This includes platform-
dependent technical specifications such as indexes, physical device and site assignment, page size, file
size, buffer management or access right policies. Due to their large variety, it is not easy to propose a
general model covering all possible physical constructs.

Figure 2 gives an example of conceptual, logical and physical schemas, expressed in the Generic Entity-
Relationship (GER) data model [41]. In this example, all the constructs belonging to the conceptual schema
have been translated into equivalent constructs in the logical schema.

Page 4 Version 1.0
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2.2 NoSQL data models

The number of NoSQL systems is still growing and they represent now nearly half (170) of the total number of
database management systems on the market 1. But, in contrast with relational database management systems,
NoSQL engines do not rely on the same theoretical data model.

Those systems can be grouped into four different data models, each having its specific requirements and advan-
tages. We further explain and summarize them below based on a survey provided by Hecht and Jablonski [45].

2.2.1 Key Value Stores

The Key value store model is the most "schema-less" model among NoSQL systems. It is indeed based on a
simple key-value pair, with no constructs allowing to define explicit relationships between data instances. The
values are stored in byte arrays and therefore the only way to retrieve data is by means of the keys. Table 1
shows an example of such a representation. They are useful for very simple operations and basic application
usage as they only provide put, get and delete operations. Other operations or queries have to be managed in
the application code. Example platforms based on the key value data model are Redis[83], ArangoDB[4] and
Riak KV[84].

Key Value
ABDD 11101010
DBFG 10101010
FHJD 11100101

Table 1: Example of key value data model instance.

2.2.2 Document stores

The document store data model has a similar structure as the key value model. Data is stored as key-value pairs
but they are wrapped in a JSON like document. This model offers the flexibility of a schema less data store
but it also helps the developer to query data, unlike key value data store the values can be queried in a more
complex way and provide developers the means to express user friendly queries. But unlike SQL for relational
model, the NoSQL ecosystem does not provide a standard query language, each system has its own, forcing
the developer to learn a new one for each system he uses.

Document store model have a set of mapping rules to map a relational model. MongoDB for example provides
a set of example on their website 2. Table 2 lists the mapped concepts.

The flexibility of the document model allows to have multiple different document in a same collection. Figure
3 shows three documents, each of them have a different set of attributes but are in the same collection.

MongoDB[71], Couchbase[25], CouchDB[26] and ArangoDB[4] are examples of document store model
database system.

1https://db-engines.com/en/ranking_categories
2https://docs.mongodb.com/manual/reference/sql-comparison/
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SQL Concepts MongoDB Concept
database database
table collection
row document
index index
table joins $lookup function, embedded documents design
primary key _id field
group by aggregation pipeline

Table 2: Table of equivalent SQL - MongoDB concepts

Figure 3: Document Oriented data model.

2.2.3 Column Family stores

The column family store is organized as a map of key value pairs. This way one can group key values (or
columns) together and creating a family (or cluster), as shown in figure 4. Similarly to key value store, the
values cannot be queried. Technically the data is stored ordered by keys and retrieving of big amount of data
is more efficient, this is also used for partitioning data on distributed servers. Systems implementing this data
model are HBase[44] or Cassandra[13].

2.2.4 Graph databases

The last important data model category is the graph database. This has been built in order to specifically man-
age heavily linked data. It can consist of simple triple values like RDF or more complex structures containing
key value pairs. Graph databases can be queried in two different ways, either by trying to find a part of the
graph that matches a criteria or by exploring the graph by starting in a specific node. It is also possible to ex-
press constraints that limit the type of edges applicable to certain type of nodes. An advantage that no other
data models gives is that it can also be queried with a standard language (SPARQL) to more than one graph
database management system. Neo4j[73], GraphDB[38] and ArangoDB[4] can be used for such implementa-
tion.

Page 6 Version 1.0
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Figure 4: Column Oriented data model.

2.3 NoSQL database design

NoSQL databases are often based on a schema-less data models and are therefore oriented towards develop-
ers. The underlying goal is to develop applications faster, while taking less care of the underlying database
structures, which otherwise are more rigid and harder to evolve in combination with the programs. However,
those advantages can eventually lead to poor performance as well, since a class embedding, redundancy or bad
design decisions may significantly affect scalability, performance and consistency.

Atzeni [6, 5] introduce NoAM (NoSQL Abstract Model), an abstract data model for NoSQL databases, which
exploits the commonalities of various NoSQL data models. They propose a database design methodology for
NoSQL systems [12] based on NoAM, which aims to be (partially) independent of the specific target NoSQL
platform. NoAM is used to specify a system-independent representation of the application data. This inter-
mediate, pivot representation can then be implemented in specific NoSQL database platform. The proposed
method consists of four main steps:

• Aggregate design. Following use cases different entities are grouped together. This is consistent with
the Domain Driven Design methodology.

• Aggregate partitioning. Performance requirements guide the smaller partition of aggregates.
• High level NoSQL database design. Based on conceptual modelling. It provides concepts such as

Entry per Aggregate Object (EAO) or Entry per Top-level Field (ETF)
• Implementation. Mapping intermediate structures to the target datastore.

Another approach to designing and implementing NoSQL database is proposed by Abdelhedi et al. [1], they use
a model driven approach and transformation rules on a conceptual database schema in order to create a NoSQL
(specifically a column oriented) logical schema and then a physical NoSQL schema. It is a two step process,
a first one is to create a model to conceptualize the data independently of all technical and data model aspects
(PIM Platform Independent Model). After that is the PSM Platform Specific Model which represents the data
in regards of a specific data model, in this paper it is the column-oriented model. The transition between the
two model is done via a set of transformation rules in QVT language (Query/View/Transformation) following
the OMG specification.
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2.4 Database evolution scenarios

Cleve [17] proposes to classify typical database evolutions according to the following three dimensions:

• Structural dimension, that concerns the modification of the database structures (schemas);
• Semantic dimension, which relates to the evolution of the semantics of the schemas;
• Platform/Language dimension, addressing the replacement of the data description and manipulation

languages.

As an example, Figure 5 instantiates those classification dimensions in the case of three popular evolution
scenarios: database migration, database refactoring and database integration.

Structural Semantic Platform
Database migration X X
Database restructuring X (X)
Database integration X X (X)

Figure 5: Database evolution scenarios classified according to three dimensions.

