22 research outputs found

    Integrating Spatial Data Infrastructures (SDIs) with Volunteered Geographic Information (VGI) creating a Global GIS platform

    Get PDF
    Spatial Data Infrastructures (SDIs) are a special category of data hubs that involve technological and human resources and follow well defined legal and technical procedures to collect, store, manage and distribute spatial data. INSPIRE is the EU’s authoritative SDI in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy-making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information (GI) where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI, as well as advantages and disadvantages to both. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision-making. This idea of integration is in its early stages, because several key issues need to be considered and resolved first. Therefore, this chapter discusses the challenges of integrating VGI with INSPIRE and outlines a generic framework for a global integrated GIS platform, similar in concept to Digital Earth and Virtual Geographic Environments (VGEs), as a realistic scenario for advancements in the short term

    Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective

    Get PDF
    Great strides have been made in Geographic Information Systems (GIS) research over the past half-century. However, this progress has created both opportunities and challenges. From a geographic perspective, certain challenges remain, including the modelling of geographic-featured environments with GIS data model, the enhancement of GIS’s analysis functions for comprehensive geographic analysis and achieving human-oriented geographic information presentation. Several basic theoretical and technical ideas that follow the workflow and processes of geographic information induction, geographic scenario modelling, geographic process analysis and geographic environment representation are proposed to fill the gaps between GIS and geography. We also call for designing methods for big geographic data-oriented analysis, making best use of videos and developing virtual geographic scenario-based GIS for further evolution

    Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications

    Full text link
    © 2020 The Authors Integrated geographic modelling and simulation is a computational means to improve understanding of the environment. With the development of Service Oriented Architecture (SOA) and web technologies, it is possible to conduct open, extensible integrated geographic modelling across a network in which resources can be accessed and integrated, and further distributed geographic simulations can be performed. This open web-distributed modelling and simulation approach is likely to enhance the use of existing resources and can attract diverse participants. With this approach, participants from different physical locations or domains of expertise can perform comprehensive modelling and simulation tasks collaboratively. This paper reviews past integrated modelling and simulation systems, highlighting the associated development challenges when moving to an open web-distributed system. A conceptual framework is proposed to introduce a roadmap from a system design perspective, with potential use cases provided. The four components of this conceptual framework - a set of standards, a resource sharing environment, a collaborative integrated modelling environment, and a distributed simulation environment - are also discussed in detail with the goal of advancing this emerging field

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La GĂ©o-Simulation Multi-Agent (GSMA) est un paradigme de modĂ©lisation et de simulation de phĂ©nomĂšnes dynamiques dans une variĂ©tĂ© de domaines d'applications tels que le domaine du transport, le domaine des tĂ©lĂ©communications, le domaine environnemental, etc. La GSMA est utilisĂ©e pour Ă©tudier et analyser des phĂ©nomĂšnes qui mettent en jeu un grand nombre d'acteurs simulĂ©s (implĂ©mentĂ©s par des agents) qui Ă©voluent et interagissent avec une reprĂ©sentation explicite de l'espace qu'on appelle Environnement GĂ©ographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement gĂ©ographique qui peut ĂȘtre dynamique, complexe et Ă©tendu (Ă  grande Ă©chelle), un agent doit d'abord disposer d'une reprĂ©sentation dĂ©taillĂ©e de ce dernier. Les EGV classiques se limitent gĂ©nĂ©ralement Ă  une reprĂ©sentation gĂ©omĂ©trique du monde rĂ©el laissant de cĂŽtĂ© les informations topologiques et sĂ©mantiques qui le caractĂ©risent. Ceci a pour consĂ©quence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de rĂ©duire les capacitĂ©s de raisonnement spatial des agents situĂ©s. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent Ă  calculer un chemin qui lie deux positions situĂ©es dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractĂ©ristiques de l'environnement (topologiques et sĂ©mantiques), ni celles des agents (types et capacitĂ©s). Les agents situĂ©s ne possĂšdent donc pas de moyens leur permettant d'acquĂ©rir les connaissances nĂ©cessaires sur l'environnement virtuel pour pouvoir prendre une dĂ©cision spatiale informĂ©e. Pour rĂ©pondre Ă  ces limites, nous proposons une nouvelle approche pour gĂ©nĂ©rer automatiquement des Environnements GĂ©ographiques Virtuels InformĂ©s (EGVI) en utilisant les donnĂ©es fournies par les SystĂšmes d'Information GĂ©ographique (SIG) enrichies par des informations sĂ©mantiques pour produire des GSMA prĂ©cises et plus rĂ©alistes. De plus, nous prĂ©sentons un algorithme de planification hiĂ©rarchique de chemin qui tire avantage de la description enrichie et optimisĂ©e de l'EGVI pour fournir aux agents un chemin qui tient compte Ă  la fois des caractĂ©ristiques de leur environnement virtuel et de leurs types et capacitĂ©s. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise Ă  supporter la prise de dĂ©cision informĂ©e et le raisonnement spatial des agents situĂ©s

    URBAN DESIGN STRATEGIES FOR THE UPCYCLING OF URBAN INFRASTRUCTURE RESIDUAL POCKETS: 3D CITY MODELLING FROM OPEN DATA AND LOW-COST RAPID MAPPING TOOLS

