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Abstract� This paper presents the development of REF-WS an 

approach to enable a Web Service provider to reliably evolve 

their service through the application of refactoring 

transformations.  REF-WS is intended to aid service providers, 

particularly in a reliability and performance constrained 

domain as it permits upgraded 'non-backwards compatible' 

services to be deployed into a performance constrained 

network where existing consumers depend on an older version 

of the service interface.  In order for this to be successful, the 

refactoring and message mediation needs to occur without 

affecting functional compatibility with the services' consumers, 

and must operate within the performance overhead expected of 

the original service, introducing as little latency as possible.  

Furthermore, compared to a manually programmed solution, 

the presented approach enables the service developer to apply 

and parameterize refactorings with a level of confidence that 

they will not produce an invalid or 'corrupt' transformation of 

messages.  This is achieved through the use of preconditions 

for the defined refactorings.  

Keywords- Web Services, Refactoring, Reliable Evolution 

I.  INTRODUCTION  

Software evolution is a fundamental part of software 
engineering and its need to be addressed has been well 
understood for many years [1].  Activities involved in 
software evolution range from the repair of defects to the 
addition of new functionality to a system. 

Modern computing systems are moving towards a 
Software as a Service (SaaS) paradigm, which can be 
characterized as a separation of the possession and 
ownership of software from its use [2].  One of the 
motivations for using Software as a System (SaaS) is for 
software developers to be able to respond to the industrial 
needs of evolving software in contrast to traditional software 
maintenance processes.  Such processes are viewed as too 
slow to meet these rapidly evolving needs  [3].  Whilst this 
separation has its benefits, the downside of this arrangement 
is a loss of control over the service software from the 
consumer�s perspective compared to locally running 
software.   

In the environment of an open marketplace for services it 
is common for a service provider to offer the provision of 
service to consumers without knowing specific details about 
them, for example a contact address.  This is in contrast to a 
consumer contracting a service provider to provide a 
bespoke service specifically for that consumer. A 
fundamental challenge to evolving a service (and its 
interface) in this setting, therefore, is that the service 

provider may not know the contact details or otherwise be 
practically able to contact each consumer of their service to 
notify them of changes to their interface or specification [4].   

Depending on the agility of the consumer software's 
maintainer (in its response to update the software in order to 
comply with the new service interface) and the speed of the 
change to the service's interface there is a risk of a delay 
between this change and the adaptation and redeployment of 
the consumer software.  This is problematic when the 
consumer assumes that the service interface will remain 
functionally static leading to what Jones et al [5] describes as 
an 'abnormal event' that leads to a 'fault'.  In addition to just 
purely functional changes to the service, consumers may be 
dependent on QoS characteristics of the service, for instance 
the real-time performance and latencies. 

A research challenge that this paper aims to address, 
therefore, is in resolving the conflict between a service 
provider that needs to evolve its interface to accommodate 
new requirements and the assumption from a set of service 
consumers who either assume that the service interface will 
remain unchanged [5-7] or is unable to adapt due to 
constraints such as development agility. 

The scope of our work is demonstrated by the upgrade to 
an exemplar workflow that dynamically integrates sensors 
from an ubiquitous sensor network for the purpose of region 
surveillance, constrained by run-time QoS (latency) 
requirements.  This is presented through a graphical mapping 
interface for the human decision maker that defines the 
desired response time. Within the scale of the exemplar, the 
performance overhead of executing the refactoring 
transformations has been demonstrated to be significant. 

A. Refactoring for Evolution 

'Refactoring' [8, 9] is a commonly used engineering 
practice in software evolution and is viewed as a prerequisite 
to adding new functionality or features to software systems.  
Often this is performed to ease the effort required to extend 
the software by improving its design first before adding new 
features.  Survey work conducted by Dig [10] concluded that 
of API changes that break compatibility with existing 
applications, over 80% of these changes are refactorings. 

B. The Challenge of Applying Refactoring to Web Services 

As described earlier, the motivation of the work within 
this paper is to use the technique of refactoring to help 
address the challenge of enabling the service provider to 
evolve their service over time and maintain backwards-
compatibility.  Despite being commonly used in the Object-
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meta-model for defining structural elements of messages, 
WSDL for the operations in addition to the unique parts of 
WSDL and the SOAP binding, for example the PortType, 
Binding and Service definition.  Of these standards, the 
XML Schema is the closest to the OOP model in terms of 
feature overlap, therefore, in this paper we can initially take 
advantage of this similarity and exploit existing refactoring 
theory. 

