
This is a repository copy of Interface refactoring in performance-constrained web services.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74891/

Proceedings Paper:
Webster, D, Townend, P and Xu, J (2012) Interface refactoring in performance-constrained
web services. In: Proceedings - 2012 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2012. 2012
IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 11 - 13 April 2012, Kingkey Palace Hotel, Shenzhen,
China. Institute of Electrical & Electronic Engineers , 111 - 118 . ISBN 978-0-7695-4643-8

https://doi.org/10.1109/ISORC.2012.23

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Interface Refactoring in performance-constrained Web Services

David Webster, Paul Townend, Jie Xu

School of Computing,

University of Leeds

Leeds, UK

{D.E.Webster, P.M.Townend, J.Xu}@leeds.ac.uk

Abstract� This paper presents the development of REF-WS an

approach to enable a Web Service provider to reliably evolve

their service through the application of refactoring

transformations. REF-WS is intended to aid service providers,

particularly in a reliability and performance constrained

domain as it permits upgraded 'non-backwards compatible'

services to be deployed into a performance constrained

network where existing consumers depend on an older version

of the service interface. In order for this to be successful, the

refactoring and message mediation needs to occur without

affecting functional compatibility with the services' consumers,

and must operate within the performance overhead expected of

the original service, introducing as little latency as possible.

Furthermore, compared to a manually programmed solution,

the presented approach enables the service developer to apply

and parameterize refactorings with a level of confidence that

they will not produce an invalid or 'corrupt' transformation of

messages. This is achieved through the use of preconditions

for the defined refactorings.

Keywords- Web Services, Refactoring, Reliable Evolution

I. INTRODUCTION

Software evolution is a fundamental part of software
engineering and its need to be addressed has been well
understood for many years [1]. Activities involved in
software evolution range from the repair of defects to the
addition of new functionality to a system.

Modern computing systems are moving towards a
Software as a Service (SaaS) paradigm, which can be
characterized as a separation of the possession and
ownership of software from its use [2]. One of the
motivations for using Software as a System (SaaS) is for
software developers to be able to respond to the industrial
needs of evolving software in contrast to traditional software
maintenance processes. Such processes are viewed as too
slow to meet these rapidly evolving needs [3]. Whilst this
separation has its benefits, the downside of this arrangement
is a loss of control over the service software from the
consumer�s perspective compared to locally running
software.

In the environment of an open marketplace for services it
is common for a service provider to offer the provision of
service to consumers without knowing specific details about
them, for example a contact address. This is in contrast to a
consumer contracting a service provider to provide a
bespoke service specifically for that consumer. A
fundamental challenge to evolving a service (and its
interface) in this setting, therefore, is that the service

provider may not know the contact details or otherwise be
practically able to contact each consumer of their service to
notify them of changes to their interface or specification [4].

Depending on the agility of the consumer software's
maintainer (in its response to update the software in order to
comply with the new service interface) and the speed of the
change to the service's interface there is a risk of a delay
between this change and the adaptation and redeployment of
the consumer software. This is problematic when the
consumer assumes that the service interface will remain
functionally static leading to what Jones et al [5] describes as
an 'abnormal event' that leads to a 'fault'. In addition to just
purely functional changes to the service, consumers may be
dependent on QoS characteristics of the service, for instance
the real-time performance and latencies.

A research challenge that this paper aims to address,
therefore, is in resolving the conflict between a service
provider that needs to evolve its interface to accommodate
new requirements and the assumption from a set of service
consumers who either assume that the service interface will
remain unchanged [5-7] or is unable to adapt due to
constraints such as development agility.

The scope of our work is demonstrated by the upgrade to
an exemplar workflow that dynamically integrates sensors
from an ubiquitous sensor network for the purpose of region
surveillance, constrained by run-time QoS (latency)
requirements. This is presented through a graphical mapping
interface for the human decision maker that defines the
desired response time. Within the scale of the exemplar, the
performance overhead of executing the refactoring
transformations has been demonstrated to be significant.

