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Abstract 

Nabil BACHA. Decision support model for CBM of manufacturing equipment. 

2019, 190 p. Doctoral thesis presented in industrial and systems engineering (thesis for 

the degree of doctor of philosophy, department of production and system. University of 

Minho-Guimarães. 

Introduction: This thesis describes a methodology to combine Bayesian control chart 

and CBM (Condition-Based Maintenance) for developing a new integrated model. In 

maintenance management, it is a challenging task for decision-maker to conduct an 

appropriate and accurate decision. Proper and well-performed CBM models are 

beneficial for maintenance decision making. The integration of Bayesian control chart 

and CBM is considered as an intelligent model and a suitable strategy for forecasting 

items failures as well as allow providing an effectiveness maintenance cost. CBM 

models provides lower inventory costs for spare parts, reduces unplanned outage, and 

minimize the risk of catastrophic failure, avoiding high penalties associated with losses 

of production or delays, increasing availability. However, CBM models need new 

aspects and the integration of new type of information in maintenance modeling that can 

improve the results. Objective: The thesis aims to develop a new methodology based on 

Bayesian control chart for predicting failures of item incorporating simultaneously two 

types of data: key quality control measurement and equipment condition parameters. In 

other words, the project research questions are directed to give the lower maintenance 

costs for real process control. Method: The mathematical approach carried out in this 

study for developing an optimal Condition Based Maintenance policy included the 

Weibull analysis for verifying the Markov property, Delay time concept used for 

deterioration modeling and PSO and Monte Carlo simulation. These models are used for 

finding the upper control limit and the interval monitoring that minimizes the 

(maintenance) cost function. Result: The main contribution of this thesis is that the 

proposed model performs better than previous models in which the hypothesis of using 

simultaneously data about condition equipment parameters and quality control 

measurements improve the effectiveness of integrated model Bayesian control chart for 

Condition Based Maintenance. 

Keywords: Bayesien Control Chart, CBM, Case studies, Monte Carlo Simulation, 

Optimization, Probability Theory, Renewal Theory, Stochastic Process. 
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Resumo 

Nabil BACHA. Modelo de apoio à decisão para a manutenção condicionada de 

equipamentos produtivos. 2019, 190 p. Tese de Doutoramento em Engenharia 

Industrial e de Sistemas, Universidade de Minho. Guimarães. 

Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart 

e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. 

Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas 

e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de 

decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é 

considerada um modelo inteligente e uma estratégica adequada para prever as falhas de 

componentes bem como produzir um controlo de custos de manutenção. Os modelos 

CBM conseguem definir custos de inventário mais baixos para as partes de substituição, 

reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, 

evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando 

a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de 

novos tipos de informação na modelação de manutenção que permitam melhorar os 

resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada 

Bayesian control chart para prever as falhas de partes, incorporando dois tipos de 

dados: medições-chave de controlo de qualidade e parâmetros de condição do 

equipamento. Por outras palavras, as questões de investigação são direcionadas para 

diminuir custos de manutenção no processo de controlo.Métodos: Os modelos 

matemáticos implementados neste estudo para desenvolver uma política ótima de CBM 

incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de 

atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. 

Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de 

monotorização para minimizar a função de custos de manutenção.Resultados: A 

principal contribuição desta tese é que o modelo proposto melhora os resultados dos 

modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos 

parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se 

uma melhoria a eficácia do modelo integrado de Bayesian control chart para a 

manutenção condicionada. 

Palavras-chave:Bayesien Control Chart, CBM, Estudo de caso, Optimização, 

Processos estocásticos, Simulação Monte Carlo,Teoria da probabilidade, Teoria da 

Renovação. 
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Chapter 1 

General Introduction 

This chapter will introduce the research topic of the thesis, and its motivation. It will then describe the 

scope and the objective of the thesis. The adopted methodology will be presented and justified. In 

addition, a description of the research design for this study was made. Finally, the outline of the thesis is 

considered. 

Contents 

1.1 Problem outline and motivation ................................................................................. 1 

1.2 Research scope and objective .................................................................................... 4 

1.3 Research approach adopted and methodology ............................................................ 9 

1.4 The structure general of the thesis ........................................................................... 18 

1.1 Problem outline and motivation 

Nowadays companies are surviving in a community that is characterized by an extensive 

international competition, fast and lasting industrial system development. Indeed, due to the fast 

development of industrial systems and productive paradigms, the industrial systems become 

more and more complicated requiring a high quality and reliability. In such environment, it 

implies that companies have high levels of competitiveness and maturity able to give better 

manage for their manufacturing resources and human capacities as well as manufactured 

equipment. A companies that can improve and manage its manufactured equipment, resources 

and human capacities can achieve competitive advantage over its competitors and improve its 

productivity. However, the most common challenge that companies are facing is making well 

maintenance decision. 

In today’s globalized worlds, manufacturing companies, nuclear plants and aircraft industry seek 

continuously to improve their managing manufactured performance requirements in order to 
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ensure rapid growth and long term-job. Some typical key performance requirement can be 

associated with: operating cost, asset availability, and safety, lost time injuries, customer’s 

satisfaction, maintenance cost, business costs, productivity, and number of environmental 

incidents, Overall Equipment Effectiveness (OEE) and asset utilization. Yet, in recent year, 

advancements in technology have allowed researchers and mangers to remain significant 

progress in addressing all of these compositely. In fact, it is evident that companies which can 

manage and improving its performance requirements can have a great impact on customer 

needs(e.g., quality, price and delivery), and generate a great value. This is illustrated in Figure 

1.1 

 

 

 

 

 
 
 

 

                  Figure 1.1-Managing manufacturing performance requirements  

to meet customer needs 

In fact, for ensuring productivity production systems must have a high availability and well 

controlled, once the shutdown of production system during one day in companies can have 

significant economic consequences. Nevertheless, scientists and managers wondered about the 

effect of production interruptions originated by item’s condition while a condition of an item 

plays a crucial role in the production systems. Hence, unreliability of item is mainly problem that 

may have a great influence on companies in terms of project budget, production scheduling and 

production quality. 

Even though production system is still working, there could be one item or more that work under 

specific condition, the most important is how to deal with this problem which might trigger to 

terrible circumstances. A way to solve availability and reliability of item problem is to use 

 

Maintenance practices Operating practices Design practices 

Equipment 

condition 

 

Manufacturing performance requirements: Safety, 
Environment, Quality, Availability, Cost 

 

Customer needs: Quality, 

Delivery, and Price. 
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Maintenance function. The last is fundamental to ensure the availability of item, reducing 

production loss, maintain the inherent capability of an item, and increasing reliability. This can 

be attained through the development and implementation of a rigorously maintenance 

management and adopted best practices. Maintenance department in organization is typically the 

responsible for providing the roles, responsibilities, resources and procedures, maintenance 

process, used to carry out the maintenance program. Thus, maintenance practices are required to 

restore the item’s function in order to maintain the productivity of the industry. Eventually, 

Maintenance function remains a powerful tools to make a huge contribution to the industry and 

well controlled the health state of an item, however the cost spent on maintenance activities 

became higher. Today, for the most part of practitioners and academic researchers are aware of is 

the fact the costs incurred to keep an item in good condition has become very costly. Hence, 

previous research has shown that over 70% of the total production cost can be spent on 

preventive maintenance (Amar et al., 2006). Further, as much as one-third of the maintenance 

cost is wasted due to the fact that’s its unnecessarily incurred (e.g. inappropriate planning, 

overtime cost, useless preventive maintenance, maturity level.).Indeed, the effectiveness of 

company is mainly influenced by the maintenance role and impact on other working areas such 

as production, quality, production cost (Al-Najjar, 2007). 

Since 1979, the maintenance expenses for many industries have increased by 10-15% per year 

(Wireman 1990).Eventually, preventive maintenance has become a major expense of many 

industrial companies. Close analysis of case studies shows that more efficient maintenance 

approaches such as Condition-based maintennce (CBM) are being implemented to handle the 

situation (Jardine et al., 2006). On another hand, the annual cost of maintenance (corrective and 

preventive) as a fraction of the total operating budget, can go up to 15% for manufacturing 

companies, 10%-40%for the mining industry, 20%-30% for chemical industry (Nguyen et al., 

2008) and 40% for iron and steel industries(Chu et al., 1998). Therefore, the development of 

maintenance technologies has become more and more important for maintenance optimization. 

CBM or predictive maintenance utilizes appropriate condition monitoring techniques and 

maintenance technologies to increase the efficiency and profitability of industrial systems. It is 

considered an effective approach to improve availability and reduce maintenance cost (Saranga 
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& Knezevic 2001). Predictive maintenance is based on probabilistic fault prediction which takes 

into consideration the deterioration caused by incipient fault. 

Obviously, the partial or total loss of item function may have impact in the quality of 

manufactured products, environment integrity and in the safety of production systems, once it 

can cause physical damages, the degradation of item affects product quality. In addition, it is in 

the interest of maintenance manager to know the relationship between product quality and health 

state of item. Therefore, the relationship between product quality and equipment performance 

has led to encourage practitioners and researchers to design integrated models that have shown to 

be an effective way to improve productivity and  lowering cost (Mehrafrooz & Noorossana 2011; 

Bengtsson et al. 2010).Further, research is needed to clarify the relationship between quality 

product and health sate of item.  Recently, however, awareness of the development of intelligent 

model as well as incorporating a new information has increased. To date, no models were found 

in the literature that use simultaneously data from both quality control and equipment’s condition 

monitoring. In bridging this literature gaps, an effective model of maintenance decision making 

is proposed.  

There is a rapidly growing literature on maintenance decision making, which indicates that 

integrated models offer economic benefit and showing an excellent result. Literature on 

maintenance decision making has focused almost exclusively on two main integrated model as 

follow: The proposed models in the literature used quality characteristics plotted in a control 

chart for maintenance planning. Another type of models use equipment parameters plotted in a 

control chart to take a decision about the necessity of a preventive maintenance action.  

1.2 Research scope and objective 

The performance and competitiveness of manufacturing companies depends on the reliability, its 

manufactured item’ s availability and product quality. It doesn't depend on that only, but this is 

what we focus on in my research study. Based on these, to ensure that item are performing at the 

required level to meet production and quality goals, an accurate maintenance decision and 

appropriate performance appraisal system must be put in place. The level of health state of item 

indicated by likelihood of failure and deterioration degree is determined by comparing them to 



 

5 
 

the threshold (specific value). To ensure that companies achieves the desired production 

system’s performance and maturity, manufacturing companies entails to adopt new management 

maintenance practices. In general manner, the process of maintenance management involves: 

knowledge acquisition, asset maintenance strategy, asset maintenance work, maintenance 

support.  

Furthermore, since equipment in a production system has become more advanced, more 

expensive, and may have a significant impact on production function and products quality, the 

cost spent in preventive maintenance has become higher and higher. Therefore, Preventive 

maintenance has become a major expense of many industrial companies. Maintenance function 

may lead to the success of a production quality, depending on its level of effectiveness and 

maturity. This effectiveness of maintenance is likely connected to the quality of product and is 

worthy to be studied in order to increase customer satisfaction. 

Maintenance strategies have progressed from breakdown maintenance, to preventive 

maintenance, and then to CBM. Breakdown maintenance is reactive in nature while the action of 

repair or replacement is done only when equipment has already failed. Preventive maintenance is 

proactive in nature and consists of a set of tasks (replacements, adjustments, inspections and 

lubrications) in order to prevent catastrophic failures or to eliminate any degradation in 

equipment. If the deterioration level of items is correlated strongly with a control parameter, the 

decision about the realization of preventive maintenance operations can be based on system's 

condition, this is CBM(Rabbani et al., 2008). CBM is a set of maintenance actions performed 

based on real-time or near real-time assessment of equipment condition obtained from embedded 

sensors, external tests or measurements using portable equipment. The data obtained from 

condition monitoring helps maintenance managers to decide if maintenance is necessary or not 

by analyzing the actual condition of equipment (Jardine et al., 2006). Therefore, CBM is 

considered as an intelligent preventive maintenance and a suitable strategy for forecasting items 

failures. CBM models provides lower inventory costs for spare parts, reduces unplanned outage 

and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of 

production or delays. The main goal of CBM models is to avoid unnecessary maintenance tasks 

by taking maintenance actions only when there is evidence of abnormal behaviors of an item 

(Jardine et al., 2006). CBM models can be more cost effective than time-based maintenance and 
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is one of the least expensive and most effective strategies for proactive maintenance (Yang, 

2003); (Ilangkumaran and Kumanan, 2009).  

According to literature, several authors have recognized that using statistical control chart for 

maintenance planning leads to a significant benefit in term of reducing maintenance costs 

(Cassady et al., 2000; Jardine et al., 2006). Nowadays, several maintenance models using control 

charts for maintenance optimization has been extensively developed, and they can be classified 

into two different groups. The first one regards the use of control chart to monitor a process 

through some quality characteristic for maintenance planning; the second one regards the use of 

control chart to monitor the health state of equipment while in operation through a health 

parameter. Control charts might be considered an effective tool to indicate and detect the early 

signs of health state of a deterioration or malfunction of equipment. In this case, the control chart 

uses parameters values obtained from periodic condition monitoring of equipment, in order to 

decide whether maintenance action should be performed or not. However, that Bayesian control 

charts are been proved to be superior tools to control the process compared with the non-

Bayesian charts (Yin, 2012). In fact, there is a direct relationship between equipment 

maintenance and product quality, products quality is often affected by the equipment health state. 

Ultimately, improving equipment performance would also enhance product quality (Cassady et 

al., 2000). Nowadays, in maintenance area decision-maker face challenge in term of appropriate 

and accurate decision. A proper and well-performed CBM models are beneficial for maintenance 

decision making. However, CBM models need new aspects and integrate a new type of 

information in maintenance modeling that can improve the results.  

In recent years, a lot of works have been proposed for decision making in CBM implementation. 

However, there are notable gape in the literature with regards to relationship between quality 

control and item condition parameters, thus, on the basis of the information and 

literature currently available no work was found about the simultaneous use of data from quality 

control measurements and from condition item monitoring. Indeed, a better understanding the 

relationship between quality product and condition item monitoring makes condition based 

maintenance model proposed in this study an effective way will allow us to improve efficacy 

maintenance applications. The need to reduce uncertainty about maintenance decision making 
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brought to the fore the need to use to use both type of data to provide information to decision 

maker in order to decide if a maintenance action should to be performed or not.  

This present work based on mathematical model and optimization methodology, aim to find out 

the optimal values of parameters that minimize the hourly maintenance cost. In the present study, 

the issue under scrutiny is how to design an intelligent model for maintenance decision making. 

This research is therefore study impending failure of Atox Mill Equipment, and whether it is 

failed or not. The case study was applied in a Portuguese cement company (Secil-Outão). The 

study was conducted on Atox Mill Equipment, one of the most important equipment in cement 

industry. Therefore, in response to the purpose of this study, condition parameters data related to 

this equipment and quality control measurement of Raw Mill were gathered and statistically 

analyzed. The main aims of this research study is intend to highlight the problem refers to 

maintenance decision action. An added advantage of this study was provide further improvement 

about effectiveness of integrated model for condition based maintenance. 

The intended purpose of this new design model under study is to provide an effectively 

maintenance cost and an accurate maintenance action. In order to achieve the research objective 

of this thesis, this study will provide an explanation as how to design new integrated model for 

condition based maintenance by completing the following tasks presented below:  

 Task 1: Literature review 

 Description: 

o Gather all important researches from various scientific sources in order to obtain an 

overview of the state of the art of the research area. 

o Evaluate the relevance, value and sufficiency of the bibliography found.  

o Study and analyze the existing models.  

o    Study the feasibility of application of theoretical knowledge and methods for the    

construction of the model.  

 Task 2: Design the integrated model 

 Description:  

o Identification of the model parameters. 
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o Defining a framework that describes the behavior of the considered system as a 

basis for the construction of the model. 

o Select the appropriate techniques for system behavior modeling such as stochastic 

approach mathematical theory and probability distribution. 

o Defining the assumption to be considered for designing the model. 

o Developing the mathematical model that attempt to explain the system behavior, to 

study the effects of different parameters and also to allow the prediction of future 

system behavior. 

 

 Task 3: Define the optimization methodology 

 Description:  

The objective of this task is to define the method to be used in order to find the values 

of the decision variables which lead to an optimal value of the objective function. This 

task involves the followings steps: (i) Define or select the optimization algorithm that 

has the best performance for the defined model. (ii) Design the flowchart of the 

optimization algorithm using standard flowchart symbols. 

The optimization software more widely used to optimize multi-objective function subject to 

constraints is MATLAB. The optimization toolbox of MATLAB offers a collection of functions 

that extend its capability and allows computing, visualization and programming. The 

optimization toolbox includes routines for many types of optimization such as unconstrained 

nonlinear minimization, constrained nonlinear minimization, constrained linear least squares, in 

this study bound constraint continuous optimization was selected.  

 

 Task 4: Evaluation and validation of the model 

 Description:  

o Applying the designed model on a particular case in order to demonstrate its 

economic benefit. 

o Evaluation of the new model through results analysis in order to demonstrate the 

usefulness and effectiveness of the model that has been constructed. 

o Searching for errors in the model. 
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 Task 5: Writing and refining dissertation 

 Description:  

o Writing thesis. 

1.3 Research approach adopted and methodology 

This chapter outline the research approach adopted and methodology. The research methodology 

related with this study refer to quantitative approach. Data were collected through two ways: the 

first one is condition monitoring technique aimed to record the Atox Mill  equipment’s 

parameters and the second one portable measure equipment aimed to record the size of dust’s 

particle.  

Nowadays, maintenance area decision-maker face challenge in term of appropriate and accurate 

decision. A proper and well-performed CBM models are beneficial for maintenance decision 

making. However, CBM models need new aspects and integrate a new type of information in 

maintenance modeling that can improve the results. According to literature, a lot of works have 

been proposed for decision making in CBM implementation. However, no work was found about 

the simultaneous use of data from quality control and from equipment condition monitoring. 

Therefore, the mainly objective of this research work was envisaged to address the gap 

identified. Using  simultaneous both type of data quality control and equipment condition 

monitoring may improve results as well as reducing decision maker ’error. The new model was 

developed in this work promising to reducing uncertainty about maintenance decision. In doing 

so, five fundamental questions are raised, this study is motivated by those questions which are to 

be the focus of this research project: (i) How to identify failure model (failure mechanism)? (ii) 

How to identify degradation model? (iii) How to estimate parameters model? (iv) How to build a 

cost model for a CBM application?,(v) How to design an optimal Bayesian control that involves 

optimal inspection. Likewise, research objective of this study was depending on research 

questions. Ultimately, the specific objectives are derived to provide focus for the research 
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activities, in order to fulfill the specific aim of the research in a structured and scientific manner 

(see table 1.1). 

 

Table 1.1- Relationship between research questions and research objectives 

As stated by Herbert J. Rubin (1983): “The objective of academic research, whether by 

sociologists, political scientists or anthropologists, is to try to find answers to theoretical 

questions within their respective field. In contrast, the objective of applied social research is to 

use data so that decisions can be made”. The explanation of the research process that we used 

for this academic research is too important. The fundamental idea behind it is that description of 

research process can be provide for the reader sufficient information such as : (i) the readers need 

to know the reason why we select a specific method instead others, (ii) the readers need to know 

the whole steps, decision or choices made at different level of understanding about the research 

to be conducted, (iii) the reader need to know the general approach and goal of study, often the 

result of thesis stimulates new future work and fresh research questions, (iv) It is proof that we 

use a scientific method in a systematic manner in order to conduct research project, (v) through 

this section, my work’s validity is judged.  

 

 

 

 

Table 1.2- Relationship between research questions and research strategies. 

 

Research question Research objective 

How to identify failure model (failure 

mechanism) 

to establish probability  

How to identify degradation model to establish transition probability between all 

possible state to another 

How to estimate parameters model to estimate posterior probability distribution 

How tobuild a cost model for a CBM application to estimate expected average cost per unit 

time 

How to design an optimal Bayesian control that 

involves optimal inspection 

to design optimization model for decision 

Research strategies Research question 

Experiment, history and case study How, Why 

Action research How? 

Grounded history, ethnography, survey and 

archival analysis 

Who, What, Where, How many, 

How much? 
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Research design can be viewed as plans and procedure for research that span the decision from 

board assumption to detailed methods of data collection and analysis (Cresweell, 2002).  Indeed, 

the definition of research design will be considered as the general plan of how we will go about 

answering our research question. In another word, research design gives us a general plan for 

implementing the following: a research strategy, detail like whether the study will involve 

qualitative or quantitative approach, groups or individual, how many variables, interview or 

observation, case study or experiment, tools. 

Conducting research process requires identifying (several terminology) the following research 

aspect: research method (e.g. qualitative or quantitative), research approach (e.g, deductive or 

inductive), and collecting data approach (structured response or unstructured), samples (small or 

large samples), research procedures (defining step by step a description of specific research 

study), and research strategies (a general approach to research determined by the kind of 

question that the research study searches to answer: test hypothesis or discover an idea), often the 

choice of research strategies depends mainly on the research questions to be answered and on 

research interest (figure 1.2). Nonetheless, the table below depicted a number of useful 

distinctions between research method and which is more adequate to different forms of research 

questions (Yin, 2002).  

 

 

 

 

 

 

 

 

Figure 1.2- Scheme of the academic research. 

Depending on the existing source related with CBM models, there are good reasons why the 

approach followed in this work is quantitative approach instead others (e.g., qualitative approach, 
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Research design 

Research procedure 

Research execution 

Scientific knowledge 
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mixed method approach).  This approach is considered as a suitable and good design for this 

work for many factors such as: measure objective facts focus on variable, theory and data are 

separate, subject statistical analysis, researcher is not involved. The rationale for using 

quantitative approach in this study was to explore the relationship between dependent and 

independent variables as well as correlation and statistical descriptive between those variables. 

Quantitative research can be twofold: the first one is known as experimental research 

(explanatory), and the second one can be viewed as a descriptive.  The first one tests the 

accuracy of a theory by determining if the independent variable(s) causes an effect on the 

dependent variable, so that we will be able to illustrate the relationship between variables. Often, 

surveys, correlation studies, and measures of experimental outcomes are evaluated to establish 

causality within a credible confidence range.  The second one measures the sample at a moment 

in time and simply describes the sample’s demography (Lowhorn, 2007; Saunders et al., 2006). 

Taking into account the type of information needed and the nature of this work, deductive study 

is adopted in this work. Conducting research requires following a sequence of steps. In the 

quantitative approach viewpoint, there are essentially seven steps, Figure 1.3, illustrated how the 

study will be conducted. 

 

 

 

 

 

 

Figure 1.3- Steps in the quantitative research process. 

The process of conducting a quantitative study begins with selecting research topic, in what 

concern to the nature of this work; the research topic can be addressed in this study is about 

decision support model for condition based maintenance of manufacturing equipment. Indeed, 

the research interests of this study are: to reduce maintenance cost and improving availability of 
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the equipment. The second step is about defining research question which is considered as a 

crucial step, this because research topic is too broad for conducting this study. 

The next steps are regrouped into four phases: design, development, implement, evaluate. 

Designing model step consists to develop the mathematical model that attempt to explain the 

system behavior, and to allow the prediction of future system behavior. This step involves 

identification of the model parameters; defining a framework that describes the behavior of the 

considered system as a basis for the construction of the model, select the appropriate techniques 

for system behavior modeling such as stochastic approach mathematical theory and probability 

distribution, defining the assumption to be considered for designing the model.  

Define the optimization methodology step aims to define or select the optimization algorithm 

that has the best performance for the defined model, and also to design the flowchart of the 

optimization algorithm using standard flowchart symbols. Furthermore, the optimization 

software more widely used to optimize multi-objective function subject to constraints is 

MATLAB. The optimization toolbox of MATLAB offers a collection of functions that extend its 

capability and allows computing, visualization and programming. The optimization toolbox 

includes routines for many types of optimization such as unconstrained nonlinear minimization, 

constrained nonlinear minimization, constrained linear least squares and so on. In this research 

project, the optimization problem is formulated and solved in a Semi-Markov decision process 

framework, the objective is to minimize the long-run expected average cost as well as 

considering the availability maximization objective subject to an additional constraint that 

guaranteeing the occurrence of the true alarm signal. Thus, the aim is to find out the optimal 

values of parameters that minimize the hourly maintenance cost. Evaluation and validation of the 

model step is empirical inquiry based on case studies, involving quantitative data collection and 

analysis. 

In this work applied research is considered, and applied for a specific research, the goal concerns 

about the application of research techniques, procedures, and methods for the purpose of 

enhancing understanding about a phenomena: predict impending failure of equipment. This 

applied research can be used to accomplish various aims such as: applying the designed model 

on a particular case in order to demonstrate its economic benefit, evaluation of the new model 
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through results analysis in order to demonstrate the usefulness and effectiveness of the model 

that has been constructed, searching for errors in the model, testing the model within real world. 

Depending upon the desired outcome of the research and how to acquire the knowledge, there is 

two possibilities may choose between inductive or deductive approach, the research performed in 

this work follow a deductive approach, this approach move from general to specific often begins 

with theory for principally on testing the theory (figure 1.4). This theory gives formal and logical 

explanation of some events that include prediction of how things relate to one another (Zikmund, 

2010). 

The theory supported of this research supporting that the integrated model based on Bayesian 

control chart and CBM can be predict impending failure. That is used to pursue the next step 

which is hypothesis. The hypothesis offered by theory stating that decreasing maintenance cost 

can be made through integrated model based on Bayesian control chart and CBM. After 

formulating the hypothesis, so this hypothesis proposed in this work is proved in the context of 

industrial partner of this thesis-a large sized manufacturer of cement industry (Secil).  Once the 

hypothesis offered by theory are confirmed, the theory is supported, however if the hypothesis is 

rejected, the theory is not supported, in this case it is necessary to re-evaluated or modify the 

theory. The decision about accepted or rejected such hypothesis mainly based on the result of 

examination the specific outcomes. 

 

 

   

 

 

Figure 1.4-Induction and deduction approach (Walter Wallace, 1971). 

According to literature there are essentially six major steps in the deductive process including: 

theory, hypothesis, data collection, findings, hypotheses confirmed or rejected, revision of theory 

(Bryman, 2006). The research processes adopted on this work is not strictly linear; it may flow in 
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several directions before reaching the goal of this study. Figure 1.5 depicted overview about 

research methodology used in this study for answering the research questions, although, the 

series of decision about specific steps required to follow for completing the design study 

(adapted from Walter Wallace (1971)). 

 

 

 

 

 

 

Figure 1.5- Overview of the research methodology used inthis research 

 

Figure 1.5- Depicted a scheme for general methodology of design any scientific research lead to 

scientific knowledge occurs with credibility, transferability, dependability. 

 

 

 

 

 

 

 

 

 

Figure 1.6- A scheme for general methodology of design science research (Vaishnavi and Jr., 

2008). 
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This research project is an interactive process in which steps bled into each other, it applies one 

cycles of the steps, this research project uses scientific methods to transform idea into scientific 

knowledge, so results one article and many conferences. Fig 1.6 showed how to develop more 

sophisticated model by application (by involving) scientific method in order to ensure robust and 

better accuracy. The thesis aims to develop a new methodology based on Bayesian control chart 

for predicting failures of item incorporating simultaneously two types of data: key quality control 

and measured machine condition indicators. These observation can be fused by using Bayes 

theory to give a posterior probability estimate of the warning state which is unobservable (upper 

control limit), in this case the process is monitoring by plotting the posterior probability in 

control chart in which can be compared with a control limit to assess whether a full inspection is 

need or not. In this study, we review modelling approaches for system deterioration. An Matlab 

software for analyzing and estimate the transition probabilities in 3-State Models. State 1 and 2 

are unobservable, represent normal and warning state, respectively. Only the failure state 3 is 

assumed to be observable. Although, failure modeling is important for designing such Bayesian 

control chart. The objective is to find a stopping rule under partial observations, minimizing the 

long-run expected average cost per unit time for a given sample size and sampling interval. An 

algorithm must be developed to find the optimal control limit and the minimum average cost. 

This approach are illustrated using real data obtained from condition monitoring technique 

collected at regular time epochs from Atox Mill used in cement industry (Secil Portugal). One of 

the main contributions of this a new approach is promote to give the lower maintenance cost for 

real process control. 
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Figure 1.7- A scheme for research methodology of design this research project. 

This research work is a multi-stage process that should be undertaken to achieve the goals set. 

The precise number of stages varies, but they usually include formulating and clarifying a 

topic, reviewing the literature, designing the research, collecting data, analyzing data, 

conclusion and finally writing up. Various models can be found in research textbooks such as 

hypothetico-deductive process, exploratory study, and inductive process. 
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To develop a decision making models, the scientific method includes a step to design the 

model. Furthermore, this research method fits with the objective of this project and, then, it 

will be followed for its development by addressing the following 3 steps:  

 Literature review 

o Define the research question and objective. 

o Generate and refine the keywords. 

o Define the parameters related to the present work. 

o Understand the importance and purpose of the present research project based on 

a critical literature review. 

o Write a state of the art report. 

 Design 

o Describe the system to be modeled and define its boundaries.  

o Analyze and describe the structure and requirements of the model. 

o Apply appropriate skills and theoretical knowledge to construct the model. 

o Evaluate the solution through training data. 

 Validation: 

o Plan and design experiment. 

o Define the data collection process. 

o Perform experiment. 

o Record and analyze ongoing and final results. 

o Interpret the results and draw conclusions. 

1.4 The structure general of the thesis 

This thesis consists three parts are as follow: chapter 1 to 2 on general introduction and state of 

the art, it summarizes the main findings gathered from various sources (knowledge flux), chapter 

3 on theory applied in CBM modeling, finally chapter 4 on the process of design model and 

conclusion (central design model section and output).   
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Part one: “knowledge flow and Research topic” 

Chapter 1: This serves as an introduction to the reader in term of motivation, aims, scope, and 

research question and why these research area important, gape in literature and topic were. It also 

explains the research methodology that applies throughout the preparation of this study. The 

objective of the proposed work is presented in this part. 

Chapter 2: This chapter provides some concept and background of the maintenance as well as 

summarizes the different type and models which are found in the literature. It also focuses on 

condition based maintenance models. It will then explain the importance of statistical control 

chart for condition based maintenance. 

Part two:“A theory and tools applied for many practical problems”  

Chapter 3: This chapter discuss the different stochastic processes and how they were applied to 

CBM modeling. Then, it will presents the important of Bayesian control chart in CBM and why 

it is the best tools for maintenance optimization as well as some practical application of that 

model in real world phenomena.  

Part three: “Process of design and conclusions” 

Chapter 4: This chapter presents research strategy on how we go about answered the research 

questions, as well as how we found out in response to these research questions.  

Chapter 5:  In this chapter, the practical application of the designed model on cement industry is 

discussed. The study case is about Atox Mill ’ equipment, this chapter also contains: introduce 

the company, data collected and analysis, techniques and algorithm that have applied for 

developed work, the analysis and results study in relation to the research questions are presented 

and discussed. 

Chapter 6: This chapter draws general conclusion relative to this study, original contribution, 

significance of this work in maintenance field, and finally future research resulting from this 

work are provided. 
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Chapter 2  

Literature review 
 

This chapter presents a comprehensive state of the art that covers a short overview of theconcept key, 

terminology and characterizations related to maintenance. Although, it includes a board rang literature -

related to CBM models of real problems. Several alternative maintenance models are available in the 

engineering literature with different ways which are hightlighed.The focus on this chapter will be the 

integrated model condition based maintenance and Bayesian control chart that are used in maintenance 

decision making.  
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2.1 Manufacturing Equipment Failure, Degradation, Fault, and Error 

Machinery equipment has to keep at a high level of performance during their whole cycle life. 

However, it is difficult to the system run or has extremely high reliability without intervention of 
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the people who works continuously to keep creating safety and keep continuing the system 

within the boundaries of tolerable performance (Cook, 2000). Each kind of system from 

manufacturing industry to aircraft system are dynamic feature and the behavior of item changing 

over time because of it is operating under certain stress or load in the real environment as well as 

the intervention of engineers and expert. The systems are inherently unavoidably of some of 

unwanted technical events such as degradation, failure, error, and fault. Consequently, when they 

will appear the results will be catastrophic as an accident or incident, even loss of working day 

and economic losses (e.g., failure of the server makes it hardly to serve the customer or user). 

For avoiding all these technical events, system operation requires more robust system and 

management skills such as: designed safety system when new risks are being taken (O’Conner, 

2002), intelligent model for prediction, new vision of maintenance, advanced condition 

monitoring technology, changing the behavior way, new regulation and rules, reducing degree of 

uncertainly, adapting a new technology in operating and controlling room, invest in staff 

experience for future. Therefore, in nature system operations are dynamic inclusive organization, 

human, and technical and a failure as well. The machinery equipment operation can be affect by 

four future technical events as follow: 

Event 1-Degradation. The effect of this random event might be appeared as a failure where 

degradation process (degradation path) used as underlying to find out the occurrence of the 

failure. In fact, failure occurred when the amount of degradation beyond to the degradation or 

approximate level at which the failure would occur. Generally, an item is subject to degradation 

with time (age), usage (working hour) and obvious environment where it working. To assess 

reliability requires not only recorded the information of the failure time but also requires the 

amount of degradation because if, assess reliability only upon on failure time might be 

considered as difficult to assets. There are two ways to provide information or degradation data 

in such degradation measurement, the first one it is possible to measure physical degradation as a 

function of time (e.g., tire wear), the other one is considered as unobservable, in such 

degradation measurements can be result of monitoring performance degradation, e.g., power 

output (Meeker and Escobar, 1998).   
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Naturally, an item is subject to degradation that lose their utility over time, due to decay, damage 

or spoilage. For example, these are commonly found in electronic/electro-mechanic, 

pharmaceutical, chemical and goods(Wee and Widyadana 2013). The deterioration is described 

as an increasing stochastic process where the item has a threshold and it fails once the 

degradation level exceeds this identified threshold (Abdel-Hameed 2010). It’s recognized that 

deterioration of item is a function of a set deterioration parameters. Some of examples of 

deterioration parameters are found in deformation level, are: corrosion level, diameter of shaft, 

temperature, depth of cut, and lubrication condition (Amari et al. 2006). It is recommended to 

model deterioration in terms of a time dependent stochastic process {X (t), t≥ 0}where X (t) is a 

random quantity for all t≥ 0. A variety of stochastic process introduced for modeling the multi-

stage of deterioration process or item can be found in literature(Singpurwalla 1995).  