• Database migration consists of the substitution of a data management technology for another one.
This scenario raises two major issues. The first one is the conversion of the database schema and
instances to a new data management system. The database structure is often modified, but both source
and target schema should cover the same universe of discourse (i.e., structural modifications but no
semantic change). The second problem concerns the adaptation of the application programs to the
migrated database schema and to the target data management system.

• Database restructuring does not involve any language replacement, but only structural modifications.
Depending on the type of schema transformations applied, the target schema may convey another se-
mantics. For instance, renaming a SQL column does not induce any semantic change while adding a
new column does.

• Database integration aims at obtaining a single database from heterogeneous databases that belong to
the same application domain. The resulting database structure and semantics typically differ from the
ones of the input databases. The databases to be integrated are not always of the same platform.

Below, we further present and analyze each of the three identified dimensions of database evolution.

2.4.1 Structural dimension

The structural dimension is concerned with the evolution of the database structures. This regroups modifica-
tions applied to the conceptual, logical and physical schemas. As proposed by Hick and Hainaut [47], we can
classify database schema evolutions scenarios according to the schema initially modified:

• Conceptual modifications typically translate changes in the functional requirements of the information
system into conceptual schema changes.

• Logical modifications do not modify the requirements but adapt their platform-dependent implementa-
tion in the logical schema.

• Physical modifications aim at adapting the physical schema to new or evolving technical requirements,
like data access performance.
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Figure 6: Examples of semantics-augmenting, semantics-decreasing and semantics-preserving
schema modifications.

2.4.2 Semantic dimension

The semantic dimension captures the impact of a given database evolution scenario on the informational con-
tent of the target database. In other words, it aims at indicating whether the evolution involves:

• Semantics-augmenting schema modifications (S+).
• Semantics-decreasing schema modifications (S−);
• Semantics-preserving schema modifications (S=);

A semantics-preserving schema modification (∈ S=) is commonly called schema refactoring [3]. The modifi-
cations belonging to the two other categories (S− and S+) can be regrouped under the term schema semantic
adaptation. Examples of the three kinds of schema modifications are given in Figure 6.

2.4.3 Platform/Language dimension

The platform or language dimension intends to characterize a database evolution scenario in terms of platfor-
m/language change. The following possible cases can be distinguished:

• Intra-platform database evolution: the database evolution does not involve the replacement of the
data management system.

• Inter-platform database evolution: the database evolution requires the replacement of the data man-
agement system with another one. Two sub-cases can occur:
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• Intra-paradigm platform change: the source and target database platforms belong to the same
paradigm. A typical example is the migration of a relational database from MySQL to Post-
greSQL.

• Inter-paradigm platform change: the database evolution relies on a database paradigm switch,
i.e., the source and target database platforms belong to different paradigms. This is the case,
for instance, when migrating a relational database (e.g. MySQL) to a NoSQL platform (e.g.
MongoDB).

2.5 Database evolution processes

Database evolutions are typically composed of the following chain of sub-processes.

1. Database reverse engineering is the usual initial step of database evolution, aiming at understanding
the source database subject to evolution. This process is required in the (very) frequent situation in
which the source database is not (well-)documented. In Section 4 we focus on this initial step and
present the main existing approaches to database reverse engineering.

2. Impact analysis aims to evaluate the impact (chain) of the desired schema modification(s) on the related
artefacts (other schemas, data instances and programs).

3. Database evolution is the evolution of the database component, itself comprising two subprocesses:

(a) Database schema change consists of applying the necessary change(s) to a database schema at a
given level of abstraction and to adapt the schemas belonging to the other abstraction levels3.

(b) Data adaptation concerns the adaptation of the data instances to the modified schemas.

4. Program adaptation aims to adapt the application programs to the target database schema and platform.
It involves, in particular, the adaptation of the queries that are used by the programs to manipulated the
database subject to changes. In Section 7 we present existing works analyzing and supporting the co-
evolution of databases and application programs.

Note that depending on the nature of the particular database evolution and depending on the methodology
chosen to achieve this evolution, some of the above processes may be useless or skipped on purpose.

3For instance, the modification of the conceptual schema typically necessitates the adaptation of the logical schema,
physical schemas and DDL code.
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3 General database migration methodologies

Migrating large database-centric software systems towards a new database platform has long been considered
as one of the most complex and failure-prone processes. Database platform migration consists of deriving a
target database from a source database and in further adapting the software components accordingly [11].

3.1 Existing approaches

Several system migration strategies have been identified and described in the research literature, notably by
Brodie and Stonebraker [11]. They can be classified according to several dimensions. Identifying two major
components, namely the data and the programs, we can distinguish two families of strategies, according to
which component is migrated first.

• Database first strategies. First, the source database is migrated, so that new programs can be developed
on the target platform. Later on, the source programs are migrated in order to manipulate the new
database. In the mean time, they either keep using the source database, which is synchronized with the
target database, or they access the latter through some sort of wrappers.

• Database last strategies. First, the programs are migrated to the new database platform. They then use
the source database through wrappers. New applications access the source database through the same
interface. When all the applications have been converted, the database itself is migrated.

The second classification dimension concerns the time frame within which the database platform replacement
is carried out. One typically identifies two main families.

• Big bang approach. The target system, comprising the data and the programs, replaces the source
system in one step. Most generally, the substitution is carried out in a very short time, typically a few
days, so that both systems run with no overlap.

• Chicken little approach. The database and the applications are migrated incrementally, to mitigate the
risks and allow continuous regression testing of each migrated system subset.

Hainaut et al. [42] studies the migration of a (legacy) system towards a more modern data management technol-
ogy. They develop a two-dimensional reference framework that identifies six representative migration strate-
gies, which are further analyzed to derive methodological requirements. They show that transformational
techniques are particularly suited to drive the whole database migration process. They also study the problem
of program conversion. Some program conversion strategies appear to minimize the program adaptation effort,
and therefore are sound candidates to develop practical methodologies.

Considering that a database is made up of two main components, namely its schema(s) and its contents (the
data), the data migration process usually comprises three main steps: (1) schema conversion, (2) data con-
version and (3) program conversion. Figure 7 depicts the usual organization of the database-first migration
process, that is made up of subprocesses that implement those three steps.

The schema conversion process usually produces a formal description of the mapping between the objects of
the source schema (S) and those of the target schema (S’). This mapping is then used to convert the data and
the programs. Practical methodologies differ in the extent to which these processes are (partly) automated.