A. Refactoring for Evolution

'Refactoring' [8, 9] is a commonly used engineering
practice in software evolution and is viewed as a prerequisite
to adding new functionality or features to software systems.
Often this is performed to ease the effort required to extend
the software by improving its design first before adding new
features. Survey work conducted by Dig [10] concluded that
of API changes that break compatibility with existing
applications, over 80% of these changes are refactorings.

B. The Challenge of Applying Refactoring to Web Services

As described earlier, the motivation of the work within
this paper is to use the technique of refactoring to help
address the challenge of enabling the service provider to
evolve their service over time and maintain backwards-
compatibility. Despite being commonly used in the Object-

Oriented Programming (OOP) domain and w
by OOP software development tools, th
refactoring has yet to be explored in th
domain. A resolution to this problem, howe
trivial case of recoding existing OOP refac
warrants deeper analysis of the models
refactored in Web Services compared to O
addition to evaluating the performance o
proposed solution. In this paper we introdu
to solve this problem, titled REF-WS.

The outline of the remainder of this pap
Section II outlines the motivating scenar
extension to a sensor integration scenari
previous work. Section III details the mod
inherent with refactoring Web Services
OMG's MOF as a point of reference. Secti
approach for refactoring the service inte
model in addition to our assumptions and s
details the implementation of this approach.
VI concludes the work and outlines scope fo

II. MOTIVATING SCENAR

In this section an exemplar is presented t
the evolution of the interface to a Web Se
sensor integration scenario. This exemplar
and extends the scope of our previous publi
on a software demonstrator conducted fo
NECTISE programme [11].

In the demonstrator system a work
dynamically integrate simulated sensors fro
network for the purpose of region surveilla
moving Point of Interest (POI). This is pre
time-sensitive graphical mapping interface
decision maker. The desired response ti
defined by the mapping interface gove
completion time of the workflow. The imp
in order to satisfy the desired response time
workflow needs to be able to contact the a
retrieve their responses in the presence of la
aggregate these responses within the p
constraint. If a sensor fails to respond duri
time then that particular request thread from
terminated and the collection of returned re
aggregated and returned to the map client. F
an overview of the sensor integration workfl

In this paper we extend that work by
upgrade on the sensors which requires a
compatible change to the service interfa
Version 1 of the sensors provide the coordi
detected POI. In the upgraded sensors (Ver

Figure 1: Sensor Integration Wo

widely supported
he technique of

he Web Services
ever, is not just a
ctoring tools and
that need to be

OOP. This is in
verheads of any
uce our approach

per is as follows.
rio based on an
io based on our
delling challenges

and utilizes the
on IV details our
rface's structural

scope. Section V
 Finally, Section

or future work.

RIO

that demonstrates
ervice based on a
r is informed by
ished work based
or the completed

kflow is run to
om an ubiquitous
ance for a rapidly
esented through a
e for the human
ime for the user
erns the overall
pact of this is that
e for the user the
available sensors,
atencies and then
pre-defined time
ing the requested

m the workflow is
esponses are then
Figure 1 provides
low.
y performing an
a non-backwards
ace to be made.
inates of a single
rsion 2), this POI

information is augmented with the g
itself in addition to the time that
requires a structural change to the
difference between the interfaces ca
Figure 2.

The approach presented in this p
developer to refactor Version 1 of
stages until a point where it is decl
on a collection of primitive refactor
constrain this work's scope, not
refactorings are detailed in this pape
does provide a realistic use-case to
refactorings that are discussed and a
of this paper.