To develop such models for degradation process required start with deterministic description of 

the degradation process often in the form of a differential equation or system of differential 

equations. Then randomness can be introduced, as appropriate, using probability distribution to 

describe variability in initial conditions and model parameters like rate constants or material 

properties. However, the important challenge facing the degradation analysis is to find variables 

that are closely related to failure time and develop methods for accurately measuring these 

variables. Indeed, structural capacity deterioration is among the main causes of increasing failure 

probabilities of structural systems (Barone and Frangopol 2014; Makis, 2003). 

Thus, the relationship between amount of degradation and failure time can be used to advantage 

in estimating reliability. However, when there is not a strong correlation between failures times 

and degradation, there may be not helpful by using degradation data instead of traditional 

censored failure-time data. There are two approach for modeling stochastic deterioration, we can 

use either a failure rate function or stochastic processes such as: Random Deterioration Rate, 

Markov Process, Brownian Motion With Drift, and Non-Decreasing Jump Process, Gamma 

Process (Noortwijk 2009). 

Although, there are three following possible shape for degradation path: (i) linear degradation, 

(ii) convex degradation, (iii) concave degradation.  
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Event2-Failure. The term failure is commonly used in reliability engineering to designate the 

inability of an item, product or service to perform required functions on demand due to one or 

more defects (Bauer et al., 2006). The failure occurs in engineered system when the item stops 

performing its required function. In another word, failure occurs when item no longer can 

perform its intended function safely (Affonso, 2006). Indeed, Failure may refer to an event that 

can occur at any time and nearly at any place, it is always present by the nature own. The failure 

time is defined as the time when the actual degradation path crosses the critical level for the 

degradation path. Naturally, a failure occurs when the degradation level is found above the 

predetermined threshold or warning limit, (Cook, 2000). Therefore, the relationship between 

component failure and amount of degradation makes it possible to use degradation models and 

data to perform inference and prediction about failure time (Meeker and Escobar 1998). 

There is a considerable amount of description the concept of failure on engineering books and 

papers. According to norm (NP EN 13306, 2001) failure is defined as a state of an item 

characterized by inability to perform a required function, excluding the inability during 

preventive maintenance or other planned actions, or due to lack of external resources. A failure is 

considered as the inability of any item to do what its users want it to do (Moubray, 1997).  

Blache and Shrivastava (1994), defined the failure as the termination of the ability of an item to 

perform a required function. Frawley (2002), described the failure as an event in which a 

previously acceptable product does not perform one or more of its required functions within the 

specified limits under specified condition. The Society of Automation Engineering's (SAE) 

“Reliability and Maintainability Guideline for Manufacturing Machinery and Equipment (M and 

E)” defines the failure as an event when equipment is not available to produce parts at specified 

conditions when scheduled or is not capable of producing parts or perform scheduled operations 

to specification. This is due of the following root causes: electrical, mechanical, environmental, 

thermal, physical. Therefore, it is necessary to perform an action while the failure occurs, under 

these circumstances failure of item can be a root cause of significant damage and health safety 

environment hazards (Tsang, 1995). In addition, there are other definition to the failure and 

characterization available in the engineering literature such as: Del Frate et al., (2011); Prasad et 

al., (1996); Tam and Gordon, (2009); Frate, (2013); Birolini (2007). 
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Generally, items may suffer two different types of failures as follows: The first one refer to soft 

failure (minor failure)mean there is a gradual loss of item’s performance but neither total nor 

rapid, which result in item malfunctioning, on the whole, item is still considered to be in working 

state (the item is progressively wearing out). In that case, items continue to operate even if a 

minor failure occurred and has not yet been detected but under inferior conditions which incur a 

malfunction cost per time unit. Eventually, this failure can be identified at specified level of 

degradation and then corrected by repair. According to International Electro-technical 

Commission (IEC vocabulary), soft or a minor failure is also called a gradual failure. 

The second one is called hard failure (major failure), which is non-repairable. In this case, the 

losses function of an item is total which renders the item completely out-of-function, and they 

need only replacement action. According to International Electro-technical Commission, failure 

is called as sudden failure while a sudden drop beyond the acceptable limits qualifies as a sudden 

failure. A major failure is fatal for the item, i.e. the item is no longer functional, and incurs a 

downtime cost per time unit until the item is replaced. In addition, an item which has 

malfunctions, due to an undetected minor failure, can still suffer a major failure with higher 

probability compared to a normally operating item of the same age. Both of these two type of 

failure are not directly observable and the actual items condition can only be detected through 

inspection. Hence, an items that have already suffered a minor failure are more likely to major 

failures where the probability of a occurrence major failure is higher in malfunctioning items 

then in normally operating ones (Meeker and Escobar 1997; Panagiotidou and Tagaras 2014).  

Nevertheless, effectiveness of maintenance strategy is not focusing only on the profit but also on 

predict of the impending failure. Generally , in order to avoid failure three ways are required: the 

first one is a technical way action including an item failure prediction, reliability analysis and 

engineering, as well as inspections are periodically held to detect any failures and the inspected 

items are preventively maintained, repaired or replaced according to their condition 

(Panagiotidou 2014). The second one is human strategy by investing in knowledge, the last one 

refer to the variety of organizational, institutional, and regulatory defenses (e.g., policies and 

procedures, certification, work rules, team training) (Cook, 2000). However, failure changing 

constantly because of changing technology, work organization, and efforts to eliminate failures. 
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In addition, there are several good reasons why an item become failure, some of those reasons 

including: component failures, customer use/installation, condition field can also result in failure. 

Taking into those components, the consequence of failure can leading up to any significant 

catastrophic such as: process shutdown, damage property, and economic cost penalties. In terms 

of classification of failure, the last can be ranked according to its consequence such as: 

catastrophic, critical, major, and minor (Hammer, 1972). 

According to literature, failure can be analyzed in terms of three main assumptions including: 

missing functionality, utilization context, item level. In order to determine the occurrence of 

failure defining the performance parameters for all functions, target levels, and acceptable limits 

are required. Generally, an item failure is often based not only in the age but also based on non-

age related factors (e.g., Maintenance models is often based on non-age related factor). 

In mathematical, failure probability of a system is defined as the probability of violating one or 

more limit states associated with the system failure modes. The performance function g(t) for a 

given failure mode is generally defined as: 

g(t) = r(t) − q(t)          (2.1). 

Where r(t) and q(t) are the instantaneous resistance and load effect at the time instant t, 

respectively. Resistance and load are time-dependent random variables; for engineering systems, 

if no maintenance is considered, resistance is usually deteriorating over time, while loads are 

increasing (Barone & Frangopol 2014).  

Event 3-Fault. According to the IEEE glossary, the fault can be viewed as the state of an item 

characterized by inability to perform a required function, excluding the inability during 

preventive maintenance or other planned action, or due to lack of external resources (e.g., short 

circuit, broken transistor, incorrect step, incorrect process, and incorrect data definition in a 

computer program). Furthermore, fault is totally different to failure; it can be interpreted as a 

physical defects, imperfections, or flaw that occurs as an erroneous state in hardware or software 

(software does not have age or wear out, it is a collection of instructions and code installed into 

the computer and cannot be touched or broken, hardware is any physical device, something that 

you are able to touch). For occurring failure requires multiple faults where, the fault state can be 

http://www.computerhope.com/jargon/s/software.htm
http://www.computerhope.com/jargon/h/hardware.htm
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appeared only when at least one of the performance parameters will trespass the boundary 

(Cook, 2000).  

In engineered system, the fault can be classified into three categories as follow: the first one is a 

permanent fault remains in existence indefinitely if no corrective action is taken (e.g., caused 

short circuit in transistor), the second one is a transient fault can appear and disappear within a 

very short period of time (e.g., caused by lightning), and the other one is an intermittent fault 

(e.g., weak solder joint) appear, disappears and then reappears repeatedly. Depending on fault 

cultures and professional categories (staff or line) failure has interpret upon various ways such 

as: failure with respect of each other’s, e.g. Failed says production manager is when equipment 

stop working, failed says maintainer when consumption is higher, failed says safety officer if the 

leak creates a pool of oil on the floor in which people could slip. 

Figure 2.1 shows variation of observed level of a performance parameters of an item versus time.  

Consider a path starting at t0=0, where the observed performance satisfying target value, then a 

graduated performance starts deviate from the target value at some intermediate time t1 which 

after some intermediate time, the observed performance exceeds the acceptable limits and then 

may be reaches the time t2, at this time the item have to be in a fault state. 

 

 

  

 

 

 

 

 

 

 

Figure 2.1- level of a performance variable of an item versus time (Rausand and Øien 1996).  
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In general, there are four origins of faults as follow: (i) specification mistakes refers to incorrect 

algorithms, incorrectly specified requirements (timing, power, environmental). (ii) 

Implementation mistakes such as: poor design, software coding mistakes, (iii) component defects 

such as: manufacturing imperfections, random device defects, components wear-outs, (iv) 

external factors such as: radiation, lightning, operator mistakes. Besides, it is very difficult 

analyze a system without assuming some fault models, because it is not easy to simulate faults or 

to design test procedure. In monitoring system, there are a set of defenses such as: (i) fault 

detection refers to identify that a fault has occurred, fault location, (ii) fault containment refers to 

prevent propagation of the fault, (iii) fault recovery refers to modify structure to remove faulty 

component.  

Event 4-Error. Notion of error is relative and it depends on what the conceptually is applied, 

thus, although depending either on the framework interested such as: financial, statistic, decision 

or the culture of precision. For example: errors in the displayed data, radar error, compass error, 

error in interpretation, random error, password error. In engineered system, an error can be 

interpreted as a deviation from correctness or accuracy, thus, error is usually associated with 

incorrect value in the system state. In fact, scientist has to undertake to reduce and to avoid a 

potential error as much as possible regardless the field (e.g., organization, engineered system).  

Therefore, the culture of error and environment should be developed in organization to change 

human behavior to find out: how to prevent error, what are the key role in organization to 

contribute an error, how to detect an error, how to reach understanding notion of the error and 

they must communication with only one way. Therefore, a methodology for identifying, 

predicting an errors, how to correct and error, required hazard analysis tools such as: HAZOP, 

CW, SHERPA,HAZAN. The prediction of human behavior in complex environments, 

assessment errors models (Power and Fox, 2014; Kletz, 1992; Kirwan, 1992). A schematic 

diagram showing all potential components of error: 

 

 

 

 

                                   Figure 2.2-The five components of error. 
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Considering what have been mentioned before, obviously there are dependency between all these 

unplanned events (failure, fault, error, degradation), faults can result in error, error can lead to 

system failures, error are the effect of faults, failure are the effects of errors (Dubrova, 2013). A 

Figure 2.3 illustrate the relationship cause-effect between origins fault, error, failure, and fault 

state, and how they are impacting in a system and lead to the fault state. 

 

 

 

 

 

 

Figure 2.3-Cause effect relationship between fault, error, failure, and fault state. 

 

 

 

 

Figure 2.4-System processes.  
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catastrophic accident especially for complex system (e.g., nuclear plant, aircraft, and power 

plant). Furthermore, an appropriate maintenance strategy can be considered as an efficient way 

to assure a satisfactory level of reliability during the useful life of items (Jardine et al. 2006; 

Barone & Frangopol 2014). Besides, an accurately modeling of degradation, life time, failure, 

risk, is major challenge facing for the engineering community. The source of uncertainties is not 

only related to the structural models but also to randomness inherent within natural phenomena. 

Although, a rational way to treat uncertainties arising from natural randomness, modeling, and 

prediction imperfections is to consider probabilistic approaches (Barone & Frangopol 2014). 

Figure 2.5 depicted Resistance, load effect and maintenance cost over time shows the effect of 

essential maintenance by assuming that the structural resistance is returned to its initial value 

after repair. Time delay for performing repair is not considered; therefore, the resistance is 

instantaneously increased at the repair time, and the cost of the maintenance intervention is 

concentrated at the same instant. It has to be noted that the load is, in general, increasing over 

time due, for example, to the increasing demand in terms of traffic load to which bridges are 

usually subjected. Such load is not affected by maintenance actions during the structural life-

cycle. 

 

 

 

 

 

 

Figure 2.5-Resistance, load effect and maintenance cost over time (Barone & Frangopol 2014).  
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2.2 Dependability Measures: Reliability, maintainability and availability 

Nowadays, dependability is becoming more important in the engineering area for both hardware 

and software system, this because due to the increasing a huge number of the system complex 

and automat programmable in manufacturing industry, nuclear power, aircraft. All of these 

system need to be operating within context of dependability. In modern community, researchers 

and engineers are making a great effort to improve efficiency maintenance cost through to 

enhance on the reliability, safety, availability, and maintainability in order to provide as possible 

as a safe operating climate. However, insufficient reliability of item generates high maintenance 

expense and unavailability of system or arresting of the service and eventual loss of market 

(Salata et al., 2014). Detecting the loss of the item's reliability is considered as an advanced 

warning that degradation has started. Thought, to detect this change in performance level through 

reliability measures ensure to forecast impending failure. 

The maintenance is considered as one of the other ways that can increase the reliability of 

system. The lower reliability of an item have to decrease to the maximum by maintain and 

restoring the machinery item in which guaranteeing the highest efficiency and safety for their 

use. From mathematical point of view, the most commonly used definition of dependability 

measures is the following: 

Reliability 

There are many definitions of reliability that can be found in papers and books, thus, various 

ways that the concept reliability has been applied vary from industry to industry, and from user 

to user, as well as cycle life of items. According to Salute, et al. (2014) reliability of a system can 

be interpreted as the property of the system to keep in time interval the quality in some expected 

condition during its use. The reliability society of the institute of electrical and electronic and 

engineers (IEEE) considered the reliability as design engineering discipline which applied 

scientific knowledge to assure a product will perform its intended function for required duration 

with a given environment. Lloyd Contra (1993), views the reliability as product performance 

over time. The reliability is defined as the probability that items will perform its intended 

function under operating conditions, for a specified period of time. Indeed; improving reliability 

task is performed by improving product quality, unreliable product lead to not a high quality 
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product (Meeker and Escobar, 1998).There is a strong relationship between improvement quality 

and increasing the reliability of system. The parameter obtained through the reliability theory 

must be monitored, because its play key role important in the continuity of system operating and 

perpetual service. Decreasing reliability of system below a specified level of performance can 

imperil the safety of customer and economic. The procedure must be following to increase the 

reliability are (Kane and Cepin, 2012): 

o Improving the quality of every component that is part of the complex system. 

o Formulating methods aiming at planning reliable systems and optimized methods of 

maintenance for those systems during their exertion (continuously). 

Reliability is the analysis of failures, their causes and consequences. Reliability system is one of 

the most important characteristics of system or product quality. The assessment and analysis of 

system as a function item reliability in which it is necessary during the life cycle of item to 

predict the failure as early as possible. In addition, measures of component importance with 

respect to reliability provide information that is needed to develop effective strategies to improve 

system reliability (Meeker & Escobar 1997). It is considered as a crucial attribute have to be 

satisfied before considering other quality attributes. Once achieves high reliability through 

careful systematically monitoring all phases of the development process, i.e. design, materials, 

production, quality assurance efforts, ongoing maintenance, and a variety of related decisions 

and activities. All of these factors must be considered in determining the costs of production, 

purchase, and ownership of a product (Blischke and Murthy, 2003). They are three reliability 

methods with different aim and intend such as: (i) method to measure and predict failures, (ii) 

methods to accommodate failures, (iii) methods to prevent failures.  

An item failure in the system cannot occur expect on a specific occasion when a set of specific 

data is put into the system under a specific condition of item. Item reliability is dependent on the 

input data and the internal condition of the item. Reliability is one feature of dependability 

among other such as: maintainability, availability, safety, therefore, generally depends on 

knowledge of a repair time distribution. A specific performance measures can be embedded into 

reliability analysis by the fact that if the performance measures is exceed a certain level, a failure 
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can be occurred. Item reliability depends on component quality, manufacturing, robustness and 

quality of design which has high reliability and result minimum maintenance requirement.  

Mathematically, Reliability is the probability that the system will perform its intended function 

under specified working condition for a specified period of time. The reliability function is 

defined as the probability of the system being in the set of up states 𝑈 through the time 

interval[0, t], t ≥ 0. The reliability function denoted by R (t), and it can be written as follow 

(Osaki, 2002):  

𝑹(𝒕) =  ℙ(𝑌𝑣𝜖 𝑈 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝜖 [0, 𝑡])               (2.2). 

The interval reliability is defined as the probability that the system is in the set of up states U 

through the time interval [𝑡, 𝑡 + 𝑥], 𝑌 is state at time v with x, t≥0. The interval reliability can be 

written as follow: 

𝑹(𝒙, 𝒕) =  ℙ(𝑌𝑣  𝜖 𝑈 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝜖 [𝑡, 𝑡 + 𝑥])    (2.3). 

 

In another word, Mathematically, the reliability function R(t) is the probability that a system will 

be successfully operating without failure in the interval from time 0 to time t, where T’ is a 

random variable representing the failure time or time-to-failure. 

 

𝑹(𝒕)  =  𝑃(𝑇′ >  𝑡), 𝑡 ≥  0      (2.4). 

 

Hence, the interval reliability is equal to the reliability, if 𝑡 = 0,  so from Eq(2.5), then 

R(x,0)=R(x). Otherwise, if 𝑥 = 0, the interval reliability is equal to the availability, R(0,t)=A(t). 

The joint interval reliability is defined as the probability that the system is in the set of up states 

U throughout both [t1, t1+ 𝑥1] and [t2, t2+ 𝑥2] with t1, 𝑥 1, t2, 𝑥2≥ 0.  

 

R(𝑥1,𝑥2, t1, t2) =  ℙ(𝑌𝑣 𝜖𝑈𝑓𝑜𝑟𝑎𝑙𝑙𝑣𝜖[t1,t1+𝑥1]U[t2,t2+𝑥2])  (2.5). 

 

In addition, item reliability is derived from the following equation: Probability of item working 

plus probability of item failure. Therefore, Probability of item working =1-probabaility of item 
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failure, where the probability of item working is the definition of reliability. Generally, there are 

two types of reliability computation: 

(i) Reliability up to time t can be computed as: 

R(t) = 1 − probability of failure up to time t   

=1-∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
=1 − 𝐹(𝑡)                 (2.6). 

F(t) : Is the cumulative probability up to time t, also called cumulative distribution 

function (cdf) 

(ii) Reliability during an interval t2-t1 can be computed as: 

R(t2-t1) = 1-∫ f(t)dt
t2

t1
         (2.7). 

The failure probability, or unreliability can be expressed as follow:  

      𝐹(𝑡)  =  1 −  𝑅(𝑡)  =  𝑃(𝑇 ≤  𝑡)           (2.8). 

Sometimes the probability of failure during an interval can be defined in terms of reliability. For 

example:  

𝑃(𝑡1, 𝑡2) =  𝐹(𝑡2) − 𝐹(𝑡1)         (2.9). 

 

Where , F(t2) =1-R (t2), and F(t1) =1-R (t1), then 

 

𝑃(𝑡1, 𝑡2) =  [1 − 𝑅 (𝑡2)] − [1 − 𝑅 (𝑡1)]       (2.10). 

 

If the time-to-failure random variable T has a density function (𝑡) , then  

 

R(t) = ∫ f(𝑥)d𝑥
∞

t
         (2.11). 

 

R(t), F(t) and f(t) are closely related to one another. If any of them is known, all the others can be 

determined. 
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Availability 

Availability is defined as the probability that the system is in the set of up states U at the time 

instant t, t ≥ 0. Different from the reliability that focuses on a period of time when the system is 

free of failures, availability concerns a time point at which the system does not stay at the failed 

state. Mathematically, the availability denoted by A (t), and can be computed as follow (Osaki, 

2002): 

A(t) = ℙ(system is up or available at time instant t)      (2.12). 

Point of view mathematical, availability is defined as the probability that system is available at 

time t; however the reliability is the defined as the probability of system is working on a period 

of time.  

The joint availability refers the probability of the system being in the set of up states 𝑈 at both 

time instants t and 𝑡 + 𝑥, witht, 𝑥 ≥ 0. The joint availibility can be written as follow:  

A(x, t) =  ℙ(Yt, Yt+1ϵ U)         (2.13). 

Where U is set of up states. 

Generally, maintenance management aims to improve operational availability and functional 

availability. Operational availability is used to calculate how long the system is in operation in 

relation to intended operating time. It mainly shows the technical capability to keep on operating 

while maintenance is being carried out. Systems that must be taken out of operation for longer 

repair works have a lower level of operational availability than others. A system with low 

reliability but high operational availability indicates an efficient maintenance organization. 

Furthermore, functional availability is used to quantify the system’s capability both to be in 

operation and at the same time maintain intended levels of function.  
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Maintainability 

Maintainability is defined as the probability that a failed system will be restored to a functioning 

state within a given period of time when maintenance is performed according to prescribed 

procedures and resources. Maintainability analysis search to minimize downtime, reduce repair 

time, and as result reduce the maintenance cost. Some of inputs for maintainability come from 

reliability analysis such as lowers item failure rate over the long term, reduce item’s warranty 

cost (Raheja and Allocco, 2005). In Mathematical point of view, the Maintainability denoted by 

M(t), is defined as the probability that the failed system will be back in service by time: 

M(t) =ℙ (T≤ t) = ∫ m(x)dx
t

0
         (2.14). 

Where, M(t) is the maintainability function, T denoted the time to repair or the total downtime, T 

follow a density function distribution denoted by m(t).  

Generally, maintainability is used to calculate the probability that repair times will not exceed an 

acceptable level. Repair work usually involves the system being taken out of operation, so it is of 

interest to minimize repair times. Long repair times mean low maintainability (Myrefelt, 2004). 

The commonly reliability terms based on methods and procedures for lifecycle predictions apply 

to specific item is the following: 

a) Mean time to failure (MTTF) 

The mean time to failure can be defined as an expected value of the lifetime before a failure 

occurs, and it’s denoted by MTTF. It is one of many ways to evaluate reliability of items. Thus, 

it is used for non-repairable products. The expression of MTTF is given by: 

𝑴𝑻𝑻𝑭 = ∫ 𝑡. 𝑓(𝑡)𝑑𝑡
∞

0
= ∫ 𝑅(𝑡)𝑑𝑡

∞

0
        (2.15). 

 

Example. If the lifetime distribution function follows an exponential distribution with parameter 

λ, that is, F (t) =1 − exp (−𝜆𝑡), the MTTF is expressed as follow: 
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𝑴𝑻𝑻𝑭 = ∫ 𝑅(𝑡)𝑑𝑡 = ∫ exp (−λ
∞

0

∞

0
𝑡)𝑑𝑡 =

1

λ
      (2.16). 

b) Mean time between failure (MTBF) 

Mean time between failures is known as the expected number of operating hours before a system 

fails, and it is denoted by MTBF. Mean time between failures is supported by the companies that 

are ISO certified, as functional as possible intended to achieve the goals of “zero defect” and 

“continual improvement”. The value of MTBF can be computed as follow: 

 

MTBF=
1

Failure rate 1+failure rate 2+⋯+failure rate n
      (2.17). 

 

Where denominator is the failure rate of each component of the system. 

c) Failure rate function 

The failure rate function represents the changing rate in the aging behavior over the life of a 

population of components. The failure rate function, or hazard function, is very important in 

reliability analysis because it specifies the rate of the system aging. The instantly reliability of 

two identical items may provide the same reliability, but the failure rate function can be 

different. The definition of failure rate function is considered as the probability that an item of 

age t will fail in the small interval from tto t + dt. The failure rate function denoted by λ (t) and 

can be expressed as follow: 

λ (t)= lim
△𝑡⟶0

𝑅(𝑡)−𝑅(𝑡+△𝑡)

△𝑡𝑅(𝑡)
=

𝑓(𝑡)

𝑅(𝑡)
        (2.18). 

When the failure distribution function follows an exponential distribution, the failure rate 

function is a constant (λ). For this reason the system does not have any aging property, e.g., 

software systems, electronic component. In this case, the failure rate function can be computed 

as follows: 

λ (t)=
𝑓(𝑡)

𝑅(𝑡)
=

𝜆.exp (−𝜆𝑡)

exp (−𝜆𝑡)
= 𝜆      (2.19). 
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 Figure 2.6-Bathtub curve of failure rate. 

The bathtub curve failure rate is very important in reliability engineering and widely used by the 

academic researchers and practitioners (Figure 2.6). The shape of failure rate function is similar 

to the shape of the bath, for this reason the name is derived from the cross-sectional shape of a 

bathtub. The plot showing failure rate or hazard rate versus time, it describes item failure lifetime 

distribution over time which contributed to the bathtub curve. In reliability the term failure rate is 

either hazard rate which is the likelihood of failure of an un-repairable item or for the rate of 

occurrence failure, and denoted by ROCOF which is applied to repairable items (Lioyd and 

Condra, 1999). Indeed, the hazard rate entails three distinctive parts as follow: the first one is 

called as an infant mortality where the hazard rate decreasing (λ (t)≤ 0), the second part is 

known as useful life where the hazard rate is constant (λ (t)= 𝑐𝑡𝑒), and finally the third part 

which known as an end of life or wearing out as the product exceeds its design lifetime, where 

the hazard rate increasing (λ (t)≥ 0).  

Therefore, the group known as AGREE (Advisory Group for the Reliability of Electronic 

Equipment) who was the first introduced the Bath-tube in reliability engineering in the 1950’s, 

and discovered that the failure rate of electronic item had a pattern similar to the death rate of 

people in a closed system.  Specifically, they noted that the failure rate of electronic components 

and systems follow the classical “bathtub” curve (Bazovsky 1961). 

 

d) Mean Time To Repair (MTTR)  

Time 

Failure rate 

Useful life Infant mortality End of life 

λ(t)≤ 𝟎 λ(t)= 𝒄𝒕𝒆 λ(t)≥ 𝟎 
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The mean time to repair (mean downtime) is the time needed to repair a failed item. Generally, 

MTTR is used to compute the value expected time for the restoration to replace a failed item. 

The value of MTTR is the time interval during which the system is in a state of unavailability 

(Blanchard and Lowery, 2005). The cost to repair an item increased, while the time to bring the 

system into normal state is longer, for this reason it is necessary to reduce the value of MTTR at 

significant level. MTTR can be interpreted as an indicator of performance of the maintenance 

service efficacy, especially from the point of view of the logistic organization (Ashrae, 1999). 

Example. If the time to repair a failed items follows an exponential distribution with 

parameter µ, that is, F (t) =1 − exp (−µ𝑡), the MTTR is expressed as follow: 

 

𝑴𝑻𝑻𝑹 = ∫ exp (−µ
∞

0
𝑡)𝑑𝑡 =

1

µ
        (2.20). 

 

The mean time between failures (MTBF) is another important measure in repairable systems. 

This implies that the system has failed and has been repaired. Like MTTF and MTTR, MTBF is 

an expected value of the random variable time between failures.  

Failure in Time (FIT) 

Failure in time reports the number of expected failures per one billion hours of operation for a 

device. Failure in time is another way of reporting MTBF.  It denoted by FIT, this term is used 

particularly by the semiconductor industry but is also used by component manufacturers. 

When the failure rate and repair rate are constant, the lifetime distribution function 𝐹(𝑡)  = 1 −

 𝑒𝑥𝑝(−𝜆𝑡), and a maintainability function 𝑉 (𝑡)  =  1 −  𝑒𝑥𝑝(−µ𝑡)with parameter µ, then 

𝑀𝑇𝑇𝐹 =  1/ 𝜆 and 𝑇𝑇𝑅 = 1/ µ . The MTBF is the sum of MTTF and MTTR then, the steady-

state availability = MTTF/MTTF+MTTR 

2.3 Maintenance Function 

Maintenance is defined as the combination of all technical and administrative actions, including 

supervision actions, intended to retain an item in, or restore it to a state in which it can perform a 

required function. This definition is also adopted by (Dekker, 1996), and by the maintenance 
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standard EN13306: 2001. The maintenance function has attracted the attention of many 

practitioners and academics once it plays a key role in achieving productivity and cost 

effectiveness, as well as customer’s satisfaction. It contributes to reduce equipment downtime, to 

improve quality and to ensure availability and safety (Muller et al. 2008). Kelly (1984) shows 

that maintenance organization has three essential components which are interconnected, as 

follows: resources (e.g., personnel, tools/equipment, spare parts), administration (e.g., manager, 

hierarchy, authority) and work planning and control (planning, feedback information). There are 

lot of articles and books that address the concept of maintenance in engineering and quality area 

(Moubray.  1997; Gulati, R. and Smith, R. 2009,). Garg and Deshmukh (2006a), narrowed down 

maintenance literature into six main-classes as follows: policies, information system, 

optimization models, techniques, scheduling, and performance measurement. 

Engineering maintenance is an important sector of the economy. Each year U.S. industry spends 

well over $300 billion on plant maintenance and operation, and in 1997 the U.S. Department of 

Defense’s budget request alone included $79 billion for operation and maintenance. 

Furthermore, it is estimated that approximately 80% of the industry dollars is spent to correct 

chronic failures of machines, systems, and people. However, the elimination of many of these 

chronic failures through effective maintenance can reduce the cost between 40 and 60% 

(Dhillon, 2002). Therefore, in many companies maintenance spending overcome 40% of the 

operating budgets. Several maintenance models can be provided for improving the life-cycle 

performance of a system. In general, maintenance models are important to ensure an item as 

possible as running well and they are the basis for maintenance policies.  

2.4 Maintenance Types and Models 

Generally, maintenance activities performed in equipment can be classified into two main 

categories: corrective maintenance and preventive maintenance. Preventive maintenance is 

further subdivided in systematic maintenance and CBM. This subdivision refers to what triggers 

maintenance activities. Current maintenance strategies have progressed from breakdown 

maintenance, to preventive maintenance, then to CBM managed by experts, and lately towards a 

futuristic view of intelligent predictive maintenance systems.  
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Firstly, corrective maintenance is reactive in nature and it refers to maintenance activities 

performed only after a system failure in order to restore its functionality. Corrective maintenance 

actions are usually referred to as repair or run-to-failure (NP EN 13306: 2001).  

According to (Garg and Deshmukh 2006a) and (NP EN 13306:2001) preventive maintenance is 

proactive in nature and consists of a series of tasks (e.g., replacements, adjustments, inspections 

and lubrications), that are performed on plant equipment, machinery and systems by maintenance 

personnel before the occurrence of a failure. Preventive maintenance aims to protect them and to 

prevent or eliminate any degradation in their operating conditions. As was mentioned above, 

preventive maintenance is further subdivided in systematic maintenance and CBM which are 

defined respectively as follows: 

Systematic maintenance also referred as time-based maintenance or block-based maintenance, 

consists on activities performed at predetermined intervals. These scheduled activities on 

equipment aim to ensure its correct functioning (NP EN 13306: 2001). 

Nevertheless, if the deterioration level of components is correlated strongly with a control 

parameter, the decision about the realization of preventive maintenance operations can be based 

on system's condition, this is called Condition Based Maintenance (Bengston, 2007; Dileo et al. 

1999). CBM is a set of maintenance actions performed based on real-time or near real-time 

assessment of equipment condition obtained from embedded sensors, external tests or 

measurements using portable equipment. In fact, the data obtained from condition monitoring 

techniques helps the maintenance manager to decide if maintenance is necessary or not by 

analyzing the actual condition of equipment (Jardine et al. 2006). 

Several maintenance models have been proposed in literature to answer a question about 

maintenance optimization. They are suitable applied for both either for single-unit systems or 

multi-unit systems in which the different characteristics, advantages and disadvantages, different 

degree of maintenance (e.g., perfect, imperfect, and minimal) as well as with different type of 

maintenance (e.g., preventive, corrective, opportunistic which it is relevant only to multi-unit 

systems) are presented. Literature provides many papers and books have been devoted to the 

design several models that applied in the real systems. The book “mathematical theory of 
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reliability” includes surveys maintenance models that aim to determine optimal decision to 

procure, inspect, and repair and/or replace deteriorating unit-system. (McCall, 1965) surveys 

maintenance scheduling policies for stochastically failing item. The author defines the 

maintenance policy for an uncertain distribution of times to failure and for known distribution of 

times to failure. Thomas (1986) describes some of the maintenance and replacement models that 

have been suggested for multi-item systems. (Valdez-Flores and Feldman 1989) survey 

preventive maintenance models, including optimization models for repair, replacement, and 

inspection of systems subject to stochastic deterioration. (Cho & Parlar 1991) survey the 

literature related to maintenance optimization and replacement models for multi-unit systems, 

known in literature optimal models can be classified into five main groups as follows: machine 

interference/repair models, group/block/cannibalization/opportunistic models, 

inventory/maintenance models, age replacement models and inspection/maintenance models. 

The authors also provide many possible ways to classify the literature related to maintenance 

optimization such as: information availability, single unit or multi-unit systems, time-

event/action relationship, state-event/action relationship, model types, optimality criterion, 

method of solution and planning time horizon. Wang (2002), surveys maintenance policies for 

deteriorating systems. The authors summarize, classify and compare various existing 

maintenance policies for single-unit and multi-unit systems. The optimization of maintenance 

planning using mathematical modeling has been also increasingly reported in literature by 

several authors (Pierskalla and Voelker 1976; Valdez-Flores and Feldman 1989; Dekker and 

Scarf 1998; Dekker 1996; Garg and Deshmukh 2006a). 

Among the most useful replacement models currently in popular use are the age replacement 

policy and the block replacement policy. The first one considers that the unit is replaced upon 

failure or at age T, and the second one considers that the unit is replaced upon failure and at 

predetermined time (T, 2T,...). Since then, models have been proposed based on these past too 

models. Barlow and Proschan (1965) proposed a periodic replacement policy, referred to the age 

replacement models with minimal repairs between replacements, and discussed the problem of 

determining an optimal preventive replacement time (age T) to minimize the long-run average 

expected cost per unit time over an infinite horizon. Barlow et al. (1963),developed a periodic 

maintenance model where a sequence of check times is specified in order to minimize the 



 

42 
 

expected total costs. Berg and Cleroux (1982)extended the ordinary block replacement model 

proposed by Barlow et al. 1963), and provide the optimal block interval T between preventive 

maintenance which minimizes the long run expected cost. Since, numerous articles have been 

proposed in this area, including theories and practical applications that have appeared in journals 

and international conferences. 

2.5 Condition based maintenance Approach 

CBM policy is based inherently on prior approach. The idea of prior approach is to use a prior 

historical information item condition for solving the problem of prognosis of item health and 

maintenance decision making. CBM is based on sequence of steps able subsequently to asset and 

to monitor the item condition in machinery or system as well as performed an appropriate 

maintenance decision.  