IV. APPROACH AND ANALYSIS 

In this section our approach to refactoring Web Services 
(titled 'REF-WS') is introduced and detailed.  Based on the 
refactorings defined by Opdyke [9] in Figure 6, we have 
plotted the applicability the primitive refactorings against the 
WSDL and XML Schema models.  In order to constrain this 
initial work�s scope we focus on addressing refactorings 
applied to the XML Schema (message structure) part of the 
Web Service first. As a consequence of this decision, the 
changes to the operation definitions in the WSDL document 
and their effects on the middleware are not addressed in this 
initial work at the current time. 

Within the scope of this work, the following assumptions 
are made: 

• Services evolve their functionality whilst building on 
existing functionality. In this assumption, as services 
extend their functionality the logic of the previous 
functionality is not changed substantially.  
Therefore, functionality of Vn+1 is a superset of Vn 
whereby services are refactored then evolved. 

• Mismatch between interfaces only occurs at the 
structural level.  Protocol mismatches are outside the 
scope of this work. 

• Services are invoked in request/response mode. 

• Messages do not contain binary sections, for 

example raw image data. 

A. Refactoring Transformation Definition 

The REF-WS approach proposed in this paper defines 
refactoring transformations based on two layers relative to 
the MOF framework. The primitive refactoring 
transformations themselves apply to the M1 �Model� level 
which affect messages created by the Web Services 
middleware at the M0 'Message' level. As applied to the 
motivating scenario exemplar in Section 2, the three 
primitive refactoring transformations applied to perform the 
desired refactoring are as follows: 

• Create new ComplexType. 

• Create new Element. 

• Move Element. 

These primitive refactoring transformations when applied 
to the service interface schema can be applied individually to 
iteratively transform the Version 1 of the service interface 
schema illustrated in Figure 8. to what is eventually declared 
to be Version 2.  As the transformations are applied in 
sequence their application can each be checked against their 
defined preconditions, as is in keeping with the theory of 
Opdyke�s original refactorings. We, therefore, define the 
preconditions for the refactoring transformations required to 
implement the exemplar transformation of Figure 8 in 
Figure 9. 

B. Layered Transformations 

Due to the Web Service provider's lack of control beyond 
the service interface boundary; after refactoring there is still 
a mismatch present between messages sent to and from the 
service implementing the old interface schema and the 
service that implements the new refactored schema.  This 
can be contrasted with OOP source code refactoring, where 
access to code on both sides of the class interface boundary 
is assumed. 

In order to resolve this message mismatch these 
messages must be transformed.  In our approach the 
specification of this M0 message transformation is derived 
from the M1 level refactoring that has been applied to the 
service interface schema.  This linkage can be shown 
diagrammatically in Figure 7 which illustrates a high-level 
model for describing the linkage between the messages, 
schemas and refactoring transformations. 
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V. IMPLEMENTATION 

For the implementation of our approach we have 
leveraged the Atlas Transformation Language (ATL) 
associated with the Eclipse project.  ATL permits elements in 
a meta-model to be matched using �match rules� defined 
against the source model.  A �target pattern� is optionally 
defined for the rule and is used to generate elements of the 
target model.  In order to refine the �match rules� part of the 
transformation, the OMG�s Object Constraint Language 
(OCL) can be applied; this restricts the elements of the 
source model that the transformation is applied to. 

A. Model-level Transformations 

Each of our low level refactorings is implemented in a 
separate ATL rule respectively.  The refactorings that apply 
to the M1 level are defined against the M2 meta-model.  It is 
crucial to stress at this point that this means that the 
refactoring transformations are applicable to any XML types 
schema defined by the XML Schema meta-model, rather 
than on a specific service�s interface.  To achieve this 
generality the names of specific ComplexTypes and 
Elements are defined by parameters passed to the 
transformation rules.  The scalability of the approach is 
driven by the definition of primitive refactoring 
transformations that can be reused and recombined into large 
refactoring transformations to suit the service developer. 

After defining the refactoring rules in ATL the models 
and meta-models need to be defined in ECore.  ECore is the 
Eclipse equivalent of the OMG�s MOF and implements 
comparable concepts in the M2 meta-model.  We take 
advantage of the Eclipse Modelling suite�s included ability to 
import models defined in XML Schema and convert them to 
an ECore representation bi-directionally using an ECore 
�generator model�.  The principal mappings between XML 
Schema and ECore are as follows: ComplexType å EClass 
and Element å EReference. 

In addition to these two mappings an additional EClass 
must be defined.  The WS-I Basic Profile standard rule 
R2204 [15] defines, "A document-literal binding in a 
description must refer, in each of its soapbind:body 
element(s), only to wsdl:part element(s) that have been 
defined using the element attribute".  As a consequence of 
this requirement, a �DocumentRoot� EClass needs to be 
created in order to contain this orphan element/EReference. 