The QoS requirement of the
informs the performance evaluat
solution. Whilst from the pers
developer the overall refactoring wil
than at run-time. From the service
other than tolerating a downtime du
the upgraded service, the refactored
within the QoS constraints defined b
of the sensor service. As a result of
approach requires that latency overh

Figure 3 illustrates the ov
introduced to enable the transforma
1 request and response messages
version of the service consumes an
these as follows:

TQoS < Trequest + Tlo

Where TQoS is the response tim

rkflow

Figure 2: Version 1 and V

the Sensor Interface

Figure 3: Timing constraints

geo-location of the sensor
it detected the POI and

e service interface. The
an be shown illustrated in

paper, permits the service
the interface in multiple

lared as Version 2, based
rings. Due to the need to
t all possible primitive
er, however, the exemplar
o drive the scope of the
analyzed in the remainder

e exemplar furthermore
tion for the refactoring
spective of the service
ll be at design-time rather

e consumer�s perspective,
ue to the redeployment of
d service needs to operate
by the original consumers
f this the evaluation of our
heads be considered.
verhead times that are
tion between the Version
 to those that the new
nd produces. We define

ogic + Tresponse

me defined by the service

Version 2 of

Schema

s for Web Service

consumer; Trequest is the time taken for the t
the Version 1 request message into a V
message; Tlogic is the time taken for the serv
and Tresponse is the time for the time
transformation of the Version 2 response
Version 1 response message.

III. MODELLING

In this section the uniqueness of the
models is investigated compared to the mor
structural models that are used in refacto
fundamental differences between the two w
simple use of OOP refactoring tools fo
refactoring. These differences are summar
of:

• System boundaries

• Meta-modeling layers

A. System Boundaries

A fundamental difference between th
Web Services and the refactoring that is typ
OOP languages is in the system boundary o
being refactored. Refactoring approaches
that the refactoring system has access to
interface code that is being refactored and
that calls this interface. If this is not th
interface becomes what Fowler [8] nam
interface'. Despite refactoring often taki
internals of software components, many
change the software interface and break the
the change. This change to a publish

Figure 4: Overview of MOF la

Figure 5: Web Services applied to M

transformation of
Version 2 request

vice logic to run;
 taken for the
 message into a

e Web Services
re common OOP
oring. There are

which prevent the
or Web Service
rized as in terms

he refactoring of
pically applied to
of the model/code
typically assume

o all the method
the all the code

he case then this
mes a 'published
ing place in the

refactorings do
 encapsulation of
hed interface is

problematic if the software develope
all client code that consumes the in
the Web Services domain. In the sc
language such as Java this would b
provided by a software library.

B. Web Services and Meta-Modelli

At a technical level Web Servi
following group of specifications: W
SOAP. Web Services Definition L
XML-based machine-processable
language for describing the operatio
exchanged between a client and serv

XML Schema is a formal langu
validate the structure of XML docu
the WSDL document's message
SOAP (initially standing for Simple
protocol specification defines an
protocol for the exchange of
information across web peers, typi
environment [13].

To illustrate the comparison betw
typically the target of refactoring)
models that are used to develop an
the OMG's MetaObject Facility (M
framework for reference here. The
Model-Driven Engineering by defin
framework for defining system mod
models. These four layers are as fol

• Meta-meta-model (M3)
language for defining meta-

• Meta-model (M2) : Define
describing the structure an
UML is an example of a me

• Model (M1) : Defines the
we want to describe.

• Instance data (M0) : D
system information applied

Figure 4 provides an overview
application of different language me

To use the WSDL document in
to be interpreted by a middleware s
then exposes a Web Service endp
receives SOAP messages based on
and XML types defined in the WS
Schema document.

In reference to Section III.A, u
purely to OOP source code; apply
Services will require the managem
changes made to the WSDL docume
propagate through the middleware a
message sent and received from
Figure 5 illustrates the linking betw
and documents associated with th
Service against the MOF layers.