Therefore, CBM is a methodology that undertaking endeavors to predict incipient impending 

faults, setting up CBM enable to promote a more accurate decision maintenance action. In 

practical application, CBM decision is often including the following: no action, replacement, 

inspection, and preventive maintenance. CBM model performed based on a stochastic 

deterioration process (Butcher 2000; Jardine et al., 2006; NP EN 13306: 2001).  

There are two main reasons to develop CBM program: (i) diagnostic of failures, (ii) prognostic 

of failures. The first one refers to posteriori approach which consists in the detection, isolation 

and identification specific components in the equipment that are failure of course after its 

occurrence as well as  to determine the root cause of failure. The second one refers to priori 

approach that allows the prediction of a failure before its occurrence in order to avoid item 

breakdown or a potential accident as well as to determine whether a problem exists in equipment, 

how serious the problem is, and how long the equipment can run before its failure (Okumura 

1997; Kothamasu and Huang 2007; Jardine et al. 2006). Indeed, the main goal of CBM policy is 

to avoid unnecessary maintenance tasks by taking maintenance actions only when there is 

evidence of abnormal behaviors of an item (Jardine et al. 2006). CBM policy allows better 

perform maintenance action. It has been considered more powerful than the traditional 

preventive maintenance such as block replacement maintenance, age replacement maintenance, 

breakdown maintenance, periodic maintenance.  
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The principal benefit of CBM program is the reduction of the maintenance cost by decreasing the 

unnecessary maintenance action, as well as the avoidance of penalty costs. The primary 

objectives of an optimized maintenance strategy program that includes predictive or condition 

based maintenance CBM are: improve system availability, improve equipment reliability, 

enhance equipment life, detect problems as they occur, save maintenance costs and reduce parts 

inventory (IAEA, 2007).  

CBM has been applied in many areas since the mid 80’s, e.g., wind turbine, military equipment 

and aircraft, and has benefited from the advances in monitoring, technology, operation research 

and signal processing techniques (Wang et al. 2012; Butcher 2000; Waeyenbergh & Pintelon 

2002). Hence, CBM can be more cost effective than time-based maintenance and is one of the 

least expensive and most effective strategies for proactive maintenance. It allows reducing 

maintenance costs and increasing equipment uptime (Ilangkumaran & Kumanan 2009; Yang 

2003). The impact of CBM on company’s profitability has been reported in (Al-Najjar 2007). 

CBM policy benefit from advanced condition monitoring techniques as a support technical for 

ensuring that critical item parameters will be monitored and collected, because when an event 

happened in the item, may be some of the item parameters subjected to change, and obvious 

result as a changing equipment performance (e.g. changes in vibration, changes in power usage, 

changes in operating performance, changes in temperatures, changes in noise levels, changes in 

chemical composition, increase in debris content and changes in volume of material). 

Furthermore, the advantage using condition monitoring techniques in CBM is because it has 

capability to provide to decision maker suitable and useful information about the health state of 

item. The information extracting from analyzing sample data collected promise to incipient fault 

detection and to warn about the future failure.  

A modern system such as manufacturing industry, aircraft, and nuclear plant, as well as service 

businesses are characterized by their great quality, efficiencies, effectively, productivity. 

Nowadays, it‘s evident that robust item and advanced technology play primary role for 

manufacturing industry, aircraft, power plant, organization to continuously improve productivity, 

efficiency, quality, effectiveness, as well as to stay competiveness. However, an item is 

becoming more complex, more sensible, and expensive, thus, inventor technical, concept, design, 
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and product development is becoming vital toward independency economy, which means an 

item has increased in importance and should be in full operational mode to avoid any extra losses 

(Bengtsson 2007). 

In many practical applications (mechanical item),  several studies are performed related to the 

historical item failure indicate that only about 15% to 20% of equipment failures are age-related, 

and the other 80% to 85% of equipment failures are based totally on the effects of random events 

that happen in the system (Amari et al. 2006). Hence, since a member is put in production line, it 

will undergo degradation overtime, the last were mainly occurs because of the effect of the 

random event. Modern systems and processes are characterized by their availability importance 

as result have to be aware of mustn’t to assume the degradation is fatalism. Therefore, system 

engineer should be improved skills and model knowledge to be able to find out the solution 

about the different problem that facing everyone and everywhere. Maintenance has gained 

increasing importancefor technical process as a support function in order to reach comprehensive 

system integrity (e.g., improve to improve reliability, availability, maintenance and, quality 

product,and supply on-time deliveries). Nowadays, there is unanimity between researchers and 

managers to move from traditional preventive maintenance to intelligent preventive maintenance 

which is called CBM (Jardine et al. 2006). CBM policy has allowed a better extension of useful 

life, a reduction of through-life cost of item, an improvement of operational availability, 

increasing mission effectiveness, decreasing cost related spare part, and a reduction of the 

maintenance burden (Jardine et al. 2006; Gallasch et al. 2013).  

Considering, the large amount of maintenance definition, characterizations, and policies on the 

literature review, CBM models does lead to a cost effective maintenance decision. Generally, 

CBM is performed based on the following: a better knowledge, stochastic algorithm, and 

sufficient method in an effective and systematic way for handling all kind of complex situations 

that arise in practical.  

CBM decision-making yield one of the best maintenance management (Amari et al. 2006). 

Implementation an effective maintenance management required presence such characteristic as 

follow: knowledge of equipment failure mechanisms, causes, symptoms, detection and 

diagnostic procedures. The diagnosis procedure can be divided into five hierarchical: (i) Data 
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acquisition: it is the basis of the procedure. Generally technical processes are already sensor 

equipped and this phase does not present any difficulty. (i) Data reduction: information about the 

process structure is diluted in the observed signals. In this phase, we want to extract a good fault 

indicator from measured signals. The efficiency of the detection diagnosis procedure is 

determined by this step,(ii)Detection: this operation gives the answer to the question is the 

system in a structural normal state or under fault. Given that the system environment is noisy, the 

tools for detection are of statistical nature and thus imply a risk of false detection or of missing a 

fault, (iv) Diagnosis: it performs the localization (sensor, actuator, process) and gives attributes 

(steady or unsteady fault, evolving or cataleptic fault) and the degree of severity. This step is not 

already active but asked only when the detection module indicates a fault, (v)Fault recovery: 

when a fault is appeared, what is the best action that the controller has to perform stages (Isermann, 

2011). 

The CBM decision is directly based on the observed state. CBM models focusing on data 

determined, data collected, data analyzed, data processed, and data modeled, (Jardine et al. 2006; 

Ahmad & Kamaruddin 2012). They are collected by using condition monitoring techniques, on 

real-time or near real-time, on-line or off-line (e.g., embedded sensors, external tests or 

measurements portable). The main contribution of data obtained by using condition monitoring 

techniques is to help the maintenance manager to decide if maintenance is necessary or not. 

Generally, CBM policy requires the following information: item variables history, age item, 

degradation until the moment of decision making. The history of the machine and the previous 

degradation pattern is important in determining the current and future operating condition of the 

machine. The health state of an item can be modeled not only by the failure models but also by 

the degradation model. The degradation and failure models are needed for optimizing the control 

limit policy (Banjevic et al. 2001).CBM policy can be considered as a new vision of maintenance 

management that it is necessitate for improving maintenance management (Martin 1994; Jiang 

2011; Jardine et al. 2006; Ahmad and Kamaruddin 2012). 

An intelligent preventive maintenance such CBM can be considered as a suitable strategy for 

forecasting the failure item and scheduled maintenance, it has direct impact on the budget of the 

company and it is being seen as the most significant economic benefits. Although, according to 

Amari et al., on (2006) some advantages of implementation CBM policy are: reduction in the 
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total maintenance program cost, avoidance of very disruptive equipment outages, reduction of 

costly preventive maintenance activities when condition assessment shows no need of the 

scheduled maintenance, however, the advantage CBM policy not only reduces the amount of 

maintenance performed but also avoids maintenance-induced failures (Amari et al. 2006). 

Indeed, the majority of studies were presented in literature reveal that CBM policy is 

recommended and more attractive to use for engineering systems. CBM policy has become 

increasingly important in developing effective maintenance management reach to improve the 

reliability of systems as well as increase the system performance, even the complexity of systems 

increase. CBM policy has been considered as an intelligent maintenance policy uses to provide 

the health state of item that serves to predict the failure time or remaining useful life of item. In 

practical application, thus, it is becoming an effective maintenance policy typically for many 

engineered system, and has been raised, e.g., from public transportation systems, nuclear power 

plants, manufacturing systems, to aircraft systems. Therefore, it is recognized that an effective 

CBM requires the completion of three fundamental steps (see Figure 2.7):  

o Data acquisition step (information collecting), to obtain relevant data about system 

condition, e.g., vibration, temperature, voltage/current, and oil composition; 

o Data processing (information handling), to handle and analyze the data or signals 

collected in the first step; 

o Maintenance-decision making, to recommend efficient maintenance policies.  

 

 

Figure 2.7- CBM approach (Jardine et al. 2006). 

Obviously, selecting an effective maintenance policy is powerful strategy to improve the 

capability of decision making maintenance (Jardine et al. 2006). Researches, though a great 

solution to predict impeding failure and take decisions based on item condition is CBM. 

Furthermore, CBM requires definition failure and deterioration models (Jardine et al. 2006; 

Martin 1994). However, a major challenge facing researcher’s community is how to establish an 

intelligent CBM models in maintenance decision making taking into consideration the following 
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features such as: reliability model, performance model, and optimization model. Probably these 

requirements are interpreted as an issue which can have a significant impact on effectiveness of 

condition based maintenance policy.  This issue has gained particular importance over the last 10 

years. Amari et al., (2006) simplified the solution to develop an effective CBM by involving the 

following steps: 

- Identify failure mechanisms, causes, and detection and prevention methods. 

- Identify deterioration model associated with the system. The model can be built using the 

knowledge of failure mechanism as well as the existing data related to failures. Further, 

deterioration model has been developed by using the following techniques: Hidden 

Markov Models, Gamma Process, Delay Time Concept, Data Mining Techniques, and 

Statistical Techniques.  

- Determine the costs and effects associated with the various kinds of failures and 

maintenance actions. 

- Develop an optimal CBM policy that involves optimal inspection schedules and the 

optimal maintenance decisions.  

2.6 CBM versus traditional maintenance 

During all the past decades, a lot of maintenance models have been extensively developed in the 

literature and they can be classified into two distinct kinds of maintenance policies: traditional 

maintenance policies and CBM policies. Maintenance policies can be applied for both single-unit 

systems and multi-unit systems (set of system with a number of sub-systems). The basic 

assumptions for single-unit-systems under all maintenance police are that the unit lifetime has 

increasing failure rate. Furthermore, maintenance policies for single-unit systems are more 

established, and are the basis for maintenance policies of multi-unit systems. However, various 

dependences in multi-unit systems render maintenance of a multi-unit systems differ from a 

single-unit system(e.g., economic dependence, failure dependence or correlated failure). For 

example failed item in the system may also cause failure to other item (Sarkar et al., 2011).  

Sarkar et al. (2011) presented an overview, summarizes, classifies, and compares various 

existing traditional maintenance policies around 170 Authors. In the following some categories 

of maintenance policies: age replacement policy, block replacement policy, periodic preventive 
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maintenance policy, failure limit policy, sequential preventive maintenance policy, repair cost 

limit policy, repair time limit policy, repair number counting policy, reference time policy, 

mixed age policy, group maintenance policy, opportunistic maintenance policy. The authors 

classified maintenance policies into two categories as follow: the first one is maintenance 

policies of single-unit systems such as: age-dependent preventive maintenance policy, periodic 

preventive maintenance policy, failure limit policy, sequential preventive maintenance policy, 

and repair time limit policy, repair number counting and reference time policy; and the second 

one is maintenance policies of multi-unit system such as: opportunistic maintenance policies, 

group maintenance policy. Further, they authors showed for each kind of these models different 

characteristics, advantages and disadvantage for each kind of these models. However, all these 

models do not take into account information collected by condition monitoring technique, 

further, they are based on the concept of the bathtub curve, where hazard rate increase in wear 

out phase. One the most maintenance policies for unit-system that have received much more 

attention in the literature are age-dependent preventive maintenance policy and periodic 

preventive maintenance policy. Furthermore, the periodic preventive maintenance policy is 

seemed more practical than the age-dependent preventive maintenance policy, because it does 

not require keeping records on unit usage (Sarkar et al., 2001). In traditional maintenance 

policies, two types of maintenance have been carried out: corrective maintenance and preventive 

maintenance (Amari et al., 2006).  

CBM models is based on condition monitoring techniques. The channel information comes from 

condition monitoring techniques that have to take into consideration in order to contribute to 

develop models close to reality. Thus, effectiveness of a system depends on both the quality of 

its design as well as the proper maintenance actions to prevent it from failing (Sarkar et al., 

2001). These condition monitoring data contain useful information concern the health state of 

item as well as will be useful into deterioration models and failure models. Currently, there is 

evidence that the impact of CBM have had an important effect on effectiveness of system and 

there is increasing interest by researchers to develop as much as possible CBM models.  

A study compares between CBM and the traditional preventive maintenance (e.g., age 

replacement policy, time replacement policy) has been shown that the traditional preventive 

maintenance were not very encouraging, because the drawback of these models is essentially 
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about the machinery failure forecast. According to literature review, CBM is an effective way of 

predictive maintenance, is based on actual item condition rather than on time or usage interval 

for determining how soon a failure will occur. In contrast traditional maintenance policies are 

based on age of equipment, time interval, usage interval, thus, chance of component failure 

depends entirely on the age. These models are based on the concept of the bathtub where hazard 

rate increases. According to Amari et al., (2006), an interesting study was made by United 

Airlines aircraft component and U.S. Navy indicates that only 3% to 4% of equipment failures 

can be explained using bathtub curve hazard rate. Although, a most important result several 

studies of failure equipment indicate that traditional maintenance policies is inappropriate in 

most cases because only about 15% to 20% of equipment failure are age related. The other 80% 

to 85% of equipment failures are based totally on the effects of random events that happen in the 

system. This means that failure is not dependent only on the age of the component, because 

varying levels of latent defects and impurities can exist. This leads to different rates or patterns 

of defect propagation, e.g. variation in raw material, power, loads, operator skills, maintenance 

activities, rigor environment, leadership, maintenance activities, floods, and earthquakes can all 

influence the failure mechanisms. Therefore, the failure propagation is a complex stochastic 

process not only depends on age but also depends on several other factors and events. All these 

reasons for equipment failure results as traditional maintenance policies are not considered 

optimal maintenance policies. 

2.7 Application of Condition Monitoring Techniques in CBM Policy 

According to NP EN 13306:2001, monitoring is defined as an activity, performed either 

manually or automatically, intended to observe the actual state of an item. Furthermore, 

monitoring is distinguished from inspection in that it is used to evaluate any changes in the 

parameter of the item with time, thus, monitoring may be continuous, over a time interval, or 

after a given number of operations. Further, condition monitoring techniques is considered as a 

major process of CBM policy. It used as a means enable to monitor parameters of condition in 

item such as: vibration, temperature, position. The popular condition monitoring techniques are 

used by practitioners and researchers to monitor the health state of an item as follow: vibration 

analysis, lubricant analysis, infrared thermograph, ultrasound emission, shock pulse analysis, 

thermal image analysis.  
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In practical application, condition monitoring methods are performed on-line or off-line. Off-line 

tests require the interruption of operation or shutdown (motor), while on-line methods provide 

diagnostics during the operation. There are some circumstances that off-line monitoring 

techniques have some advantageous, such as reduction in noise contamination, as well as load 

and speed repeatability. Indeed, the majority of condition monitoring addressed are on-line 

monitoring technique except induced voltage, motor circuit analysis and surge test (Marium al., 

2011). 

A condition monitoring technique uses an instrument and technique such as measuring 

instrument or sensors. The measuring instruments and sensors can provide the amount physical 

quantity. The measuring instruments have to transform physical quantity into extent or useable 

amount such as: pressure, temperature, velocity. The selection of the measuring instrument is 

based not only on the type of variable to be measured but also on the environment of the system 

where it is operating (e.g., observation represents the spectrometric readings of oil samples 

coming from engines or vibration data collected from motor). The major benefit provided by the 

CBM policy is the ability to incorporate prior information where a prior approach allows the 

prediction of a failure before its occurrence to avoid item breakdown or a potential accident 

(Jardine et al. 2006).  

Considering condition monitoring technique as an underpinning process in CBM policy for the 

prognostic of failures where various sensors or measuring equipment at discrete or continuous 

time are able to provide parameters condition item. The success of condition based maintenance 

policy requires an advanced technology and suitable tools in order to achieve the ability to 

develop an accurate diagnostic model.  

The physical process to be measured is in the left of the Figure (2.8), and the measured is 

represented by an observable physical variable X. Note that the observable variable X need not 

necessarily be the measured but simply related to the measured in some known way. For 

example, the mass of an object is often measured by the process of weighing, where the 

measured is the mass but the physical measurement variable is the downward force the mass 

exerts in the Earth’s gravitational field (Webster and Eren 2014). 
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Figure 2.8- Measurement diagram 

Hence, the acquisition of item condition information through a condition monitoring technique in 

CBM policy is considered as platform or database used to enable a future problem to be 

predicted, diagnosed and corrected before breakdowns or other serious consequences occur. 

Today, there are a large and growing variety of forms of condition monitoring techniques for 

machine condition monitoring such as: vibration monitoring, acoustic analysis, motor analysis 

technique, motor operated valve testing, oil analysis detection, thermograph, tribology, and 

process parameter monitoring, visual inspections. The condition monitoring techniques can be 

divided into main groups as follow: 

The first one is measurement instrumentation which can be viewed as a device or equipment 

intended to record or measures a physical variable. In abstract term, the instrument is a device 

that transforms a physical variable of interest (the measured) into a form that is suitable for 

recording (the measurement). The second one is a sensor, which has the function of converting 

the physical variable input into a signal variable output (Webster and Eren 2014). 

Vibration monitoring-Vibration analysis detects repetitive motion of a surface on rotating or 

oscillating machines. The repetitive motion may be caused by unbalance, misalignment, 

resonance, electrical effects, rolling element bearing faults, or many other problems. The various 

vibration frequencies in a rotating machine are directly related to the geometry and the operating 

speed of the machine. By knowing the relationship between the frequencies and the types of 

defects, vibration analysts can determine the cause and severity of faults or problem conditions. 

For example, on rotating machines vibration analysis monitors the following conditions: 
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o Cracks, pits, and roughness in rolling element bearing components. 

o Unbalance of rotating machine parts, 

o Shaft misalignment, 

o Coupling problems, 

o Bends, bows, and cracks in shafts, 

o Excess sleeve bearing wear. 

o Loose parts, 

o Misaligned or damaged gear teeth, 

o Deterioration caused by broken or missing parts, 

o Deterioration caused by erosion and corrosion, 

o Resonance of components. 

o Electrical effects. 

Oil analysis detection-It is non-destructive way to gauge the health of an engine by looking at 

what's in the oil. A way of performing oil analysis is based on collecting a volume of fluid from 

lubricated or hydraulic machinery for the purpose of oil analysis. Oil analysis was first used after 

World War II by the US railroad industry to monitor the health of locomotives. In 1946 the 

Denver and Rio Grande Railroad's research laboratory successfully detected diesel engine 

problems through wear metal analysis of used oils. In addition, integrating oil and vibration 

analysis can yield early detection and trending of numerous equipment problems. 

Wear Particle Analysis-Wear particle analysis is a direct approach to visualizing damaging 

causes and effects taking place in lubricated machinery by capturing and viewing particles 

extracted from lubricating oil. 

Thermograph-A thermal imaging camera is a reliable non-contact instrument which is able to 

scan and visualize the temperature distribution of entire surfaces of machinery and electrical 

equipment quickly and accurately. 

2.8 CBM Optimization 

 

During the past decades, CBM models have been widely spread generally in textbook and 

particularly in industrial. This mean CBM models is appropriate strategy and optimal 
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maintenance policies compared with other models and for this reason CBM has long been 

researched by many authors. However, due to limitation existing in CBM models, many 

researchers be aware of that CBM needed towards on continuously developing and conducting 

advanced research in this important area, this because there is a powerful demand from company 

to improve system availability, operational safety, maintenance cost effectiveness, customer 

satisfaction, reduce failure frequency. According to Noortwijk (2009), a characteristic feature of 

optimizing maintenance is about an uncertainty such as deterioration, cost and availability, in 

maintenance management, the most important uncertainties are: the time to failure (lifetime), the 

rate of deterioration.  

The primary objective of an optimized maintenance strategy is to: improve availability, reduce 

forced outages, improve reliability, enhance equipment life, reduce wear from frequent 

rebuilding, minimize potential problems in disassembly and reassembly detect problems as they 

occur, save maintenance costs, reduce repair costs, reduce overtime, and reduce parts inventory 

requirements. However, CBM policy is becoming increasingly important provided to 

maintenance optimize strategy as the complexity of systems increases. Recent advances in CBM 

and condition monitoring technologies have given arise to a number of prognostic models that 

attempt to forecast machinery health based on condition monitoring data (Heng 2009). 

Dekker and Scarf (1998) illustrate various classifications of maintenance optimization models by 

analyzing 112 papers. The potential benefit by using advanced signal processing and artificial 

intelligence techniques is to develop a robust maintenance optimization.  

Balakrishnan (1992) presented an application of simulation models to evaluate maintenance 

policies. For example: selected out of opportunistic, failure and block) for an automated 

production line in a steel rolling mill. Markovian probabilistic models for optimizing 

maintenance policy have also been discussed by Bruns (2002), Marquez and Heguedas (2002), 

Chiang and Yuan (2001) and Lam (1999) in great detail. 

Several algorithms computations are applied to the CBM policy. The optimization theory 

involves the success of the CBM policy in order to establish optimal decision making 

maintenance. The role of optimization theory within integrated model design an is to estimate 
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parameters’ model as well as to compute the optimal control policy for maintenance optimization 

problem stochastic algorithm (e.g. genetic algorithm, simulation, Monte Carlo Markov Chain). 

Obviously, the optimization problem, regardless the applied field, is to find the best solution 

from entire feasible region such as control limit and sampling interval which must minimize or 

maximize the objective function, e.g. genetic algorithm, value-iteration algorithm (Chen and 

Trivedi, 2004), Semi Markov Decision Process (Jiang et al.,2011), linear programming (Taylor, 

1996), Expectation Maximization algorithm, (McLachlan and Krishnan 2008), policy-iteration 

algorithm (Kim and Makis, 2009). Villiam Makis presented an algorithm seek to find the optimal 

control limit and the minimum average cost. Obviously, the preliminary step before the 

construction of expected cost or downtime models, it is necessary to estimate the values of the 

parameters that characterize the defect arrival and failure processes. 

Generally most of CBM models in literature used two objective functions whose readers are 

familiar, and it will may be can classify into one which either (Barlow and Hunter, 1960; Biswas 

and Sarkar, 2000; Sarkar and Chaudhuri, 1999; Jiang, 2011): (i) minimize average expected cost 

per time unit, (ii) maximize average expected availability.  

The first one is to find the optimal control chart control policy (e.g., control limit, sampling 

interval) that minimizes average expected cost per time unit. The idea is to derive explicit 

expression cost per time unit. From renewal theory, the expected average cost of the system is 

equal to the expected cycle cost divided by the expected cycle length. For example, the 

optimization problem based on Bayesian approach which can be expressed as follow (Wang, 

2012): 

Min z(h, p∗) =
E(CC)

E(CL)
          (3.20) 

Where, h: sampling interval, p∗: upper control limit range from [0,1], E(CC): expected cycle 

cost, and E(CL): expected cycle length. 

The second one is to determine the optimal control chart parameters such as sampling interval 

and upper control limit or posterior probability (threshold) that maximizes average long run 

expected availability. From renewal theory, the average long run expected availability equal the 

expected system uptime incurred in one cycle divided by the expected cycle length. The cycle is 
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completed when the system is brought back to the in normal state which known as good as new. 

The expression of average long run expected availability which can be generalized by (Jiang, 

2011):  

Max z(h, p∗) =
E(UT)

E(CL)
          (2.21) 

Where, h: sampling interval, p∗: upper control limit range from [0,1], E(UT): expected system 

uptime if full inspection is initiated, and E(CL): expected cycle length if the full inspection is 

initiated. Most of CBM models consider the first objective function (cost criterion) and few 

papers use the second optimization criteria (availability criterion). However, it is possible in 

optimization CBM models consider: the following optimization problem: (i) minimize average 

expected cost per time unit subject to constraint availability is satisfied or (ii) maximize average 

expected availability subject to maintenance cost is satisfied. The optimal maintenance policy 

must be based also on availability criteria. Considering cost and availability criteria in optimal 

maintenance policy needed to achieve the best operating performance (Sarkar, 2000). Further, 

maintenance time should be not negligible because this assumption makes availability modeling 

realistic and possible will result in realistic system reliability measures as well as the structure of 

system must be considered in order to obtain optimal system reliability performance and optimal 

maintenance policy. Other factors which may affect an optimal maintenance policy are illustrate 

in Figure 2.9 (adapted from (Sarkar, 2000)). 
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Figure 2.9- Maintenance policy and its influence factors. 

2.9 CBM Models 

Nowadays, the area of CBM has extensively interested by the numerous researchers and 

practitioners. Over the last twenty years, several kinds of CBM models have appeared in the 

maintenance literature. The success of the CBM policy is based on the ability to develop failure 

prediction models as accurately as possible by means failure model and degradation models as 

well as involvement an advanced technology and suitable tools. An accurate and efficient 

modeling for CBM policy represents a significantly challenge. According to Amari et al., (2006) 

CBM model include a stochastic process, a set of maintenance action and their effects, and a 

scheduled inspection policy that identifies the condition of deterioration. 
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McMillan and Ault (2008) evaluate the cost-effectiveness of CBM via Monte Carlo simulations. 

The authors’ address the states of a wind turbine condition in more detail by considering the 

individual state of critical components like gearboxes and generators and they compare a six-

month periodic maintenance policy with CBM. Sensitivity analysis shows that the benefit is 

dependent on wind profile, typical downtime duration and wind turbine sub-components 

replacement cost. Marseguerra, Zio and Podofillini (2002) proposed a model to find the optimal 

degradation level of multi-component system using genetic algorithm and Monte Carlo 

simulation. The predictive model describing the evolution of the degrading system is based on 

Markov Model and, Monte Carlo simulation and Genetic Algorithm is used to determine the 

optimal degradation level beyond which preventive maintenance has to be performed. The 

developed Markov model incorporates an intermediate state to represent component degradation 

behavior of a gearbox. Condition monitoring of equipment is used to evaluate the system state, 

and it is assumed that it equipment reveals exactly the degradation status of each turbine 

component. 

Makis and Jiang (2003) present a model to determine the replacement policy that minimizes the 

long run expected average cost per unit time. The replacement problem is formulated as an 

optimal stopping problem with partial information and is transformed to a problem with 

complete information by applying the projection theorem to a smooth semi martingale process in 

the objective function. A dynamic equation is derived and analyzed in the piece wise 

deterministic Markov process stopping framework. Liu et al. (2012) presents a general 

framework for planning and optimizing CBM scheduling. The authors assume that the hazard 

function depends, not only on time, but also on the system state which degrades over time. The 

optimum threshold value triggering the maintenance is obtained by maximizing system’s 

availability over its life cycle. Luce (1999) presents a study to improve the availability of 

production equipment by selecting the best maintenance management method. Corrective 

maintenance, systematic preventive maintenance and CBM costs are compared and the Weibull 

law is used to model time to failure. Barbera, el al., (1999) developeda CBM model with 

exponential failures and fixed inspection intervals for a two-unit system in series. The proposed 

model aims to minimize the long-run average cost of maintenance actions and failures and the 

optimal solution to this problem is obtained via dynamic programming. Pedregal and Carmen 

http://www.sciencedirect.com/science/article/pii/S0377221707004717#bib12
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(2009) provide an economic model for condition monitoring through vibration data of turbine 

driving a centrifugal. Saranga and Knezevic (2001) developed a mathematical model for 

reliability prediction of condition-based maintained systems using the concept of multiple 

relevant condition predictors in order to identify all the possible failure mechanisms that affect 

the system. Use of suitable relevant condition predictors for each failure mechanism allows 

identifying the equipment of degradation. The Markov Process is used to model the degradation. 

Jardine et al. (2003) presents an optimal policy for the interpretation of inspection data from a 

CBM program at a nuclear reactor station. Jamali et al. (2005) proposed an optimal periodic 

replacement strategy. A model is proposed to determine the preventive replacement interval and 

the threshold age for which the replacement is performed in order to maximize the steady state 

availability under a cost constraint and minimize the average total cost per unit of time on an 

infinite horizon while respecting the predefined availability threshold.  

Since the proportional hazards model (PHM) was introduced in 1972 by Cox, several researchers 

proposed optimization models for CBM using proportional hazards model. The reliability is 

determined based on proportional hazards model and, based on a control limit policy, the 

maintenance cost is defined. Ghasemi el al., (2010) proposed methods to estimate the parameters 

of condition monitored equipment whose failure rate follows the Cox's time-dependent 

Proportional Hazards Model. The authors considered that the equipment's unobservable 

degradation state transition follows a Hidden Markov Model and used the Maximum Likelihood 

Estimation to estimate the parameters of the Hidden Markov Model and of the Proportional 

Hazards Model. Many works can be found in this area such as Lin et al. (2006), Makis et al. 

(2006), Vlok et al. (2002), Makis and Jardine (1992), Banjevic et al. (2001), and Gupa and Sirirat 

(2006). Adjengue, Yacount and Ilk (2007) used an expectation maximization algorithm for 

estimating the parameters of a CBM model. Jardine, Banjevic and Joseph (1999) also used 

expectation maximization for estimating the parameters of a CBM model and present an optimal 

maintenance program based on vibration monitoring of critical bearings on machinery in the 

food processing industry. Statistical analysis of vibration data is undertaken using the software 

package EXAKT to establish the key vibration signals that are necessary for risk estimation. The 

risk curve is identified using a proportional hazards model and cost data are then blended with 

risk to identify the optimal maintenance program.  
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It is recognized that maintenance optimization often uses operations research enabling to 

maximize profit or minimize cost. Cost functions depend on the reliability and maintainability 

characteristics of the system of interest and allow determining the decision variables values by its 

minimization. The parameters often considered are the cost of failure, the cost of downtime, the 

cost of corrective maintenance, the cost of preventive maintenance and the cost of system 

replacement (Cassady and Pohl, 2003). Optimal Maintenance strategies are often constructed 

using stochastic models and focus on finding an optimal inspection time or the optimal 

acceptable degree of system degradation before performing maintenance and/or replacement. 

Optimizing CBM depend on many factor, including modeling system degradation, modeling 

system reliability, choosing the appropriate performance measure, and the optimization of 

inspection schedules (Peng, Dong and Zuo,2010). Maintenance optimization models intend to 

optimize an objective function which allows determining the interval between inspections or 

maintenance intervention. Models can also be of help in determining effective and efficient 

schedules taking all kind of constraints into account (Dekker, 1996).The optimization methods 

used include linear and nonlinear programming, dynamic programming, Markov decision 

methods, decision analysis techniques, search techniques and heuristic approaches. Hundreds of 

articles appear every year in journals and international conferences such as Louit et al. (2011), 

Chen and Trivedi (2002), and Yam et al. (2001). 

2.10 Control chart and optimization maintenance 

In the past several decades, a lot of maintenance optimization appeared in literature review in 

different ways. The major method of optimization maintenance has been joined in recent year 

refers to control chart. It is vital that control chart becomes integrated with CBM to ensure a 

great result and successful rather than the classical maintenance  (Jardine et al. 2006; Amari et al. 

2006). It is evident that maintenance management associated with appropriate tools and specific 

skills ensure to improve a new vision of maintenance management. Furthermore, optimization of 

maintenance is based on intelligent prediction tools (Tian, 2011). In fact, the integrated 

maintenance models can be benefit in improving the system performance subject to many 

stresses (e.g., cost, availability, safety, quality products, satisfied customer) as much as possible. 

Implementing an efficient maintenance policy in maintenance management enables to improve 

system performance, productivity, and associated gain. According to literature, several 

http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Profit_(economics)
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maintenance models under control chart for maintenance optimization has been extensively 

developed, and they can be classified into two different group according to characteristic of 

collected data (Benerjee and Rahim, 1993; Ben-daya and Rahim, 2000, Lee and Rahim, 

2001.etc.). The first one is Control chart used to monitor a process through some quality 

characteristic, the second one control chart is used to monitor the health state of equipment while 

in operation. 

2.10.1 Statistical Process Control and Maintenance Planning 

During the past 20-25 years, statistical quality control has proven to be extremely effective. The 

implementation of techniques such as statistical process control (control charts) and off-line 

quality control methods (Taguchi methods) have led to quality improvements that have resulted 

in industrial productivity increases in the neighborhood of 15-25% (Cassady et al., 2000). The 

economic design of control charts and the optimization of preventive maintenance policies have 

separately received a tremendous amount of attention in the quality and reliability literature over 

the years in an attempt to reduce the costs associated with manufacturing processes. Until 

recently, no proposal had been made to integrate these two fields and utilize the relationship 

between quality and equipment performance to improve the productivity of a manufacturing 

process (Yeunget al., 2008). According to Ben-Daya and Duffuaa (1995), quality is becoming a 

business strategy leading to success, growth and enhanced competitive position. Organizations 

with successful quality improvement programs can enjoy significant competitive advantages. 

Consequently, the role of equipment maintenance in controlling quantity, quality and costs is 

more evident and important than ever. To succeed in this new environment, equipment must be 

maintained in ideal operating conditions and must run effectively. Figure 2.10 shows the 

dependence between maintenance, quality and productivity. 

 

 

 

 

 

 

Figure 2.10- Production, quality and maintenance dependences (Ben-daya and Duffuaa, 1995). 
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In fact, control chart is a tool for statistical process control characterized by three parameters: 

sampling interval, sampling size, and control limit. To design control charts, three approaches 

have been used: economic design, statistical design, and economic-statistical design. Economic 

design was first proposed by Duncan (1956) which developed an economic model to be used for 

the selection of Shewhart x-bar control chart parameters under renewal theory. This model 

becomes a standard in this research area. Economic design intends to estimate system parameters 

that minimize the expected total cost which is considered the objective function. In statistical 

designs, constraints on average run length (ARL), or equivalently Type I and Type II error 

probabilities are considered. The advantage is that it requires no cost or system parameter 

estimation other than a specification of ARL's for particular shifts against which protection is 

desired. ARL is considered as an important performance measure for control chart design. In 

fact, ARL helps reducing the occurrence of false alarms as well as enable fast identification of 

the out-of-control condition. Furthermore, by assuring that shifts are signaled rapidly and false 

searches or improper adjustments are avoided, one can guarantee high quality products. 

