8,671 research outputs found

    Applications of statistical methods and techniques to auditing and accounting

    Get PDF
    Statistical Methods;Auditing;accounting/ accountancy

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo

    The integrated model of the Kolmogorov–Smirnov distribution-free statistic approach to process control and maintenance

    Get PDF
    AbstractThis research is aimed to find the optimal values of four variables (n, h, L, k) that minimize the cost of integrated system approach to process control from considering the basis of the EWMA control chart integrated model (Charongrattanasakul and Pongpullponsak, 2009, 2011) and Kolmogorov–Smirnov (KS) control chart Khrueasom and Pongpullponsak (2014). The proposed mathematical model is used to analyze the cost of the integrated model before the genetic algorithms (GA) approach is carried out in order to calculate the optimal values of four variables (n, h, L, k) that minimize the hourly cost. Subsequently, they are subjects to the nonparametric linear regression test in order to confirm the optimal values of four variables. A comparison between four policies of integrated model KS and other models indicates that the integrated KS model has a better economic behavior when it is distribution-free. Finally, the performance or average run length (ARL) obtained from the KS model is greater than that of the general model

    Economic Design of X-bar Control Chart Using Gravitational Search Algorithm

    Get PDF
    Control chart is a major and one of most widely used statistical process control (SPC) tools. It is used to statistically monitor the process through sampling inspection. Control chart tells us when to allow the process to continue or avoid unnecessary adjustments with machine and when to take the corrective action. On to same problem either on the material side or from the operator side it is quite possible that either targeted value X-bar has changed or process dispersion has changed. These changes must be reflected on the control chart so that the corrective action can be taken. The use of control chart requires selection of three parameters namely sample size n, sampling interval h, and width of control limits k for the chart. Duncan developed a loss cost function for X-bar control chart with single assignable cause. The function has to be optimized using metaheuristic optimization technique. In the present project, the economic design of the X-bar control chart using Gravitational Search Algorithm (GSA) has been developed MATLAB software to determine the three parameters i.e. n , h and k such that the expected total cost per hour is minimized. The results obtained are found to be better than that reported in literature

    Economic Design of X-bar Control Chart Using Gravitational Search Algorithm

    Get PDF
    Control chart is a major and one of most widely used statistical process control (SPC) tools. It is used to statistically monitor the process through sampling inspection. Control chart tells us when to allow the process to continue or avoid unnecessary adjustments with machine and when to take the corrective action. On to same problem either on the material side or from the operator side it is quite possible that either targeted value X-bar has changed or process dispersion has changed. These changes must be reflected on the control chart so that the corrective action can be taken. The use of control chart requires selection of three parameters namely sample size n, sampling interval h, and width of control limits k for the chart. Duncan developed a loss cost function for X-bar control chart with single assignable cause. The function has to be optimized using metaheuristic optimization technique. In the present project, the economic design of the X-bar control chart using Gravitational Search Algorithm (GSA) has been developed MATLAB software to determine the three parameters i.e. n , h and k such that the expected total cost per hour is minimized. The results obtained are found to be better than that reported in literature

    Economic Design of X-bar control chart using particle swarm optimization

    Get PDF
    Control chart is the most widely used tools for statistical process control. For detecting shift in process mean, chart is the simplest and most commonly used. Control chart should be designed economically in order to achieve minimum quality control costs. The major function of control chart is to detect the occurrence of assignable causes so that the necessary corrective action can be taken before a large quantity of nonconforming product is manufactured. The control chart dominates the use of any other control chart technique if quality is measured on a continuous scale. The design of a control chart refers to the selection of three parameters i.e., sample size, width of control limit, and interval between samples. Economic design of control chart has gained considerable importance in providing better quality of end products to customer at less cost. In the present work, a computer programme in C language based on a non-traditional optimization technique namely particle swarm optimization has been developed for the economic design of the control chart giving the optimum values of the sample size, sampling interval and width of control limits such that the expected total cost per hour is minimized. The results obtained are found to be better compared to that reported in the literature

    Control Charts to Enhance Quality

    Get PDF
    Control charts are important tools of statistical quality control to enhance quality. Quality improvement methods have been applied in the last few 10 years to fulfill the needs of consumers. The product has to retain the desired properties with the least possible defects, while maximizing profit. There are natural variations in production, but there are also assignable causes which do not form part of chance. Control charts are used to monitor production; in particular, their application may serve as an “early warning” index regarding potential “out-of-control” processes. In order to keep production under control, different control charts which are prepared for dissimilar cases are established incorporating upper and lower control limits. There are a number of control charts in use and are grouped mainly as control charts for variables and control charts for attributes. Points plotted on the charts may reveal certain patterns, which in turn allows the user to obtain specific information. Patterns showing deviations from normal behavior are raw material, machine setting or measuring method, human, and environmental factors, inadvertently affecting the quality of product. The information obtained from control charts assists the user to take corrective actions, hence opting for specified nominal values enhancing as such quality

    Modelo de apoio à decisão para a manutenção condicionada de equipamentos produtivos