• Schema conversion is the translation of the source database structure, or schema, into an equivalent
database structure expressed in the target technology. Both schemas must convey the same semantics,
i.e., all the source data should be stored into the target database without loss.
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Figure 7: Overall view of the database-first database migration process (adapted from [42]).
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Figure 8: Physical, one-to-one schema conversion strategy.

• Data conversion is the migration of the data instances from the source database to the target one. This
migration involves data transformations that derive from the schema transformations described above.

• Program conversion, in the context of database migration, is the modification of the program so that it
now accesses the migrated database instead of the source data. The functionalities of the program are
left unchanged, as well as its programming language and its user interface.

Hainaut et al. [42] identify two extreme database conversion strategies leading to different levels of quality of
the transformed database. The first strategy, called physical conversion, consists in translating each construct
of the source database schema into the closest constructs of the target database model, without attempting any
semantic interpretation. The process, depicted in Figure 8, remains quite cheap, but it usually leads to poor
quality databases with no added value.

The second strategy, called conceptual conversion, aims at first recovering the precise semantic description
(i.e., its conceptual schema) of the source database, through reverse engineering techniques, then in designing
the target database from this conceptual schema through a standard database design methodology. The target
database is of high quality according to the expressiveness of the target platform model and is also fully
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Figure 9: Conceptual schema conversion strategy.

re-documented. However, the conceptual conversion approach is usually more expensive than the physical
conversion approach, due to the database reverse engineering step.

Other general methodologies have been proposed to migrate (legacy) systems towards a more modern database
platform. The Varlet project [49] adopts a typical two phase migration process comprising a reverse engineer-
ing process phase followed by a standard database implementation. The approach of Jeusfeld [50] is divided
into three parts: mapping of the original schema into a meta model, rearrangement of the intermediate rep-
resentation and production of the target schema. Bianchi et al. [10] propose an iterative approach to legacy
database migration. This approach aims at eliminating the ageing symptoms of the legacy database [101] when
incrementally migrating the latter towards a modern platform.

Several authors have addressed database migration between particular source and target database paradigms.
Among them, Menhoudj and Ou-Halima [66] present a method to migrate the data of COBOL legacy systems
into a relational database management system. A hierarchical-to-relational database migration approach is pro-
posed by Meier et al. [65, 64]. General approaches to migrate relational database to object-oriented technology
were proposed by Behm et al. [9] and by Missaoui et al. [70].

3.2 General evolution methodology in TYPHON

The evolution of Typhon polystores will follow a database first evolution strategy, according to which the
users will first apply a schema change at the abstraction level of TyphonML. The related physical schemas,
data instances and TyphonQL queries will then be adapted by the TYPHON migration tools. In the case of
semantics-preserving schema changes, such adaptations can be automatically supported. In the case of non-
semantics-preserving schema changes, automated adaptation of data and queries is, by definition, not possible.
Only the impact analysis process can be tool-supported, via the automated identification of invalid data and
invalid TyphonQL queries that will then need to be manually adapted (when possible) or simply deleted from
the system.
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Figure 10: Standard database reverse engineering processes.

4 Database reverse engineering

Database platform migration often relies on the availability of up-to-date documentation of the current version
of the database. However, in practice, the documentation may be incomplete, obsolete or simply missing. As
illustration, the conceptual, logical and physical database schemas are often needed to ensure the evolution
task. However, the DDL code often constitutes the only available documentation of the data structures and
constraints. Furthermore, this DDL code may be incomplete since some data structures and constraints are not
explicitly declared in the DDL code. This may be the case, for instance, for implicit foreign key constraints.
Therefore, the process of recovering those implicit properties may prove indispensable but this requires an
additional, possibly significant effort.

Chikofsky [16] defines data reverse engineering as “a collection of methods and tools to help an organization
determine the structure, function, and meaning of its data”. Database Reverse Engineering (DBRE) is the
process through which the logical and conceptual schemas of a legacy database, or of a set of files, are
reconstructed from various information sources such as DDL code, data dictionary contents, database contents
or the source code of applications that use the database. [43].

As depicted in Figure 10, database reverse engineering typically comprises the following four sub-processes:

(1) Physical extraction consists in parsing the DDL code in order to extract the raw physical schema of the
database.

(2) Refinement enriches the raw physical schema with additional structures and constraints elicited through
the analysis of the application programs and other sources of information.

(3) Cleaning removes the physical constructs (such as indexes) for producing the logical schema.
(4) Conceptualization aims at deriving the conceptual schema that the logical schema obtained imple-

ments.

4.1 Existing approaches

Several authors have proposed approaches to support database reverse engineering. The proposed techniques
exploit different information sources during the refinement process.
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• Database schema analysis [72, 62, 79]. Analyzing the database schema structures may help identify
hidden constructs such as relationships and hierarchies between data.

• Data analysis [15, 61, 104, 75]. Mining the database contents can be used in two ways. Firstly, to
discover implicit properties, such as functional dependencies and foreign keys. Secondly, to check hy-
pothetic constructs that have been suggested by other means.

• Graphical user interface analysis [97, 82]. Forms, reports and dialog boxes are user-oriented views
on the database that exhibit spatial structures, meaningful names, explicit usage guidelines and, at run-
time, data population and error messages that can provide information on data structures and constraints.

• Static program analysis [77, 31, 21]. Analysis, such as data-flow graph exploration, can bring valu-
able information on field structure and meaningful names. More sophisticated techniques such as
program slicing can be used to identify complex constraint checking.

• Dynamic program analysis [40, 20, 2, 23]. In the case of highly dynamic program-database interac-
tions, the database queries may only exist at runtime. Hence recent techniques allow to capture and
analyze SQL execution traces in order to retrieve structural information.

• Evolution history analysis [19]: Schema changes occur often in a database lifetime, those schema
changes can have a significant informative value in the context of reverse engineering. For instance,
Cleve et al. [19] introduced the concept of global historical schema which is an aggregated schema of
all previous versions of a database schema. They then analyse this historical schema in order to better
understand the current version of the database schema.