In summary, applying the tech
Web Services is not just a 1:1 ma
model, such as Java. Instead we

ayers

MOF layers

er does not have access to
nterface as is the case in
cenario of a programming
be comparable to the API

ing

ces are composed of the
WSDL, XML Schema and
Language (WSDL) is an
e interface definition
ons and messages that are
vice provider [12].
uage used to describe and
uments, and is applied to
definitions. Finally, the

e Object Access Protocol)
n XML-based stateless

structured and typed
ically in a Web Services

ween the OOP model (as
and the combination of

d deploy a Web Service,
MOF) [14] is used as a
e MOF forms a basis for
ning a layered meta-data
dels and associated meta-
llows:

: Defines an abstract
data.

es the languages used for
nd semantics of models.

eta-model.

model of the system that

Describes the real-world
to the M1 model.

w of these layers and the
eta-models.
n a Web Service, it needs
system. This middleware
point and generates and
the operations, messages
DL and associated XML

unlike refactoring applied
ying refactoring to Web
ment of how refactoring
ent and its SOAP binding
and into the HTTP/SOAP

m the service consumer.
ween the various schemas
e deployment of a Web

hnique of refactoring to
apping to an OOP meta-

have the XML Schema

meta-model for defining structural elements of messages,
WSDL for the operations in addition to the unique parts of
WSDL and the SOAP binding, for example the PortType,
Binding and Service definition. Of these standards, the
XML Schema is the closest to the OOP model in terms of
feature overlap, therefore, in this paper we can initially take
advantage of this similarity and exploit existing refactoring
theory.

IV. APPROACH AND ANALYSIS

In this section our approach to refactoring Web Services
(titled 'REF-WS') is introduced and detailed. Based on the
refactorings defined by Opdyke [9] in Figure 6, we have
plotted the applicability the primitive refactorings against the
WSDL and XML Schema models. In order to constrain this
initial work�s scope we focus on addressing refactorings
applied to the XML Schema (message structure) part of the
Web Service first. As a consequence of this decision, the
changes to the operation definitions in the WSDL document
and their effects on the middleware are not addressed in this
initial work at the current time.

Within the scope of this work, the following assumptions
are made:

• Services evolve their functionality whilst building on
existing functionality. In this assumption, as services
extend their functionality the logic of the previous
functionality is not changed substantially.
Therefore, functionality of Vn+1 is a superset of Vn
whereby services are refactored then evolved.

• Mismatch between interfaces only occurs at the
structural level. Protocol mismatches are outside the
scope of this work.

• Services are invoked in request/response mode.

• Messages do not contain binary sections, for

example raw image data.

A. Refactoring Transformation Definition

The REF-WS approach proposed in this paper defines
refactoring transformations based on two layers relative to
the MOF framework. The primitive refactoring
transformations themselves apply to the M1 �Model� level
which affect messages created by the Web Services
middleware at the M0 'Message' level. As applied to the
motivating scenario exemplar in Section 2, the three
primitive refactoring transformations applied to perform the
desired refactoring are as follows:

• Create new ComplexType.

• Create new Element.

• Move Element.

These primitive refactoring transformations when applied
to the service interface schema can be applied individually to
iteratively transform the Version 1 of the service interface
schema illustrated in Figure 8. to what is eventually declared
to be Version 2. As the transformations are applied in
sequence their application can each be checked against their
defined preconditions, as is in keeping with the theory of
Opdyke�s original refactorings. We, therefore, define the
preconditions for the refactoring transformations required to
implement the exemplar transformation of Figure 8 in
Figure 9.

B. Layered Transformations

Due to the Web Service provider's lack of control beyond
the service interface boundary; after refactoring there is still
a mismatch present between messages sent to and from the
service implementing the old interface schema and the
service that implements the new refactored schema. This
can be contrasted with OOP source code refactoring, where
access to code on both sides of the class interface boundary
is assumed.

In order to resolve this message mismatch these
messages must be transformed. In our approach the
specification of this M0 message transformation is derived
from the M1 level refactoring that has been applied to the
service interface schema. This linkage can be shown
diagrammatically in Figure 7 which illustrates a high-level
model for describing the linkage between the messages,
schemas and refactoring transformations.