The refactoring rules that we define in ATL are then 
repeatedly applied in the desired sequence to the ECore 
model of the service interface.  The rules are defined in 
ATL�s �refining mode� to the service interface model 
representation of ATL.  This permits both the source and 
target models to be instantiations of the same meta-model. 

In our approach we map our preconditions for the 
refactoring to the OCL part of the matched rules.  Figure 10 
shows the implementation for the MoveElementReference 
refactoring in ATL.  The �from� part of the matched rule 
implements the validity checks for the transformation. 

B. Instance-level Transformations 

In order to define the M0 instance (message) level 
transformation for the specific service interface, the 

transformation needs to be derived from the M1 model-level 
refactoring transformations automatically and without user 
intervention.  To enable this linkage between the two 
transformation levels we define a meta-model named SUDO.  
This is a simple model-based representation of an M0 
instance level transformation that can easily allow the 
generation of a textual representation of the ATL 
transformation.  As per the tail part of Figure 10, the M0 
level message transformation is derived from the rule�s input 
parameter information and defined against our SUDO meta-
model.  A simple Java-based script has been developed that 
will read in the SUDO model and output a usable ATL file. 

C. Performance Overview 

In order to assess the execution performance of the M0 
message transformation, a series of 200 serial executions of 
the the refactoring transformations required to perform the 
exemplar's composite refactoring were performed.  The aim 
of this test was to determine the overhead of executing the 
transformation in addition to the time that the Web Service 
middleware would take handle the service request (Tlogic).  
The experimental setup for each test run was kept identical, 
hence, we did not expect to see a large degree of variation in 

-- @nsURI MM=http://www.eclipse.org/emf/2002/Ecore 
-- @path MMSUDO=/ISORC2012/metamodels/SUDO.ecore 
 
module MoveElementReference; 
create OUT : MM, SUDO : MMSUDO refining IN : MM, 
parameters : PARAMS; 
 
rule MoveElementReference  { 
  
  from 
    targetClass : MM!EClass, 
    sourceClass : MM!EClass, 
    sourceReference : MM!EReference 
    ( 
      sourceClass.name =  
      thisModule.getParameter('sourceClassName') 
                                  --'PointType' 
      and targetClass.name = 
      thisModule.getParameter('targetClassName') 
                               --'DocumentRoot' 
      and sourceReference.name =  
       thisModule.getParameter('sourceReference') 
                               --'coord' 
      and not targetClass.eStructuralFeatures 
              ->exists(ref|ref.name = 
      thisModule.getParameter('sourceReference'  
    )   
  to 
    package : MM!EClass 
    ( 
      eStructuralFeatures <- sourceReference 
    ), 
    --Populate the instance level transform  
    scriptRoot : MMSUDO!Script 
    ( 
       rule <- matchRule 
    ), 
    matchRule : MMSUDO!Rule 
    ( 
      sourceModelMatch <-  
      thisModule.getParameter('sourceClassName'), 
      moveElement <- moveElementRule 
    ), 
    moveElementRule : MMSUDO!MoveElement 
    ( 
      element <-    
      thisModule.getParameter('sourceReference'), 
      target <-  
      thisModule.getParameter('targetClassName') 
    )   
} 

Figure 10: MoveElementReference implementation in ATL 



the performance results.  The test system was a dual-core 
3GHz Intel Core 2 Duo CPU with 6GB RAM running 
Windows 7.  Following our test of the Tresponse overheads, we 
have observed that the majority of executions of the message 
transformation introduced less than a millisecond of 
overhead and fall well within our TQoS threshold of 2 seconds 
for the user interface response time threshold.  The results, 
however, indicate three peaks in the overhead message 
transformation time; however, given the identical 
experimental setup, we put this down to competing processes 
on the operating system.  The results demonstrate that for the 
low-level refactoring tasks, such as those presented against 
the exemplar, this performance overhead can be managed 
and falls well within the QoS threshold of the map client.  
Figure 11 shows the resultant graph of the tests.  Based on 
this, however, further work needs to be conducted to assess 
the performance overhead when larger chains of refactorings 
are used in addition to larger message payloads. 

VI. EXISTING WORK 

Existing work that can inform a solution to the Web 
Service evolution problem can be divided into two areas.  
These can be described as: 

1. Mapping between schemas of functionally similar 

equivalent services [16-19] 

2. Refactoring OOP code [10, 20-23]. 

Work conducted under the (1) category, is motivated by 
the scenario of multiple heterogeneous service interfaces 
being used in services that provide similar functionality from 
a consumer's perspective.  The approaches, therefore, aim to 
revolve the interface mismatch associated with this 
heterogeneity through mappings. 