• Hybrid methods: the database reverse engineering process may greatly benefit from the cross-analysis
of several artifacts, as shown in several papers [22, 69]

4.2 Database reverse engineering in TYPHON

The database reverse engineering step is out of the scope of the TYPHON approach as far as database evo-
lution/migration is concerned. However, before adopting the TYPHON technologies to manipulate hybrid
polystores it might be necessary, as an initial step, to understand the structures and constraints of each pre-
existing database. Hence, we considered the database reverse engineering process in the present survey.
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5 Intra-platform database evolution

In a multi platform and multi paradigm such as TYPHON schema evolution can have a very broad definition.
In this section we particularly address the schema evolution in an intra-platform or cross-database point of
view. This means that we only consider here the different research done regarding the evolution of database by
keeping the same platform and therefore within the same data model, a scenario also called schema evolution.

The research literature related to schema evolution is very large. Rahm et al. [81] built an online bibliography
that consists of a comprehensive and up-to-date collection of publications related to schema evolution. They
categorized publications along multiple hierarchical dimensions. The online bibliography is not strictly limited
to database schema evolution; related fields such as ontology evolution, software evolution and workflow
evolution are also covered.

In this section, we briefly summarize the most relevant schema evolution approaches and methods in the context
of the TYPHON project.

5.1 Existing approaches

5.1.1 Analyzing schema evolution

Sjøberg [88] studied the schema evolution history of a large-scale medical application and showed, by using
a thesaurus tool, that even a small change to the schema may have major consequences for the rest of the
application code. The study reveals that schema changes are significant both in the development period and
after the system has become operational. The consequences of the schema changes on the application programs
have been measured. In particular, the tool provides information about how many screens, actions, queries, etc.
may be affected by a possible schema change. The results confirm that change management tools are needed.

Curino et al. [28] present a study of the structural evolution of the Wikipedia database, with the aim to extract
both a micro-classification and a macro-classification of schema changes. They also study the frequency
distribution of those schema changes. In addition to a schema evolution statistics extractor, the authors propose
a tool that operates on the differences between subsequent schema versions and semi-automatically extracts the
set of possible schema changes that have been applied. In this study, a period of four years has been considered,
corresponding to 171 successive versions of the Wikipedia database schema. Their study shows the need for
automated support to schema evolution.

Lin and Neamtiu [58] showed the impact of databases schema changes to application programs. They inves-
tigated two case studies showing that evolution of the database schema could cause loss of performance or
failure to the program related to those databases. They showed the importance of co-evolving the programs
and how it was done in particular case studies. Those program adaptations were carried out manually in a non
efficient way.

Vassiliadis et al. [99, 100] studied the evolution of individual database tables over time in eight different
software systems. They report on their observations on how evolution-related properties, like the possibility
of deletion, or the amount of updates that a table undergoes, are related to observable table properties like the
number of attributes or the time of birth of a table. Through a large-scale study on the evolution of database,
they also tried to determine whether Lehman’s laws of software evolution hold for evolving database schemas
as well [89]. They conclude that the essence of Lehman’s laws remains valid in this context, but that specific
mechanics significantly differ when it comes to schema evolution.

Schema changes occur often in a database lifetime, those schema changes can have a significant informative
value in the context of reverse engineering. Cleve et al. [19] introduce the concept of global historical schema
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which is an aggregated schema of all previous versions of a database schema. They then analyse this schema
in order to better understand the current version of the database schema and, therefore, facilitate future schema
changes.

5.1.2 Supporting schema evolution

Hick and Hainaut [46, 47] propose the DB-MAIN approach to database schema evolution. This approach re-
lies on a generic database model, namely the GER model [41], and on transformational paradigm that states
that database engineering processes can be modeled by (chains of) schema transformations. Indeed, a trans-
formation provides both structural and instance mappings that formally define how to jointly modify database
structures and related data instances. The authors describe both a complete and a simplified, more pragmatic
version of their approach, and compare their respective merits and drawbacks.

Table 3, inspired from [46], provides a semantic classification of the schema modification operators considered
by the DB-MAIN approach. The presented operators are based on the constructs of the GER model [41].

Database evolutions may involve schema modifications that can in turn impact the data instances and the
database queries. Adapting data and queries to evolving schemas may constitute a long, risky and often man-
ual process for database administrators. In [27], Curino et al. present PRISM++, a system that supports
the database evolution process by evaluating the impact of schema modifications on queries and on data.
PRISM++ then help developers with the rewriting of historical queries and the migration of related data,
thereby reducing the downtime of the system by reducing manual effort. They achieve this by defining a set
of Schema Modification Operators (SMOs) representing atomic schema changes, and they link each of these
operators with modification functions for data and queries.

The evolution operators considered by PRISM++ are inspired by the operators defined by Ambler and
Sadalage [3]. They defined six main categories of operators, namely transformation, structure refactoring,
referential integrity refactoring, architecture refactoring, data quality refactoring and method refactoring. In
order to be even more precise, it is possible to further classify those operators into finer-grained atomic opera-
tors, as done by Curino et al..

In the same spirit, Qiu et al. [80] propose an exhaustive list of 24 schema change operators, each corresponding
to an atomic DDL query. Those are detailed in Figure 11, taken from [80].

More recent approaches and studies have focused on the evolution of NoSQL databases. Scherzinger et al. [86]
present ControVol, a framework controlling schema evolution in NoSQL applications. ControVol statically
type checks object mapper class declarations against earlier versions in the code repository. ControVol is
capable of warning developers of risky cases of mismatched data and schema. ControVol also suggests and
performs automatic fixes to resolve possible schema migration problems.

5.1.3 Schema evolution at runtime

Several approaches and tools exist to support database schema evolution at runtime, with the aim to reduce the
downtime of data-intensive systems subject to evolution [30]. Among those tools, let us mention Large Hadron
Migrator [54], the openark kit [74], the Percona toolkit [76], and TableMigrator [94].

The above tools are limited to applying structural changes to one database table at a time. They all rely on a
similar schema evolution strategy: a structural copy of the database table under change is created as a ghost
table. The schema change operation is then applied to this ghost table. Data is copied from the original table
to the ghost table and kept synchronized during a transition period using database triggers. Once the copy of
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Schema construct Semantic impact of construct modification
S+ S− S=

Entity type

add remove rename
convert to attribute
convert to rel. type
split/merge

Relationship type
add remove rename

convert to ent. type
convert to attribute

Role

create delete rename
increase max. card. decrease max. card.
decrease min. card. increase min. card.
add ent. type remove ent. type

Is-a relationship
add remove
change type change type

Attribute

add remove rename
increase max. card. decrease max. card. convert to ent. type
decrease min. card. increase min. card. aggregate
extend domain restrict domain disaggregate
change type change type instantiate

concatenate

Identifier
add remove rename
add component remove component change type

Constraints
add remove rename
add component remove component
change type change type

Access key
add remove rename
add attribute remove attribute

Collection
add remove rename
add ent. type remove ent. type

Table 3: Semantic classification of conceptual schema modifications (expressed in the GER model).
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Figure 11: List of atomic schema modification operators, from [80].

the data has fully completed, the original table and the ghost table atomically switch names, and the original
table can be dropped.