Figure 6: Applicability of Opdyke�s primitive refactorings

 to Web Services

Figure 7: Transformation layers

Refactoring Parame

newComplexType

sourceComplexT

targetComplexT

newElementName

sourceComplexT

targetComplexT

sourceElementN

Figur

Version 1

Figure 8: Overview of refactoring the

eters Pre-conditions

eName complexType א complexTypes
 ~hasName(newComplexTypeName, complexTy

TypeName

TypeName

e

hasName(s, sourceCo ר isComplexType(s) !
hasName(t, targe ר isComplexType(t) ! ר
 hasElement(s, newElementName)~ ! ר

TypeName

TypeName

Name

hasName(s, sourceCo ר isComplexType(s) !
hasName(t, targe ר isComplexType(t) ! ר
 hasElement(s, sourceElementName) ! ר
 hasElement(t, sourceElementName)~ ! ר

re 9: Primitive refactorings and pre-conditions

Version 2

sensor interface structural schema from Version 1 to Versio

ype.name)

omplexTypeName)

etComplexTypeName

omplexTypeName)

etComplexTypeName

on 2

V. IMPLEMENTATION

For the implementation of our approach we have
leveraged the Atlas Transformation Language (ATL)
associated with the Eclipse project. ATL permits elements in
a meta-model to be matched using �match rules� defined
against the source model. A �target pattern� is optionally
defined for the rule and is used to generate elements of the
target model. In order to refine the �match rules� part of the
transformation, the OMG�s Object Constraint Language
(OCL) can be applied; this restricts the elements of the
source model that the transformation is applied to.

A. Model-level Transformations

Each of our low level refactorings is implemented in a
separate ATL rule respectively. The refactorings that apply
to the M1 level are defined against the M2 meta-model. It is
crucial to stress at this point that this means that the
refactoring transformations are applicable to any XML types
schema defined by the XML Schema meta-model, rather
than on a specific service�s interface. To achieve this
generality the names of specific ComplexTypes and
Elements are defined by parameters passed to the
transformation rules. The scalability of the approach is
driven by the definition of primitive refactoring
transformations that can be reused and recombined into large
refactoring transformations to suit the service developer.

After defining the refactoring rules in ATL the models
and meta-models need to be defined in ECore. ECore is the
Eclipse equivalent of the OMG�s MOF and implements
comparable concepts in the M2 meta-model. We take
advantage of the Eclipse Modelling suite�s included ability to
import models defined in XML Schema and convert them to
an ECore representation bi-directionally using an ECore
�generator model�. The principal mappings between XML
Schema and ECore are as follows: ComplexType å EClass
and Element å EReference.

In addition to these two mappings an additional EClass
must be defined. The WS-I Basic Profile standard rule
R2204 [15] defines, "A document-literal binding in a
description must refer, in each of its soapbind:body
element(s), only to wsdl:part element(s) that have been
defined using the element attribute". As a consequence of
this requirement, a �DocumentRoot� EClass needs to be
created in order to contain this orphan element/EReference.

The refactoring rules that we define in ATL are then
repeatedly applied in the desired sequence to the ECore
model of the service interface. The rules are defined in
ATL�s �refining mode� to the service interface model
representation of ATL. This permits both the source and
target models to be instantiations of the same meta-model.

In our approach we map our preconditions for the
refactoring to the OCL part of the matched rules. Figure 10
shows the implementation for the MoveElementReference
refactoring in ATL. The �from� part of the matched rule
implements the validity checks for the transformation.

B. Instance-level Transformations

In order to define the M0 instance (message) level
transformation for the specific service interface, the

transformation needs to be derived from the M1 model-level
refactoring transformations automatically and without user
intervention. To enable this linkage between the two
transformation levels we define a meta-model named SUDO.
This is a simple model-based representation of an M0
instance level transformation that can easily allow the
generation of a textual representation of the ATL
transformation. As per the tail part of Figure 10, the M0
level message transformation is derived from the rule�s input
parameter information and defined against our SUDO meta-
model. A simple Java-based script has been developed that
will read in the SUDO model and output a usable ATL file.