Economic-statistical design is a method proposed by Saniga (1989) which consists in an 

economic model with added constraints on ARL's (or equivalently Type I and Type II error 

probabilities). This last design requires the estimation of the same costs and system parameters 

as in economic design as well as the specification of desired ARL's and shifts against which 

protection is desired. The last design shows some important advantages such as statistical 

properties, more economical to use, and guarantee of high quality products. Many approaches 

and applications have been developed in the area of economic design of process control charts. 

Ho and Case (1994) shows a survey and brief summary of the economic designs published 

during the period from 1981 to 1991.  

The economic design of control charts and the optimization of preventive maintenance policies 

are two research areas that have recently received a great deal of attention in the quality and 

reliability literature. Montgomery (1980) listed 51 references on the economic design of control 

charts. Keats et al. (1997) summarize some important works about the integration of statistical 

process control and preventive maintenance. Both of these research areas are focused on 

reducing the costs associated with the operation of manufacturing processes (Cassady et al., 

2000). Tagaras (1988) was the first to propose an economic model that incorporates both process 
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control and maintenance scheduling. The proposed model simultaneously optimizes the design 

parameters of control chart and the parameters of maintenance scheduling. Lesage and 

Dehombreaux, (2012) provide a methodological approach to evaluate the potential role of quality 

control in the improvement of maintenance policy. Ben-Daya and Duffuaa (1995) proposed two 

approaches for linking and modeling the relationship between quality and maintenance. The first 

approach is based on the idea that maintenance affects the failure pattern of equipment and the 

concept of imperfect maintenance should be used to model this relationship. Therefore, 

maintenance will also affect quality inspections. In the second approach, the deviation of product 

quality characteristics from their target value is reduced when maintenance is performed. 

Furthermore, integrated models for the joint optimization of process control charts and 

maintenance operations enrich the existing literature about maintenance models. Many 

researchers investigated the relationship between quality and maintenance. Rahim and Banerjee 

(1993) developed an economical design of  control chart for quality control where the quality 

characteristic is dependent upon the age of equipment. It is considered that the equipment has an 

increasing failure rate, the times to failure follow a Gamma distribution and the sampling interval 

is not constant. Jenningst and Drake (1998) and Zhang and Berardi (1997) extended the work of 

Rahim and Banerjee (1993) and provided an economic statistical design model for the X-bar 

control chart considering that failure mechanism follows a Weibull distribution. Linderman, 

Mckone-Sweet and Anderson (2005) developed a model to demonstrate the economic benefit of 

integrating statistical process control and equipment maintenance. They demonstrate the 

usefulness of an adaptive maintenance policy where the scheduling of maintenance actions 

adapts to the stability of the process. Rahim (1994) propose a model to determine the optimal 

control chart design parameters and production quantity so as to minimize the expected total cost 

(the quality control cost and the inventory control cost) per unit time. Both uniform and non-

uniform inspection schemes are considered. Rahim and Muhammad (2010) developed an 

integrated model for economic production planning, quality control, and preventive maintenance 

scheduling using a tabu-search algorithm to determine the optimal values of the model 

parameters. Ben-Daya (1999) developed an integrated model for the joint optimization of the 

economic production quantity, the economic design of -control chart and the optimal 

http://www.sciencedirect.com/science/article/pii/S0360835211002038#b0010
http://www.sciencedirect.com/science/article/pii/S0360835202001195#BIB21
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maintenance level, considering that the deteriorating process of in-control period follows a 

general probability distribution with increasing hazard rate.  

Cassady et al. (2000) performed a preliminary investigation of using a  chart in conjunction 

with an age-replacement preventive maintenance policy. The authors used a simulation-based 

optimization approach in conjunction with a genetic algorithm to minimize the average cost per 

hour of the manufacturing process. They present a single numerical example to show that the 

combined policy can achieve greater productivity than either policy in isolation. Yeung et al.,  

(2008) extended the work presented by Cassady et al. (2000). The objective of their research was 

to develop the most cost-effective policies that utilize the -control chart in conjunction with an 

age-based preventive maintenance policy to improve the performance of a manufacturing 

process. Cassady et al., (2000) used simulation-based optimization in conjunction with a genetic 

algorithm in order to evaluate such policies. In this work, the authors formulate a Partially 

Observable, Discrete-time Markov decision Process (PODMP) to evaluate the long-run expected 

cost and develop an algorithm to obtain the parameters values which minimizes long-run 

expected cost (the cost of inspection, maintenance and poor quality cost).  

Ben-Daya and Rahim (2000) provide a model for incorporating the effects of preventive 

maintenance on quality control charts. The model allows the joint optimization of quality control 

charts (number of inspections, sample size, sampling intervals and control limit) and preventive 

maintenance level to minimize the total expected cost. Weibull shock model with increasing 

hazard rate is used to illustrate the effect of the maintenance level on quality control costs. Wu 

and Wang (2005) used an adaptive control chart to monitor process quality and compared it with 

static control chart and both are designed by the minimization of the expected long run cost per 

time unit. Chan and Wu (2009) present an integrated model for the joint optimization of quality 

inspection and maintenance that uses Cumulative Count Conforming Chart. Panagiotidou and 

Tagaras (2010) developed a model to integrate statistical process control and preventive 

maintenance of manufacturing equipment. The authors considered that time of shifts in the 

quality level, as well as the time to failure in both in-control state and out-of-control state are 

exponentially distributed random variables and the failure rate in the out of-control state is higher 

than the failure rate in the in-control state. Panagiotidou and Nenes (2009) developed an 

integrated model for quality and maintenance and considered that the time to the transition to an 
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out-of-control state follows an exponential distribution. They applied an adaptive variable-

parameter Shewhart control chart for process monitoring and compared their model with a fixed 

parameter control chart. Mehrafrooz and Nourossema (2011) developed an integrated model 

which is an extension of Panagiotidou and Nenes (2009) that joint both statistical control chart 

and maintenance to improve quality of products. The authors showed through experimental tests 

that the integrated model has better economic behavior than the planned maintenance model. The 

assumptions in this work and in Panagiotidou and Nenes (2009) are similar, but the main 

difference between the two models is that Panagiotidou and Nenes (2009) do not consider 

planned maintenance. Charongrattanasakul and Pousakul (2011) developed an integrated model 

of Statistical Process Control and planned maintenance using EWMA control chart and used 

genetic algorithm in order to find the optimal parameters values that minimize the hourly cost. In 

another work, Chen et al. (2011) show the details of the development of a model for the 

economic design of -control chart. In this model, it is considered that preventive maintenance 

restores the system to an “as good as new” condition. The social loss cost of the Taguchi’s loss 

function is also considered in the objective function. Thus, the optimal solution is found using 

the algorithm defined by Rahim (1993). Pandey, Kulkarni and Vrat (2012) developed a 

methodology for simultaneous optimizing the design parameters of preventive maintenance and 

control chart incorporating the Taguchi loss function. The proposed model enables the 

determination of the optimal values of each of the four decision variables, i.e., sample size, 

sample frequency, control limit coefficient, and preventive maintenance interval that minimize 

the expected total cost per unit time. Nowadays, seen in this light, new aspects can be 

incorporated in integrated model and brings improvement in the results. More and more 

researchers have been discussing the relationship between quality and maintenance such as 

Kniele et al. (1989), Lee and Rahim (2001), Lochner (1987) and Tapiero (1986).  

2.10.2 The Use of Control Chart for Condition Monitoring in CBM policy 

Nowadays, research in CBM policy has been carried out by enormous of the researcher’s 

community as the technological progress has been growth rapidly. CBM models appeared every 

year in technical literatures. In fact, technology, automation and complexity of the system 

increase, it must be aware of the complex system maintenance. Nowadays, in real life decision 

maker face tight appropriate and accurate decision. However, a proper and well-performed CBM 
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policy promises helpful managerial insights to management in maintenance decisions making. 

CBM policy decision can provide a good idea of which decision should be selected; some of 

these CBM decisions can include a wide range of actions as follow: (i) Adjustments to the 

equipment. An adjustment can be a simple fine-tuning of a cam on a limit switch or involve the 

tuning of a boiler combustion control system to maximize fuel efficiency, (ii) Replacement of 

damaged or warn components, (iii) replacement of disposable component such as air, oil, or fuel 

filters, (iv) performance of an overhaul that aims to restore the equipment to as good as new 

condition.  

However, the challenge and opportunities here is reside on developing new integrated models 

arises from using a selective appropriate tools and knowledge such as: the information collected 

through condition monitoring, parameter selection for monitoring condition, an appropriate 

stochastic process for predicting item failure, optimizing maintenance, optimizing organizational 

maintenance efficiency. Furthermore, the overall objective is to establish the applicability of 

these skills and knowledge together in which should be incorporated into an integrated approach 

and unifying framework in order to form an effective CBM strategy.  

Control charts might be considered an effective tool to indicate and detect the early signs of 

health state of a deterioration or malfunction. In this case, the control chart uses parameters 

values obtained from periodic condition monitoring of equipment, in order to decide whether 

maintenance action should be performed or not. In many CBM applications, the true state of the 

system is unobservable and can only be inferred using an observation process which is 

stochastically related to the hidden state of the process. The model often used to represent this 

situation is the Hidden Markov Model (HMM) which is able to represent stochastic process.  

Nowadays, the design of prediction model including control chart has been increased. The 

development of sophisticated technologies has contributed to the adoption of integrated models 

which have attracted the interest of many practitioners and researchers once it contributes to 

reduce maintenance cost, to increase lifetime of components, to increase reliability, to improve 

safety and decrease downtime. Over the last few years, several outstanding articles have been 

published addressing this area. This includes the article of Wu and Makis (2007) which proposes 

a model to determine the optimal control chart parameters that minimize the long-run average 
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maintenance cost per unit time. An experimental test with real data was performed to make a 

computational comparison between the economic statistical design and the economic design of 

chi-square control chart and to demonstrate the effectiveness of the economic statistical design of 

chi-square control chart for CBM. Wang and Zhang (2008) presents an integrated model that 

uses an adaptive Shewhart average level chart methods and an auto-regression model to model 

the identification of the initiation point of a random defect (the adaptive Shewhart average level 

chart is adopted when the stochastic process is non-stationary and non-gaussian). An empirical 

experiment has been performed on a set of vibration data of rolling element bearings. Zhou and 

Lui (2011)designed a moving range control chart to predict failures using the information given 

by oil spectral analysis under Projection Pursuit approach (PP). The proposed method has been 

tested on a set of oil data of marine diesel. Louit et al. (2011) present a robust multivariate 

control charts for early detection of broken rotor bars in an induction motor fed by a voltage 

source inverter. Yu (2011) showed that the Locality Preserving Projections and Exponentially 

Weighted Moving Average chart (LPP-EWMA) is capable to recognize a slight degradation of 

bearing at early stage and clearly reveal the degradation propagation of bearing performance on 

its whole. Lampreia et al. (2012) developed a multivariate control chart Hotelling's T2 in order to 

monitor the vibration of repairable systems using both independent data and auto-correlated data.  

Recently, some review papers discussed the efficiency of Bayesian control chart for CBM and 

show wide success of this chart in this area. This includes the work provided by Jiang and Makis 

(2009) which consists of the design of a multivariate Bayesian control chart for CBM. The 

Bayesian control chart is a chart showing plotted values of the posterior probability that the 

hidden system is in the warning state given all past information. The authors prove that the 

Bayesian control chart is much more effective for fault detection than other charts such as 

Hotelling's T2, MEWMA, and MCUSUM and, thus, the maintenance cost will be much lower in 

practice. Makis (2007) also developed a multivariate Bayesian control chart for process 

monitoring. Wang (2012) applied a safety constraint to the adaptive Bayesian CBM model 

presented by Flag et al. (2012). Yin (2008) presents an economic and economic statistical design 

of the Bayesian chart for CBM. Yin and Makis (2010) developed an optimization integrated 

model for the economic and economic statistical design of the multivariate Bayesian control 
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chart. The paper shows that the economic statistical design of the multivariate Bayesian control 

chart performs better than the chi-square control chart.  

Most optimal maintenance models in the literature use as optimization criterion the minimization 

of system maintenance cost rate but ignore availability. However, maintenance aims to improve 

system availability. Therefore, the optimal maintenance policy must be based not only on cost 

rate but also on reliability measures. It is important to note that, for multi-component systems, 

minimizing system maintenance cost rate may not imply maximizing the system reliability 

measures. Sometimes, when the maintenance cost rate is minimized the system reliability 

measures are so low that they are not acceptable in practice, since various components in the 

system may have different maintenance costs and different reliability importance (Wang and 

Pham, 1997). Therefore, to achieve the best operating performance, an optimal maintenance 

policy needs to consider both maintenance cost and reliability measures simultaneously. As 

mentioned above, optimizing an objective function in CBM consists in minimizing the long-run 

expected average cost per unit time (Jiang et al., 2001; Makis and Jiang, 2003) or in maximizing 

the long run expected average system availability per unit time (Barlow and Hunter, 1960; 

Sarkar and Chaudhuri, 1999; Biswas and Sarkar, 2000). A lot of published works propose cost 

models and few published works propose availability models. A recent article, Yu and Makis 

(2012), uses as objective function the availability. In another work, Jiang, Kim and Makis (2012) 

designed an optimal multivariate Bayesian control chart that maximizes the long-run expected 

average availability per unit time.  

2.11 Limitation of existing CBM models 

Amari et al., (2006) have shown that CBM models are considered as an optimal tool for 

maintenance management. However, CBM models is needed continuously to develop today 

more than ever, therefore, many drawback related for designing CBM models which needed 

better models and algorithm for handling all kinds of complex situation that arise in practical 

CBM decision-making. They have been shown in CBM models presence of six limitations as 

follows: Inspection distribution-The major limitation with existing CBM models is that the 

exponential distributed inspection interval does not help engineers to determine when to perform 

inspections. Inspection model-The existing CBM models assume that inspections intervals are 

http://www.sciencedirect.com/science/article/pii/S0377221701001977#BIB170
http://www.sciencedirect.com/science/article/pii/S0377221701001977#BIB170
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independent of the system deterioration condition, which is an inefficient schedule. This leads to 

performing inspections unnecessarily when the system is functioning properly. Additionally, it 

leads to not performing inspections when there is a need. Deterioration models-The existing 

CBM models are limited to unidirectional, single-step deterioration that neither models the 

combined effects of various deterioration mechanisms nor the effects of random events such as 

floods and earthquakes. CBM Decisions-In existing models, only a few kinds of CBM decisions 

are considered: No action, Minor Maintenance, preventive maintenance. In reality, there can be 

several types of maintenance decisions such as refill the lubricant, replace the screws, align the 

bearing, and replace the bearing. Effects of maintenance-All existing CBM models support only 

the maintenance actions that reduce the current deterioration level. However, in some cases, the 

CBM actions may reduce the rate of deterioration instead of actual deterioration. For example, 

the wear propagation of a cutting tool can be reduced by changing the cutting depth, cutting 

speed, or the lubrication flow rate. Optimization procedure-Another major disadvantage of 

existing CBM models stems from their procedures for finding the optimal decisions. The existing 

models first find a closed-form cost function and then compute the cost for all possible 

combinations of parameters to find the minimal cost. This approach is feasible only for simple 

deterioration processes and a limited number of decision variables. 

The work of Marcus Bengston (2007) suggested a solution about how CBM approach can be 

implemented in industrial setting as well as developed a method that can assist companies in 

their implementation effort. Further, the procedure has been divided in three phases: (i) 

feasibility test phase, (ii) analysis phase, (iii) implementation phase, (iv) assessment phase. 

However, in CBM implementation general enabling factor are required. Some of them focusing 

on the following: management support, education and training, good communication, and 

motivation. Generally, conditions necessary for a successful implementation process are 

typically ones of culture change and change management. The procedure for implementing CBM 

on industry is governed by the following: 

o Requirement substantial efforts by all site personnel and management, 

o The staff must have commitment to the process and its new technologies as well as their 

use, staff has to trust the training and the technology, 

o Management must have the commitment to procure an adequate equipment, 
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o Management must have the commitment an adequate training for the all personnel 

o The organization’s support for implementation the CBM policy must be totally guided to 

achieve the goal and success predefined, management has to reinforce this expectation 

until to accomplish the end of implementation’s procedure. 

o The needed resources must be available during all steps of implementation the CBM 

policy, this includes the management support and attitude to trust and maintain it. 

o Writing the formal description of the following techniques that should be included in a 

CBM project, technical environment, degree of development concerning computer, 

sensor technologies, and advance in skills and knowledge in prognostic technology as 

well as flexibility, maturity environment, professional and intellectual rigueur.  

o The evolution and monitoring the process of implementation must be assessed during all 

cycle life of project and after exploitation as well. 

o Increased awareness of CBM concepts and Service approaches  

o Improved coordination of service initiatives, and additional advocacy in the form of 

policy, and guideline should be described the objective, goal, and procedure of the 

implementation CBM policy. 

o Increase maturity level in the knowledge related methods and avoid obligatory all factor 

can be transform the environment into college. 

o Culture change is necessary towards CBM framework, Leadership and manager should 

be able to manage the change that is faced by their organization, human behavior. Reduce 

the risk that CBM implementation has not considered by the companies.  
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Chapter 3  

Stochastic Process Applied to CBM models 
 

The purpose of this chapter is to define stochastic and deterministic concept as well as to select 

which approach will be used throughout this work. Lastly, it provides a description of some of 

the most common stochastic process approach in use today, thereby summarizing some works 

that use stochastic processes to develop CBM models with special emphasis on Markov chain, 

renewal process, delay time concept, and gamma processes.  
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3.1 Stochastic and deterministic concepts 

Over many decades ,there has been an ever increasing interest by scientific community to study 

random phenomena in various fields of science engineering, due to the uncertainty of both 

system behavior and environment of the system itself. In general cases, the uncertainty means the 

lack of certainty about the behavior of the system. Those concept can be associated with a state 
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of having limited knowledge where it is impossible to describe exactly the current state, the 

future state, or more than one possible outcome. In fact, such systems are subjected to change 

over time and evolved in time and space with random manner, and it has been extensively 

studied over the last three decades. Mathematical models of such systems are known as 

stochastic processes (Hoel et al., 1986; Bartlett, 1955). 

In general cases, the majority of phenomena in industrial complex systems are non-deterministic. 

These systems are known as stochastic or random systems. It should be noted that, since the late 

19’s century more stochastic models than deterministic models have been developed (Medhi, 

1982). Stochastic model is used when the analyzed system has at least one stochastic component, 

but it could have one or more deterministic components. Besides, deterministic models have no 

random or probabilistic component, and the entire input and output of system relation of the 

model is conclusively determined. A deterministic model is used in that situation where the 

result is established straight forwardly from a series of conditions. In a situation where a cause 

and effect relationship is stochastically or randomly determined, a stochastic model is used. It is 

clear that stochastic modeling is more complex than deterministic modeling in terms of data 

collection, processing, computational and run time. The system having stochastic element is 

generally not solved analytically. 

In fact, different types of stochastic processes are widely used by researcher for system 

modeling. Therefore, many models rely on stochastic processes aims understanding, predicting, 

and controlling uncertain behaviors that are subjected to chance. Stochastic processes theory has 

attracted the attention of many researchers in a pervasive manner, particularly in the last three 

decades and it plays an essential role in many scientific fields: physics, medicine, oceanography, 

finance, chemistry, astronomy, communication and control theory, management science (Karlin 

and Taylor, 1975; Parzen, 1999). For example: Deterioration in structural material, maintenance 

decision making, congestion in telephone lines or road traffic, effect of air pollution on health, 

genetic determinants of diseases, stock market fluctuations, the phenomenon of carcinogenesis, 

waiting line analysis, and so on (Cox and Miller, 2001; Parzen, 1999). 
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Nowadays, stochastic processes are widely applied in industrial maintenance. It has been playing 

an important role in solving optimization maintenance problems (Wang, 2003; Noortwijk, 2009; 

Kallen and Noortwijk, 2005).  

3.2 Stochastic Processes 

Stochastic processes are used to describe the evolution of dynamic systems over time via random 

changes in accordance with probability theory. Over the last decades, many books devoted 

exclusively to stochastic processes have been published such as: Gallager, 2013; Singpurwalla, 

1995; Osaki, 2002; Ross, 1996; Ross, 2000; Ross (2000); Karlin and Taylor (1975);Karlin and 

Taylor (1982); Bailey (1964); Cinlar (2013); Hoel et al., (1972); Parzen (1999).  

Nowadays, there is in fact a great increasing in the application of random variables for all 

practical purposes in probability theory (Medhi, 1982). Furthermore, the probability theory and 

mathematical statistics are powerful tools used for describing and modeling stochastic events, 

variables, relations, systems or processes (Valdma, 2007). Many systems operate in dynamic 

environments. Processes have some random or stochastic elements involved in its structure and 

changing with time, therefore, they have explicit time dependence (Bartlett, 1978; Gheorghe, 

1990). In a given time interval, a system or process can have more than one state. A state of 

system undergoes random changes over time, based on the present state, the evolution of the 

system is predicted (Gheorghe, 1990).Indeed, the state of system might be defined at any instant 

even the value of state variables of a system are unknown. However, due to the uncertainty 

related to many factors, it is impossible to define exactly the actual and future state of the 

process. This explains why it is required that the process state is represented by a random 

variable. Stochastic process models are capable to capture and analyze the inter-dependence of 

random variables, their change in time and limiting behavior by using probability law (Ross, 

2000). 

According to Gallager (2013), stochastic processes constitute a branch of the probability theory 

treating probabilistic systems that evolve in time. A probabilistic system is defined as a system 

that consists of at least one probabilistic component and may contain deterministic 

http://www.amazon.com/Paul-Gerhard-Hoel/e/B001ITRLL8/ref=dp_byline_cont_book_1
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components(Valdam, 2007). Dynamic probabilistic systems are characterized by states, holding 

times in any given state and transitions among states (Gheorghe, 1990). 

Stochastic processes can be defined mathematically in different ways. According to Ross (1996), 

a stochastic process Ω = {X(ɵ), ɵ Є Ɵ}is a collection of random variablesX(ɵ) indexed by a 

parameter ɵ. That is for each ɵ belonging to the index set Ɵ, X(ɵ) is a random variable which 

represents the state of the process at time ɵ.The index ɵ often referred as time, and 

X(ɵ) represents process state at time ɵ. If Ɵ is a set of integers (discrete or countable finite), 

representing specific time points, the stochastic process Ω is called discrete time stochastic 

process. In this case, it is usual that the subscript ɵ is replaced by n, and the stochastic process is 

normally denoted by {Xn}.Otherwise, if Ɵ is continuous or uncountable(interval or real line), the 

stochastic process Ω is called continuous time stochastic process. In this case, every continuous 

time stochastic process has probability density function. In addition, a continuous-time stochastic 

process {X(ɵ), ɵ ЄƟ } is said to have independent increments if for all ɵ0<ɵ1<ɵ2<ɵ3<…<ɵn, the 

following random variables: X(ɵ1)-X(ɵ0), X(ɵ2)-X(ɵ1),…, X(ɵn)-X(ɵn-1) are independent. In this 

case, the general subscript ɵ can be replaced by t and change the notation slightly, writing X(t) or 

Xt rather thanX(ɵ) (Karlin and Taylor, 1975; Cox and Miller, 2001; Breuer, 2007). 

In spatial process, Ɵ is a vector, representing the location in space rather than time. The process 

defined by the collection of random variables {X(μ,υ)},at position (μ,υ), varies across a two-

dimensional space. Processes that evolve in both time and space are said to be spatio-temporal 

processes (Breuer, 2007).Stochastic processes can be classified on the basis of the nature of their 

state space A, the index parameter Ɵ, and the dependence relations among the random variable 

X(t).In the case of state space A, if the state space A is discrete the sequence of random variables 

{ X(ɵ), ɵ Є Ɵ} is said to be a discrete-state process. Otherwise, if the state space is continuous, 

then the sequence of random variables is said to be a continuous-state process. Therefore, there 

are four classifications of stochastic processes: (i) Stochastic process with discrete parameter and 

state space, (ii) Stochastic process with continuous parameter and discrete state space, (iii) 

stochastic process with discrete parameter and continuous state space, (iv)Stochastic process 

with continuous parameter and state space (Karlin and Taylor, 1975; Cox and Miller, 2001; 

Osaki 2002). In terms of stationary there are two distinct types of stochastic processes, those 

referred as stationary processes and the others referred as non-stationary processes. For 
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stationary processes, the probability distribution of the number of events that occur in any 

interval remains the same as time progresses and depends only on the length of the time interval. 

The random mechanism producing the process is not changing, and thus, a stationary process has 

the property that the mean, variance and autocorrelation structure do not change over time. Non-

stationary processes are also known as evolutionary processes and the probability distribution of 

the random variables does not remain the same over time.  

A sample path of a stochastic process represents the number of events that occur in a specified 

interval [0, t]. A typical sample path is shown in Figure 3.1, given an interval [0, t], three events 

occur between 0 and t. The initial event occurs at time t1, the second event occurs at time t3, and 

the last event occurs at t4 (Ross, 1996). 

 

 

 

 

 

   

Figure 3.1. A sample path of X(t) during the interval [0, t] (Ross, 1996). 

A counting process is viewed as a counting number of events occurring over time under study. A 

stochastic process {N(t), t≥0}is said to be a counting process if N(t) represents the total number 

of events that have occurred up to time t (number of birth per day, number of failure up to time t, 

number of light bulbs which were burn out during the interval size t, number of patient in 

emergency during night, number of internet disconnection during one months, number of arrived 

student in professor’s office by the time t. In addition, a counting process is constant between 

events, and jumps one unit at each event time, and denoted by N(t) where t is time. Poisson 

process, binomial processes are an example of counting process. 
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3.2.1 Renewal theory and its application in maintenance 

Renewal process is defined as an arrival process in which the inter-occurrence times between 

successive events are positive, independent, and identically distributed random variables 

(Markovich, 2007). The major reason for using the term “renewal” comes from the basic 

assumption that when the event of interest occurs, the behavior of the process starts as new (time 

zero), in the sense that the initial situation is reestablished. This means that, starting from this 

“renewal instant”, the waiting time for the second occurrence of the event has the same 

distribution as the time needed for the first occurrence. 

Renewal theory provides a theoretical framework that counts the occurrence of events in 

repeated independent trials (embedded renewal processes) for a specific stochastic process under 

study. In queuing process, the embedded events could be the arrivals of customers to a waiting 

line (queues) in order to receive a service. In inventory process, the embedded events could be 

the replenishment of stock when the inventory position drops to the reorder point or below it. In 

reliability problems, the embedded events could be the successive replacements of electric lights 

bulbs, or the successive occurrence of the failure of valves (Tijms, 2003). 

Since renewal processes is an arrival process in interval time (0, t), it can be then specified in 

three ways: (i) by the joint distributions of the arrival epochs S1,S2,..., (ii) by the joint 

distributions of the inter-arrival times X1,X2,... (iii) by the joint distributions of the counting 

process N(t); for t ≥ 0. 

Let X1, X2, … , Xk be a sequence of non-negative, independent random variables representing the 

inter-occurrence time between the (k-1)th and kth event (holding time). For anyk ≥ 0, Skis called 

an arrival time sequence refer to as the successive instants while a specific event occurs (jump 

time), and the interval [Sk, Sk+1] being called renewal interval. The waiting time until the 

occurrence of the kth event denoted by Sk is written as follow: 𝑆k= ∑ 𝑋i
𝑘
𝑖=1 , (S0= X0= 0). 

Associated with a renewal process there is a renewal counting process N(t) that tracks the total 

number of renewals in [0,t). For 0 < Sk≤ t, N (t)is defined by: 

N(t)= max {k≥ 0: Sk≤ t}= min {k≥ 0: Sk≥ t}       (3.1). 
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As illustrated in Figure 3.2, the time up to the nth renewal is known as the time at which the nth 

renewal will occur. For example: the 3th failure occurs at time 𝑆k=  𝑋1+𝑋2+𝑋3. Then, the 

number of renewals in time ti is defined as the number of renewals occurring in interval (0, t].  

 

 

 

 

 

 

Figure 3.2. Path sample evolution of renewal process. 

For a given interval time of size t, N (t) can be satisfying the following axioms (Tijms, 2002; 

Callagger, 2013; Karlin and Taylor, 1975): 

If s< 𝑡, 𝑡ℎ𝑒𝑛 𝑁(s) ≤ N(t). For s< 𝑡, 𝑁(t) − N(s)equals the number of events in (s,t). Hence, for 

some k the renewal occur at time t only if Sk= t.  

The inter-arrival times for the renewal process {N(t), t ≥ 0}  having identical probability density 

function denoted byf(t), if F(t)is the cumulative density function of {N(t), t ≥ 0}  then: 

F(t) = P(Xk≤ t), if t equal zero F(0) = 0 elsewhere. 

Therefore, the waiting time for the second occurrence of the event has the same distribution as 

the time needed for the first occurrence (Barbu and Limnios, 2007).  

That is, if renewal process {N(t), t ≥ 0}  equals to zero, with the property that: 

 

{N(t) = k} ={Sk≤ t, Sk+1> 𝑡}, For any t ≥ 0, k ≥ 0.     (3.2). 
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A Renewal function constitutes the basic characteristic of an underlying renewal process, and it’s 

uniquely determines the renewal process. Many probabilistic models and sequential analysis are 

based on renewal function estimation (Feller, 1971; Karlin and Taylor, 1975). 

Given any interval of length t, the renewal function H(t) is defined as the expected number 

renewals in that interval. That is, for k=1,2,3...assuming that 𝜇 is the expectation denoted by 

E[N(t)] exist if : 0 < 𝜇 < ∞, then H(t) renewal function can be expressed directly in term of 

expectation by (Gallagar, 2013; Karlin and Taylor, 1975):  

H(t) = E[N(t)]          (3.3). 

E[N(t)] = ∑ k P[N(t) = k]∞
k=1 = ∑  P[N(t) ≥ k]∞

k=1 = ∑  P{𝑆k ≤ 𝑡} =∞
k=1 ∑ Fk(t)∞

𝑘=1 (3.4). 

Where Fk(t) =  P{𝑆k≤ 𝑡}.  

Given sample evolution of renewal process with two sequence Sk and Sk+1, then those two 

sequence having cumulative density function Fk(t) and Fk+1(t) respectively. F has mean and finite 

variance. For k ≥ 1, defining Fk(t) = P(N(t) ≥ k) = P(Sk≤ t) Where Fk(t) is a k-fold 

convolution of F(t). Denoting T the random time, the renewal function H(t) is defined by relation 

(Chaudhry and Templeton, 1983; Frees, 1986):  

 

H(t) = ∑ Fk(𝑡)∞
𝑘=1                          (3.5). 

For k ≥ 1, let denote Pk(t) the probability of that number of arrival event in the interval (0, 𝑡], so 

that:  

Pk(t) = P(N(t) = k) = P(Sk≤ tand Sk+1> 𝑡)= F k(t) − F k+1(t)               (3.6). 

A renewal process can be classified into two types in term of time, one for discrete time, and the 

other for continuous time. These are called discrete time renewal process and continuous time 

renewal process respectively. A renewal process is said to be a discrete time renewal process if 

successive renewals are recorded in discrete time, which are indexed in the order: 

𝑡, 1𝑡, 2𝑡, ….Otherwise, renewal process is called a continuous time renewal process when the time 
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of occurrence of an event is continuous. Continuous-time renewal processes can be 

approximated with discrete-time renewal processes (Weide andNoortwijk,2008). However, 

discrete-time renewal processes may not be simply approximated by continuous time renewal 

processes, especially when the counts are relatively small.  

A renewal process is called a Poisson process, if the inter-arrival times random variables {X1, 

X2,…, Xk} are i.i.d. and have an exponential cumulative density function with a parameter 

known as the rate of process (λ> 0 ). A Poisson process is a special case of a renewal process, 

and is the only renewal process having independent and stationary increments as well as Poisson 

process is the only renewal process with the memoryless property (e.g., counting the number of 

components that are replaced during fixed time intervals). For any interval (0,t], λt is expected 

number of arrivals in that interval. The inter-arrival times having exponential distribution, The 

exponential distribution is the only distribution with the memoryless property, continuous 

probability density function of exponential distribution can be expressed by:  

f(𝑡) = λe−λt, for 𝑡 ≥ 0 and 𝜆 > 0      (3.7). 

A several authors have reported several methods for calculating the renewal function (Free, 

1986, 1986, 1988; Baker 1993; Dohi et al., 2002; Nagai et al., 2000; Ross 1989; Markovich 

2006; Schneider et al., 1990). There are two common computational methods for estimating 

renewal function. The first one refers to analytical computation method and the second one refers 

to numerical computation methods. Estimation renewal function with analytical computation 

method can be used by the following methods: phase renewal processes, gamma approximations, 

method based on equilibrium distribution, and in a specific case in which the knowledge of the 

distribution is incomplete and only the information on a few moments is available the bounds 

approach (upper and lower) may be useful to evaluate the renewal function. The most famous 

bounds for the renewal function have been derived by Barlow and Porschan (1965). Many 

numerical computation methods have been considered as tools for renewal function estimation: 

Laplace inversion technique, cubic splines algorithm, discretization algorithms, and 

approximation by rational functions. In estimation renewal function, numerical computation 

methods provide result more accuracy than the analytical computation methods and consequently 

involving in a great number of studies. 
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According to Osaki (2002), the mathematician William Feller (1906-1970) was considered the 

first who developed renewal theory, and the popular figures specializing in probability theory 

among other mathematicians. Feller (1968) proved the elementary renewal theory via Laplace 

transform methods. Laplace transform methods are considered the main mathematical tools to 

find the distribution function, mean, and variance of the number of renewals of a renewal 

process. The inter-arrival time distribution of a renewal process has Laplace transform. When the 

inter-renewal time distributions do not have Laplace transforms, the Padé method provides a 

good approximation (Chaudhry, 2013). In the 1960’s, renewal theory has been developed 

primarily by the investigation of some general results in probability theory that connected with 

sums of independent non-negative random variables (Dohi et al., 2002). Most of the important 

results on renewal theory and its divergence were established by Smith (1958) and Cox (1962). 

A book was published by Feller (1968) covering a wide range of topics related to probability 

theory (e.g., renewal theory, Markov processes) and its application. Since then, renewal theory 

was first applied in reliability context as a technique to study complex systems. Applications are 

considered in study of some particular probability problems that connected with failure, and the 

analysis of components replacement problems. For example: using known distributions for the 

time to failure of each component to find the mean number of failures of the entire system in a 

given interval (Heyman and Sobel, 1982). 