The Online Schema Change tool [32] (OSC for short), provided by Facebook, follows a similar approach, but
the triggers are used to log the data modification in a separate table, in order to replay them asynchronously on
the ghost table. Github’s gh-ost [35] (Online Schema migration Tool) follows an alternate approach: It reads
the binary log of the database, and then replicates data changes to the ghost table asynchronously. These asyn-
chronous approaches are particular suitable to migrate very large amounts of data while keeping an acceptable
level of data access performance.

de Jong et al. [30] present QuantumDB, a tool-supported approach that support relational database schema
evolution at runtime, in the context of continuous deployment. In contrast to related tools discussed above,
the QuantumDB approach supports the modification of multiple tables at the same time. It also allows several
active database schemas to co-exist, during a certain transition period, thereby making this hybrid state fully-
transparent from the application programs point of view. This mechanism is essential in order to actually
achieve zero-downtime schema evolution, even when applying blocking DDL schema change operations to the
database.

5.2 Intra-platform database evolution in TYPHON

The intra-platform schema evolution methodology and tools of TYPHON will get inspired from several ap-
proaches described above. First, we will benefit from the TyphonML generic and conceptual modeling lan-
guage being developed in WP2 for representing database schemas, encompassing the actual physical schemas
of the underlying hybrid data stores. Similarly to the DB-MAIN approach of Hick and Hainaut [46, 47], we
will express our schema evolution operators at this high level of abstraction. The schema evolution operators
will rely on the DDL operators provided by TyphonQL to propagate the changes at the backend data stores
level. Achieving mixed-state, as done in the QuantumDB approach [30], seems to be promising in the context
of TYPHON polystore evolution.
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6 Inter-platform database evolution

In this section, we present existing approaches and techniques related to inter-platform database evolution
scenarios, i.e., scenarios involving the replacement of the database platform. We particularly focus on the
migration (and bridging) of relational databases to NoSQL data stores.

6.1 Existing approaches

Relational databases and NoSQL databases rely on different models, the relational algebra model for rela-
tional databases and either document-oriented, key value, table-oriented or graph-oriented models for NoSQL
databases. Those NoSQL models are briefly introduced in 2.2. Below we summarize state-of-the-art ap-
proaches and tools supporting the migration of schemas and data from a relational platform to NoSQL. We
first start with general approaches, that aim to remain independent from the specific target NoSQL model.
Then we present techniques focusing on data migration towards document-oriented and column-oriented data
stores, respectively. We finally present existing tools supporting this migration process.

6.1.1 Migrating relational databases to NoSQL in general

The most naive way to migrate a relational schema to a non-relational model is to follow the so-called normal-
ization method. This method relies on a one-to-one mapping between the source and target database schemas,
e.g., in the case of a relational-to-MongoDB migration, each source table becomes a document in the target
document store. This can be seen as the easiest way to migrate a relational schema to NoSQL data model, with
the advantage that the resulting schema is, in principle, also normalized. But this method shows several disad-
vantages too. For instance, most NoSQL data models do not support join queries. This means that join SQL
queries have to be split into several NoSQL queries, invoked separately on the target database. This limitation
may cause a major loss of data access performance, which is paradoxal in NoSQL. In addition, non-relational
platforms generally do not support database transactions. Multiple parallel table updates can therefore fail and
lead to data inconsistency. In summary, migrating data using the normalization method, while very simple to
achieve, may significantly reduce the expected positive impact of migrating relational data to NoSQL.

Ghotiya et al. [34] established a survey of current available techniques and tools for migrating data to NoSQL
models. Liang et al. [56] proposed a transitional model between relational and NoSQL models. This model is
provided with a set of mapping strategies that help to migrate the relational structure and data to the physical
schema of the particular target NoSQL model. The main advantage of this approach is that it does not restrict
itself to a specific target NoSQL model, any existing ones can be expressed. However, on the other hand, the
source application code has to be maintained and evolved accordingly.

An algorithm for schema conversion has been proposed by Zhao et al. [107]. This algorithm is based on a
graph-based representation of the databases: vertex are tables and edges are relationships between them. Start-
ing from the leaf nodes, the implementation will then build a set of nested sets of tables. This solution results
in very efficient query execution. In addition, all queries are directly transposable since every information is
present in a single collection, so that no joins are needed. This implementation has as drawback the size of
the resulting database. Indeed the total size may grow rapidly depending on the number of foreign keys in the
source relational database.

In order to avoid this significant size increase Yoo et al. [105] propose a technique for schema migration that is
based on Column-level denormalization. Denormalization is the process of duplicating data to avoid the need
for join queries that cannot be achieve directly in NoSQL systems. But column-level denormalization only
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duplicates columns that are accessed in a non primary-foreign key join relationship. Their Atomic aggregates
method transforms a transaction into an atomic update of multiple tables. An experiment shows that the
performance reached compared to state-of-the-art method is two times faster and uses 2.8 times less space.

Instead of migrating data Xu et al. [103] propose to build a middleware system that will integrate relational
database management systems and NoSQL systems. Such an integration appears very useful for applications
that will need to combine both database paradigms instead of using only one of them. Relational database
management systems are focused on ACID properties and are therefore more convenient for important small
sized databases and write-intensive processes. In contrast, NoSQL focuses on velocity and scalability which is
more suitable for big data and read-intensive processes. Xu et al. [103] develop a new language, called ZQL,
which is platform-independent and allows users to write queries that will eventually be executed either in an
relational database or in a NoSQL datastore. The ZQL module translates the given query to the corresponding
system and return the results with full transparency for the user.

Following the same idea of integrating both models into application programs, Sellami et al. [87] present an
API, called ODBAPI, which aims to decouple technology-specific database code from the application code.
Using their REST API based on a unified model it is possible to use a unique language to perform queries
on multiple data store. Metadata handles the mapping of datasources and drivers. Migration of data becomes
easier and the application code is platform-independent which makes the work of developers easier as they do
not have to learn each data store language. This API is also extensible in order to easily add other data sources
by providing an additional mapping in the API model. However this API is currently limited to basic CRUD
operations.