C. Performance Overview

In order to assess the execution performance of the M0
message transformation, a series of 200 serial executions of
the the refactoring transformations required to perform the
exemplar's composite refactoring were performed. The aim
of this test was to determine the overhead of executing the
transformation in addition to the time that the Web Service
middleware would take handle the service request (Tlogic).
The experimental setup for each test run was kept identical,
hence, we did not expect to see a large degree of variation in

-- @nsURI MM=http://www.eclipse.org/emf/2002/Ecore
-- @path MMSUDO=/ISORC2012/metamodels/SUDO.ecore

module MoveElementReference;
create OUT : MM, SUDO : MMSUDO refining IN : MM,
parameters : PARAMS;

rule MoveElementReference {

 from
 targetClass : MM!EClass,
 sourceClass : MM!EClass,
 sourceReference : MM!EReference
 (
 sourceClass.name =
 thisModule.getParameter('sourceClassName')
 --'PointType'
 and targetClass.name =
 thisModule.getParameter('targetClassName')
 --'DocumentRoot'
 and sourceReference.name =
 thisModule.getParameter('sourceReference')
 --'coord'
 and not targetClass.eStructuralFeatures
 ->exists(ref|ref.name =
 thisModule.getParameter('sourceReference'
)
 to
 package : MM!EClass
 (
 eStructuralFeatures <- sourceReference
),
 --Populate the instance level transform
 scriptRoot : MMSUDO!Script
 (
 rule <- matchRule
),
 matchRule : MMSUDO!Rule
 (
 sourceModelMatch <-
 thisModule.getParameter('sourceClassName'),
 moveElement <- moveElementRule
),
 moveElementRule : MMSUDO!MoveElement
 (
 element <-
 thisModule.getParameter('sourceReference'),
 target <-
 thisModule.getParameter('targetClassName')
)
}

Figure 10: MoveElementReference implementation in ATL

the performance results. The test system was a dual-core
3GHz Intel Core 2 Duo CPU with 6GB RAM running
Windows 7. Following our test of the Tresponse overheads, we
have observed that the majority of executions of the message
transformation introduced less than a millisecond of
overhead and fall well within our TQoS threshold of 2 seconds
for the user interface response time threshold. The results,
however, indicate three peaks in the overhead message
transformation time; however, given the identical
experimental setup, we put this down to competing processes
on the operating system. The results demonstrate that for the
low-level refactoring tasks, such as those presented against
the exemplar, this performance overhead can be managed
and falls well within the QoS threshold of the map client.
Figure 11 shows the resultant graph of the tests. Based on
this, however, further work needs to be conducted to assess
the performance overhead when larger chains of refactorings
are used in addition to larger message payloads.

VI. EXISTING WORK

Existing work that can inform a solution to the Web
Service evolution problem can be divided into two areas.
These can be described as:

1. Mapping between schemas of functionally similar

equivalent services [16-19]

2. Refactoring OOP code [10, 20-23].

Work conducted under the (1) category, is motivated by
the scenario of multiple heterogeneous service interfaces
being used in services that provide similar functionality from
a consumer's perspective. The approaches, therefore, aim to
revolve the interface mismatch associated with this
heterogeneity through mappings.

A characteristic for approaches in (1) is that the mapping
is performed 'after-the-fact' with respect to the creation of the
new/alternate service interface. A benefit of this is that the
mappings are able to take advantage of 'a posteriori'
knowledge for example instance data for each schema. The
downside of this approach is the lack of provenance
engineering knowledge of how the service interface evolved
when considering evolved services rather than heterogeneous
services from differing providers. As a result, the mappings

are non-deterministic given differing interfaces and need to
be evaluated on their accuracy.

The mechanism behind the majority of these approaches
involves referencing the service interface elements to a
common ontology through a combination of 'lifting' and
'lowering' mappings. Whilst this work aims to semi-
automate mappings between schemas, the set of mappings
supported by these approaches are limited and do not define
a clear methodology for defining new mappings.
Approaches to mapping are generally limited to moving
elements between schemas with the more advanced work
being able to semi-automate string splitting and
concatenation in addition to other more advanced operations,
for example, key-value mapping and default value insertion.
The main limitations of existing work are primarily that they
do not provide a clear methodology on how to deal with
more complex mappings, for instance mappings involving
numerical transformation. Secondly is the major assumption
in relying that a high-level domain model (often expressed as
an ontology) has been created for the document types that the
schemas substantiate. In the case of [18] this is captured
through electronic questionnaires.