Renewal theory has a wide range of applied probability models, and is considered a powerful 

modeling tool in many applications: queuing analysis, inventory analysis, reliability analysis, 

telecommunication networks, and so on (Chaudhry, 2013). Therefore, renewal theory has played 

an important role in understanding and studying a lot of stochastic processes that occur randomly 

over time and which returns to a state probabilistically equivalent to the starting state (Heyman 

and Sobel, 1982; Tijms, 2003). Some of these application as follows: discrete event systems 

arising in queuing theory (Scarf et al., 1962), production and inventory control (Barlow and 

Porschan, 1975), design of communication systems, performance evaluation in computer science 

(Radner et al., 1967), and product warranty estimation (Gertslbakh, 1977), failure and 

maintenance of systems (Ascher and Feingold, 1984). 

In many situations, stochastic processes have regenerative behavior; the process regenerates from 

time to time in a fixed interval or in a random time (Cox, 1962). Therefore, it is important for 
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many problems that involve modeling the behavior of some processes to study only a single 

regeneration cycle. The time interval between two regeneration epochs is called cycle. A 

sequence of regeneration cycles constitutes what is known as a renewal process (Markovich, 

2008; Gallagar, 2013).  

In maintenance applications, renewal theory has proven its usefulness in estimating the long run 

average such as: availability, cost, or availability and cost in one realization of process. These 

embedded renewal epochs allowing separate the long term behavior of the process which can be 

studied through renewal theory from the behavior of the current process within a renewal period. 

For example : Renewal theory is used to estimate long run average cost per time unit, long run 

average availability per time unit, long run fraction of time the system spends in a given set of 

states (Weide and Noortwijk, 2008). Whenever, it is often assumed that a process starts afresh or 

as good as new means that the state returns always to the first state and starting at time zero 

while maintenance action brings a system back to its original condition as well as the cycle 

ended when the maintenance action bring the system in its normal state. (Barllowand Porschan, 

1965; Noortwijk, 2009). 

3.2.2 Markov Chain 

A Russian Mathematician, Andrei Andreyevich Markov (1856–1922), was the first who 

introduced the concept of Markov chain in 1907 (Basharin, 1990). A.A.Markov considered that 

theoutcome of a given experiment can affect the outcome of the next experiment; this is known 

as a Markov chain process (Basharin et al., 2003). 

A Markov chain is a random process represented by a sequence X0, X1,…of random variables 

having Markov property that the conditional distribution of Xn+1 given Xn, Xn-1,..., X1, X0 

depends only on the present value (Xn), and is independent of the past (Cox and Miller, 2001). 

Markov chain aims to describe a process in which considering the probability of any particular 

future behavior of the process, when its present state is known, is not altered by additional 

knowledge concerning its past behavior this is called memoryless property (Markov property). 

Markov chains have been recognized as one of the great prominent tool in stochastic modeling 

interrelating the probabilities, states and transitions. It can be used to model a random system 

that changes states according to a transition rule that only depends on the current state. Letting 
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consider {Xn, n=0,1,2,…}a sequence belonging to the set of states with length n denoted by Ω 

recorded respectively at t1,t2,…., tn,. In a Markov chain, if the chain is currently in state (Ei) then its 

moves to state (Ej) at the next step with a probability denoted by 𝑃ij. Assuming {X (t), t ≥0} is a 

continuous-time stochastic process taking values on the discrete state space Ω. Let’s T be a time 

space, 𝑇𝜖 [0, ∞). Mathematically, for any real numbera, b ≥ 0 the process {X (t), t ≥0}is a 

Markov chain process if satisfying the following expression (Karlin and Taylor, 1975): 

𝑃(a<Xt≤ b|𝑋𝑡1
=x1, 𝑋𝑡2

=x2,...,𝑋𝑡𝑛
=xn)= 𝑃(a<Xt≤ b𝑋𝑡𝑛

=xn)    (3.8). 

A Markov chain diagram is a schematic representation used to visualize Markov chain process. 

Markov chain diagram is entirely constructed by space states (nodes), its transitional 

probabilities (arcs), and initial probabilities. In a Markov chain diagram, the process moves 

successively from one state to another. Each move is called a step (Figure 3.1). If a transition is 

possible from state i to state j, the directed edge from node i to node j is labeled with the 

probability of going from state i to state j and denoted as 𝑝ij
(n)> 0, in n steps. Consider setting 

Markov chain diagram might be there is an edge from possible state to itself that indicates the 

possibility that the process continues to occupy the same state in the next period. The process can 

remain in the same state with probability denoted by 𝑝ii. Therefore, an absorbing Markov chain is 

a Markov chain where an absorbing state is accessible from any set of states. An absorbing state 

is a state that, once entered, can’t go to another state(Ross, 2000;). In another word, A state Ei of 

a Markov chain is called absorbing if it is impossible to leave it (i.e., pii = 1). A Markov chain is 

absorbing if it has at least one absorbing state, and if from every state it is possible to go to an 

absorbing state (not necessarily in one step). In an absorbing Markov chain, a state which is not 

absorbing is called transient. 
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Since, a Markov process is a stochastic process, there are four distinct types of Markov processes 

classified according to their state-space and time characteristic (see Table 3.1).  

 

 

 

 

 

Table 3.1. The four types of Markov processes. 

Type State space Time  Name 

1 Discrete Discrete Discrete Time Markov Chain 

2 Discrete Continuous Continuous Time Markov Chain 

3 Continuous Discrete Continuous State Space Markov Chain 

4 Continuous Continuous Continuous State Space Time Markov Chain 

 

If a process is a considered discrete and continuous in term of state whereby in this situation 

Markov process can be classified into types: the first one is known as a Discrete State Space and 

Discrete Time and the second one is known as Discrete State Space and Continuous Time. A 

discrete-state and discrete-time Markov process is usually called the discrete time Markov chain 

(DTMC). The Discrete Time Markov Chain can be defined as a set of states with countable state 

space since the transition state occur in discrete time. It is represented by fixed transition 

probabilities. In Discrete Markov Chain the transitions occur at discrete times. The second type 

of Markov process is characterized by the discrete-state and continuous-time Markov process 

which very often called Continuous Time Markov chain (CTMC). The time spent in each state 

takes non-negative real values following exponential distribution and transitions can happen at 

any time where the transitions occur in a very short time interval. The continuous-time Markov 

chain is said to have stationary or homogeneous transition probabilities. 

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Exponential_distribution
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Therefore, if the states space is assumed to be continuous, this implies that Markov chain can be 

divided in two types(one a process is considered discrete, and the other process is considered 

continuous in time): The first one is called Continuous State Space and Discrete Time, and the 

second one is called Continuous State Space and Continuous Time. The first one is applied only 

if there are discrete changes in time in environment where the states of the system are continuous 

over a specified range. The second one is characterized by the process and states space of the 

system is both continuous in time. For example: Continuous Time Markov Chain is considered 

as one the most widely stochastic method used by mathematician and engineering. In particular, 

classes of Markov processes which are useful for modelling stochastic deterioration is refer to a 

discrete-time Markov processes, and having a finite or countable state space and continuous-time 

Markov processes with independent increments. Therefore, Brownian motion (Wiener process) 

with drift also called the Gaussian, the compound Poisson process, and the Gamma process are 

considered as a Continuous-Time Markov Processes with independent increments (Noortwijk, 

2006). According to Shamshad et al., (2005) Markov chain of the first order is one for which 

each subsequent state depends only on the immediately preceding one. Markov chains of second 

or higher orders are the processes in which the next state depends on two or more preceding 

ones.  

Example3.1:Consider that the health state of items has three different states normal, warning, 

and a failed denoted respectively by state 0, 1 and 2. Thus, the system subject to gradually 

deterioration, then the transition from normal state to failed state is usually hidden state 

representing warning state, the only observable states is called failed state, otherwise normal and 

warning state are hidden (non-observable) (Jiang et al., 2012). The process first move from state 

to another state, any state 0, 1, and 2 is accessible from any of the three states, but 1 is not 

accessible from state 2. The Markov chain diagram (transition diagram) is represented as 

follows: 
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http://www.sciencedirect.com/science/article/pii/S0360544204002609
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Figure 3.5. Markov Chain Diagram with three transition states. 

The probability of reaching state j from the state i in two steps consists the probabilities of going 

from state i to any other possible state and then going from that step to j. Each move is called a 

step.  

𝑃ij
(2) = ∑𝑝𝑖𝑓𝑝𝑓𝑗 , Where f is the set of all possible states                               (3.9). 

If j is not accessible from i, which denoted as 𝑃ij
(n) = 0for all n≥ 0.This means that the chain 

started from i never visits j. As illustrated in figure above a state is called absorbing state is a 

state that once entered cannot be left. However, an absorbing Markov chain is a Markov chain in 

which every state can reach an absorbing state. A Markov chain is an absorbing chain if satisfies 

the following axioms: if there is at least one absorbing state and it is possible to go from any 

state to at least one absorbing state in a finite number of steps. In an absorbing Markov chain, a 

state that is not absorbing is called a transient state. 

Ina Markov chain, the transition matrix is a matrix that indicates the transition probabilities for a 

Markov chain to move from one state to another. Assuming {Xn}, n= 0,1,2,…be a sequence 

continuous time Markov chain, all existing number of transition probabilities between different 

states of two consecutive occasions provide a matrix as square array is called the matrix of 

transition probabilities, or the matrix transition of the process. In fact, the probability transition 

matrix is a tool for describing the Markov chains' behavior. Each element of the matrix 

represents probability of going from a specific condition to a next state, and is denoted by 𝑝 

(Shamshad et al., 2005). The transition matrix of Markov chain should satisfied the following 

conditions: 

𝑝ij≥0, i, j = 0, 1, 2, …         (3.10). 

∑ 𝑝𝑖𝑗 = 1∞
𝑗=0           (3.11). 

http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain#Absorbing_states
http://www.sciencedirect.com/science/article/pii/S0360544204002609
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The purpose of Markov chain on practical application aims to model the evolution of behavior of 

system that is considered random processes given in mathematically form, even if the initial 

condition is known, there are several directions in which the process may evolve. Suppose that 

the current state of process is in state i, then it moves to another state j this occur with probability 

pij.  

According to diagram of Figure 3.1, the Markov chain is described as follows: the chain has 

three states, 5 transition probabilities. Thus, the symbol 𝑝ij represents that the probability of 

transition from state i to state j in one step. For example 𝑝01consists that the next state of the 

system in 1 depends only on the present state 0, not on the preceding states. The transition matrix 

of Markov chain denoted by P represented as follows: 

 

 

P = 

 

Considering the example illustrated in Figure3.1, 𝑝21= 𝑝22= 𝑝11= 𝑝11=0.The chain started from 

state 2 never moving to state 1. There are two non-absorption states respectively, 1, and 2. The 

Markov process has stationary transition probabilities only when one-step transition probabilities 

(Pn,n+1
ij) are independent of the time variable. Mathematically, the one-state transition 

probability is denoted by Pn,n+1
ij, and is expressed by (Karlin and Taylor, 1975):  

Pn,n+1
ij=P{Xn+1=j/ Xn=i}            𝑛 = 0,1, . ..        (3.12). 

Let’ assume j is accessible from iin n steps with probability 𝑃n
ij> 0and k is accessible from j in 

m step with transition probability𝑃m
ij> 0, so that imply k is accessible from i in m+n steps with 

transition probabilityPn+m
ij> 0. The m-step transition probabilities at time n is the probability of 

Xn+m will be in state j, given that Xn is in state i(Ross, 2000), so that: 

Pn,n+m
ij= P{Xn+m=j/ Xn=i},                 n=,1,..        (3.13). 

𝑝00 𝑝01 𝑝02 

𝑝10 𝑝11 𝑝12 

𝑝20 𝑝21 𝑝22 
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Thus, the corresponding m-step transition matrix at time n is denoted by P(n,n+m). The 

transition matrix should satisfy: 

P(m, n) = P(m, l) P(l, n),              m ≤ l ≤  n      (3.14). 
 

Or, equivalently, 

 

Pij(m, n)=  ∑𝑃if(𝑚, 𝑙)𝑃fj(𝑙, 𝑛),m ≤ l ≤ n       (3.15). 

 

This equation is known as the Chapman-Kolmogorov equation (Ross, 2000). 

Hidden continuous Markov chain (HMM) is often called a doubly stochastic process and it has 

Markov property. Hidden Markov model is a tool for representing probability distributions over 

sequences of observations. A Hidden Markov model is an extension of the Markov Model, in 

which it is assumed that the system unobservable aimed to explain the observed sequence 

whereby computing the probability of observation sequence. Therefore, the observations are 

probabilistic function of the hidden states (Rabiner and Juang, 1986). The state duration where 

the sojourn time in each state have exponential distribution which is sometimes not realistic in 

real-world application, is considered as the one of the most weakness modeling the process by 

HMM. The set of states are often considered discrete, this is an advantageous representation that 

allowing seeing the transition from state to another state. Hidden Markov model was first used in 

the research area of speech recognition (Rabiner, 1990), in computational molecular biology, 

artificial intelligence, and in a pattern recognition (Ghahramani, 2001). Rabiner (1990) presents 

an overview of Hidden Markov models including estimation procedures and inference technique. 

It is can be also used in theory and application for maintenance optimization, numerous paper 

have been published in literature using Hidden Continuous Markov Chain, for example: system 

diagnostics and fault detection (Lin and Makis, 2003; Makis and Jiang, 2003; Wang, 2006). 

From a practical point of view, Markov chain modeling are widely used by the researchers 

around the world across various areas such as: reliability, maintainability, safety, environmental, 

finances, queuing systems, inventory systems, physics and biology system, medical decision 

making, recovery, relapse, and death due to disease. Therefore, many ideas connected to Markov 

chain and have property Markov as well. Markov chains have a direct relationship to other 

stochastic processes such as: Brownian motion, random walk process, gamma process, delay 
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time concept, inverse Gaussian process. Markov processes have long been considered the most 

popular as stochastic processes for maintenance optimization problem. 

3.2.3 Gamma Process 

Gamma process is a stochastic process with independent non-negative random increments 

following a gamma distribution (e.g. the increments of degradation growth of an item). Gamma 

process is usually defined as follows. Let assume that X = {X(t), t ≥ 0} is a stochastic process 

taking a value on (0,∞), a random quantity X has a gamma distribution with shape function 

β(𝑡) > 0, scale parameter λ > 0 and location parameter µif its probability density function is 

given by:  

𝑓 (𝑥;𝛽(𝑡), 𝜆, 𝜇)=
𝜆𝛽(𝑡)

Γ(𝛽(𝑡))
(𝑥 − 𝜇)𝛽(𝑡)−1𝑒−𝜆(𝑥−𝜇) , for real 𝑥 ≥ 𝜇, β(t) > 0, 𝜆 > 0.  (3.16). 

Gamma process shall be referred as 𝐺𝑎(𝑥; 𝛽(𝑡), 𝜆, 𝜇). 

Γ(. )is the gamma function which is expressed by a convergent improper integral 

whenever β(t) > 0: 

𝛤(β(t)) = ∫ 𝑡β(t)−1∞

0
𝑒−𝑡  𝑑𝑡         (3.17). 

Therefore, Gamma process is considered as a special case of a pure-jump increasing Lévy 

process having an infinite number of jumps in finite time intervals. Thus, a Gamma process has 

direct connection with a Poisson process. 

A gamma distribution is an increasing function of time and right continuous with the following 

proprieties: gamma distribution approaches the normal distribution when scale parameter 

becomes large. Therefore, gamma distribution has density only for positive real numbers. 

Therefore the lower incomplete gamma function can be written as follows: 

𝛤1(β(t)) = ∫ 𝑡β(t)−1𝑡

0
𝑒−𝑡  𝑑𝑡         (3.18). 

Whereas, the upper incomplete gamma function can be written as follows: 

http://en.wikipedia.org/wiki/Increasing
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𝛤2(β(t)) = ∫ 𝑡β(t)−1∞

𝑡
𝑒−𝑡 𝑑𝑡         (3.19). 

The shape function β(t) is a non-decreasing, right-continuous, real-valued function for 𝑡 ≥ 0, 

withβ(0) = 0. 

If μ = 0 and λ = 1, Gamma distribution is called standard gamma distribution denoted by 

Ga (x, β(t), 1, 0):  

𝑓(𝑥) =
𝑥β(t)−1

Γ(β(t))
𝑒−𝑥          (3.20). 

If μ = 0, gamma distribution parameterized with a scale parameter and shape parameter, gamma 

distribution function can be written as follow:  

𝑓(𝑥) =
1

Γ(β(t))
λβ(t)𝑥β(t)−1𝑒−λ𝑥 , for real 𝑥 ≥ 0      (3.21). 

An exponential distribution is considered as a special case of a gamma distribution, this mean 

that a gamma process with β = 1(and μ = 0), is commonly called to be an exponential 

distribution, where the parameter λ occurs as a scale factor.  

A gamma process belongs to family of stochastic degradation processes (e.g. inverse gaussian 

process, delay time concept, Markov chain), and widely used to represent the progressive 

degradation process. As degradation is naturally uncertain and non-decreasing, and may arise in 

stochastic fashion due to wear, fatigue, corrosion, crack growth, erosion, consumption, creep, 

swell, gamma process can be applied to define degradation model (Paroissin and Salami, 2014;  

Abdel-hameed, 2010). Gamma process gives a proper model for random deterioration with time, 

thus, Gamma process is used to model the uncertainty in the time to failure (lifetime) and/or the 

rate of deterioration. Gamma processes are fitted to data on creep of concrete, fatigue crack 

growth, thinning due to corrosion, and corroded steel gates, deterioration process of coating. 

According to Paroissin and Salami (2014), Gamma process is one of the most popular stochastic 

process among other to model degradation of device in reliability theory.  

A continuous time stochastic degradation process X = {X(t), t ≥ 0} is a gamma process if it is 

satisfies the following properties (Mahmoodian and Alani, 2013; Noortwijk, 2009): 
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o A continuous-time Markov process {X (t), t ≥0}. 

o It is assumed that the process starts from a value 0 at timet = 0, X(0)=0 with probability 

equal to one. 

o The result distribution of non-decreasing degradation jump stochastic process defines 

gamma process.  

o X (t) random variable has independent increment. 

o The mean value of the process increases linearly. 

o Probability density function has explicit expression. 

o Homogeneous in time.   

o A gamma process is a stochastic process with independent increments: for 0 < 𝑠 < 𝑡, the 

distribution of X(s +  t) − X(s), follow Gamma distribution. 

o Letting {X(t2) − X(t1)} be the damage increment from time t1 to t2. The increment are non-

negative quantity and having gamma distribution with shape function [β(t2)-β (t1)] and 

scale parameter λ. 

Statistical estimation methods and simulation technique are considered as two computational 

approaches for estimating unknown parameters of gamma model. Several methods of estimating 

parameters have been presented by Noortwijk (2009): Maximum-likelihood method, Least 

squares model, Method of Moment Method of Bayesian, Markov Chain Monte Carlo Simulation. 

The application of these methods for estimating the parameter of gamma distribution is 

demonstrated by using observed set data as well as applying a certain objective function.  

Therefore, in term of stationarity various gamma processes have been discussed in the literature. 

The existing Gamma process used for deterioration prediction modeling can be classified into 

two categories asa stationary gamma process, non-stationary gamma process. A gamma process 

is called stationary gamma process if the shape functionβ(t) is linear over time. 

Generally β(t) = 𝛼𝑡b, when 𝑏 = 1, the shape function becomeβ(t) = 𝛼𝑡, in this case gamma 

process is linear and stationary. A Stationary gamma process with shape function β(t) = 𝑡and 

scale parameter 1 will be called standard. Further, Gamma process having an increasing expected 

deterioration and linearly over time𝐸(𝑋) = 𝜆−1𝛽(𝑡). Otherwise, if the shape function β(t) is 

non-linear β(t) = αtb(α > 1 and b > 1) the increments follow non-stationary gamma process. 
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The cumulative density function, the survival function, and the hazard function, cannot be 

written in closed form, these defined as follows (Meeker and Escobar, 1998; Noortwijk, 2009): 

Using probability density of gamma function to calculate cumulative density function, the cdf is: 

                     F(𝑥) = ∫
1

Γ(β(t))

x

0
λβ(t)𝑥β(t)−1e−λ𝑥  d𝑥 . For real 𝑥 ≥ 0.    (3.25). 

Then, the survival function R(t) (reliability function)represents the probability of surviving  of an 

item beyond time t. For this distribution Reliability function is:  

𝑅(𝑡) = 1 − Γ(t)          (3.26). 

Where,Γ(t) represents the lower incomplete gamma function.  

The hazard function represents the instantaneous failure rate. The hazard function is therefore: 

h(𝑥) =
f(𝑥)

1−F(𝑥)
           (3.27). 

=

1

Γ(β(t))
λβ(t)𝑥β(t)−1𝑒−λ𝑥

1−∫
1

Γ(β(t))

x
0

λβ(t)𝑥β(t)−1e−λ𝑥 d𝑥
         (3.28). 

The Hazard function is increasing whenλ > 1, decreasing whenλ < 1, and constant when β(t) =

1 

Leonhard Euler is considered the fonder of gamma function (1729) afterwards gamma function 

arises in many areas. Beginning of 1950’s, Moran was the first who applied gamma process in 

theoretical physics for modeling the water flow into a dam. Abdel-Hammed on 1975 is 

considered the first who adopted a gamma process for modeling the stochastic deterioration 

occurring randomly over time. The author developed a mathematical model based on gamma 

process for maintenance optimization. In the maintenance policy, the gamma process describes 

structural stochastic deterioration occurring over time. A survey of the application of gamma 

processes in maintenance was published by Noortwijk (2009). 

http://en.wikipedia.org/wiki/Leonhard_Euler
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Since their introduction in the area of reliability on 1975, several authors have provided a wide 

variety of inspection models for optimizing maintenance under the assumption of gamma 

deterioration process (Abdel-Hameed, 1975; Kallen and Noortwijk, 2006; Yang and Klutke, 

2000).In reliability engineering and failure analysis, gamma process is used to model 

deteriorating process. This stochastic process has provided useful means for modeling time-

dependent phenomena such as degradation, especially for reliability and maintenance analysis. A 

gamma process is useful as a model for the lifetimes of non-repairable systems. It has proven to 

be useful in determining optimal inspection and maintenance decisions (Noortwijk, 2009).  

Generally, a gamma process has been considered straightforwardly as an appropriate and suitable 

tool for modeling a gradual damage monotonically increasing over time mainly due to 

mathematically tractable. In addition, a gamma process has the independent increments property 

and the assumption of a constant scale parameter (Guida and Pulcini, 2013; Barlow and 

Proschan, 1975; Noortwijk, 2007). Due to the advantageous using gamma process for describing 

degradation phenomena a wide range and diverse academic research have encouraged working 

on them in many areas of science such as physics and engineering (e.g. deterioration prediction 

of buildings, maintenance modeling, mathematical finance, credit derivatives models.).  

Therefore, an advantage of modeling deterioration processes by gamma processes is that the 

required mathematical calculations are relatively straightforward and usually the degradation is 

monotonically accumulating over time, in reliability engineering and failure analysis, gamma 

process is used to model deteriorating process (Mahmoodian and Alani, 2013).  

From practical point, a stochastic gamma process provide framework applicable for modeling 

deterioration in concrete pipes (Mahmoddian and Alian, 2013), modeling the material fatigue 

crack growth properties. In maintenance decision making, gamma process is used to detect the 

first time that process exceeds a random threshold, this process can be used as a model for the 

lifetime of a device or for the random time between two successive imperfect maintenance 

actions (Frenk and Nicolai, 2007). 

http://www.sciencedirect.com/science/article/pii/S0951832007001111


 

92 
 

3.2.4 Delay Time Concept 

Delay time concept is a tool for modeling and optimizing plant inspection practices. This concept 

defines the failure process of an item as a two-stage failure process: The first stage represents a 

normal operating stage, starting from a normal state to an initial point that a fault can be 

identified, in which in this stage a fault become visible. The second stage represents the failure 

delay time, starting from the point of fault identification to a failure state. Further, in this stage a 

fault leads to an eventual breakdown (failure), these faults of an item will not appear as failures, 

but are present for a while before becoming sufficiently evident to be noticed and declared as 

failures (Christer et al., 1973).The term delay time refer to period between the epoch of fault first 

initiating and the epoch of a failure resulting from the fault. These two failure stages could 

follow any arbitrary continuous probability density function and will not necessarily be described 

by the same probability law (Jiang, 2013). 

Every system built by humans is unreliable in the sense that it degrades with age and/or usage. A 

system is said to fail when it is no longer capable of delivering the designed outputs. Some 

failures can be catastrophic in the sense that they can result in serious economic losses, affect 

humans and do serious damage to the environment. Typical examples include the crash of an 

aircraft in flight, failure of a sewerage processing plant and collapse of a bridge. The degradation 

can be controlled, and the likelihood of catastrophic failures reduced, through maintenance 

actions, including preventive maintenance, inspection, condition monitoring and design-out 

maintenance. Corrective maintenance actions are needed to restore a failed system to operational 

state through repair or replacement of the components that caused the failure (Kobbacy and 

Murthy, 2008). 

For instance, operation of many complex systems comprised of several pieces of equipment tend 

downtime from time to time and, when that happens, they need to be identifying and replacing or 

repairing faulty item before they cause a failure enable to improve system availability. In fact, 

the initial point of defect is very important to the set-up of an appropriate inspection interval 

(Wang, 2009; Jiang 2013). The delay time concept is depicted in Figure3.6. The occurrence of a 

fault in a system sometimes may not lead to an immediate system failure; in this case the system 

stays in a defective state which is known as failure delay time. The problem of time delays is 
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typical for many physical or technical systems. In this context, failure delay time enable to 

provide the opportunity for item’s preventive maintenance to be carried out in order to decide 

either the defective item may be replaced preventively or rectify the identified defects before 

failures occurrence.  

 

 

 

 

 

Figure 3.6. Potential failure and functional failures (Moubray,1997). 

Delay time concept is often used for modeling two categories of engineered system. The first 

system is known as a single component that subject only to a single failure mode while delay 

time concept aims to modeling one defect, this model is known as component tracking model 

(Baker and Wang, 1992; Wang and Christer, 1997). In contrast, complexes system comprises 

many components and subject to many different failure modes (Christer et al., 1997; Christer and 

Waller, 1984; Pillay et al., 2007; Akbarov et al., 2008; Wang and Christer, 2003; Wang, 2009; 

Wang et al., 2010). In this situation, many defects can exist simultaneously as well as many 

failures can occur within interval between inspections, this is particularly important for the 

method using objective data (Wang et al., 2010). Defect arrivals from all components are 

grouped and modeled by a stochastic point process along delay time model, such as a 

Homogeneous Poisson Process (HPP) or Non-Homogeneous Poisson Process (NHPP) (Wang et 

al., 2010).  

Delay time concept aims to provide modeling framework for describing the transition time from 

a normal state (potential failure) to a failed state (functional failure). Mathematically, the delay 

time modeling concept is used to formulate the transition probability from one state to another 

state (Christer et al., 2001; Wang, 2012).  
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Delay time concept and models based on it allowing to describe the underlying state transition 

process, this could be applied by analysis the failure processes of an item. In addition, Delay 

time concept is employed in maintenance modeling to capture the relationship between 

equipment performance and inspection intervention (Wang, 2011). The relationship between 

item failure and inspection interval can be explicitly modeled by delay time concept Wang 

(2012).  

For estimating the delay time model parameters we need the collected maintenance data. Indeed, 

subjective and objective estimation are represented as two ways for estimating the delay time 

model’s parameters. For the first one, expert judgment (failures and faults data) has been used to 

estimate the parameters of delay time concept (distribution function for both stages) (Wang, 

2008; Christer and Redmond, 1990; Christer et al., 1998). However, opinion of expert includes 

uncertainty in which the estimation of parameters could not be a good estimate, indeed, model 

parameters have been estimated mainly from subjective data. For the second one, the origin of 

failures data and inspections are obtained from past records. Baker and Wang (1992) were the 

first provide an approach to estimate delay time parameters using objective data. However, the 

parameter estimation of the delay time concept modeling was solved by using simulation data, 

subjective data, or a combination of subjective data and objective data, mainly because there was 

rarely sufficient maintenance data to allow the use of fully objective data to solve it. The 

common method for estimating the parameters of delay time distribution have been reported in 

many papers and case studies are: Method of moment, Maximum likelihood function, least 

square method, Markov Chain Monte Carlo (MCMC).  

Christer and Waller (1994) used subjective data to solve the DTM parameters, and Christer and 

Redmond (1990) studied the maximum likelihood function method of the subjective estimate of 

the DTM. Corresponding with the subjective estimation methods, Baker and Wang (1991, 1992) 

put forward a parameter estimation method founded on objective data. Christer and Wang (1995) 

then proposed a method that uses subjective and objective data to solve the DTM for multi-

components in complex systems. Wang et al. (2007), used maximum likelihood for estimating 

the parameters model. 
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The general purpose of existing models based on delay time concept have been developed in the 

literature, this approach is enable to provide the rationale for technical system’ inspection and 

preventive maintenance. Therefore, it has numerous applications and developed delay time 

concept in many case studies of industrial maintenance of production plant and for other 

problems regardless the area e.g. Christer and Waller (1984); Christer et al (1995); Desa (1995). 

Theoretical developments can be found in baker and Wang (1991); Baker and Christer (1994); 

Christer and Redmond (1990); Christer and Wang (1995). 

Christer (1976) is considered the first who mentioned the concept of the delay time in a context 

of maintenance of building. The author exploits the idea of delay time for a fault in building 

structure, since then this concept was applied to several others maintenance optimization 

problems. Delay time concept was first applied to an industrial maintenance problem by Christer 

and Waller (1984). Christer (1992) also propose models of condition monitoring inspection with 

irregular inspection intervals based on delay time concepts. Another paper published by Christer 

et al. (2001) recognizes the robustness of the semi-Markov and delay time maintenance models 

to the Markov assumption. The authors present a prototype model of the industrial maintenance 

problem using the delay time concept. Many papers and case studies appeared in literature 

embracing delay time modeling of industrial asset inspection problems. The delay time model 

has been widely applied in CBM models (Jiang, 2013). Wang (2007) also presented a two-stage 

prognosis model in CBM. 

Baker and Christer (1994) discussed the development of delay-time analysis in modeling 

engineering aspects of maintenance problems as well as a state of the art and future trends of this 

models. An extension of Christer’ model has been made by Wang on (1992). In a thesis of Wang 

(1992), various models for condition monitoring inspection based on the delay-time concept, 

thus, many algorithms have been presented for condition monitoring inspection modeling. 

Recently, Wang (2012a) designed a multivariate Bayesian control chart for CBM. The transition 

between states and the relationship between observed information and the state are not 

Markovian. However, a two-stage failure process characterized by the delay time concept is used 

to describe the underlying state transition process. Bayesian theory is used to compute the 

posterior probability of the underlying state, which is embedded in the simulation algorithm. The 

http://www.sciencedirect.com/science/article/pii/0377221794902348
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model was designed on the basis of the delay time analysis. The author presents various models 

for condition monitoring inspection. As the distribution of the delay time is important to delay 

time modeling, a new approach to estimate the delay time distribution is proposed. Numerical 

examples are presented to illustrate how models and algorithms are performed. Wang et al., 

(2010) used delay time model to determine the optimal inspection interval for a system with 

different components and failure modes. Numerical examples demonstrate the results of the 

proposed model. In this study, simulation is easier to run than the analytical or numerical 

counterpart. Monte Carlo simulation is used to obtain the optimal control chart parameters, 

which are the monitoring interval and the upper control limit. Another article Wang (2012b) 

presented an overview of the recent advances in delay-time-based maintenance modeling. 

Werbińska et al., (2015) demonstrate the applicability of the delay time concept to determine the 

optimal interval between inspections performance 

Okumura (1997) presents a method for determining the discrete time points of inspection for a 

deteriorating single-unit system characterized by three states as follow: normal state, a defect 

state and a failed state. The transition of the states are described using a delay time model in 

which the transition time from normal state to a defect state and that from defect state to a failed 

state (delay time) are assumed to be independent. These two stages following an arbitrary 

probability density function. The author proposes a method for determining the inspection time 

vector which minimizes the long-run average cost per unit time. In another work, Aven and 

Castro (2009) proposed a methodology for determining an optimal inspection interval using 

delay time concept. The authors assume that the system has three states: the perfect functioning 

state, a defective state and the failure state. By using renewal theory the authors derive the 

expression of expected discounted cost per unit time as objective function subject to safety 

constraints. In this case, two safety constraints are considered: (i) the probability of at least one 

failure in the bounded interval should not exceed a fixed value; (ii) the fraction of time the 

system is in the defective state should not exceed a fixed limit. Wang et al., (2011) proposed an 

availability model and parameters estimation method for the delay time model. 

Jiang (2013) reveals a close relationship between delay time concept and gamma process, and 

show how they are mutually converted means given the existing results from one model to 

analyze the other that can be approximately determined if it is more difficult to analyze the 
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second model and to estimate their parameterization. For example: derive gamma process model 

from the delay time concept and vice versa. Indeed, the difference between gamma process and 

delay time concept is that in delay time concept the defect is physically identifiable without 

quantitative information while in gamma process, variety of degradation phenomena in 

engineering structure or components is identifiable by amount quantitative. Generally, the delay 

time concept needs less data than gamma process 

Therefore, delay time modeling concept enables identified the presence of the failure when it 

occurs. For gamma process, the failure is defined and usually associated with a functional 

failure; the degradation level is quantitatively measured. Generally, the intersection between 

alarm limit and the level of degradation can be considered as potential failure also, the 

intersection between degradation level and the failure limit can be considered as functional 

failure. In addition, the time interval with the degradation level that is smaller than the alarm 

limit, and it can be considered as the normal phase in the concept delay time. Then, the time 

interval with degradation level that occurs between alarm limit and failure limit can be 

considered as the defective phase. Moreover, the availability of data takes into consideration the 

criteria selected among which model could be used as the delay time concept or gamma process. 

3.3 Bayesian Probability Theory 

3.3.1 Bayesian theorem 

The Bayesian probability theory is a statistical approach and a direct application of the 

probability theory. It is originally ascribed to the statistician Thomas Bayes (1701-1761) who 

was known by having formulated a specific case of the theory that bears his name (i.e. The 

Bayes' theory). The principal characteristics of that theory it's explicit use of probability. Indeed, 

Bayesian theory describes the probability of an event based on the conditions that might be 

related to it. Letting A and B be two events where P(A) and P(B) are the probabilities of A and 

B, independent of each other. Bayes’ theory is stated mathematically as below: 

𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐵 𝐴)𝑃(𝐴)⁄

𝑃(𝐵)
        (3.29). 