    Get PDF
    Doctoral Thesis for PhD degree in Industrial and Systems EngineeringIntroduction: This thesis describes a methodology to combine Bayesian control chart and CBM (Condition-Based Maintenance) for developing a new integrated model. In maintenance management, it is a challenging task for decision-maker to conduct an appropriate and accurate decision. Proper and well-performed CBM models are beneficial for maintenance decision making. The integration of Bayesian control chart and CBM is considered as an intelligent model and a suitable strategy for forecasting items failures as well as allow providing an effectiveness maintenance cost. CBM models provides lower inventory costs for spare parts, reduces unplanned outage, and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of production or delays, increasing availability. However, CBM models need new aspects and the integration of new type of information in maintenance modeling that can improve the results. Objective: The thesis aims to develop a new methodology based on Bayesian control chart for predicting failures of item incorporating simultaneously two types of data: key quality control measurement and equipment condition parameters. In other words, the project research questions are directed to give the lower maintenance costs for real process control. Method: The mathematical approach carried out in this study for developing an optimal Condition Based Maintenance policy included the Weibull analysis for verifying the Markov property, Delay time concept used for deterioration modeling and PSO and Monte Carlo simulation. These models are used for finding the upper control limit and the interval monitoring that minimizes the (maintenance) cost function. Result: The main contribution of this thesis is that the proposed model performs better than previous models in which the hypothesis of using simultaneously data about condition equipment parameters and quality control measurements improve the effectiveness of integrated model Bayesian control chart for Condition Based Maintenance.Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é considerada um modelo inteligente e uma estratégica adequada para prever as falhas de componentes bem como produzir um controlo de custos de manutenção. Os modelos CBM conseguem definir custos de inventário mais baixos para as partes de substituição, reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de novos tipos de informação na modelação de manutenção que permitam melhorar os resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada Bayesian control chart para prever as falhas de partes, incorporando dois tipos de dados: medições-chave de controlo de qualidade e parâmetros de condição do equipamento. Por outras palavras, as questões de investigação são direcionadas para diminuir custos de manutenção no processo de controlo.Métodos: Os modelos matemáticos implementados neste estudo para desenvolver uma política ótima de CBM incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de monotorização para minimizar a função de custos de manutenção.Resultados: A principal contribuição desta tese é que o modelo proposto melhora os resultados dos modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se uma melhoria a eficácia do modelo integrado de Bayesian control chart para a manutenção condicionada

    One-sided Downward Control Chart for Monitoring the Multivariate Coefficient of Variation with VSSI Strategy

    Get PDF
    In recent years, control charts monitoring the coefficient of variation (CV), denoted as the ratio of the variance to the mean, is attracting significant attention due to its ability to monitor processes in which the process mean and process variance are not independent of each other. However, very few studies have been done on charts to monitor downward process shifts, which is important since downward process shifts show process improvement. In view of the importance of today's competitive manufacturing environment, this paper proposes a one-sided chart to monitor the downward multivariate CV (MCV) with variable sample size and sampling interval (VSSI), i.e. the VSSID MCV chart. This paper monitors the MCV as most industrial processes simultaneously monitor at least two or more quality characteristics, while the VSSI feature is incorporated, as it is shown that this feature brings about a significant improvement of the chart. A Markov chain approach was adopted for designing a performance measure of the proposed chart. The numerical comparison revealed that the proposed chart outperformed existing MCV charts. The implementation of the VSSID MCV chart is illustrated with an example

    Study on New Sampling Plans and Optimal Integration with Proactive Maintenance in Production Systems

    Get PDF
    Sampling plans are statistical process control (SPC) tools used mainly in production processes. They are employed to control processes by monitoring the quality of produced products and alerting for necessary adjustments or maintenance. Sampling is used when an undesirable change (shift) in a process is unobservable and needs time to discover. Basically, the shift occurs when an assignable cause affects the process. Wrong setups, defective raw materials, degraded components are examples of assignable causes. The assignable cause causes a variable (or attribute) quality characteristic to shift from the desired state to an undesired state. The main concern of sampling is to observe a process shift quickly by signaling a true alarm, at which, maintenance is performed to restore the process to its normal operating conditions. While responsive maintenance is performed if a shift is detected, proactive maintenance such as age-replacement is integrated with the design of sampling. A sampling plan is designed economically or economically-statistically. An economical design does not assess the system performance, whereas the economic-statistical design includes constraints on system performance such as the average outgoing quality and the effective production rate. The objective of this dissertation is to study sampling plans by attributes. Two studies are conducted in this dissertation. In the first study, a sampling model is developed for attribute inspection in a multistage system with multiple assignable causes that could propagate downstream. In the second study, an integrated model of sampling and maintenance with maintenance at the time of the false alarm is proposed. Most of the sampling plans are designed based on the occurrence of one assignable cause. Therefore, a sampling plan that allows two assignable causes to occur is developed in the first study. A multistage serial system of two unreliable machines with one assignable cause that could occur on each machine is assumed where the joint occurrence of assignable causes propagates the process\u27s shift to a higher value. As a result, the system state at any time is described by one in-control and three out-of-control states where the evolution from a state to another depends on the competencies between shifts. A stochastic methodology to model all competing scenarios is developed. This methodology forms a base that could be used if the number of machines and/or states increase. In the second study, an integrated model of sampling and scheduled maintenance is proposed. In addition to the two opportunities for maintenance at the true alarm and scheduled maintenance, an additional opportunity for preventive maintenance at the time of a false alarm is suggested. Since a false alarm could occur at any sampling time, preventive maintenance is assumed to increase with time. The effectiveness of the proposed model is compared to the effectiveness of separate models of scheduled maintenance and sampling. Inspired by the conducted studies, different topics of sampling and maintenance are proposed for future research. Two topics are suggested for integrating sampling with selective maintenance. The third topic is an extension of the first study where more than two shifts can occur simultaneously
    corecore