The approaches associated with category (2) aim to
reduce the disruption to software library consumers
associated with the upgrading of OOP software libraries.
These are motivated as a response to the cost and error-prone
nature of manually developing mediation components
between OOP software interfaces [23] and aim to provide a
repeatable and deterministic engineering approach. These
approaches involve the recording of human directed and
piecemeal code refactoring in order to generate a mediator to
translate calls for the old code into to calls to the new code.
A limitation with this work is that the techniques
documented are presented against a specific programming
language, for instance, Java.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to enable
Web Service developers for the first time to evolve their
service interfaces in a reproducible and safe manner through
refactoring. We have also conducted an initial evaluation of
the execution time overhead of the message transformation
produced from this refactoring when applied to an exemplar.

A. Conclusions

The approach permits upgraded 'non-backwards
compatible' services to be deployed into a network where
existing consumers depend on an older version of the service
interface. The solution that we have provided has been
motivated by the difference in the models inherent to Web
Services compared to the more commonly used OOP model
used in traditional refactoring. A major contribution of our
work, therefore, is the original application of refactoring in
the previously unexplored Web Services domain.

The scope of this work has been defined through the use
of an exemplar and has supported the definition of a small
reusable set of low-level refactorings that can be
parameterized for application to particular service interface
instances. The definition of a set of pre-conditions, in

Figure 11: Time overhead of transformation execution

keeping with Opdyke's original work (that defined the
research field of refactoring) enables the service developer to
apply and parameterize Web Service refactorings with a
level of confidence that these will not produce an invalid or
'corrupt' transformation on the message and can be
performed in a reproducible manner.

Performance evaluation for the approach is based on the
user's expected QoS of response time with latency
constraints driven from the user interface in the use-case. A
challenge addressed here is that significant time overheads
for the message transformation would limit the approach's
use in a production environment; however, within the scale
of the exemplar the performance overhead of executing the
transformation has been demonstrated not to be significant.
This does leave scope, however, to conduct further testing
with the transformation of larger SOAP messages.

B. Future Work

As this paper represents our initial work in addressing the
service refactoring problem, there are a number of
limitations to its scope that have been documented along the
way. Primarily is the decision to limit the applied
refactoring in the exemplar to just the XML Schema defined
part of the service interface and omitting the ability to
perform changes to the operation names in the WSDL
document. The motivation behind this decision is so that we
could address the part of the interface which most closely
resembles the ClassåAssociation relationship that exists in
OOP systems, for instance Java, before broadening the scope
of our work and building on established refactoring theory.

Other than the basic pre-conditions described here, we
intend to expand on these and apply tool-supported model
checking to assure the correctness of more complex
refactorings. This will be more useful when one aims to
determine whether the correctness of low-level refactorings
still holds true when composed into higher level refactorings.

In this paper we have developed refactorings that apply at
the M1 model layer; however, there is scope for developing
refactorings that apply at the M0 (message) layer. Examples
of these include unit conversion and geospatial coordinate
transformations. To be able to evaluate these would require
the development of an evaluation framework to guarantee
that information capacity has been preserved over the
transformations and that fidelity has not been lost in the
richness of the information.

ACKNOWLEDGMENT

The work reported in this paper has been supported in
part by the NECTISE programme jointly funded by BAE
Systems and the U.K. EPSRC Grant EP/D505461/1, the UK
EPSRC WRG platform project (No. EP/F057644/1), the
National Basic Research Program of China (973) (No.
2011CB302602), the UK TSB STRAPP project (No. 1926-
19253), and the Major Program of the National Natural
Science Foundation of China (No. 90818028).