    Get PDF
    This paper deals with the 3D City Modelling specific procedure developed as a tool to support strategies for urban regeneration, within the framework of the B-ROAD research project.The B-ROAD research project, whose acronym stands for Below the Road, is developing urban design strategies for upcycling urban infrastructure residual pockets.The B-ROAD’s methodology is conceived as research by design as it is carried out by creating pilot scenarios, disclosing the latent and still unexpressed potential of these wasted areas and displaying their potential transformations, to turn them into precious resources for the contemporary city.The 3D City Modelling of the study area has proved to be essential and strategic yet often complex and critical as most of the spatial and architectural features of B-ROAD spaces, as well as their potential, cannot be detected nor represented through the traditional means of representation of urbanised land, as aerial survey-based representations, or GIS. Likewise, traditional, or even cutting-edge, survey techniques that can be used to acquire missing data are often costly and time-consuming, thus making it hardly impossible to achieve the purpose of extensive and deep knowledge of such a vast area. Thus, 3D City Modelling aimed at examining spaces and providing a final representation of pilot scenarios has been a crucial stage requiring a specific in-depth study.</p

    Urban design strategies for the upcycling of urban infrastructure residual pockets: 3D city modelling from open data and low-cost rapid mapping tools

    Get PDF
    This paper deals with the 3D City Modelling specific procedure developed as a tool to support strategies for urban regeneration, within the framework of the B-ROAD research project. The B-ROAD research project, whose acronym stands for Below the Road, is developing urban design strategies for upcycling urban infrastructure residual pockets. The B-ROAD’s methodology is conceived as research by design as it is carried out by creating pilot scenarios, disclosing the latent and still unexpressed potential of these wasted areas and displaying their potential transformations, to turn them into precious resources for the contemporary city. The 3D City Modelling of the study area has proved to be essential and strategic yet often complex and critical as most of the spatial and architectural features of B-ROAD spaces, as well as their potential, cannot be detected nor represented through the traditional means of representation of urbanised land, as aerial survey-based representations, or GIS. Likewise, traditional, or even cutting-edge, survey techniques that can be used to acquire missing data are often costly and time-consuming, thus making it hardly impossible to achieve the purpose of extensive and deep knowledge of such a vast area. Thus, 3D City Modelling aimed at examining spaces and providing a final representation of pilot scenarios has been a crucial stage requiring a specific in-depth study

    Multimodal and multidimensional geodata interaction and visualization

    Get PDF
    This PhD proposes the development of a Science Data Visualization System, SdVS, that analyzes and presents different kinds of visualizing and interacting techniques with Geo-data, in order to deal with knowledge about Geo-data using GoogleEarth. After that, we apply the archaeological data as a case study, and, as a result, we develop the Archaeological Visualization System, ArVS, using new visualization paradigms and Human-Computer-Interaction techniques based on SdVS. Furthermore, SdVS provides guidelines for developing any other visualization and interacting applications in the future, and how the users can use SdVS system to enhance the understanding and dissemination of knowledge

    Usability of Online Virtual Geographic Environment for Urban Design

    Get PDF
    Collaborative Virtual Geographic Environment (CVGE), a technology derived from Virtual Reality (VR), is today becoming widely and freely available. This technology has potential for use in the field of 3D urban planning and design. An example is the online tool OpenSimulator. Rigorous assessment of the usability of such tools is needed to determine their impact on the field of urban design. A previous study consulted with a small group of urban design professionals and concluded from a user satisfaction and usability standpoint that online VR had potential value as a 3D collaboration, remote communication and marketing tool. However, visual quality and geographic accuracy of the technology are downsides that need to be overcome. This research takes the investigation a step further than the previous study to also examine the usability aspects of efficiency (how quickly tasks are completed) and effectiveness (how successfully tasks are completed), relating to CVGE used in the design process. The comparative study tests a CVGE (with increased graphic fidelity and geographic content to address the feedback of the previous study) of a subdivision design in a suburb of Dunedin, New Zealand, against 3D models built with a Geographic Information System (GIS – ArcGIS) and Computer Aided Design (CAD – BricsCAD) tools, two types of software that are already widely adopted and well established in urban design professional practice. This research collected and analysed the experiences and results from 16 urban design professionals and students who attempted to perform timed tasks correctly in each of the environments, before being asked questions about the technologies involved and the importance they perceive the technologies to have to their professional work. The results support and reinforce the feedback for VR from the previous study, with the graphical and geographic data issues being somewhat addressed and a number of new issues identified which also require further refinement of the technology to suit the application. Ease-of-use, and the associated fastest speed of completion of tasks, were significant outcomes to emerge from the comparison with GIS and CAD, and the results point to the likely level of integration of CVGE technology in an urban planning and design context in the future

    Reconciling the dissonance between Historic Preservation and Virtual Reality through a Place-based Virtual Heritage system.

    Get PDF
    This study explores a problematic disconnect associated with virtual heritage and the immersive 3D computer modeling of cultural heritage. The products of virtual heritage often fail to adhere to long-standing principles and recent international conventions associated with historic preservation, heritage recording, designation, and interpretation. By drawing upon the geographic concepts of space, landscape, and place, along with advances in Geographic Information Systems, first-person serious games, and head-mounted Virtual Reality platforms this study envisions, designs, implements, and evaluates a virtual heritage system that seeks to reconcile the dissonance between Virtual Reality and historic preservation. Finally, the dissertation examines the contributions and future directions of such a Place-based Virtual Heritage system in human geography and historic preservation planning and interpretation
    corecore