Similarly, the SOS (Save Our System) platform [7] also establishes a pivot model between the different NoSQL
models in order to decouple the application code from the technical specificities of the underlying NoSQL
databases. It is a common programming interface that hides the technical details of three NoSQL databases:
Redis as key-value model, HBase as column-oriented model and MongoDB as document-oriented model. This
approach has been implemented using those three systems and applied on a Tweeter use case. Unfortunately
they did not integrated the relational model in the use case but following a similar idea, it should be possible
to add the relational model to this programming interface.

6.1.2 Migrating relational databases to document-oriented data stores

Before starting to migrate data from a source relational model to a target document-oriented model, Zhao et
al. [106] studied the theoretical possibility of such a migration process. They used the relational algebra and
applied it to the MongoDB document-oriented model to check if it could support the same capabilities. They
concluded that document store model like MongoDB also supports relational calculus and therefore data can
be migrated between the two as they have the same capability set.

NoSQL Layer, proposed by Rocha et al. [85] is a framework to migrate data from relational databases to
MongoDB. It contains two modules: The Data migration module and the Data Mapping Module. The data
migration module automatically builds an equivalent structure in MongoDB and then migrate the data. The
data mapping module is a data access layer; its goal is to act as an interface between the databases and the
application programs. Its main feature is the ability to translate each SQL query into an equivalent MongoDB
query, and then convert the returned query results in a SQL-compatible format. Therefore, in principle, no
program adaptation is required.

Stanescu [91] propose a mapping algorithm to transform a relational database into a MongoDB database. The
algorithm carried out this process by transforming tables and relationships, such as 1:1, 1:N and M:N relation-
ships either into an embedding in the document collection or into a relationship between several collections.
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The algorithm makes the choice for a given table T by taking into account the number of references from T to
other tables and the number of incoming references pointing to table T from other tables. They implemented
this algorithm using the meta-data table of MySQL INFORMATION_SCHEMA. A drawback of this tech-
nique that we can point out is that it relies on the explicit declaration of foreign key constraints in the source
relational schema. However, it has been showed that foreign keys are not always explicitly declared in the
database schema but can instead be implicitly managed by the application programs [22].

6.1.3 Migrating relational databases to column-oriented data stores

Migrating data from relational databases to column-oriented model, such as HBase has been explored by Lee
and Zheng [53]. The authors reuse the design principles of denormalization and duplication explained before
and they add an automatic way to build the row key. Using the MySQL meta data table, they build linked list
following the paths foreign keys - primary keys. The longest one is then established as the row key. Their
experimental results showed an improvement of 47% in access performance.

Li [55] proposes a two-phase method to migrate data from a relational database to a HBase distributed data
store. They provide three guidelines to convert the data automatically under this migration scenario. The first
guideline is to group together correlated data and adding foreign keys between different schemas. The second
guideline is to minimize the number of foreign keys by merging data together. Finally, the inter-schema
mappings are exploited to create a set of queries that transforms the data automatically.

Kim et al. [52] also studied the migration towards HBase and its column-oriented NoSQL model. They use
Apache Phoenix to migrate their SQL queries. It is a SQL layer working on top of HBase. They considered
Phoenix as too basic to support complex queries such as queries with join operations, subqueries or HAVING
clauses. Therefore they had to manually refactor those queries. In order to fully and correctly support previous
SQL queries they recommend to use techniques such as Denormalization and Atomic Aggregates [105]. More-
over they evaluated all their SQL queries with their respective NoSQL queries in an SVM classifier, which
provide some insights about which categories of queries actually translate better in a NoSQL environment.

Liao et al. [57] also use HBase and Apache Phoenix in the context of relational to column-oriented data
migration. Their idea is to use relational database management systems and NoSQL databases in combination.
The relational data are replicated into a NoSQL database, and the authors aim to ensure consistency without
causing downtime. Application queries do not need to be adapted as the authors make also use of a translator
module, called DB Adapter. Moreover the approach provides the users with three different modes in order
to update the NoSQL database. The first one is a blocking mode. This mode is more convenient for batch
applications as it is performed offline and thus it does not have to process incoming queries while performing
the migration. This is also much faster. The second mode is the online mode, that can migrate the data while
the application is still running without loss of data. This mode takes much more time to complete. The last
mode is a compromise between the two other modes.

Once the data have been migrated it can be useful to verify and validate that the source and target datasets
are equivalent, i.e., that the migration was performed without data loss. Goyal et al. [37] explores this line of
research by exploiting the bloom filters, based on a probabilist technique that can assert the presence/absence
of an element in a particular data set.
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6.1.4 Supporting tools

A few existing tools can support the process of data migration between relational databases and NoSQL plat-
forms. Those tools have been used in several papers presented in the previous section: Apache Sqoop and
Apache Phoenix.

• Apache Sqoop[90] is able to transfer bulk data from relational databases to HDFS (compatible with
Hadoop/Hive/HBase). Therefore a user can transfer data and perform a MapReduce operation with
Hadoop easily. The result can afterwards be exported again in the relational database. When using this
tool it can also be interesting to apply the research of Hsu et al. [48] where they propose a method to
better split the data across nodes and thus improve the read performance of JOIN operations passed to
Sqoop.

• Apache Phoenix[78] is an SQL layer that can provide data access on top of HBase databases. It allows
users to manipulate a NoSQL column-oriented database by means of the SQL language.

6.2 Inter paradigm database evolution in TYPHON

When reading and analyzing the research papers summarized above, one can identify two main approaches to
data migration, either through a direct mapping or via an intermediate pivot model. The TYPHON ambition
is to combine the advantages of both approaches. TYPHON will use TyphonML as a generic pivot model-
ing language for representing database schemas and will use TyphonQL as a generic intermediate language
for expressing database queries. The platform-independence and extensibility of those modeling and query
languages will greatly facilitate database evolutions in general, and more specifically data migration between
different database platforms within the hybrid polystores. This is confirmed by several authors who addressed
the migration of relational databases to document-oriented or to column-based datastores.
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7 Program and query adaptation

The adaptation of client application programs under database schema evolution is a complex process. Most
existing tool-supported approaches to this process rely on transformational techniques, generative techniques
or a combination of both. For instance, several authors attempt to contain the ripple effect of changes to the
database schema, e.g., by generating wrappers [98], views or APIs that provide/enable backward compatibility
and by transforming the programs in order to interface them with those intermediate layers.