In this formulate A and B are events. 

https://en.wikipedia.org/wiki/Event_%28probability_theory%29
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 P(A) and P(B) are the probabilities of A and B without regard to each other. 

 𝑃(𝐴 𝐵⁄ ), a conditional probability, is the probability of A given that B is true. 

 𝑃(𝐵 𝐴)⁄  is the probability of B given that A is true. 

Therefore, we define the probabilities of A and B without regard to each other as follow: 

P(B) = P(B A)P(A) + P(B Non A)P(Non A)⁄⁄     (3.30). 

Bayesian theorem aims to discover the probability that A is true supposing that the new evidence 

is true also. This is a conditional probability where one preposition might be true. The sample 

space of conditional probability may contain subsets within which it is desirable to make 

separate probability statement. Furthermore, Bayes' rule mainly involves the manipulation of 

conditional probabilities to assess the posterior probability. 

This theory provides an expression for the conditional probability of A given to B is true, that is 

similar to posterior probability. The last is commonly expressed in terms of the prior probability 

of B, prior probability of A, and the conditional probability of B given to A. This shows 

uncertainty about A after taking the prior data into account. Indeed, Bayesian theory provides 

results based on prior knowledge or results of previous model that can be used as information 

about the current model.  

In practical application, Bayesian theory is often used for understanding, modeling and reasoning 

uncertainty about any variable or parameter based on statistical data analysis (Gelman et al., 

2004). Therefore, it is refers to either to confirm the relative validity of hypothesis based on 

observed data, to quantify uncertainty in inferences, or to adjust the parameters of a specific 

model (Meel and Sieder, 2006; Gelman et al., 2014). The source of uncertainty consists either 

epistemic uncertainty due to lack of knowledge, that can be reduced by receiving further 

information or, refers to intrinsic chance variation in the system and cannot be resolved, except 

by direct observation (Damien et al., 2013).  

Therefore, Bayes' rule is widely used in statistics, science and engineering. Moreover, it has been 

used in a wide variety of contexts, ranging from marine biology to the development of 

"Bayesian" spam blockers for email systems (e.g., model selection, probabilistic expert systems 

https://en.wikipedia.org/wiki/Marginal_probability
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Marginal_probability
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Bayesian_model_selection
https://en.wikipedia.org/wiki/Expert_systems
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based on Bayes networks, statistical proof in legal proceedings, email spam filters (Rosenthal, 

2005; Stone, 2013).However there uses are very different regarding the area. For example:  in the 

science’s philosophy, Bayesian theory refers to try to clarify the relationship between theory and 

evidence. For example, what is the probability that you actually have the disease? It depends on 

the accuracy and sensitivity of the test, and on the background (prior) probability of the disease. 

In reliability engineering, Bayesian theory refers to try to estimate the probability that the current 

system being in abnormal state given data.  

Hence, posterior probability expression of random variable Hi given the data Y includes two 

prior beliefs, and likelihood function that must be specified as follows:(i) prior 

probability P(H𝑖)mean the probability of an event or outcome H𝑖 will occur before the collection 

of new data (Y). In general, the past data and judgment of expert (subjective opinion) are 

considered the two way to define the prior information, (ii) The probability of observable 

evidence P(Y) which is the total probability of an outcome that can be realized via several 

distinct events. Posterior probability is normally calculated by updating the prior probability 

using Bayes’ theorem. In addition, likelihood function P(Y Hi)⁄  also is required. The last is 

defined as the probability of those observed outcomes (Y) given those event (Bernando and 

Smith, 2000; Meel and Seider, 2006; Wang, 2012). 

In case where, alternative hypotheses (events) are mutually exclusive, we can compute the 

posterior probability of any one of them being true as follows:  

P(H𝑖 Y) =
P(Y H𝑖)P(H𝑖)⁄

∑ P(Y H𝑗)P(H𝑗)⁄n
j=1

⁄          (3.31). 

By using law of total probability, the formula for calculating P(Y)isP(Y)  =  ∑ P(Y H𝑗)P(H𝑗)⁄n
j=1  

In order, to simplify the above expression, posterior probability can be expressed as follows: 

P(H𝑖 Y) =
P(Y H𝑖)P(H𝑖)⁄

P(Y)
⁄          (3.32). 

Meeker and Escobar, (1998) showed that the most important thing influence Bayes’ theory 

estimates is: The last is entirely depend entirely on prior assumption and ultimately it requires 

https://en.wikipedia.org/wiki/Bayes_networks
https://en.wikipedia.org/wiki/Statistical_proof
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the possibility of making change about prior distribution. By the way it is necessary to check the 

effect that the changes that might have effect on final answers of interest.  

3.3.2 Bayesian inference 

The probabilities involved in Bayes' theory may have different interpretations, one of these 

interpretations is that the theory used directly as part of a particular approach to statistical 

inference. Bayesian inference is a method of statistical inference (e.g. Bayesian information 

criterion, Maximum a posteriori estimation) in which Bayes' rule is used to update the 

probability for a hypothesis as an acquired evidence. Bayesian update is particularly important in 

the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide 

range of activities, including science, engineering, philosophy, medicine, and law. Therefore, 

Bayesian inference in the context of decision theory is closely related to subjective probability 

which is often called "Bayesian probability". It is this concept that provides a rational method for 

updating believes. Bayesian probability theory aims to provide a mathematical framework using 

observed data in order to perform inferences or reasoning such as prediction for a new 

observation. All prediction problems of the complexity of the observed phenomena are supported 

by Bayesian inference especially when is considered in a treatment or estimate of uncertainty. 

Bayesian linear regression, Bayesian estimator and approximate Bayesian computation are 

considered as computational methods rooted in Bayesian statistics. Bayesian inference is one 

famous technique in mathematical statistic that enable learning from experience (fixed data), it 

has proved to be more realistic prediction, most appropriate and coherent approach in 

mathematic statistics. Bayesian inference is closely related to subjective probability, often called 

Bayesian probability. Bayes’s theory is the foundation of Bayesian inference in which Bayes ' 

rule is used to update the probability for a hypothesis as evidence is acquired. Bayesian updating 

is particularly important in the dynamic analysis of a sequence of data. 

There are three essential steps within application of Bayesian inference process: (i) specifying a 

probability model by setting up probability distribution for all observable and unobservable 

quantities in problems, (ii) estimating and interpreting posterior probability distribution and (iii) 

updating the compute of posterior probability of the process. For model based Bayesian 

inference, B is replaced within observation Y, A with event H. 
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Figure 3.7. Bayesian method for making inference or prediction. 

3.3.3 Bayesian application 

Bayesian approach has become increasingly popular and successfully used by people to solve 

different problems, not only in academic research but also in industry, it has been seen by 

researchers as having most appropriate approach and can effectively be used in variety area such 

as: astrophysics, medicine, biology, neuroscience, finance, maintenance, public health, 

epidemiology, meteorology, strategic economic decision making, fault diagnosis, safety and risk 

analysis. Therefore, it will continue to receive great attention by researchers and practitioners, 

especially, recent high-speed computers have facilitated its use for many applications. The paper 

published over the past decade cover a wide range of problems in applying Bayesian probability 

theory to real work phenomena in general (e.g., industrial, engineering and human), and for 

maintenance optimization in particular, (Hodges, 1987; Berger and Pericchi, 2000).The main 

advantage of Bayesian theory is enable to provide a way for understanding several real world 

phenomena, and to make intelligent judgments, informed decisions, and inference data in the 

situations of uncertainty and variation (Gelman, 2004; Devore, 2009). Bayesian theory continues 

to arise in a wide variety of areas. In order to illustrate the application of Bayesian approach in 

maintenance area, the highlight of some of these applications in maintenance optimization 

problems bellow. 

3.4 Building Bayesian Control Chart for CBM 
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Great advances in constructing Bayesian control chart for CBM have been made in the last ten 

years (Wang, 2012). Bayesian control chart represents a new vision for monitoring the processes 

over time. Bayesian theory can play key role for probability assessment of the system is in 

warning state with help prior knowledge of previous model, given fixed data. Bayesian control 

chart aims to monitor the posterior probability updated, which is considered as an cognitive 

ability shows if the deterioration level exceeds threshold, and it is considered as important 

information may then be useful by decision maker for predicting item’s healthy state, remaining 

useful life, and selects an appropriate maintenance with lowest cost. Thus, it has been shown in 

the literature that Bayesian control chart for CBM is a more effective tool (Makis, 2008, Wang, 

2012; Jiang et al., 2011). The posterior probability is probability of a system being in warning 

state, this probability may then be plotted on the Bayesian control chart. A signal is giving by the 

Bayesian control chart when the posterior probability exceeds the upper limit (fixed control 

limit). Despite, upper control limit, low control limit and central limit are require to estimate in 

traditional control chart. However, the emergence of a new numerical and statistical method into 

coherent manner can be useful and feasible for the Bayesian approach (Meeker and Escobar. 

1998).  

The process of design Bayesian control chart for CBM can be divided into the following three 

mains tasks: (i) estimating the values of the parameters that characterize the defect arrival, (ii) 

estimating the amount of degradation and failure processes, and (iii) formulating the structure of 

the expected cost and/or availability models. Bayesian control chart parameter can be expressed 

economically if the objective function is to minimize the cost and to maximize the availability.  

While, it is often using stochastic processes technique (Markov chain, Gamma process, Delay 

time concept), and Bayesian theory to develop the posterior probability function of the 

underlying state given observed monitoring information history. These observations can be fused 

through Bayesian theory to give a posterior probabilistic estimate of the warning state which is 

often not directly observable. The Bayesian approach is searching to compute the optimal control 

limit by evaluate the posterior probability, while it is recognized that the lower control limit is 

equal to zero while optimal control limit have to be determined.  
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In general, many authors assume that process operational process into three states: two 

unobservable states (hidden state) either in control state (0) or out control state (1), while it will 

not be able to determine directly the behavior of state, otherwise the only no operational state in 

process refer to failure state (observable state) where the property failure of system can be 

directly identified. Bayesian control chart for CBM aims to monitor a health state of an item 

through observed data come from condition monitoring technique. Several sensors or sources 

provide information about the parameters of item condition. The suitable condition monitoring 

variables are available and called an observation. These observations can be fused through 

Bayesian theory to establish probabilistic relationship between observed data and health state of 

an item. This form is the basis of a Bayesian control chart through the calculation of the posterior 

probability of the warning state since then compared with specified upper control limit. Using 

Bayesian theory is able to estimate a posterior probability. The posterior probability is defined as 

the probability of the system being in warning state (random event) given the past information. A 

warning state is viewed as unobservable state. The posterior probability of the warning state is 

updated (new data), using Bayes’s theorem, and then the new value of posterior probability 

plotted in chart in order to compare with a preset threshold level (upper control limit) in order to 

assess whether a full inspection is needed or not. Maintenance can then be carried out if 

indicated as necessary by the inspection. A characteristic feature using Bayesian control chart for 

CBM is that decision maintenance action must be performed under posterior probabilistic.  

During the last past decades, Bayesian control chart for CBM has been appeared very faster in 

the literature. A recent developments about Bayesian control chart for CBM can be found in the 

following papers: Makis on (2008); Jiang and Makis on (2009); Jiang et al., (2011); Kim et al., 

(2011); Wang on (2012): developed a Bayesian control chart for monitoring a multivariate 

process mean in a long production run for a given sample size and sampling interval. The 

problem formulated as a stopping problem with partial information and applies the maximization 

technique (e.g., Aven and Bergman, 1986; Makis and Jiang 2003) to transform the problem into 

a stopping problem with an additive objective function, which is easier to analyze. From renewal 

theory, the long-run expected average cost per unit time is calculated for any policy as the 

expected cost of cycle divided by the expected cycle length, where a cycle is completed each 

time the process is stopped. The objective is to find a stopping rule under partial observations, 
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minimizing the long-run expected average cost per unit time for a given sample size and 

sampling interval. An algorithm has been developed to find the optimal control limit and the 

minimum average cost. A numerical example was given to illustrate the effectiveness of 

proposed model.  

In another similar study was made by Jiang and Makis (2009). The authors designed a 

multivariate Bayesian control chart for a CBM application. The deterioration system is described 

by the Markov chain. The system deterioration process is modeled as a 3-state hidden Markov 

process, with good, warning and failure states. In this paper, a new fault detection scheme is 

developed based on the average run length criterion. The Average run length (ARL) is an 

important performance measure for control chart design. Focus on using this particular measure 

will help to reduce the occurrence of the false alarms as well as enable fast identification of the 

out-of-control condition. This paper attempts to develop the multivariate Bayesian control chart 

design using posterior probability statistic and ARL representation in which fixed sampling 

interval is considered. 

A numerical example reveals that the Bayesian control chart is much more effective for fault 

detection than the other charts; the maintenance cost will be much lower for real process control. 

Jiang et al., (2011) consider an availability maximization problem for partially observable 

systems subject to random failure instead the long run expected average cost per unit time. The 

statistical constrains can be expressed by the probability of true alarm. The statistical constraint 

has a powerful impact in improving the performance of control chart. The authors highlight the 

need powerful tools as Semi Markov Decision Process (SMDP) in order to develop an efficient 

computational algorithm. In this article availability maximization problem is equivalent to 

solving a parameterized system of linear equation. In order to find optimal solution, it is 

necessary to solve the linear equation, parameterized by control limit and sampling interval. The 

authors assume that the deterioration and failure of an item follows a continuous time 

homogeneous Markov chain. SMDP is a powerful tool in analyzing sequential decision 

processes with random decision epochs (Chen and Trivedi, 2004). It has applied in searching for 

the optimal maintenance policy for CBM. SMDP also known as Markov renewal programs, it 

was first introduced by Jewell and De Cani. Indeed, it is used in modeling stochastic control 

problems, and it is characterized by continuous-time Markov chains where the sojourn time in 
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each state is a general continuous random variable, and it includes renewal processes. A 

stochastic control problem allows knowing the state of system at each instant of time.  

The authors consider Bayesian control chart is far more effectiveness then age replacement 

policy which does not take into account the condition monitoring information. In other work 

Kim et al., (2011) provide a methodology for solving the problem about predicting failures of a 

partially observable failing system. The aim of this paper is to develop a multivariate Bayesian 

control chart for failure prediction using real multivariate spectrometric oil data coming from 

failing transmission units. Formulated optimization problem in this study consists to find the 

optimal value of the control limit and the sampling interval that systematically minimizes the 

long run expected average cost per time unit. The authors solve the problem optimization in the 

Semi-Markov Decision Process (SMDP) framework. The authors analyze real multivariate data 

from spectrometric analysis of oil samples collected at regular time epochs from transmission 

units of heavy hauler trucks used in mining industry as case study. The degradation system is 

modeled as a 3-state continuous time Markov chain, where two states unobservable represent 

good and warning operational states, and one observable state represents the failure state.  

A vector autoregressive model was fitted to the healthy portions of each data history, and the 

residuals of the fitted model used as the observation process in the HMM framework. The 

parameters of HMM were estimated by EM algorithm. A cost-optimal Bayesian control chart 

constructed and applied as the fault prediction scheme. As conclusion, the authors suggest that 

the model presented can be applied to a wide range of deteriorating stochastic systems with 

multivariate condition monitoring data. According to the authors the lack of model designed is 

about stationary multivariate data histories. In practice, one may encounter data sets that exhibit 

non-stationary behavior. Multivariate Bayesian control chart unlike other methods such as Age-

based, T-square, MCUSUM indicate that a Multivariate Bayesian control chart has the highest 

number of predicted failures and lowest total maintenance cost. 

Wang on (2012) design a multivariate Bayesian control chart for real time CBM of complex 

systems. When complex systems are monitored, multi-observations from several sensors or 

sources may be available. However, the authors assume that the transition between states and the 

relationship between observed information and the state are not Markovian. The authors assumed 
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that the transition between states was modeled by the concept delay time as well as the duration 

of both stage of delay time concept they are random. They are not necessary follow exponential 

distribution, so this means that the two stages failure processes are not Markovian. The delay 

time concept used to compute the transition probability from one state to another using the delay 

time modeling technique instead of using Markov chain modeling. 

A strategy tends to combine the use of the delay time concept and the Bayesian theory to develop 

the posterior probability function of the underlying state given observed condition monitoring 

information history. This makes the paper different from others where a Markovian assumption 

is often used for state transition. Although, the two stage duration of the delay time concept 

respectively follow Exponential distribution and Weibull distribution. However, Monte Carlo 

simulation algorithm used to solve the optimization problem; Monte Carlo simulation is used to 

obtain the optimal control chart parameters including monitoring interval and the upper control 

limit. Moreover, the authors developed two kinds of simulation algorithms are:  the first one is 

simulation algorithm for one renewal cycle based on the block-based monitoring policy, and the 

second one is simulation algorithm for one renewal cycle based on the age-based monitoring 

policy. The average run length is introduced within this study especially because it is considered 

as an important performance measure for control chart design. Therefore, it will must to reduce 

the occurrence of false alarm as well as the fast identification of the out of control. A Numerical 

example is given to illustrate the modeling idea proposed by authors. As results, the authors 

suggest needed more research to consolidate the model presented in this paper for practical 

application. Further, better posterior probability prediction for state identification in the case of 

Weibull than exponential based on the parameters used. The Weibull case also leads to a better 

cost outcome, but needs more frequently monitoring. 

In majority of these papers, the authors provide a methodology for understanding step by step the 

important information and skills must be used to design Bayesian control chart for CBM. There 

is a rapidly growing literature on designing Bayesian control chart for CBM which highlight the 

benefit of Bayesian control chart in fault prediction and maintenance cost.  
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3.5 Bayesian Control Chart versus Traditional control Charts for CBM 

According to Makis (2008), early contributions of the Bayesian process controls that not directly 

linked to a control chart design (implicitly deal with control chart design) were first studied by: 

Girshik and Rubin (1952), Eckles (1968), Bather (1963), Taylor (1965,1967), Ross (1971), since 

then many other papers use Bayesian process (Chen et al., 2004; Won and Modarres, 1998; 

Mehranbod et al., 2005; White, 1977; Wu, 2004; Meel and Seider, 2006). There are different 

models for maintenance optimization in which Bayesian control chart has been used (Tagaras 

1994, 1996; Calabrese, 1995; Porteus and Angelus, 1997; Vaughan, 1993; Tagaras and 

Nikolaidis; 2002). According to literature, reveals there are two group of research in the area of 

adaptive statistical process control: the first one refers to the classical control chart framework 

(non-Bayesian control chart). The second one is related with the control policy by using a 

Bayesian approach, whereby the control policy is based on continuously updating the knowledge 

about the state of the process using Bayes’ theorem (Tagaras and Nikolaidis, 2001). In the case 

of multiple observations, it is difficult if not impossible to place a limit on each of the multiple 

observations directly, since it is difficult to define what is warning or defective state based on 

each observation separately (Wang, 2008). Traditional control charts T-square, EWMA, 

CUSUM, X-bar chart are commonly used for CBM models. These models involve traditional 

control charts, and are used for control policy over time. The disadvantages of those models 

consists the use of only the current sample to calculate the value of the control statistic as well as 

they are not very effective for detecting small or moderate sized sustained shift in the process 

mean (Makis, 2008). 

In comparative context, there are models better than others. A quantitative analysis is more 

common used by researchers to illustrate the effectiveness and difference between models. In 

this context, the difference between Bayesian control charts and the other models is 

demonstrated by either numerical example or real data. According to literature Bayesian control 

charts for CBM is considered as an optimal tool and perform much better for fault detection than 

the others traditional control charts (e.g., MUCUSUM, x-bar control chart, EWMA).Further, 

Bayesian control charts is economically effectiveness than others traditional control charts, it 

promote to give the lower maintenance cost for real process control (Jiang and Makis, 2009; 

Makis, 2008). 
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Bayesian control chart is based on posterior probability (upper control limit), in this case monitor 

the process by plotting the posterior probability on the chart in order to detect that the system is 

out control (warning state), then update this posterior probability after each sample, using 

Bayes’s theory. In contrast, the strategy to monitor the process in tradition control charts is based 

on the following parameter’s control chart: sample size, sampling interval, upper control limit 

and lower control limit. The optimal traditional control charts for CBM giving an alarm signal 

when the value of control statistic plotted in control chart is over upper control limit or down 

lower control chart. Bayesian control chart is an optimal tool for multivariate process control. 

However, multivariate control charts are not optimal because the auto and cross-correlation 

among multiple variables make these charts difficult to interpret all the information from the 

process data (Rui and Makis, 2009). A table (3.2) below summarizes various maintenance 

models that have been published in literature: 
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Table 3.2. Summary of previous integrated model studies 

Study State space Stochastic 

process 

modeling  

 Methodology of making a design  Optimal 

Parameters 

models 

 Decision criteria 

&optimization 

technique 

Pdf Observation  Transition probability Posterior 

probability 

 

1. Jiang Rui, 

,VilliamMakis (2012). 

3 states Hidden Markov 

Process 

 Multivariate 

normal 

distribution 

-Kolmogorov ‘s backward 

different equation  

-Laplace transform 

 technique 

- Bayes ’s theory 

 

 -Monitoring 

interval 

-Upper 

control limit. 

 -cost criteria 

-Semi Markov 

decision process 

2. Villiam Makis 

(2007). 

 

 

3 states Hidden Markov 

Process 

 Multivariate 
normal 
distribution 

Markov chain Bayes’ theory  -Monitoring 

interval 

-Upper 

control limit. 

 -Cost criteria 

-Optimal 

stopping rule 

3.Wenbing Wang 

(2007) 

 

3 states Delay time 

concept ( non 

markovian 

chain) 

 -Weibull 

distribution 

Or 

-Exponential 

distribution 

Delay time modeling 

concept 

Bayes’ theory  -Monitoring 

interval 

-Upper 
control limit. 

 -Cost criteria 

-Monte Carlo 

Simulation 

4. Jong Kim, M., et al. 

(2011) 

 

 

3 states Hidden 

Continuous 

time Markov 

Chain process 

 Bivariate 

normal 

distribution 

Expectation maximization 

algorithm 

Bayes’ theory  -Monitoring 

interval 

-Upper 
control limit. 

 -Availability 

criteria 

-Semi Markov 

Decision Process 

5. Jiang et al., (2012). 

 

3 states Hidden  

Continuous 

time 

homogeneous  

Markov 

Process 

 Multivariate 

normal 

distribution 

-Kolmogorov ‘s backward 

different equation 

-Laplace transform 

 technique 

Bayes’ theory  -Monitoring 

interval 

-Upper 

control limit. 

 

 -Availability 

criteria 

-statistical 

constraint 

Semi Markov 

Decision Process 
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Chapter 4  

Analysis and characterization the conceptual proposed model 
 

 

This chapter will provide the thesis statement. The main aim of this chapter is to show how 

to answers the research question posed, where the objective is designing a new integrated 

model considering both data item’s condition parameters and quality measurement control. 

The mathematical model for maintenance decision making was developed where the 

problem definition, assumption and notation was provided. The second part is devoted to 

the optimization problem resulting from the optimal parameters computation, furthermore, 

optimization approach is also presented.  
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4.1 Model description 

In this research work, we consider a complex equipment Atox Mill  with multiple channeled 

monitoring information. It is assumed that the state of the operational system is completely 

unknown unless an inspection is performed. The feature operational system can be in one of the 

following two states: normal and warning state indicated respectively by 1 and 2, which are not 

observable, only the failure state indicated by 3 is assumed to be observable. In this situation, the 

state of system cannot be observed directly and can be only estimated by using the observation 

provided by the system condition monitoring while the system being in non-operational state can 

be observed immediately. The observations coming from several sensors at each monitoring 
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period are assumed to be independent. Establishing sample of observation measurement about 

Atox Mill  equipment condition parameter and a key quality measurement condition monitoring 

can involve by using either various sensors such as micro-sensor, ultrasonic sensors, acoustic 

emission sensors or by portable measurement instrument specified by the framework and 

monitoring policy implementation (Secil industry). 

The proposed model is designed under the assumption that the initial condition of system is on 

normal state. If the system is supposed to be in the warning state maintenance actions should be 

carried out to renew the system as good as new. A well organized and properly conducted 

intervention of technician is mandatory for the system reverts to its original condition. 

According  to the chosen methodology five systematic key steps should be used in a 

systematically sense in order to solve the research problem: (i) system monitoring acquisition, (ii) 

processing and cleaning data, (iii) expression of probability and parameters estimation 

(establishing stochastic relationship between observation process and system state), (iv) posterior 

probability estimation, (v) designing an optimal Bayesian control chart. Therefore, the process of 

application of this decision maintenance support within the system enables the decision maker to 

select an appropriate decision; to determine the effect of each possible decision; to solve 

problems about maintenance. Verifying if the true signal in the warning state given by Bayesian 

control chart, a full inspection initiated. However, if the signal is false the decision maker waits 

for a new observation. Based on plotting posterior probability updated in Bayesian control chart, 

the value of posterior probability updated in Bayesian control chart indicates the state of system if 

either in warning state or in normal state. The upper control limit is used in conjunction with the 

posterior probability updated. As mentioned in this study case, the motivation for the Bayesian 

theory is basically for the case where we have multiple variables.  

In each step the available results needs to be used as information (input) for the next step. There 

are numerous techniques, tools, and algorithms in the literature that can be used for modeling and 

analyzing condition monitoring data. Other methods and algorithms that appear in the literature 

and have never been used in this area require testing to assess if they provide beneficial effect in 

term of efficient maintenance decision making. 

System monitoring acquisition has been used for collecting and storing data, it is considered the 

first step towards a final maintenance decision making step. Prioritizing equipment condition 

monitoring target means to find out and to select in order of importance and which item has 

critical reliability. It is necessary to select type of data that can be related to the health condition 
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of the target equipment. There are two independent sources of information to be collected S1 and 

S2. S1represents data about item condition parameters and S2 represents observable data about 

quality key measurement characteristic. The information collected about item condition 

parameters and quality key measurement characteristic are provided by condition monitoring 

techniques. These two random variables from system condition monitoring are considered 

independent. 

Data cleaning step consists most important step in any data processing which enable for 

detecting, and correcting inaccurate, incorrect part of data, by using a set of tools, and then 

transform them into valuable information in order to provide data quality. This step supported by 

tools become necessary to solve any quality data problems because very often contain noise and 

error might be included on collected data. 

Establish stochastically relationship between observation process and system condition: this step 

consists on studying and analyzing condition monitoring data. In fact, the observable vector 

process is stochastically related to the hidden states of the system. The specific objective is to 

define and use failure model and deterioration model of the system subject to random failures for 

an accurate assessment of prognosis. Besides, due to the uncertainty associated with the 

deterioration trend, the deterioration model can be developed by using stochastic processes 

techniques: Hidden Markov models, Delay time model, and Gamma process. In condition 

monitoring only the failure is observable. The degradation is gradual not sudden. Stochastic 

processes attempts to study a several stage that follows before it goes to a failure state. Several 

methods can be used in order to estimate parameters of models by using condition monitoring 

data(e.g. Expectation maximization algorithm, Markov Chain Monte Carlo, Maximum likelihood 

Estimation). 

Posterior probability for the warning state step: where deterioration, failure model, and  prior 

probability are defined enable us to quantifies the posterior probability. Bayes’s theorem is used 

to quantify posterior probability; it shows an expression for the conditional probability of being 

in warning state given data. 

Making decision: Making decision is most important for solving problem of maintenance, it is 

considered as knowledge process resulting in selecting better action under specific criteria. Once 

update posterior probability for the system being in warning state is above upper control limit P 

of the system representing sufficient information for decision making to take an optimal decision 

and solve problem of maintenance by selecting set of actions among several alternative 
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possibilities. Making decision requires necessary knowledge of posterior probability which 

means conditional distribution of the uncertain event refer to warning state given two types of 

data. Using Bayes theory, the expression of posterior probability is expressed in term of 

probability density function and denoted by P(Xt/S1, S2): Fort ≥ 0, let P be the probability that 

the process is in warning state at time t given the observations up to t, Xt = 2is anunobservable 

state of the process at time t and S1, S2 are observed data about condition equipment paramours 

and quality control measurement respectively.  

 

P(𝑥𝑡 = 2 ⁄ 𝑆1, 𝑆2) =
P(𝑆1,𝑆2⋂𝑥𝑡=2)

P(𝑆1,𝑆2) 
        (4.1). 

      

Assume that the (S1, S2) and (Xt= 1) are random variables on a probability space. The probability 

that (S1, S2) would be observed whether or not was (Xt= 1) true is denoted 

by P(S1), and P(S2). Hence, using Bayes theory the conditional distribution of (Xt= 1)  given the 

data provides the posterior probability density function of (Xt= 1). The likelihood function for 

the available data and specified model given the warning state (Xt= 1) , is denoted by P(S1, S2/

Xt= 1). The likelihood function refers to assessing the probability of the observed data (S1, S2) 

arising from the hypothesis (Xt= 1). Prior probability is expressed in terms of a probability 

density function and denoted by P(Xt= 1). The prior probability is defined as the probability that 

(Xt= 1) in the absence of any information about (S1, S2). In general, the past data and/or 

judgment of expert or subjective opinion are considered the two way to define the prior 

information. The maintenance optimization is based on an objective function which corresponds 

to the long run average cost per time unit. The objective is to find an optimal value of the upper 

control limit and monitoring interval that minimizes the long run average cost per time unit, by 

using genetic algorithms then established software code developed in the Matlab. From renewal 

theory, the long-run expected average cost per unit time is calculated for any policy as the 

expected cost of cycle divided by the expected cycle length, where a cycle is completed each time 

the process is stopped, because it always returns to state 1, whether the assignable cause is 

present or not. Optimal Bayesian control chart aims to monitor the posterior probability that the 

system is in warning state. After each collected observation, the posterior probability (fixed 

control limit) is updated and plotted on the chart if its value is exceeding upper control limit. 

When the posterior probability exceeds a fixed control limit on the optimal Bayesian control 

chart, full system inspection is initiated. Every inspection is normally assumed to be perfect in the 

sense that it reveals the true state of the system without error.  
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In general, at every inspection epoch there are two decisions that have to be made. The first one 

decision is to determine that maintenance action to take, whether the system should be replaced 

or repaired to a certain state or whether the system should be left as is. The other decision is to 

determine when the next inspection is to occur.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1- General maintenance integrated model architecture. 
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Figure 4.2-Flowchart maintenance decision making based on posterior probability. 

4.2 Model assumption and notation 

General assumptions which will be used on proposed model,  are defined bellow: 

1. Maintenance are assumed to be perfect. 

2. Maintenance activity is carried out based on the result of maintenance decision support 

which is known as Condition-based maintenance  

3. The system is monitored through perfect inspection. 

4. Model for infinite time horizon has been chosen on proposed model (long-term behavior 

of subsystem under study. 

5. After each intervention of technician the item back to the initial state as good as new. 

6. The duration refer to tow stage of failure process (l1, l2) are independent. 

7. The system under study can be in a healthy or unhealthy operational state, or in failure 

state is indicated respectively by 1,2, and 3 

8. State 1 and 2 not observable, only the failure state indicated by 3 is assumed to be 

observable. 

9. The state of the operational system is completely unknown unless an inspection is 

performed. 

10. We assume that the system under study is in a healthy state at time 0, P(X0=0)=1. 
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measurement and condition 

equipment parameters 
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11. The observations coming from several sensors at each monitoring period are assumed to 

be independent 

12. Given Bayes’s theorem, posterior probability is update at each interval monitoring. 

13. The observations coming from several sensors at each monitoring period are assumed to 

be randomly.  

14. Multivariate Bayesian control chart is in place with upper control limit  

15. Once the probability of unhealthy state known, Bayesian control chart given signal alarm 

that the system required to assess whether a full inspection is needed or not, as well 

perfect maintenance is carried out to renew the system.  

16. In the beginning of study, the system start working in health state. 

17. In term of probability, the relationship between observation and state are conditional. 

18. Maintenance action is mandatory in order to change system state from unhealthy state to 

healthy state.  

19. Once the system under study is critical in terms of performance, condition monitoring 

technique online is assumed to be necessary. 

20. We are assuming data is sampled each 30 minutes. 

21. We assume that the times spent on both restorations are negligible 

4.3 Mathematical Model developed 

4.3.1 A novel Condition-based maintenance description 

As described previously in this thesis, in many real-phenomena decision makers would like to get 

an accurate information about the health state of an item (e.g., power plant, aircraft, industrial 

facilities, mines, power plants, spacecraft) in order to be able to predict the impending failure. 

Given the background, it should be noted that an effective Condition-based maintenance plays a 

key role here. These are our research contributions and they are applied to a real system. 

This section advances a process for development mathematical model for maintenance decision 

making for unreliable systems (Atox Mill  equipement). The study case for this study was Atox 

Mill ’equipment of cement industry. Indeed, applying the designed model on Atox Mill 

’equipment in order to demonstrate its economic benefit. Insight and information about the health 

state of Atox Mill ’ equipement are important to inform maintenance and production department 

in order to make an intelligent and integral decision, critical to executing successful maintenance 

strategy.  
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Having prepared and validate the data as described in the next chapter, the next step is to build a 

maintenance decision making’s model for unreliable Atox Mill equipment by involving four  

mains parts: (i) the definition of failure model that described the stochastic relationship between 

observation process and system state (the probability density function of observation given state 3 

equal to zero),  (ii) description the deterioration model able to estimate the transition probabilities 

between discrete states (normal state and warning state), (iii) estimating expression of posterior 

probability based on Bayes theory and with failure and deterioration models, this process mainly 

builds upon Bayesian theory and renewal theory. In fact, he aim is to model the posterior 

probability distribution P(𝑥𝑡 = 2 ⁄ S1, S2)  given the continuous observed data about Atox Mill  

equipment condition parameter and a key quality measurement condition monitoring, (v) the 

definition of function with decision variables that need to be optimized, in this study the 

formulation of objective function upon renewal theory under availability criteria with two 

decision variables such as: upper control limit and sampling interval, in fact, the Bayesian control 

chart is then applied to monitor the health state of Atox Mill equipment .  

The history of all data collected on-line from Atox Mill  equipment, those data is used to 

calculate the posterior probability of the system being in a warning state. This probability can 

then be carried on Bayesian card. The lower limit of Bayesian control chart is zero and the upper 

control limit is a posterior probability (decision variable) to be determined. An alarm occurs 

when the posterior probability exceeds the upper control limit. When an alarm occurs, a complete 

inspection can be performed to see if the Atox Mill equipment is in warning state or not. 

