38 research outputs found

    Formation Control of Underactuated Bio-inspired Snake Robots

    Get PDF
    This paper considers formation control of snake robots. In particular, based on a simplified locomotion model, and using the method of virtual holonomic constraints, we control the body shape of the robot to a desired gait pattern defined by some pre-specified constraint functions. These functions are dynamic in that they depend on the state variables of two compensators which are used to control the orientation and planar position of the robot, making this a dynamic maneuvering control strategy. Furthermore, using a formation control strategy we make the multi-agent system converge to and keep a desired geometric formation, and enforce the formation follow a desired straight line path with a given speed profile. Specifically, we use the proposed maneuvering controller to solve the formation control problem for a group of snake robots by synchronizing the commanded velocities of the robots. Simulation results are presented which illustrate the successful performance of the theoretical approach.© ISAROB 2016. This is the authors' accepted and refereed manuscript to the article. Locked until 2017-07-27

    On the Lagrangian Structure of Reduced Dynamics Under Virtual Holonomic Constraints

    Get PDF
    This paper investigates a class of Lagrangian control systems with nn degrees-of-freedom (DOF) and n-1 actuators, assuming that n−1n-1 virtual holonomic constraints have been enforced via feedback, and a basic regularity condition holds. The reduced dynamics of such systems are described by a second-order unforced differential equation. We present necessary and sufficient conditions under which the reduced dynamics are those of a mechanical system with one DOF and, more generally, under which they have a Lagrangian structure. In both cases, we show that typical solutions satisfying the virtual constraints lie in a restricted class which we completely characterize.Comment: 23 pages, 5 figures, published online in ESAIM:COCV on April 28th, 201

    Head-Trajectory-Tracking Control of a Snake Robot and Its Robustness Under Actuator Failure

    Get PDF
    This brief considers the problem of trajectory tracking of a planar snake robot without a lateral constraint. The reference trajectory of the head position and the orientation of link 1 are given, and torque control is determined to reduce tracking errors. The performance of the controller was tested in a number of simulations. The robustness during actuator failure was also studied. We assumed that one of the actuators was broken and the corresponding joint became passive. Furthermore, as a more realistic situation, we considered an instance when some of the states were not readily accessible from the sensor readings and needed to be estimated by an observer. The extended Kalman filter was employed for this purpose, and the performance of the closed-loop system with the observer was also tested in simulations

    Redundant Control of a Planar Snake Robot with Prismatic Joints

    Get PDF
    This paper presents a control method of a planar snake robot with prismatic joints. The kinematic model is derived considering velocity constraints caused by passive wheels. The proposed control method based on the model allows the robot to track a target trajectory by appropriately changing its link length using prismatic joints. The degrees of freedom of prismatic joints are represented as kinematic redundancy in the model and are used in realizing subtasks such as singularity avoidance and obstacle avoidance. In addition, the link length is below its limit when introducing a sigmoid function into the kinematic model. Simulations are carried out to demonstrate the effectiveness of the proposed method and show a novel motion that avoids singular configurations through changes in link lengths

    Modular Underwater Robots - Modeling and Docking Control

    Get PDF

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generadasPostprint (published version

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generada

    Control of a snake robot for passing through a self-closing door

    Get PDF
    We propose the control method for a snake robot to pass through a self-closing door. The proposed method is realized by applying the two-point simultaneous control method. The position and orientation of head and tail of the robot are controlled simultaneously by using the two-point simultaneous control method. By controlling the position and orientation of the head of the robot, the robot opens the door and keeps it open. At the same time, the robot enters through the door from the tail by controlling the tail of the robot simultaneously. The robot passes through the door by pushing away the side of the door with the body. The proposed method enables the robot to enter the interior separated by a door and contributes to the expansion of the activity environment for snake robots. The experimental result validates the proposed methods

    On Providing Efficient Real-Time Solutions to Motion Planning Problems of High Complexity

    Get PDF
    The holy grail of robotics is producing robotic systems capable of efficiently executing all the tasks that are hard, or even impossible, for humans. Humans, undoubtedly, from both a hardware and software perspective, are extremely complex systems capable of executing many complicated tasks. Thus, the complexity of many state-of-the-art robotic systems is also expected to progressively increase, with the goal to match or even surpass human abilities. Recent developments have emphasized mostly hardware, providing highly complex robots with exceptional capabilities. On the other hand, they have illustrated that one important bottleneck of realizing such systems as a common reality is real-time motion planning. This thesis aims to assist the development of complex robotic systems from a computational perspective. The primary focus is developing novel methodologies to address real-time motion planning that enables the robots to accomplish their goals safely and provide the building blocks for developing robust advanced robot behavior in the future. The proposed methods utilize and enhance state-of-the-art approaches to overcome three different types of complexity: 1. Motion planning for high-dimensional systems. RRT+, a new family of general sampling-based planners, was introduced to accelerate solving the motion planning problem for robotic systems with many degrees of freedom by iteratively searching in lowerdimensional subspaces of increasing dimension. RRT+ variants computed solutions orders of magnitude faster compared to state-of-the-art planners. Experiments in simulation of kinematic chains up to 50 degrees of freedom, and the Baxter humanoid robot validate the effectiveness of the proposed technique. 2. Underwater navigation for robots in cluttered environments. AquaNav, a real-time navigation pipeline for robots moving efficiently in challenging, unknown, and unstructured environments, was developed for Aqua2, a hexapod swimming robot with complex, yet to be fully discovered, dynamics. AquaNav was tested offline in known maps, and online in unknown maps utilizing vision-based SLAM. Rigorous testing in simulation, inpool, and open-water trials show the robustness of the method on providing efficient and safe performance, enabling the robot to navigate by avoiding static and dynamic obstacles in open-water settings with turbidity and surge. 3. Active perception of areas of interest during underwater operation. AquaVis, an extension of AquaNav, is a real-time navigation technique enabling robots, with arbitrary multi-sensor configurations, to safely reach their target, while at the same time observing multiple areas of interest from a desired proximity. Extensive simulations show safe behavior, and strong potential for improving underwater state estimation, monitoring, tracking, inspection, and mapping of objects of interest in the underwater domain, such as coral reefs, shipwrecks, marine life, and human infrastructure
    corecore