7.1 Existing approaches

7.1.1 Analyzing the impact of database schema evolution

A first step towards program adaptation has been explored by Grolinger and Capretz [39]. They propose the
integration of database accesses in the unit tests. They add a layer which effectively accesses the database
instead of mocking it. In this way the actual queries can be checked against the (evolving) schema. If needed
they also modify the queries in order to query the structure of the schema instead of the actual data, with the
aim to increase data access performance. By validating queries to the schema they can identify source code
fragments in the programs that have become invalid and that would therefore fail, in order to help programmers
when adapting programs to evolutions of the database.

Maule et al. [63] propose an impact analysis approach to database schema changes. This approach relies on
a combination of program slicing and dataflow analysis techniques. The program slicing techniques aim to
reduce the number of lines of code that the program analyzer has to parse. The obtained program subset is
then further analyzed through dataflow analysis, in order to extract and collect all possible database queries,
together with their respective input parameters. A last step requires the user to provide an hypothetical schema
change as input of the tool. The latter then derives the set of impacted queries and produces a detailed impact
report. The user can then (manually) adapt the application programs accordingly.

Liu et al. [60] propose a novel graph, which they call the attribute dependency graph, in order to show the
dependencies between attributes in a database application and the programs involved. This approach, imple-
mented for PHP-based applications, extracts the attribute dependency graph from the programs source code
by means of inter-procedural static program analysis. The purpose was to provide developers with support to
different maintenance tasks, by focusing on impact analysis.

In [33] the authors provide a tool and program slicing technique specifically designed to adapt the programs
source code as well as related regression tests when a database schema change occurs. This two-folded im-
pact analysis method aims to identify the source code statements affected by the schema changes and the
affected test suites associated to these source code fragments. They implemented their approach for PL/SQL
applications.

Chang et al. [14] propose a formal framework for database refactoring which is based on a logical model
of changes, and that can automatically identify inconsistencies in the application code as well as database
modeling problems.

Meurice et al. [68] present a tool-supported approach, that allows developers to simulate a database schema
change and automatically determine the set of source code locations that would be impacted by this change.
Developers are then provided with recommendations about what they should modify at those source code
locations in order to avoid query-schema inconsistencies. The approach has been designed to deal with Java
systems that use dynamic data access frameworks such as JDBC, Hibernate and JPA.
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ControVol, by Scherzinger et al. [86] is a framework pluggable into an IDE that can support developers when
evolving their source code and specifically their object mapper class declarations, in the particular context of a
NoSQL data stores.

7.1.2 Supporting schema-program co-evolution

Cleve et al. [18] presented a tool-supported approach that combines the automated derivation of a relational
database from a conceptual schema, and the automated generation of a data manipulation API providing
programs with a conceptual view of the relational database. Schema change is achieved through a system-
atic transformation process, keeping track of the mapping between the successive versions of the schema.
Database schema evolutions are then propagated through API regeneration so that client applications are pro-
tected against information-preserving schema changes.

The PRISM workbench by Curino et al. [29] provides a highly integrated support to relational schema evolu-
tion. This tool suite includes (1) a language for the specification of Schema Modification Operators (SMOs)
for relational schemas, (2) impact analysis tools that evaluate the effects of such operators, (3) automatic data
migration support, and (4) translation of old queries to work on the new schema. Query adaptation derives
from the SMOs and combines SQL view generation and query rewriting techniques. Most SMOs map directly
to an equivalent DDL statement, but some SMOs support more complex operations on the database schema
like splitting or combining two tables in terms of records or columns.

The 2LT project [102] aims to formalize and to provide generic support for two-level transformations, which
involve a transformation on the level of types with transformations on the level of values and operations. The
solutions offered by the 2LT project combine existing techniques of data refinement, typed strategic rewriting,
point-free program transformation and advanced functional programming. This generic approach revealed to
be applicable to the coupled transformation of database schemas, data instances, queries, and constraints.

Bidirectional transformations [95] can also be used to decouple the evolution of the database schema from
the evolution of the queries, by allowing changes to the schema to be implemented while some queries can
remain unchanged. Terwilliger et al. [96] introduced the concept of Channel to formalize transformations that
translate application code queries to a “virtual” database schema to equivalent queries into the actual schema.

Stonebraker et al. [93] discuss two possible ways of co-evolving database schemas and application programs.
A first way is the data-first way, the one recommended by good practices in database designs. It consists of
first evolving the database schema, keeping it in the third normal form (3NF) and then adapting the application
program regarding those changes. In real-world companies this is almost never applied [92], due to potential
higher cost and difficulties of program maintenance. Therefore the application-first strategy is favoured. It
consists of mitigating or even avoiding application code changes. This discourages database administrators
to try to modify the existing structure of the database. Instead, they rather continuously add fields or tables.
Those two approaches do not constitute fully-satisfying solutions. The first one leads to program decay as
applications may not correctly be adapted to the schema changes. The second leads to a database decay as data
may be duplicated and thus the schema may become less and less conform to the 3NF. To avoid such problems,
Stonebraker et al. recommend to add an intermediate layer accessing the database(s), and to make application
programs manipulate data through this layer. In case of schema evolutions, the database access API would not
change from the programs’ point of view, but only the implementation of the API functions would change,
under the responsibility of the database administrators. This access layer can be implemented, for example,
via a REST API.
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7.1.3 Analyzing schema-program co-evolution

Some researchers have also observed how databases and programs co-evolve over time. Lin et al. [59] study
the so-called collateral evolution of applications and databases, in which the evolution of an application is
separated from the evolution of its persistent data, or from the database. They investigated how application
programs and database management systems in popular open source systems (Mozilla, Monotone) cope with
database schema changes and database format changes. They observed that collateral evolution can lead to
potential problems. However, the number of schema changes reported is very limited. In Mozilla, 20 table
creations and 4 table deletions are reported in a period of 4 years. During 6 years of Monotone schema
evolution, only 9 tables were added while 8 tables were deleted.

Qiu et al. [80] conduct a large-scale empirical study on ten popular database applications from various domains
to analyze how schemas and application code co-evolve. In particular, they study the evolution histories from
the respective repositories to understand whether database schemas evolve frequently and significantly, how
schemas evolve and impact the application code. In their approach, the authors try to estimate the impact
of a database schema change in the code. This estimation is performed with a simple difference extractor
calculating changed source lines between two versions.