However, the alarm can be false if the inspection found that the system is in normal state. If the 

inspection reveals that the system is in the warning state, the system is restored to normal state by 

proper maintenance. Once the system fails, the maintenance is carried out again to restore the 

system to the normal state. 

4.3.2 Computational methodology for posterior probability 

In this section we have showed that the method able to model the transition probabilities between 

discrete states and establishing the relationship between 𝑦𝑖
𝑘and xi, i =1,2; where i is the number of 

state and k is number of variables In the most of previous studies about the degradation modeling, 

researchers have often focused on the assumption that the process are Markovian or not, instead 

to demonstrate its fit with the process under study (the future state the process only depends on 

the current state with time between states follows exponential distribution). However, it is 

important to check if Markov property really holds or not. In this context, our work therefore to 

propose graphical approach focusing on the analysis of the Weibull distribution, the last were 
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enables to provide information whether the process is Markovian or not, which will be describe 

later in more detail. 

From results of the next chapter, it is possible to state that the degradation process are not 

Markovian, in another word the transition state has not Markov property where the Weibull 

distribution is not identical to the exponential distribution with shape parameters different from 1. 

It is commonly known that when the shape parameter is different form 1 the transition rate 

between states are not constant, because for this the transition state cannot be modeled by 

exponential distribution. Therefore, exponential distribution is the only continuous distribution 

with a memoryless property (Collgar, 2002). For this reason, Markov models are governed by 

exponential distribution. It is also important to note that, in this section we show how the delay 

time concept can be used for degradation modelling.  

This approach have already been concretized (proposed) and we will do later with study case. 

Furthermore, failure data histories of failing Atox Mill ’ equipment was gathered from 

04/01/2015 to 31/12/2015, then we found the result about the Weibull distribution application in 

this situation. 

In the development of mathematical model for maintenance decision making under study we 

need first to compute conditional probability for the system being in warning state (2) given 

observed variables 𝑌i, at time ti 𝑃(𝑥i⁄ 𝑌i), the last was update when an new observation available 

and it is important to define it in order to compare with upper limit P*.  

In the whole of developed work, (whereas ) we have assumed that the state of Atox Mill  

equipment can be in operating state normal and warning state or non-operating state which called 

failed state, where state are random variables indicated by X, X={1,2,3}. 

Considering the initial state of the Atox Mill  equipment at t0is in normal state (as good as new), 

where the probability of system being in normal state given observed variables at t0=0 is certain 

and equal to 1, 𝑃(𝑥0= 1 ⁄ 𝑌0) = 1, however, the probability of Atox Mill  being in warning and 

failed state are impossible and respectively equal to: 𝑃(𝑥0= 2 ⁄ 𝑌0) = 0, 𝑃(𝑥0= 3 ⁄ 𝑌0) = 0, 

Since the sum of the probabilities at time t0,𝑃(𝑥0= 1 ⁄ 𝑌0)+ (𝑥0= 2 ⁄ 𝑌0) = 0, 𝑃(𝑥0= 3 ⁄ 𝑌0) =

1, the probability of Atox Mill  being in warning and failed state are impossible and respectively 

equal 0, so 𝑃(𝑥0= 2 ⁄ 𝑌0) = 0, 𝑃(𝑥0= 3 ⁄ 𝑌0) = 0.  
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Therefore, a full inspection of Atox Mill  is carried out when the new value of posterior 

probability being in warning state given observation Y= (Y0, Y1,…, 𝒀i-1, Yi) found above the 

defined upper control limit P*, where vector Y are 5 dimensional observations at ti.It should be 

noted that Observed data consist two types: condition monitoring data about Atox Mill  and data 

about quality characteristic measurement which is size of particle.  

The mathematical statement that represents the posterior probability consists the calculation of 

conditional probability from prior probability, condition probability of unobserved state 

(warning) conditions on observed dataYi is occurred. In another word, probability that the 

random variable X takes the value 𝑥𝑖 = 2 (epoch monitoring = 30 min), given that Y= (Y0, 

Y1,.., Yi-1, Yi) is expressed by 𝑃(𝑥/𝑦). This conditional probability is given by the conditional 

pdf, 𝑓(𝑥 ⁄ 𝑦). 

The most important and interesting question is what 𝑃(𝑥i= 2 ⁄ 𝑌i) is equal to. It is recognized 

that, computing the posterior from the prior with Bayes' theorem. The idea behind the equation 

bellow is mathematical formulation of updating probability. From Bayes' theorem we relate the 

two probability as follows: 

𝑃(𝑥i= 2/𝑌𝑖) = 𝑃(𝑥i= 2/𝑦𝑖
𝑘, 𝑘 = 1, … ,5, 𝑌i-1)      (4.2). 

= 𝑃(𝑥i= 2, 𝑌𝑖) =P(Yi)          (4.3). 

𝑃(𝑥i= 2 ⁄ 𝑌i) =P((Yi⁄xi)P(xi))/(P(Yi)       (4.4). 

Where, P(Yi) is the marginal probability of Yi and 𝑃(𝑥i) prior probability of the Atox Mill ’ 

equipment being in warning state (1) given Yi-1was occurred at time i, to estimate prior 

probability require the use of the chain rule of total probability (two state are possible normal 

state and warning state), so we find: 

𝑃(𝑥i= 2 ⁄ 𝑌i-1) = ∑ 𝑝(𝑥𝑖  /𝑥𝑖−1)𝑝𝑖−1(𝑥𝑖−1/ 𝑌𝑖−1)2
𝑥𝑖−1=1        (4.5). 

The marginal probability, we can write this as: 

𝑃(Yi) = 𝑝(𝑦k
i, 𝑘 = 1, … ,5/𝑌i-1)=∑ 𝑝(𝑦𝑖, 𝑘 = 1, … 5/𝑥𝑖 , 𝑌𝑖−1)𝑝(𝑥𝑖−1/ 𝑌𝑖−1)2

𝑥𝑖 =1     (4.6). 

Using joint distribution and chain rule for conditional probability we can write above expression 

as follows: 
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𝑃(Yi) = ∑ ∏ 𝑝(𝑦𝑖 𝑥𝑖)⁄5
𝑘=1

2
𝑥𝑖=1 𝑝(𝑥i/ 𝑌i-1)= 

∑ ∏ 𝑝(𝑦𝑖 𝑥𝑖)⁄5
𝑘=1

2
𝑥𝑖 =1 ∑ 𝑝(𝑥𝑖 /𝑥𝑖−1)𝑝𝑖−1(𝑥𝑖−1/ 𝑌𝑖 − 1 )2

𝑥𝑖−1=1     (4.7). 

            

𝑃(𝑥i= 2 ⁄ 𝑌i) =
∏ 𝑝(𝑦𝑖 𝑥𝑖 )⁄5

𝑘=1 ∑ 𝑝(𝑥𝑖  /𝑥𝑖−1)𝑝𝑖−1(𝑥𝑖−1/ 𝑌𝑖−1)
2
𝑥𝑖−1=1

∑ ∏ 𝑝(𝑦𝑖 𝑥𝑖 )⁄5
𝑘=1

2
𝑥𝑖=1

∑ 𝑝(𝑥𝑖  /𝑥𝑖−1)𝑝𝑖−1(𝑥𝑖−1/ 𝑌𝑖−1)2
𝑥𝑖−1=1

   (4.8). 

To follow that, the posterior probability (Eq 4.8) requires identification failure model and 

degradation model. For the first one we need to compute conditional probability of observed data 

given normal or warning operational state, in this case we need to compute P(yk
i/xi) which are 

stochastically related to warning state and normal state xi can be found in normal state (1) or 

warning state (2), thus, the  parameters estimation of  this failure model is considered. Since, the 

distribution for the first case (xi=1) is different from the probability distribution for the second case 

(xi=1), four parameters must be estimated. We will do this later in the next chapter. 

Since the parameters αi, βi(i belong to 1 or 2), stochastically the observed data at time:0, t1, t2, 

t3,…related to the state process while the system is in operational states (state 1, state 2) via the 

following formulate: 

 

P(yk
i/xi)= 

 

For the second model we need modeled state transition, we need to compute P(xi/xi-1), where 

model parameters are estimated through using Maximum likelihood estimation.  

Once the process has not Markov property, delay time concept use in the modeling of 

degradation process of Atox Mill ’ equipment, it provide a relevant framework for modeling 

degradation model. Furthermore, Delay time concept is a stochastic process used for state 

transition, where Atox mill equipment at any time can be occupied  one of a set of discrete states 

randomly (e.g., normal, warning, failed), Delay time concept enables to modeling the degradation 

of Atox Mill ’s equipment, as a two-stage failure process. This models has a transition from new 

(1) to a defect state (2), then from defect state to failed state (3), which is called defective stage 

and time l1 are randomly. The second stage is called failure delay time, the time l2 are randomly,  

𝑓(𝑦k
i; αi, βi), 

𝑓(𝑦k
i; αi, βi), 

 

xi=1. 

xi=2. 

(4.9). 
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and quantities of interest are the transition probabilities. The stochastic behavior of Atox Mill 

’equipment is directly described through the possible transition probability, the two stage of 

failure process displayed in Figure 4.3.  

 

 

 

Figure 4.3- Tow stage of failure process. 

Usually, real data typically consist of times of occurrence of transitions between the states and 

the types of transitions that occur. Following this consideration, the parameters of the model are 

estimated using the Maximum-Likelihood method (MLE) based on the observed data of Atox 

Mill ’equipement, through the application of MLE algorithm coded in Matlab software. For 

calculation posterior probability the parameters of failure model and degradation model must be 

calculated. 

Considering the process are not Markovian where the past history of observed data is considered 

in calculating the transition probability. Furthermore, in analogies with definition of delay time 

concept, this model has the following transition states: p11, p12, p13, p13, p22, p23. As mentioned 

before, by definition transition probability pijis the probability of moving from state i (the current 

state) to the state j, so find: 

(a) p11: the probability of being stay in state 1 (the current state).  

(b) p12: the probability of moving from state 1 (the current state) to the state 2. 

(c) p13: the probability of moving from state 1 (the current state) to the state 3. 

(d) p22: the probability of being stay in state 2 (the current state).  

(e) p23: the probability of moving from state 2 (the current state) to the state 3. 

To formulate those transition probability may be estimated by conditional probability law 

𝑃(xi/xi-1)=∫ f(xi ⁄ xi-1)=∫ f(xi,  xi-1)/∫ f (xi-1).   (4.10). 

Then using Eq (4.10), the following estimation of transition probabilities is given by: 

 
Defect (2) 

L1 L2 
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(a)  p11=

∫ 𝑓1(𝑙1)𝑑𝑙1
∞

𝑡𝑖

∫ 𝑓1(𝑙1)
∞

𝑡𝑖−1
𝑑𝑙1

                     (4.11). 

(b)p12=

∫ 𝑓1(𝑙1) ∫ 𝑓2(𝑙2)𝑑𝑙1
∞

𝑡𝑖−ℎ1
𝑑𝑙2

𝑡𝑖
𝑡𝑖−1

∫ 𝑓1(𝑙1)
∞

𝑡𝑖−1
𝑑𝑙1

        (4.12). 

(c)p13=

∫ 𝑓1(𝑙1) ∫ 𝑓2(𝑙2)𝑑𝑙1
𝑡𝑖−ℎ1

0
𝑑𝑙2

𝑡𝑖
𝑡𝑖−1

∫ 𝑓1(𝑙1)
∞

𝑡𝑖−1
𝑑𝑙1

        (4.13) 

(d)p22==

∫ 𝑓1(𝑙1) ∫ 𝑓2(𝑙2)𝑑𝑙1
∞

𝑡𝑖−ℎ1
𝑑𝑙2

𝑡𝑖−1
0

∫ 𝑓1(𝑙1) ∫ 𝑓2(𝑙2)
∞

𝑡𝑖−1
𝑑𝑙1

𝑡𝑖−1
0

𝑑𝑙2
                         (4.14). 

(e)p23 ==

∫ 𝑓1(𝑙1) ∫ 𝑓2𝑙2𝑑𝑙1
𝑡𝑖−ℎ1

𝑡𝑖−1−ℎ1
𝑑𝑙2

𝑡𝑖−1
0

∫ 𝑓1(𝑙1) ∫ 𝑓2(𝑙2)
∞

𝑡𝑖−1−ℎ1
𝑑𝑙1

𝑡𝑖−1
0

𝑑𝑙2
        (4.15). 

4.3.3 Mathematical equation that describe the expected cycle cost per time unit. 

This corresponds with what we mentioned earlier, failing of the equipment Atox Mill  due to 

human errors, unreliability of component, these last were the first cause of intervention of a 

maintenance technician. The proposed models guaranteeing predict impending failure and 

reactivity of the technician for requests of intervention and its availability to realize an effective 

maintenance action, thus reducing the incidents and the consequent losses of time and financial 

ones. In this proposes effective methods to reduce the cost of maintenance. To manage this 

challenge, a mathematical model and optimized algorithm was performed for failing Atox Mill  

equipment in order to define with manner continuously the behavior of Atox Mill  equipment. 

This section is generally one of the most important part in my research process where 

subsequently mathematical model we formulate the problem as optimization problem considering 

the cost criteria, which is based on the definition of a nonlinear objective function. 

 

After formulating the mathematical model, cost criteria for the system was defined and 

developed.  

In this optimization problem developed, the definition of the objective-function, the decision 

variables is necessary in order to reach a significant results. In this work, a most crucial steps in 

formulating a problem is the definition of objective function, a single objective function on an 

economic basis is considered, which will be describe in more detail.  
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Based on assumption that time horizon is infinite, in this case a renewal theory is required in 

order to compute the expected average cost per unit time, from renewal theory, the cost equation 

represents the expected cycle cost divided by the expected cycle length, and this is the convention 

in much of CBM optimization.  

 

The objective is to a design a novel multivariate Bayesian control chart with lower maintenance 

cost. The optimization problem consists in the minimization the expected average cost per unit 

time. For that, bound constrained optimization problems used for optimizing an objective 

function that subject to bound constraints on the values of the variables. In mathematical terms. 

Continuous optimization problem consider two decision variables: (i) interval monitoring, (ii) 

upper control limit. However, the sample size (n)does not will be considered as decision variable, 

the number of sample size n equal to 5 variables in all study. In this optimization problem, 

the decision variables are two quantities that need to be determined in order to solve the problem, 

therefore, the problem is solved when the best values of the variables have been identified.  

After defining clearly the decisions variables, and optimization condition such as upper bound 

and lower bound of interval monitoring for posterior probability, the next step we are looking for 

the best value of these continuous decision variables optimal sampling interval value and the 

upper control limit that minimize the average cost as an objective function.  

As a general rule in much optimization theory, the function f is called objective function, in this 

maintenance application, the problem stated in term of minimization the cost problem which is to 

minimize a function f: Rn→R, the objective function, over a specified set C ⊂ Rn, the feasible set. 

A feasible solution that minimizes the objective function is called an optimal solution. In 

mathematic term, the optimization problem formula that we are going to optimize as in the 

following equation: 

min 𝑧(ℎ,𝑝)
𝐸(𝐶𝐶)

𝐸(𝐶𝐿)
 

                                                                                      (4.16). 

0 < 𝑝 ≤ 1 

   0.05 ≤ ℎ ≤ 30 𝑚𝑖𝑛. 

 

 

E(CC): Expected cycle cost 

E(CL): expected cycle length.  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
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This denotes the minimum value of the objective function 𝑓 =
𝐸(𝐶𝐶)

𝐸(𝐶𝐿)
, when choosing p from the 

set of real numbers as condition of algorithm for posterior probability the lowed bound and upper 

bound respectively equal to 0.01 and 0.99, for the second decision variables which is the interval 

monitoring lower bound and upper bound respectively equal to 0.05 and 30 min. For constructing 

the expression of objective function first we will formulate the expected cycle length denoted by 

E(CL) and expected cycle cost  denoted by E(CC), both expression will be described in more 

detail bellow. Here we want to refer to the paper of Wang (2012). This paper shows how to 

estimate E(CC) and E(CL).  

a) Cycle cost 

 

The mathematical expressions that define the expected cycle cost include the following costs of: 

renewal cost when the system is found to be defective by an inspection, cost for checking the true 

state of the system, and renewal cost if the system is failed,  the expected cycle cost for Atox Mill  

equipment where 0 ≤t≤ 𝐿1 + 𝐿2is given by:  

 

E(cycle cost)=E(cost/system fails before t) P(system fails before t)+E(cost/system doesn’t fails 

before t) P(system doesn’t fails before t). 

 

E(CC)=∑ ∑ 𝑟1
𝑖−𝑗𝑖

𝑗=1
∞
𝑖=1 (1 − 𝑟1) ∫ (𝐶𝑖𝑗 +

𝑡𝑗

𝑡𝑗−1
𝐶𝑚𝑜𝑛𝑖𝑡 + 𝐶𝑖𝑛𝑠𝑝𝑒𝑐 + 𝐶𝑚𝑎𝑖𝑛𝑡)𝑓1 (𝑙1 ) 

x[1-𝐹2 (𝑡𝑖 − 𝑙1 )] 𝑑𝑙1 + ∑ ∑ 𝑟1
𝑖−𝑗𝑖

𝑗=1
∞
𝑖=1 ∫ (𝐶𝑖𝑗 +

𝑡𝑗

𝑡𝑗−1
𝐶𝑓)𝑓1 (𝑙1 ) 

x [𝐹2 (𝑡𝑖 − 𝑙1 )-𝐹2 (𝑡𝑖−1 − 𝑙1 )]𝑑𝑙1                                                                                        (4.17). 

 

Where 

𝐶𝑖𝑗 = (𝑖 − 1)𝐶𝑚𝑜𝑛𝑖𝑡 + 𝑟0 (𝑖 − 𝑗)𝐶𝑖𝑛𝑠𝑝𝑒𝑐 :The expected cost of monitoring and false alarm 

inspection before a renewal at 𝑡𝑖 or l1, l1∈ [𝑡𝑖−1, 𝑡𝑖], and the defect occurs at l1, l1∈ [𝑡𝑗−1, 𝑡𝑗]. 

𝑟0 : Conditional probability the system in stage 2 (P(𝑥𝑖 /𝑌𝑖) ≥ 𝑝∗ ). 

𝑟1 : Conditional probability is in stage 1 (P(𝑥𝑖 /𝑌𝑖) < 𝑝∗ ). 

 

b) Cycle length  

 
Resembling to the previous expression, the expected cycle length can be obtained as follows: 

 

https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Real_number
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E(cycle length)= E(S/system fails before t) P(system fails before t)+E(S/system doesn’t fails 

before t) P(system doesn’t fails before t).  

Where S: successive time that system consider as good as new. 

 

∑ ∑ 𝑡𝑖  𝑟1
𝑖−𝑗𝑖

𝑗=1
∞
𝑖=1 (1 − 𝑟1) ∫ 𝑓1 (𝑙1 ) 

𝑡𝑗

𝑡𝑗−1
 

x [1-𝐹2 (𝑡𝑖 − 𝑙1 )] 𝑑𝑙1 + ∑ ∑ 𝑟1
𝑖−𝑗𝑖

𝑗=1
∞
𝑖=1 ∫ 𝑙

𝑡𝑗

𝑡𝑗−1
𝑓1 (𝑙1 ) 𝑓2 (𝑙 − 𝑙1 )] 𝑑𝑙1 𝑑𝑙1  

(4.18). 

Bythe infinite horizon, so long term average cost per time unit is equal to: 

 

E(cost/system fails before t)P (system fails before t)+E(cost/system doesn’t fails before t) P(system doesn’t fails before t)

E(S/system fails before t) P(system fails before t)+E(S/system doesn’t fails before t) P(system doesn’t fails before t)
 

                        (4.19). 

Where; E(CC) and E(CL) are approximate by Monte Carlo Simulation procedure. 

4.4 Solving bound constraint non-linear optimization problem with PSO 

In term of computational algorithm (technique), the stochastic algorithm used in this Bound 

constraint optimization problem called swarm particle algorithm (PSO). It is a stochastic 

algorithm that has an heuristic feature, this technique based mainly on population with two 

components such as: particle velocity and position. This PSO was implemented to reach global 

solution, and developing a code in Matlab. PSO  has been successfully applied in many area such 

as: function optimization, fuzzy system control, and artificial neural. In this case, PSO was 

efficient global search algorithm to achieve optimal solution from all feasible solutions 

(population). 

 

The search strategy may and often do find global optimal solutions, but they are not guaranteed 

to do so. Nonetheless, this methods are widely used, often finding very good solutions, and can 

be applied to nonlinear, complex problems. They are made up of three basic components: a set of 

variables, a fitness function to be optimized (minimize or maximize) and a set of constraints that 

specify the feasible spaces of the variables. The goal is to find the values of the variables that 

optimize the fitness function while satisfying the constraint. They are made up of three basic 

components: a set of variables, a fitness function to be optimized (minimize or maximize) and a 

set of constraints that specify the feasible spaces of the variables. 

 

A PSO algorithm strategy usually starts with a feasible population, exploring all the solution near 

these points, then looking for a better one, and repeats the process if an improved point is found 
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(Thomas, David, & Leon, 2001).Compared with other stochastic algorithm, PSO has the 

following advantages: 

* The algorithm is simple, there are not many parameters to be adjusted.  

* The algorithm is powerful, PSO is much faster for above benchmark functions, and the 

above results also show that it can deal with many kinds of optimization problems with 

constraints.  

* There is no predefined limit to the objective and constraints; it does not need to 

preprocess the objective and the constraints.  

Figure 4.4, illustrate the PSO global algorithm for bound unconstraint optimization problem. For 

the local version, there is only one difference in the algorithm; instead of finding the gBest, each 

particle finds a neighborhood best (pBest) to update the new velocity. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4- The global PSO Algorithm for unconstrained non-linear optimization 

problem. 
 

According to Hu and Eberhart (2002), demonstrated  that PSO is an efficient and general method 

to solve most unconstrained parameter optimization problems. The main steps in the process of a 

modelling a Bayesian control chart applications for condition based maintenance are 

schematically describes in Figure 4.5. 

 

 

 

 

 

For each particle {  
Initialize particle  

}  
End 

(Estimate intensity   
Of a particle as objective) 

Do 

for each particle 

{Calculate fitness value  
}  
If the fitness value is better than pBest 
{set pbest= current fintess value 

} 

if pBest better than gBest 

{set gBest= pBest  
}  

For each particle 

{ 
-calculate velocity according to equation of velocity  

- Update particle position according to equation of position 

}  
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Figure 4.5-Process of the development of an optimal Bayesian control parameters. 
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Chapter 5  

                                             A Case study in Cement Industry 
 

This chapter addresses a case study in cement industry in order to evaluate the effectiveness of the 

proposed model. This includes,introduction of Secil cement company, afterward a brief descriptive of 

Atox Mill equipment, then the schematic representation of the Atox Mill Equipment of cement industry. 

The main aim of this section is to report the results of the data analysis used to test a hypothesis and 

corrrelation. It was conducted a case study using a realdata gathered from Atox Mill . These data could 

then be analyzed withstatistical and descriptive methodsusing SPSS for analysis data. Although,Weibull 

analysis for verifying markov property was presented. The aim of this chapter is to implement and 

evaluate a novel Condition based maintenance model based on optimal multivariate Bayesian control 

chart. 
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5.5 Principal component analysis for identifying the variability in data ........................ 151 

5.6 Weibull analysis for verifying Markov chain assumption with non-censored data ........   
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5.7 Optimal Multivariate Bayesian control chart for real data....................................... 155 

 

 

5.1 Secil Cement Company 

Secil is a Portuguese company specializing in cement product. The company was founded in 

1930 and it is today one of Portugal’s largest supplier of cement producers. Secil offers a wide 

range of white and grey cement products, of different types and classes, produced 4 million tons 

of cement each year. Therefore, it is currently the second largest cement company in Portugal and 

biggest competitor Cimpor. Its Subsidiaries are: Secil-Outão, Cibra-Pataias and Maceira-Liz 

plants with an annual output of 4 million tons of cement, although, the activities of this company 
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of cement are mainly located in Portugal, but also in other regions where the group is present. 

Additionally, Secil currently has 4 cement plants in different countries: Tunisia, Lebanon, Brazil, 

Angola and Cape Verde.  In 2014, Secil employs approximately 1407 workers and has an annual 

value a revenue of about €429.60 million.  

5.2 Cement manufacturing process 

Cement is an inorganic, non-metallic substance with hydraulic binding properties, and is used as 

a bonding agent in building materials. It is a fine powder, usually gray in color that consists of a 

mixture of the hydraulic cement minerals to which one or more forms of calcium sulfate have 

been added (Greer et al., 1992). As shown in the figure 5.1, there are fourth mains process in the 

cement production process: (i) extraction and grinding of raw materials (acquisition and 

preparation raw material), (ii) milling raw, (iii) clinker production process, (iv) the storage and 

grinding of cement (Clinker milling). Each of these process components is described briefly 

below: 

Step 1:”Extraction and grinding raw material” 

The initial production step in cement manufacturing process is raw materials acquisition and 

handling. The raw materials used in the manufacturing of cement include limestone, marl (shal) 

and clay. These raw material are mined and crushed by grinders to the degree of fineness needed 

for the subsequent steps in the process (raw milling). Other supplementary materials such as sand 

and iron are sometimes added to in different proportions to obtain the desired composition of the 

feed to the cement production process.  Therefore, these raw materials are obtained from quarries. 

After mixing and homogenization, the second stage is the milling raw.  

Step 2:”Milling raw”  

This process take place into Atox mill, the raw materials are taken from their storage locations 

and transported to Atox mill before being grinding and crushing raw material, the grinding 

produces a fine powder, which is called raw mill. The Atox raw mill uses pressure and shear 

generated between the rollers and the rotating table to crush and grind raw materials. Feed 

material is directed into the grinding table by the feed chute. The rotation of the grinding table 

accelerates the material towards the grinding track and passes it under the rollers. Partially 

ground material passes over the dam ring encircling the grinding table and into the hot gas stream 

coming from the nozzle ring. The main goal of this second step in cement manufacture is 

preparing kiln feed (raw mix). 
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Step 3:”Clinker production process” 

Clinker production process is the main step in the cement production manufacturing. After 

preheater the raw mill into cyclone preheater and precalciner the resulting dry powder is fed to 

the rotary kiln through cyclone preheater. Cement rotary kiln is equipment for transforming the 

raw mill into clinker (for calcining cement clinker). The chemical reactions and physical process 

take place in a rotary kiln fired to temperature around 1450, at this temperature chemical reaction 

is produced and leads to the transformation the raw mill to clinker, this reaction chemical are 

known as “clinkerization” and the product obtained is called “clinker”. The clinker is stored in 

silos before being grinding and storage of cement. 

Step 4:” Grinding of clinker” 

The clinker produced is grinding by using cement mill. At this step of cement production, the 

clinker transformed into the fine grey powder that is cement, the grinding clinker produce a 

cement.  The clinker is the main constituent of most cements, however, gypsum is added to the 

clinker as well as other additives can also be used in the composition of cement. When cement 

are produced from the cement mill equipment, then they need to be conveyed, stored and 

reloaded too. Finally, cement is stored in silos before being packaged by a bagging machine into 

25-35 kg bags or supplier to customer in bulk using tanker trucks. The detailed scheme of the 

process is presented in figure 5.1. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1-Simplified process flow diagram for Cement manufacturing. 
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5.3 Atox Mill functioning 

Atox Mill vertical is a type of grinder used to grind materials into extremely fine powder for use 

in cement. Feed material is directed onto the grinding table by the feed chute. The rotation of the 

grinding table accelerates the material towards the grinding track and passes it under the rollers. 

Partially ground material passes over the dam ring encircling the grinding table and into the hot 

gas stream coming from the nozzle ring. Coarser material and bigger lumps drops through the 

nozzle ring and is eventually recirculated into the feed material inlet. A figure 5.2 bellow shows 

representation graphics of Atox Mill Equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 5.2- A Schematic representation of Atox Mill Equipment.  
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Figure 5.3- A grinding roller of Atox Mill Equipment. 

The technical features of Atox Mill equipment are: 

o Atox Mill Model (dimension): Atox 50 

o Table Diameter: 5meters 

o Number of rollers: 3units 

o Rollers Diameter: 3meters 

o Motor Power: 3000kW 

o Motor Speed: 743rpm 

o Motor Voltage: 6000V 

o GearBox Ratio: 28,03 
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5.4 Quantitative data collection 

In the cement industry, Atox Mill Equipment has been considered as the most important 

equipment due to its downtime cost, higher overall cost, production cost, and maintenance 

requirement are higher. In this context, elaboration and efficient strategies for prognostic of 

failure is mandatory requirement. The state of the Atox Mill during its function can be defined by 

one of the following modes: healthy, unhealthy operational state, or in failure state as listed in the 

last column of table 5.1. The process used for illustration of the application, our approach consist 

of grinding mill using Atox Mill  equipment. 

As it was mentioned previously, the principal technique used in this work was quantitate aspect 

in which intendsto satisfy the objectives of this study. Once the Atox Mill  equipment is 

operational, multivariate observations that are related to the system state and quality control of 

particle' size are sampled through condition monitoring technique at discrete time points, in this 

study case the sample are taken each 30 minutes.  

These observations could be used to derive quantitative estimates of parameters, testing 

hypothesis (normality and correlation), understanding the nature of multi-observation, and 

understanding the process under study, using packaging SPSS.  

For the purposes of this research, the channel of information’s come from Atox Mill were used. 

Indeed, condition monitoring techniques online must be required in order to collect numerical 

data. In this case, many variables provide by sensors, the type of variables are quantitative and 

continuous (ratio data). In order to illustrate the proposed model, we consider a real Atox Mill  

data set, data are in the form of numbers and recorded at discrete time about half an hours during 

specified period from 04/02/2015 to 31/12/2015,  

In the current research, the variables who were selected had special relationship with the health 

state of Atox Mill  under study. Within this context, the data set consist of four variable about 

condition of this equipment, and one about quality control measurement of dust (output Atox Mill 

). Indeed, condition monitoring technique of the Atox Mill  involving the taking of at regular time 

(half an hours) of a sample of the following continuous variables: temperature of filter, vibration 

of Atox Mill, power of motor,  pression of Atox Mill, size of dust (output of Atox Mill ). Data 

classifies as confidential any of the following data variables: temperature, pression, vibration, 

power motor, size particle as well as time failure when can appear in the thesis, the sample size is 
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quite large (the current study involved 15160 samples).A table 5.1shows the variables types that 

come from multi- sensors on the Atox Mill  equipment.  

Table 5.1. Summary of variables types and its characteristic. 

 

 

 

 

 

The main difficulty find on this work is to obtain practical (empirical) data. For that, it has been 

spend long time looking those data and finally we found it such as Secil Company 

aforementioned the company who provide us data. These observed data correspond the variables 

related with the health state of Atox Mill  equipment and quality measurement of dust (output of 

Atox Mill ). They are essential for building the model. However, these data are not directly used 

for estimating model parameters, because they are not complete and include missing values. In 

this context, to rectify one's inaccurate or incomplete data is of key importance in order to ensure 

the quality of the data processed. In this context, steps must be taken to ensure that inaccurate or 

incomplete data are deleted or corrected, in another word, it was necessary to correct them, with 

statistical tools and expert judgment (sample, the value missing). This steps was carried out 

jointly with the Secil’ engineer. 

It should be mentioned, that it is not easy to get the whole values of measured variables and the 

historical failure due to the absence culture of Condition-based maintenance policy and level of 

maturity of maintenance department. As mentioned before, this lack of information requires 

statistic method known as Principal Component Analysis (PCA), an appropriate tool than can be 

used in such situation. PCA aims at reducing a large set of variables to a small that still contains 

most of the information in the large set as results we can identified the variables that produces a 

lot of information about the behavior of Atox Mill  equipment. The output of PCA illustrate that 

the vibration and the size of particle are two most important variables. Moreover, data provide by 

cement industry (Secil) were completed analyzed after collected with the aid of Microsoft Office 

Excel and Statistical Software SPSS.  

 

Label of variables Unit Sample size Maximum 

Temperature of 

filter 

(ºC) 15160 304.68 

Vibration (mm/s) 1499  15160 5.30 

Power of motor (kW/h) 15160 2490.79 

Pression (mbar) 15160 63 

Size of dust (R90µm) 15160  11  



 

135 
 

This section is intended to draw conclusions from observed data by statistically analyzing it using 

packaging SPSS. Indeed, creating statistic analysis and graph such as: histogram, box-plot, 

frequency table, statistic indicator (e.g., central tendency indicators: dispersion indicator, mean, 

mode, variance) helps to understand a sense of distribution the variables that is in consideration, 

whether or not variables has significant effect, the relationship between two variables (e.g., 

means and standard deviations, test statistic, degrees of freedom, obtained value of the test, and 

the probability of the result occurring by chance indicated by p-value(Sig)).Statistics analysis is 

mandatory in my thesis with the goal to substantiate my findings.  Indeed, in this section we 

provide the main steps for making descriptive and correlation analysis using SPSS packaging. A 

SPSS software is very common used in many statistical and econometric studies by many 

researchers. 

This analysis of data process basically including: preparing, cleaning, transforming, and 

modeling in order to discovering useful information, reducing complexity of data and suggesting 

conclusion. Before we can analyze data they must be gathered, cleaned, and entered in SPSS in 

appropriate format and code. Generally, the following steps are used to figure out numerical and 

visual outputs: (i) Gather and code data (descriptive analysis, box plots or other graphs, z-value), 

(ii)Type of data (iii) Check data for normality if needed: Are the data normally distributed?, If No 

apply nonparametric analysis, if Yes apply parametric methods, observed measurement that come 

from a population that is normally distributed can usually be treated as parametric, (iv) 

correlation matrix, (v) Draw conclusions. As shown in Figure 5.4,the flowchart provide guideline 

about the steps must be performed, from data gathering to drawing conclusions in order to select 

the appropriate statistic methods (test selection process).  

Descriptive statistics for the whole variables are given as mean (M) and standard deviation (SD). 

Normality of distribution was tested using Kolmogorov-Smirnov test at the 5% level of 

significance, then. Spearman’s correlation analysis was used to know the strength and of 

correlation between the variables. 
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Figure 5.4-Flowchart depicted steps for descriptive and correlation analysis.  

5.4.1 Descriptive and correlation analysis in multivariable 

In order to choose the right type of correlation measure (parametric or non-parametric)Normality 

tests are used. The last is mandatory required steps to check whether data (dependent variables) 

are approximately normal distributed or not.  It should be noted that, descriptive and correlation 

analysis were done using the 5% level of significance. It is recognized that hypothesis test is a 

procedure for deciding if a null hypothesis should be accepted or rejected in favor of an alternate 

hypothesis. A statistic is computed from an Atox Mill ’s data (Annex 1) and is analyzed to 

determine if it falls within a preset acceptance region. If it does, the null hypothesis is accepted 

otherwise rejected. 

