140 research outputs found

    Malware Detection in Portable Document Format (PDF) Files with Byte Frequency Distribution (BFD) and Support Vector Machine (SVM)

    Get PDF
    Portable Document Format (PDF) files as well as files in several other formats such as (.docx, .hwp and .jpg) are often used to conduct cyber attacks. According to VirusTotal, PDF ranks fourth among document files that are frequently used to spread malware in 2020. Malware detection is challenging partly because of its ability to stay hidden and adapt its own code and thus requiring new smarter methods to detect. Therefore, outdated detection and classification methods become less effective. Nowadays, one of such methods that can be used to detect PDF files infected with malware is a machine learning approach. In this research, the Support Vector Machine (SVM) algorithm was used to detect PDF malware because of its ability to process non-linear data, and in some studies, SVM produces the best accuracy. In the process, the file was converted into byte format and then presented in Byte Frequency Distribution (BFD). To reduce the dimensions of the features, the Sequential Forward Selection (SFS) method was used. After the features are selected, the next stage is SVM to train the model. The performance obtained using the proposed method was quite good, as evidenced by the accuracy obtained in this study, which was 99.11% with an F1 score of 99.65%. The contributions of this research are new approaches to detect PDF malware which is using BFD and SVM algorithm, and using SFS to perform feature selection with the purpose of improving model performance. To this end, this proposed system can be an alternative to detect PDF malware

    Malgazer: An Automated Malware Classifier With Running Window Entropy and Machine Learning

    Get PDF
    This dissertation explores functional malware classification using running window entropy and machine learning classifiers. This topic was under researched in the prior literature, but the implications are important for malware defense. This dissertation will present six new design science artifacts. The first artifact was a generalized machine learning based malware classifier model. This model was used to categorize and explain the gaps in the prior literature. This artifact was also used to compare the prior literature to the classifiers created in this dissertation, herein referred to as “Malgazer” classifiers. Running window entropy data was required, but the algorithm was too slow to compute at scale. This dissertation presents an optimized version of the algorithm that requires less than 2% of the time of the original algorithm. Next, the classifications for the malware samples were required, but there was no one unified and consistent source for this information. One of the design science artifacts was the method to determine the classifications from publicly available resources. Once the running window entropy data was computed and the functional classifications were collected, the machine learning algorithms were trained at scale so that one individual could complete over 200 computationally intensive experiments for this dissertation. The method to scale the computations was an instantiation design science artifact. The trained classifiers were another design science artifact. Lastly, a web application was developed so that the classifiers could be utilized by those without a programming background. This was the last design science artifact created by this research. Once the classifiers were developed, they were compared to prior literature theoretically and empirically. A malware classification method from prior literature was chosen (referred to herein as “GIST”) for an empirical comparison to the Malgazer classifiers. The best Malgazer classifier produced an accuracy of approximately 95%, which was around 0.76% more accurate than the GIST method on the same data sets. Then, the Malgazer classifier was compared to the prior literature theoretically, based upon the empirical analysis with GIST, and Malgazer performed at least as well as the prior literature. While the data, methods, and source code are open sourced from this research, most prior literature did not provide enough information or data to replicate and verify each method. This prevented a full and true comparison to prior literature, but it did not prevent recommending the Malgazer classifier for some use cases

    Data Augmentation Based Malware Detection using Convolutional Neural Networks

    Get PDF
    Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the paper's model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.Comment: 18 page

    Classifying Sequences of Extreme Length with Constant Memory Applied to Malware Detection

    Full text link
    Recent works within machine learning have been tackling inputs of ever-increasing size, with cybersecurity presenting sequence classification problems of particularly extreme lengths. In the case of Windows executable malware detection, inputs may exceed 100100 MB, which corresponds to a time series with T=100,000,000T=100,000,000 steps. To date, the closest approach to handling such a task is MalConv, a convolutional neural network capable of processing up to T=2,000,000T=2,000,000 steps. The O(T)\mathcal{O}(T) memory of CNNs has prevented further application of CNNs to malware. In this work, we develop a new approach to temporal max pooling that makes the required memory invariant to the sequence length TT. This makes MalConv 116Ă—116\times more memory efficient, and up to 25.8Ă—25.8\times faster to train on its original dataset, while removing the input length restrictions to MalConv. We re-invest these gains into improving the MalConv architecture by developing a new Global Channel Gating design, giving us an attention mechanism capable of learning feature interactions across 100 million time steps in an efficient manner, a capability lacked by the original MalConv CNN. Our implementation can be found at https://github.com/NeuromorphicComputationResearchProgram/MalConv2Comment: To appear in AAAI 202

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    Explainable Malware Detection System Using Transformers-Based Transfer Learning and Multi-Model Visual Representation

    Get PDF
    Android has become the leading mobile ecosystem because of its accessibility and adaptability. It has also become the primary target of widespread malicious apps. This situation needs the immediate implementation of an effective malware detection system. In this study, an explainable malware detection system was proposed using transfer learning and malware visual features. For effective malware detection, our technique leverages both textual and visual features. First, a pre-trained model called the Bidirectional Encoder Representations from Transformers (BERT) model was designed to extract the trained textual features. Second, the malware-to-image conversion algorithm was proposed to transform the network byte streams into a visual representation. In addition, the FAST (Features from Accelerated Segment Test) extractor and BRIEF (Binary Robust Independent Elementary Features) descriptor were used to efficiently extract and mark important features. Third, the trained and texture features were combined and balanced using the Synthetic Minority Over-Sampling (SMOTE) method; then, the CNN network was used to mine the deep features. The balanced features were then input into the ensemble model for efficient malware classification and detection. The proposed method was analyzed extensively using two public datasets, CICMalDroid 2020 and CIC-InvesAndMal2019. To explain and validate the proposed methodology, an interpretable artificial intelligence (AI) experiment was conducted

    Malware Detection in Portable Document Format (PDF) Files with Byte Frequency Distribution (BFD) and Support Vector Machine (SVM)

    Get PDF
    Portable Document Format (PDF) files as well as files in several other formats such as (.docx, .hwp and .jpg) are often used to conduct cyber attacks. According to VirusTotal, PDF ranks fourth among document files that are frequently used to spread malware in 2020. Malware detection is challenging partly because of its ability to stay hidden and adapt its own code and thus requiring new smarter methods to detect. Therefore, outdated detection and classification methods become less effective. Nowadays, one of such methods that can be used to detect PDF files infected with malware is a machine learning approach. In this research, the Support Vector Machine (SVM) algorithm was used to detect PDF malware because of its ability to process non-linear data, and in some studies, SVM produces the best accuracy. In the process, the file was converted into byte format and then presented in Byte Frequency Distribution (BFD). To reduce the dimensions of the features, the Sequential Forward Selection (SFS) method was used. After the features are selected, the next stage is SVM to train the model. The performance obtained using the proposed method was quite good, as evidenced by the accuracy obtained in this study, which was 99.11% with an F1 score of 99.65%. The contributions of this research are new approaches to detect PDF malware which is using BFD and SVM algorithm, and using SFS to perform feature selection with the purpose of improving model performance. To this end, this proposed system can be an alternative to detect PDF malware
    • …
    corecore