REFERENCES

[1] M. M. Lehman, "Laws of Software Evolution Revisited," in

Proceedings of the 5th European Workshop on Software
Process Technology, 1996.

[2] M. Turner, Budgen, D., Brereton, P., "Turning Software into a

Service," IEEE Computer Society, vol. 36, 2003.
[3] K. Bennett and N. Gold, "Achieving ultra rapid evolution using

service-based software," in Proceedings of the 4th International

Workshop on Principles of Software Evolution, 2001,.
[4] G. Canfora and M. D. Penta. (2006) Testing Services and

Service-Centric Systems: Challenges and Opportunities. IT

Professional. 10-17.
[5] C. Jones, et al., "A Structured Approach to Handling On-Line

Interface Upgrades," in 26th Annual International Computer

Software and Applications Conference, Oxford, England, 2002.
[6] K. Sycara, et al., "Dynamic discovery and coordination of

agent-based semantic Web services," Internet Computing, IEEE,

vol. 8, pp. 66-73, 2004.
[7] L. Baresi, et al., "Toward Open-World Software: Issue and

Challenges," IEEE Computer, vol. 39, IEEE Computer Society,

2006.
[8] M. Fowler, et al., Refactoring: Improving the Design of Existing

Code: Addison-Wesley Professional, 1999.

[9] W. Opdyke, "Refactoring Object-Oriented Frameworks," 1992.
[10] D. Dig and R. Johnson, "The Role of Refactorings in API

Evolution," in 21st IEEE International Conference on Software

Maintenance (ICSM'05), Budapest, Hungary, 2005.
[11] D. Webster, et al., "Migrating Legacy Assets through SOA to

Realize Network Enabled Capability," in New Directions in

Web Data Management 1, A. Vakali and L. C. Jain, Eds., First
ed: Springer, 2011.

[12] D. Booth, et al., "Web Services Architecture," W3C, 2004.

[13] W3C, "SOAP Version 1.2 Part 0: Primer (Second Edition),"
http://www.w3.org/TR/soap12-part0/, 2007.

[14] Object Management Group (OMG) "Meta Object Facility

(MOF) Core Specification. Version 2.4.1," 2011.
[15] WSI Web Services-Interoperability Organization, "Basic Profile

Version 1.1," 2006.

[16] T. De Giorgio, et al., "SAWSDL for Self-adaptive Service
Composition," in On the Move to Meaningful Internet Systems:

OTM 2009 Workshops. vol. 5872: Springer Berlin / Heidelberg,

2009, pp. 907-916.
[17] L. Cavallaro and E. Di Nitto, "An approach to adapt service

requests to actual service interfaces," presented at the

Proceedings of the 2008 international workshop on Software
engineering for adaptive and self-managing systems, New York,

NY, USA, 2008.

[18] C. Drumm, et al., "Quickmig: automatic schema matching for
data migration projects," presented at the Proceedings of the

sixteenth ACM conference on Conference on information and

knowledge management, Lisbon, Portugal, 2007.
[19] F. Scharffe, et al., "Ontology mediation patterns library v2.

Deliverable D4.3.2," SEKT project (IST-2003-506826), 2005.
[20] J. Henkel and A. Diwan, "CatchUp!: capturing and replaying

refactorings to support API evolution," presented at the

Proceedings of the 27th international conference on Software
engineering, St. Louis, MO, USA, 2005.

[21] S. Roock and A. Havenstein, "Refactoring Tags for automatic

refactoring of framework dependent applications," presented at
the Proc. Int'l Conf. eXtreme Programming and Flexible

Processes in Software Engineering (XP), 2002.

[22] M. Blaha and W. Premerlani, "A catalog of object model
transformations," in Reverse Engineering, 1996., Proceedings of

the Third Working Conference on, 1996, pp. 87-96.

[23] J. H. Perkins, "Automatically generating refactorings to support
API evolution," SIGSOFT Softw. Eng. Notes, vol. 31, pp. 111-

114, September 2005.