Karahasanoić [51] studied how the maintenance of application consistency can be supported by identifying and
visualizing the impacts of changes in evolving object-oriented systems, including changes originating from a
database schema. This work focuses on the evolution of object-oriented databases.

Goeminne et al. [36] study the co-evolution between code-related and database-related activities in data-
intensive systems combining several ways to access the database (native SQL queries and Object-Relational
Mapping). They empirically analyzed the evolution of the usage of SQL, Hibernate and JPA in a large and
complex open source information system. Interestingly, they observed that the practice of using embedded
SQL queries is still common today.

Meurice and Cleve[67] provide a method analyzing the joint evolution of the application programs and their
underlying NoSQL data store. They use the application code and its evolution history to identify implicit
changes in the data structure and potential points of failure due to this schema evolution.

7.2 Program and query adaptation in TYPHON

The approaches described above will be definitely inspiring in the context of the TYPHON project, in particular
regarding the way (evolving) hybrid polystores will be accessed by client applications through the TyphonQL
query language and the Typhon access API. As done by several authors [96, 29], we will define and implement
a set of co-evolution rules between TyphonML schemas and related TyphonQL queries. The regeneration
of the TYPHON API following a schema change will also greatly facilitate the co-evolution of the database
schema and the external application programs, as shown in the approach of Cleve et al [18]. The different
studies analyzing schema-program co-evolution over time provide us with important insights about the most
frequent schema evolution scenarios and operators, as well as the main difficulties encountered by developers
as far as program adaptation is concerned.
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8 Summary

In this section we present a comparative summary table of the approaches detailed in the intra-platform
database evolution, inter-platform database evolution and program adaptation sections. Table 4 character-
izes the different surveyed approaches based on different dimensions introduced in Section 2. We first indicate
whether the approach focuses on the evolution processes described in 2.5, namely impact analysis, database
change and program change.

Then, the semantics-related columns indicate if the studied approach considers evolution scenarios involving,
semantics-decreasing, semantics-increasing or semantics-preserving schema changes.

The approach dimension aims to explain how the approaches actually achieve the database evolution processes
that they support.

The last two columns refer to the source and target database management system considered.

For the program adaptation approaches, the source column refers to the kind of input required by the approach.
The output is left blank when it consists of an impact analysis report or a set of change recommendations in
the program.
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Reference Process Semantic Approach Source Target
Impact analysis Database change Program change S+ S− S=

Intra-platform evolution
Sjøberg [88] X X X X Empirical study relational DB relational DB
Curino et al. [28] X X X X Empirical study relational DB relational DB
Vassiliadis et al. [99, 100] X X X X Empirical study relational DB relational DB
Cleve et al. [19] X X X X History analysis relational DB relational DB
Hick and Hainaut [46, 47] X X X X Intermediary model relational DB relational DB
Scherzinger [86] X X X X X Intermediary tool MongoDB MongoDB
Lin and Neamtiu [58] X X X X X Empirical study relational DB relational DB
Curino [27] X X X X X Intermediary tool relational DB relational DB
Qiu et al. [80] X X X X Empirical study relational DB relational DB
Inter-platform evolution
Liang et al. [56] X X X Intermediary model relational DB All NoSQL models
Zhao et al. [107] X X Intermediary model relational DB All NoSQL models
Yoo et al. [105] X X Intermediary model relational DB All NoSQL models
Xu et al. [103] X X X X X Intermediary model relational DB, NoSQL relational DB, NoSQL
Sellami et al. [87] X X X X X Intermediary model Generic Generic
Atzeni [7] Intermediary model Redis, HBase, MongoDB Redis, HBase, MongoDB
Zhao et al. [106] X X Relational algebra relational DB MongoDB
Rocha et al. [85] X X X X X Direct mapping relational DB MongoDB
Stanescu [91] X X Direct mapping MySQL MongoDB
Li [55] X X Direct mapping relational DB HBase
Lee and Zheng [53] X X Direct mapping relational DB HBase
Kim et al. [52] X X Intermediary software relational DB HBase
Liao et al. [57] X Intermediary software relational DB, HBase HBase
Apache Sqoop X X Intermediary tool relational DB, Hive, HBase Hive, HBase, relational DB
Apache Phoenix X X X X Intermediary tool relational DB, HBase relational DB, HBase
Program adaptation
Thiran et al. [98] X X X X Intermediary model relational DB relational DB
Cleve et al. [18] X X X X X Intermediary model relational DB relational DB
Visser [102] X X X X X Theoretical formalization relational DB relational DB
Terwilliger et al. [95] X X X X X Theoretical formalization relational DB relational DB
Grolinger and Capretz [39] X X X X Intermediary tool relational DB relational DB
Meurice et al. [68] X X X X Intermediary tool JDBC, ORM JDBC, ORM
Maule et al. [63] X X X X Program slicing Application code -
Liu et al. [60] X X X X Dependency graph PHP application -
Gardikiotis et al.[33] X X X X Program slicing PL/SQL -
Chang et al. [14] X X X X X Intermediary model
Stonebraker et al. [93] X X X X Intermediary model Generic Generic
Meurice and Cleve[67] X X X Intermediary tool MongoDB java application code -
Lin et al. [59] X Empirical study relational DB, Application code -
Qiu et al. [80] X X X X History evolution relational DB, Application code -
Karahasanoić [51] X Visualization Object oriented databases -
Goeminne et al. [36] X Application code -
TYPHON X X X X X X Intermediary model Generic Generic

Table 4: Comparison of database evolution and program adaptation approaches.
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9 Conclusions

In this document, we identified, presented and compared the current state-of-the-art approaches to database
evolution in general, and to database migration in particular. A large set of approaches and tools have been
proposed, mainly in the context of evolving a single database at a time. The challenges of the TYPHON
project will be to evolve hybrid polystores as well as related database queries in a joint and consistent manner.
To achieve that, TYPHON will rely on generative and co-transformational techniques and will benefit from
the whole TYPHON approach including (1) TyphonML, a generic, high-level modeling language for database
schemas; (2) TyphonQL, a meta-query language compiled towards concrete query languages for relational and
NoSQL databases, (3) the automatically-generated Typhon API providing developers call-level interface to
the hybrid polystores and (4) TyphonDL, allowing to (re)deploy the evolving hybrid polystores on physical or
virtual machines.
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