A characteristic for approaches in (1) is that the mapping 
is performed 'after-the-fact' with respect to the creation of the 
new/alternate service interface.  A benefit of this is that the 
mappings are able to take advantage of 'a posteriori' 
knowledge for example instance data for each schema.  The 
downside of this approach is the lack of provenance 
engineering knowledge of how the service interface evolved 
when considering evolved services rather than heterogeneous 
services from differing providers.  As a result, the mappings 

are non-deterministic given differing interfaces and need to 
be evaluated on their accuracy. 

The mechanism behind the majority of these approaches 
involves referencing the service interface elements to a 
common ontology through a combination of 'lifting' and 
'lowering' mappings.  Whilst this work aims to semi-
automate mappings between schemas, the set of mappings 
supported by these approaches are limited and do not define 
a clear methodology for defining new mappings.  
Approaches to mapping are generally limited to moving 
elements between schemas with the more advanced work 
being able to semi-automate string splitting and 
concatenation in addition to other more advanced operations, 
for example, key-value mapping and default value insertion.  
The main limitations of existing work are primarily that they 
do not provide a clear methodology on how to deal with 
more complex mappings, for instance mappings involving 
numerical transformation.  Secondly is the major assumption 
in relying that a high-level domain model (often expressed as 
an ontology) has been created for the document types that the 
schemas substantiate.  In the case of [18] this is captured 
through electronic questionnaires. 

The approaches associated with category (2) aim to 
reduce the disruption to software library consumers 
associated with the upgrading of OOP software libraries.  
These are motivated as a response to the cost and error-prone 
nature of manually developing mediation components 
between OOP software interfaces [23] and aim to provide a 
repeatable and deterministic engineering approach.  These 
approaches involve the recording of human directed and 
piecemeal code refactoring in order to generate a mediator to 
translate calls for the old code into to calls to the new code.  
A limitation with this work is that the techniques 
documented are presented against a specific programming 
language, for instance, Java. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented an approach to enable 
Web Service developers for the first time to evolve their 
service interfaces in a reproducible and safe manner through 
refactoring. We have also conducted an initial evaluation of 
the execution time overhead of the message transformation 
produced from this refactoring when applied to an exemplar. 

A. Conclusions 

The approach permits upgraded 'non-backwards 
compatible' services to be deployed into a network where 
existing consumers depend on an older version of the service 
interface.  The solution that we have provided has been 
motivated by the difference in the models inherent to Web 
Services compared to the more commonly used OOP model 
used in traditional refactoring. A major contribution of our 
work, therefore, is the original application of refactoring in 
the previously unexplored Web Services domain. 

The scope of this work has been defined through the use 
of an exemplar and has supported the definition of a small 
reusable set of low-level refactorings that can be 
parameterized for application to particular service interface 
instances.  The definition of a set of pre-conditions, in 
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keeping with Opdyke's original work (that defined the 
research field of refactoring) enables the service developer to 
apply and parameterize Web Service refactorings with a 
level of confidence that these will not produce an invalid or 
'corrupt' transformation on the message and can be 
performed in a reproducible manner. 

Performance evaluation for the approach is based on the 
user's expected QoS of response time with latency 
constraints driven from the user interface in the use-case.  A 
challenge addressed here is that significant time overheads 
for the message transformation would limit the approach's 
use in a production environment; however, within the scale 
of the exemplar the performance overhead of executing the 
transformation has been demonstrated not to be significant.  
This does leave scope, however, to conduct further testing 
with the transformation of larger SOAP messages.  

B. Future Work 

As this paper represents our initial work in addressing the 
service refactoring problem, there are a number of 
limitations to its scope that have been documented along the 
way.  Primarily is the decision to limit the applied 
refactoring in the exemplar to just the XML Schema defined 
part of the service interface and omitting the ability to 
perform changes to the operation names in the WSDL 
document.  The motivation behind this decision is so that we 
could address the part of the interface which most closely 
resembles the ClassåAssociation relationship that exists in 
OOP systems, for instance Java, before broadening the scope 
of our work and building on established refactoring theory. 

Other than the basic pre-conditions described here, we 
intend to expand on these and apply tool-supported model 
checking to assure the correctness of more complex 
refactorings. This will be more useful when one aims to 
determine whether the correctness of low-level refactorings 
still holds true when composed into higher level refactorings. 

In this paper we have developed refactorings that apply at 
the M1 model layer; however, there is scope for developing 
refactorings that apply at the M0 (message) layer.  Examples 
of these include unit conversion and geospatial coordinate 
transformations.  To be able to evaluate these would require 
the development of an evaluation framework to guarantee 
that information capacity has been preserved over the 
transformations and that fidelity has not been lost in the 
richness of the information. 
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