When performing a test of statistical significance, it is useful convention to distinguish between i. 

The particular hypothesis that the research is seeking to examine; and ii. The logical antithesis of 

the research hypothesis (alternative hypothesis). The second of these items is commonly spoken 

as the null hypothesis, where the word “null” in this context has the meaning of “zero”. A 

conventional symbolic notation is H0, which is H for “hypothesis”, with a subscripted zero, to 

denote that it is “null”. The research hypothesis sometimes is spoken of as the experimental 
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hypothesis or alternative hypothesis, and is denoted as H1,  In general, the null hypothesis is to 

the effect that the observed results will not significantly differ from expected values. The 

following numerical and visual output must be investigated:  

 Statistical hypothesis testing consists diagnostic hypothesis tests for normality, testing the 

data against the null hypothesis that it is normally distributed, if significance level (α, or 

alpha),p-value less then alpha(p mean the probability of making a decision to reject the 

null hypothesis when the null hypothesis is actually true (a decision known as a Type I 

error, or “false positive determination”). The hypothesis test for normality statement can 

be written as follows: 

 

H0 (Null hypothesis): attempt to show the data are normal,  

H1 (Alternative hypothesis): attempts to show that the data are no Normal.  

 

In this study we consider confidence level of  95% refer to alpha equal to 0.05. 

Practically, if p ≤ 0.05, we will reject the null hypothesis; then the data appear to be form 

a normal distribution, otherwise we will accept it. 

 The skewness and kurtosis are a way to asses normality and must be computed in order to 

quantify how far from normality the distribution is in terms of asymmetry and shape. The 

formula for calculating the skewness standard z-value and Kurtosis standard z-value is 

given below: Skewness z − value = Skewness ÷ standart error(Skewness)             

 For data Y1, Y2, ..., YN, for i=1,…,N the formula for skewness is: 

Skewness =
∑ (𝑌𝑖−𝑌)̅̅ ̅3𝑁

𝑛=1 /𝑁

𝑠2             (5.1). 

Kurtosis z − value = kurtosis ÷ standart deviation (Kurtosis), the formula for 

Kurtosis is:                

              Kurtosis =
∑ (𝑌𝑖−𝑌)̅̅ ̅43𝑁

𝑛=1 /𝑁

𝑠4 − 3              (5.2). 

As the formula shows, Skewness z-value is the skewness measure divided by its standard 

error, kurtosis z-value is the kurtosis measure divided by its standard error. These two 

value should be somewhere in the span of  −1.96 𝑎𝑛𝑑 + 1.96 , if we divide either score 

by its standard error and the result is greater than ±1.96, it suggests that data are not 

normal. Beside of these two condition that indicate that our data are approximately 

normally distributed or not, if the Kolmogorov-Smirnov test p-value above 0.05, the 



 

138 
 

distribution can be considered normal, so we don’t reject the null hypothesis. Table below 

shows the p-value for each variables (Table 5.1) 

In addition of above elements, informal approach to testing normality such as visual inspection of 

the distribution data in graph may be needed: histogram, Normal Q-Q plots and Box-plots should 

usually indicate that our data are approximately normal distributed or not. According to literature, 

if the histogram indicates a symmetric, moderate tailed distribution, then the recommended next 

step is to do a normal probability plot to confirm approximate normality. If the normal 

probability plot is linear, then the normal distribution is a good model for the data (Normality Q-

Q plot). In fact, Normal distribution has bell-shaped which mean symmetric histogram with most 

of the frequency counts bunched in the middle and with the counts dying off out in the tails.  

SPSS output for skewness and kurtosis tests from a sample of test scores and descriptive statics 

table is given in Annex 1.  

5.4.2 Reporting the results of normality test in multivariable 

For testing whether variables contains normally distributed data implies that the conditions 

mentioned in the previous section for each variable must be satisfying: 

Testing if temperature filter’s variables contains normally distributed data (mean=124.80, 

SD=48.198)?The results of the Kolmogorov-Smirnov (𝑝 ≤ .05) and a visual inspection of their 

histogram (Figure 5.5),   box plots(Figure 5.6) , and Normal Q-Q plots (Figure 5.7), showed that 

the exam score were not normal distrusted for temperature filter’s variables, with a skewness 

0.216 (𝑆𝑧 = 10.8) and kurtosis of 0.762 (𝐾𝑧 = 19.05). 

 

 

 

 

 

 

 
 Fig 5.5- Edited Histogram of temperature of filter                      Fig 5.6- Boxplot shows feature statistical of temperature 

with normality plot (M=124.80, SD=48.198). 

  

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Fig 5.7-Normality Q-Q plot of filter’s temperature. 

Testing if power of motor variables contains normally distributed data (mean=1323.52, 

SD=962.594)? The results of the Kolmogorov-Smirnov test (𝑝 = .000 ≤ .05) and a visual 

inspection of their histogram (Figure 5.8), Normal Q-Q plots (Figure 5.9) and box plots (Figure 

5.10), showed that the exam score were not normal distrusted for power of motor’ variables, with 

a skewness -2.343 (𝑆𝑧 = −97.62) and kurtosis of 9.363 (𝐾𝑧 = 191.081). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 5.8- Edited Histogram of motor’ power                             Fig 5.9- Boxplot shows features statistical of motor’power. 

with normality plot (M=1986.40, SD=274.663). 
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   Fig 5.10- Normality Q-Q plot of motor’s power. 

Testing if Atox Mill ’ pression variable contains normally distributed data (mean=33.29, 

SD=23.274)? The results of the Kolmogorov-Smirnov test (𝑝 = .000 ≤ .05) and a visual 

inspection of their histogram (Figure 5.11), Normal Q-Q plots (Figure 5.12) and box plots (Figure 

5.13), showed that the exam score were not normal distrusted for Atox Mill ’pression variables, 

with a skewness -4.136 (𝑆𝑧 = −172.33) and kurtosis of 23.24 (𝐾𝑧 = 474.34). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig 5.11- Edited Histogram of Atox’ pression                      Fig 5.12- Boxplot shows features statistical of Atox’pression. 

with normality plot (M=33.29, SD=23.274). 
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Fig 5.13- Normality Q-Q plot of Atox Mill ’pression. 

Testing if particle ‘size variable contains normally distributed data (mean=12.73, SD=.759)? 

The results of the Kolmogorov-Smirnov test (𝑝 = .000 ≤ .05) and a visual inspection of their 

histogram (Figure 5.14), Normal Q-Q plots (Figure 5.15) and box plots (Figure 5.16), showed 

that the exam score were not normal distrusted for particle ‘size variables, with a skewness 2.650 

(𝑆𝑧 = 106) and kurtosis of 23.24 (𝐾𝑧 = 290.77). 

 

 

 

 

 
 

 

 

 

 

Fig 5.14- Edited Histogram of                                             Fig 5.15- Boxplot shows features statistical of particle’size 

with normality plot (M=12.722, SD=.855). 
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Fig 5.16- Normality Q-Q plot of particle ‘size. 

Testing if Vibration Atox Mill  variable contains normally distributed data (mean=2.512, 

SD=1.469)? The results of the Kolmogorov-Smirnov test (𝑝 = .000 ≤ .05) and a visual 

inspection of their histogram (Figure 5.17), Normal Q-Q plots (Figure 5.18) and box plots (Figure 

5.19), showed that the exam score were not normal distrusted for vibration Atox Mill  variable, 

with a skewness -0.530 (𝑆𝑧 = −26.5) and kurtosis of -1.524 (𝐾𝑧 = −38.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.17- Edited Histogram of Atox Mill’s vibration           Fig 5.18- Boxplot shows features statistical of vibration 

with normality plot (M=2.512, SD=1.469). 
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Fig 5.19- Normality Q-Q plot of Atox Mill ’vibration. 

 

In summary, the five variables that are involving in this normality hypothesis test are not normal 

distributed. In this study, the null hypothesis states that these variables are normally distributed, 

against the alternative hypothesis that it is not normally distributed with significant level p-

value=.05. In this study, the value of Sig (p-value) found smaller than significant level (p-value), 

so can reject the null hypothesis and conclude the data are not from a population with normal 

distribution.It means those variables are not normal distributed.  

Table-5.2- Kolmogorov-Smirnov test (p-value). 

 

 

 

 

 

 

 

 

 

5.4.3 Reporting results of correlation analysis and dependences 

In statistic field, correlation methods can be used to determine whether there is relationship 

between two or more variables, and its makes inference about the strength of the relationship. In 

fact, correlations between variables can be measured with the use of different coefficients such 

Tests of Normality 

 

Kolmogorov-Smirnova 

Statistic df Sig. 

Temp_filter .191 15159 .000 

Vibr_Atox Mill  .258 15159 .000 

Power_Motor .222 10096 .000 

Press_Atox Mill  .237 10121 .000 

Size_particle .218 10047 .000 

a. Lilliefors Significance Correction 

 

 

 

 
 

SPSS output gives p-

value (significance) 
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as: Pearson’s coefficient, Spearman’s rho coefficient, and Kendall’s tau coefficient. These 

correlation coefficient is the most widely used, it measures the strength or weakness of the 

relationship between variables. Selected an appropriate correlation coefficient is based on result 

of normality test, So, when the variables are not normally distributed or the relationship between 

the variables is not linear, it may be more appropriate to use the Spearman rank correlation 

method instead Pearson’s correlation method. 

As mentioned before, the first step of the data analysis was to check the normality distribution of 

the compared data. Overall, the results indicate that distribution of the data was not normal 

distributed. The second step was to check whether there exist or not relationship between 

variables. Spearman’s rank correlation coefficient (non-parametric) rank statistic was selected to 

test the correlation of the compared variables (measure of the strength of the association between 

two variables).  

5.4.3.1  Correlation and dependences among variables  

In this section, the analysis and correlation of Atox Mill’variables have been carried out. Based 

on previous section, Non parametric correlation analysis the association between variables are 

appropriate, In this case we should use Spearman's rho for correlation analysis (non-parametric 

method). Indeed, Spearman’s rank correlation coefficients were computed to know the strength 

and association between variables. It should be noted that, scatter plot might uses to identify the 

type of association between the variables, the SPSS output gives us correlation coefficient, sig (p-

value). The correlation coefficient indicated by (rs) can take value from -1 to +1, +1 indicates a 

perfect positive linear relationship, and -1 indicates a perfect negative linear relationship. Zero 

value indicates the variables are uncorrelated and there is no linear relationship. The closer rs is to 

zero, the weaker the association between the variables. Negative correlation coefficient refer to 

that the two variables move in the opposite direction from each other - as one goes up, the other 

goes down, however, the two variables move in the same direction.  

In this study, the null hypothesis states is defined by “there is no correlation between two 

variables”, against “the alternative hypothesis is there a correlation”, at the 5% level of 

significance (p-value is .05). The correlation is considered significant when the p-value lower 

then .05 (null hypothesis were true), otherwise we don’t reject the null hypothesis.  

The general form of a null hypothesis (H0) and alternative hypothesis (H1) for a Spearman 

correlation is: 



 

145 
 

 

H0: there is no correlation between the two variables in the population. 

H1: There is correlation between two variables in the population. 

The significance test is investigating whether the null hypothesis was true or false. However, it is 

important to realize that the visual interpretation of scatter plots, Spearman correlation 

coefficients, is necessary in order to identify the strength that might exists between two variables. 

The value of Spearman correlation coefficients as well as the significant effect are shown in table 

5.3.  

Table 5.3- Non parametric correlation matrix among five variables from Atox Mill condition 

data. 

 

 

 

 

 

 

 

 

Table 5.2 shows the spearman’s correlation coefficients to assess the relationship between the 

temperature of Atox Mill and other variables such as: power of motor, vibration, pression, size of 

particle, and their Sig (p-value). From table 5.2, it is possible to see that there is no correlation 

between temperature of Atox Mill and the following variables: power motor (ґs=.-157, Sig=.000), 

vibration (rs=.-218, Sig=.000), pression (rs=-.076, Sig=.000), and size of particle (ґs=-.023, 

Sig=.023), regarding the strength of the relationship this is a zero correlation. Since the p-value 

less then significant level (=.05), we reject the null hypothesis as well as the scatterplot showed 

that there is no linear relationship between temperature variables and others variables (Figure. 

5.20). 
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Figure.5.20- Scatterplot of filter ‘temperature against others variables 

For the power of motor ‘variable, the results of analyses showed no significant correlations 

between the power of motor and temperature (p-value=.000), vibration (p-value= .000), pression 

(p-value=.000), and size of particle (p-value= .000). Regarding the correlation, there is no 

significant correlation occurs between power of motor and other variables: temperature (ґ=-

0.157), vibration (rs= .126), pression (rs=.040), and size of particle (p-value= -.038), it should be 

noted that, in this case we don’t reject the null hypothesis. Thus, scatterplot depicted that there is 

no linear relationship between power of motor ‘variables and others variables (Figure 5.21).  
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Figure. 5.21- Scatterplot of motor ‘power against others variables 

In the analyses on rejecting or accepting the null hypothesis regarding correlation between 

vibration ‘variable and others variables, the results showed that there is near zero correlation 

between vibration and the following variables: temperature (rs=-.218), power of motor (rs=.126), 

pression (rs=.103). However, there is positive correlation between size of particle and vibration 

(rs=.146, p-value=.000), the two variables that move in the same direction, but regarding the 

strength of the relationship this is a weak correlation, a visual inspection of scatter plot illustrate 

that the two variables move in the opposite direction from each other as one goes up, the other 

goes down, but regarding the strength of the relationship this is a weak correlation. So, there is no 

relationship between vibrations and other variables expect size of particle, its weak relationship 

(Figure 5.22). It is possible to see in table 5.2 that, there is no significant correlation between 

vibration and all compared variables (p-value< .05). 
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Figure 5.22- Scatterplot of vibration against others variables. 

In the correlation analysis of pression and compared variables, a Pearson correlation coefficient 

was computed to assess the relationship between the pression and the following: temperature, 

power, vibration, and size of particle. There was a near zero correlation between the pression and 

the following variables: the temperature (rs=-.076, p-value=.000), power of motor (rs=.040, p-

value=.007), vibration (rs=.103, p-value=.000), size of particle (rs=.061, p-value=.000). A 

scatterplot summarizes the results (Figure5.23). Overall, there was no correlation between 

pression and other variables (Figure5.23). 
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Figure 5.23- Scatterplot of pression’ variable against others variables. 

As shown in table 5.2, we can see there was not significant correlation between size of particle 

and the following variables: temperature (rs=-.023, p-value=.000), power of motor (rs=-.038, p-

value=.005), pression (rs=.061, p-value=.000), However, there is positive correlation between 

size of particle and vibration (rs=0.146, p-value=.000), the two variables that move in the same 

direction, but regarding the strength of the relationship this is a weak correlation. Overall, there 

was no correlation between size particle and other variables, which was not statistically 

significant (Figure 5.24). 
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Figure 5.24- Scatterplot of particle’ size against other variables 

 

Analysis of the results of bivariate correlations among five variables, showed that the value of 

Sig found less than significant level (p-value=.05), all of the five compared dimensions are not 

significantly correlated (p < 0.05), from table 5.3 and scatter plots of bivariate correlations, we 

can tell that there are not significant correlation between the variables as well as no substantial 

correlation between the variables, for this reason we found that the null hypothesis were true and 

we can’t reject it, as results there is no relationship between among variables. It means those 

variables are independent.  
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5.5 Principal component analysis for identifying the variability in data 

In this section, principal component analysis (PCA) was conducted to identify the variability of data 

distribution for each variables and to determine which one has significant variance in data. Besides, 

statistical tests were also used to know whether there are any significant. For these purposes, PCA 

packaging in SPSS were used in this study. The Kolmogorov-Smirnov’s normality test was used for 

this purpose, correlation matrix, scatterplot, component matrix. 

The idea behind this method is that can help us to restructure our data, the way that the ‘information 

contained’ is measured is by considering the variability within and co-variation across variables, that 

is the variance and co-variance (i.e. correlation). Thus, we obtain a set of factors which summarize, as 

well as possible, the information available in the data. The advantageous of this statistic methods is to 

simply discover the linear combinations that reflect the most variation in the data. Secondly to 

discover if the original variables are organized in a particular way reflecting another a ‘latent 

variable’, thirdly we might want to confirm a belief about how the original variables are organized in 

a particular way. In another word, Results of PCA analysis for our data set are as follow: 

From table 5.4, the absolute value of Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) is 

higher and classified as middling ( .734), with significant level p-value less than .05, indicate we can 

procced the next step of PCA, so the PCA is  really useful. 

 

Table 5.4. KMO and Bartlett’s test 

 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .734 

Bartlett's Test of Sphericity Approx. Chi-Square 9268.310 

df 10 

Sig. .000 

From table 5.5 and figure 5.25, we can determine how many important components are present in the 

data. Indeed, the next table 5.5 shows the importance of each of the five principal components. Only 

the first two have eigen values over 1.00, and together these explain over 65.7% of the total 

variability in the data. The table presents the eigen values and percentage of variance. This decision is 

supported by the scree splot in figure 5.25. 
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Table 5.5. Total variance explained. 

 

 
 

 

The information on the table 5.5 can be visually seen on the figure 5.25 that we have to retain only 

two components, as shown. It can see inflection on the plot in the point two, as results two component 

should be retained.  

 

 

 
 

 

 

 

 

 

 

 

Figure 5.25- Scatterplot of Eignvalue versus component number. 

Table 5.6 show the expected pattern, with high positive and high negative loadings on the first 

component. 
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Table 5.6. Component Matrix 

 

 
 

 

 

 

 

 

 

5.6 Weibull analysis for verifying Markov chain assumption with non-censored data 

Generally, there are different approaches to model the transition probabilities. In this section, we 

are going to selecting which an appropriate stochastic processes used for degradation model of 

Atox Mill equipment. In this context, Weibull analysis is used for verifying whether the Markov 

property hold for the Atox Mill condition data with control quality measurement or not.    

In order to test the Markov property we need to verify if the time to failure follow exponential 

distribution or not. As noticed in previous, Markov property (memoryless property)refer to that 

the transition probability from the present to future state don’t depend on past states. The test 

based on the analysis of Weibull distribution for non-censoring data, the last means that we do 

know the exact time of an event (failed state), it is considered the most useful density distribution 

in reliability calculation. The distribution of Weibull is often used in the field of lifetime analysis, 

because of its flexibility as well as due the broad range of distribution shape that are included in 

Weibull distribution (e.g., Exponential, Rayleigh, Poisson &Binomial).The log Normal is not a 

member of the Weibull family. As stated above, the advantage of Weibull distribution is 

flexibility feature, for that it has become widely used in many application regardless the areas 

(Weather Forecasting, Extreme Value Theory, General Insurance, Survival Analysis, Hydrology, 

reliability engineering, Statistics Classes, Health for detecting cancer disease). 

 

 

Component 

1 2 

Temp_filter -.578 -.312 

Vibr_Atox Mill  .717 .344 

Power_Motor .816 -.021 

Press_Atox Mill  .801 -.121 

Size_particle -.356 .878 

Extraction Method: Principal Component 

Analysis. 

a. 2 components extracted. 
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The formula for the probability density function of the general Weibull distribution is defined by:  

 

 

 

 𝑓(𝑥, 𝑎, 𝑏, 𝑐) =   

 

 

Where a is the scale parameter, b is the shape parameter and c is the location parameter. The case 

where b = 0 and c = 1 is called the standard Weibull distribution. In this section we consider c = 

0, so the Weibull law is called the 2parameter Weibull distribution. The equation for the standard 

Weibull distribution reduces to: 

 

 

 

 

 

𝑔(𝑥, 𝑎, 𝑏, 0) = 

 

 

The Weibull distribution can be used in wide variety of situation and, dependent on the value of 

shape parameters a, the last can be used to approximate different distribution (Table 5.7). 

Table 5.7- Weibull distribution approximation. 

Shape parameters Approximate probability distribution 

b=1 Weibull distribution is identical to the exponential distribution 

b=2 Weibull distribution is identical to the Rayleight distribution 

b=2.5 Weibull distribution approximates the Lognormal distribution 

b=3.6 Weibull distribution approximates the normal distribution 

b=5 Weibull distribution approximates the peaked normal distribution 

There are two ways adjustment of Weibull law: the first one is called graphical method, and 

the second one is known as numerical method such as: Least Squares Method, Maximum 

Likelihood Estimator. According to the accuracy and computing time The methods are used 

will be used to checking the Markov property is graphical method consist Weibull probability 

b𝑎−1(𝑥 − 𝑐)𝑏−1 𝑒−(
𝑥−𝑐

𝑎
)𝑏

   

  

0 Otherwise, 

𝐼𝑓 𝑥 ∈ (0, ∞) 

(5.1). 

b𝑎−1(𝑥)𝑏−1 𝑒−(
𝑥

𝑎
)𝑏

 

    

𝐼𝑓 𝑥 ∈ (0, ∞). 

0 Otherwise, 

(5.2). 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PDF
http://www.itl.nist.gov/div898/handbook/eda/section3/eda363.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
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plot, the idea is based on equation of a straight line by plot F (t) versus t, where Ln((ln (1/(1-

F(t))) function the two parameters of Weibull law and generally used Benard’s equation 

(Median Rank) =((i-0.3)/(N+0.4)) to estimate the F(t) where N equal to 235 (number of failed 

state) and i represents failure order. The slope of equation parameter determines which 

member of the family of Weibull failure distributions best fits to data.  

From table 5.1, when a=1 the failure time follow an exponential distribution otherwise, the 

process has not Markov property and we cannot modeled by Markov chain. To choose the 

right stochastic process in this maintenance application is very important, because this will 

give the accurate information about the transition probabilities according to our data. The 

shape parameters of Weibull distribution is equal to slope of the best straight line fit to the 

plotted data. From figure 5.26, we see that the shape parameters a has value 1.2408, which 

result different from 1, as results of testing Markov property based on graphical methods we 

may conclude that the process has not Markov property, for this reason we will model the 

transition stated used the delay time concept. 

 

 

Figure 5.26- Probability plot of complete data. 

5.7 Optimal Multivariate Bayesian control chart for real data 

As result output fit distribution command in Matlab software, the probability distribution fit with 

observed data monitoring: temperature (C°), vibration(mm/s), pression (mbar), power of motor 

(KW/h) approximate to Weibull distribution which describes our data well with three parameters, 

these parameters include 𝑎, 𝑏, 𝑐. Besides, fit distribution in Matlab found that the empirical 

distribution describes well our data about size particle data. Indeed, Maximum  likelihood method 

y = 1.2408x - 10.448
R² = 0.9497
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is often used for parameter estimation, it is considered as the most popular method according to 

their accuracy and precision. We can find widely applicable approximations for a number of 

useful probability distributions. In this context, the parameters were estimated by Maximum 

likelihood estimation which already implanted in Matlab. The goal is to estimate the following 

parametric vectors 𝑎, 𝑏, 𝑐 for p(𝑦𝑖
𝑘/𝑥𝑖), where k is number of observed variable. The value of 

parameters vectors are presented in Table 5.8. 

Table 5.8. Weibull distribution parameters. 

𝑎 𝑏 𝑐 

𝑥𝑖  =1 𝑘 = 1 (C°) 47.5325 3.8438 73.7108 

𝑘 = 2(mm/s) 2.8319 7.3618 0.8764 

𝑘 = 3 (mbar) 3842+e0.3 20.8422 -1739e+0.3 

𝑘 = 4 (KW/h) 36.0530 19.0481 14.8017 

𝑥𝑖  =2 𝑘 = 1 (C°) 60.6202 2.2548 73.5773 

𝑘 = 2(mm/s) 6.9494 7.8453 -3.5999 

𝑘 = 3 (mbar) 4.1499e+0.3 8.1779 -2.3876+0.3 

𝑘 = 4 (KW/h) 86.4524 10.4453 -39.9999 

Considering limited space, only Weibull probability distribution for temperature and  pression 

were presented in Figure 5.27, other plot we can see them in annex2. 
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Figure 5.27- Weibull distribution plot of observed data (temperature and pression) in tow failure 

stages at sample epoch =30 min. 

As said before, posterior probability expression contains transition probabilities, for that it is 

mandatory to compute those probabilities. Weibull probability density function of two failure 

stages fit well with distribution of time in the first stage and the second stage. The parameters of 

Weibull distribution of both stage l1 and l2 are presented in table below:   

Table 5.9. Delay time concept parameters. 

a b c 

Stage 1(L1):  1→2 20.2151 1.0275 0.4974 

Stage 2(L2):  2→3 0.09239 0.2305 0.4999 

 

 

 

 

 

 



 

158 
 

 

Figure 5.28- Weibull plot distribution of the historical data for stage 1 and stage 2. 

 

Numerical results have been presented to illustrate the effectiveness of integrated model based 

simultaneously data quality control measurement and condition equipment Atox Mill data set. In 

this section we consider two control limit policy: the first case when only condition parameter 

Atox Mill were taking into account for estimating conditional probability of system being on 

Stage 1 and Stage 2 (without quality control measurement), the second case, we consider the 

quality control measurement in estimating conditional probability of system being on Stage 1 and 

Stage 2. We use the same observed data about condition monitoring of Atox Mill in the previous 

case, additional the quality control measurement,  to illustrate the two control limit policy 

proposed, therefore, we evaluate the objective function and obtain the corresponding optimal h* 

and p* for both situation as shown in Table 5.9, Table 5.10. We Run PSwarm solver 

implementing in Matlab for finding optimal h* and p* using the following convergence 

criteria:We assume that the ranges for interval monitoring (h)=[0.05, 10], The ranges for upper 

control (p*)=[0.01, 0.99]. For both cases, we consider the same convergence criteria. Solving the 

expected average cost it difficult analytically (Eq 4.19) for this reason Pswarm and Monte Carlo 

simulation can be used to iteratively determine the objective function and the decision variables, 

we assume also that Cmonit=1000, Cinspe=100, Cprevmain =10000, Cfailed= 6000000. It is important to 

note that PSO can find the optimum for both cases. 

 

Considering the first case without quality measurement, the number of simulation equal to 3000 

renewal cycle and as suggested by Hu and Eberhart (2001) by the best number of population size 
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in PSO is about 40. In this case, the simulation consume about Elapsed time is about 86.84 (1.45 

minutes)  

The following table summarize the PSO results (maintenance cost, interval monitoring and upper 

control limit.  

Table 5.10. Summarize of PSO results in case 1 

(Global, size population=40, 3000 iteration=54). 

 

Case 1 

Optimal h*  5.449 

Optimal p*  0.67028 

Optimal Maintenance cost 272.4543 

Figure 5.29. Shows that for a given monitoring interval, the posterior probability in stage 1 

decrease, in the following approximate time unit: ti=4 time unit, ti=16 time unit, But at time 

around ti=25 time unitthe sytem shift state to state 2 where 𝑃(𝑥𝑖 = 1/𝑌) = 0and the posterior 

probability of being in stage 2 given observed data decrease at the same times and egual to 1 

(𝑃(𝑥𝑖 = 1/𝑌) = 1).  

 

 

 

 

            

  Figure 5.29- Posterior probability for stage 1 and stage 2 (case1). 

In order to display observed data given monitored history up to time ti(𝑌𝑖
𝑘) in a meaningful way, 

and to be plotted all these variable in the same plot requires divided all these variables by scale, 

we assume that temperature/100, vibration72, power/100, pression/4. Quality/1.  

Figure 5.30. Showsthat for a given monitoring interval observed data about variables (temp, 

vibrat, power,press). It can see clearly from figure that 𝑦𝑖
1, 𝑦𝑖

2, 𝑦𝑖
3, 𝑦𝑖

4 from 25 time unit. However, 
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at 5 time unit and around 15 time unit we can see clear that only pression and vibration 

deacresing. This mean that those two variables affect strongly by the shift of stage form 1 to 2.   

 

 

 

 

 

 

 

Figure 5.30- Observed data for a given interval monitoring (case1). 

Now we simulate the same objective function for the case 2 where the quality control 

measurement is considered. The same cost and convergence criteria, the results become as 

follow: 

Table 5.11. Summarize of PSO results in case 2  

(Global, size population=40, 3000 iteration=76). 

 

Case 1 

Optimal h*  5.3862 

Optimal p*  0.03127 

Optimal Maintenance cost 268.2472 

 

 

 

 

 

 

 

 

Figure 5.31-Posterior probability for stage 1 and stage 2 (case2). 
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Figure 5.31. illustrate that for a given monitoring interval, the posterior probability in stage 1 

decrease, around ti=25 time unit the system shift state 1 to state 2 where 𝑃(𝑥𝑖 = 1/𝑌) = 0 and 

the posterior probability of being in stage 2 given observed data decrease around ti=25 time unit  

and equal to 1 (𝑃(𝑥𝑖 = 𝑃(𝑥𝑖 = 2/𝑌) = 1) 

 

 

 

 

 

 

 

Figure 5.32- Observed data for a given interval monitoring (case2). 

Figure 5.32-Shows that for a given monitoring interval observed data about variables (temp, 

vibrat, power, press) with presence of quality control measurement. It can see clearly from figure 

that around 25 time unit, the following variables decreasing: power motor, pression, vibration, we 

can see clear that we have poor quality refer to size particle deceasing and pression decreasing 

suddenly. However, the temperature increasing. This mean that those variables affect strongly by 

the shift of stage form 1 to 2.   

From table 5.10 and table 5.11, we can see that the maintenance policy in the second case 2 

where control quality measurement control taking into account yield the lower expected cost. In 

addition, the interval monitoring in the case 2 yield lower value than the first second case. The 

cost and interval monitoring have to be considered the two quantities in comparing whether the 

maintenance policy is effectiveness. However, sometimes there is tradeoff between these two 

quantities. As results, this study found that multivariate Bayesian when considering quality 

control measurement perform better than the previous Multivariate Bayesian control chart, and 

the maintenance cost was quite equal but the interval monitoring is higher for the proposed 

model. However, due to insufficient research in multivariate Bayesian control chart needs to 

improve the proposed model with another practical application. 
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Chapter 6  

Conclusion and future research 
 

 

This chapter presents the conclusions about the work performed. It presents guidelines for future 

work and research in order to expand and solidify knowledge about Condition based 

maintenance model. 
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6.1 Focus of the work and original contribution 

In maintenance management, decision-makers are facing though challenges to conduct an 

appropriate and an accurate decision. A proper and well-performed CBM models are beneficial 

for maintenance decision making. In order to respond to this challenge, Condit ion based 

maintenance need to be integrated with Bayesian control chart. This integrated models have been 

considered as an intelligent model and a suitable strategy for forecasting items failures for non 

Markovian deterioration model, optimal asset management, providing an effectiveness 

maintenance cost, provides lower inventory costs for spare parts, etc. However, CBM models 

need new aspects and integrate a new type of information in maintenance modeling that can 

improve the results and reduce uncertainty. Thus, to be successful in a global competitive market. 

Mathematical approach have considered in this study instead engineering approach. In this case, 

my study was focused on developing optimal multivariable Bayesian control chart with two 

decision variables: sampling interval and upper control limit. The thesis emphasis to develop a 

new methodology based on Bayesian control chart for predicting failures of item incorporating 
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simultaneously two types of data: key quality control and measured machine condition indicators. 

These observation can be fused by using Bayes theory to give a posterior probability estimate of 

the warning state which is unobservable (upper control limit), in this case the process is 

monitoring by plotting the posterior probability in control chart in which can be compared with a 

control limit to assess whether a full inspection is need or not. In this study, we review modelling 

approaches for system deterioration. A Markov chain property verifying in this thesis as result the 

process are not Markovian, in this case we used delay time concept for state transition, analyzing 

and estimate the transition probabilities in 3-State Models. State 1 and 2 are unobservable, 

represent normal and warning state, respectively. Only the failure state 3 is assumed to be 

observable. Although, failure modeling is important for designing such Bayesian control chart. 

Combining the delay time concept and Bayes theory to establish posterior probability the Atox 

Mill  equipment is in warning state given data observed. The objective is to find a stopping rule 

under partial observations, minimizing the long-run expected average cost per unit time for a 

given sample size and sampling interval. AMonte Carlo Simulation and PSO algorithm 

developed to find the optimal control limit and the minimum average cost.  

6.1.1 Summarize of study case 

This empirical research was illustrated using real data obtained from condition monitoring 

technique collected at regular time epochs from Atox Mill equipment used in cement industry 

(Secil Portugal). We have benefit to access in real world maintenance problem with complete 

record data which is not common especially in the world with hard competiveness between 

companies.  

The problems was investigated about impending the failure of Atox Mill  equipment by 

optimizing maintenance in order to maximize the operation of equipment for the long time. It can 

be triggered by observing the parameters that affect the operation of Atox Mill  and the quality 

control measurement of size particle (output of equipment), and it follow be fused through 

Bayesian theory to give a posterior probabilistic estimate the warning state of equipment which is 

not directly observable. This empirical research examine the alternative solutions, and propose 

the most effective solution as well as the limitation of proposed model.The study case was 

focused on this work is about Atox Mill  equipment which considered the most important in 

cement industry (Complex system, Maintenance requirement are higher, Higher overall cost), its 

servers as equipment for crushing and grinding raw material, uses pressure and shear generated 

between the rollers and the rotating table to crush and grind raw materials.  
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In this practical application, observed monitoring information history come from Atox Mill 

including five variables: temperature, vibration, pression, power of motor, and size of particle. 

The sample of each variable was recorded each 30 minute for the period about one years (10 

months), the size of data are quite big equal to 15160 samples. Data classifies as confidential any 

of the following data variables: temperature, pression, vibration, power motor, size particle when 

can appear in the thesis. 

6.1.2 Summarize of scientific results 

A new Multivariate Bayesian control chart for CBM has been found, the optimal control chart 

parameters, which are the interval monitoring and the upper control limit were determined. The 

Weibull analysis was adopted to verify the Markov property, the result found the process are not 

Monrovian, the time to failure not follow exponential distribution which means the process has 

not memory property (Markov property), this analysis will tell us about is it ok to move from 

Markov chain to delay time concept or not, as results the delay time concept was adopted in 

deterioration modelling where the history past was considered.  

Empirical research should be comparative research, this is why it is necessary comparing the 

proposed model (case 2) with multivariate Bayesian control chart without considering the quality 

control measurement (case 1), it concluded that the propose model can reach economic efficiency 

where the cost of maintenance in the first case is quite equal to the second case and the interval 

monitoring in the first case (10 h) is higher than the second one (8 h). To conclude, this study 

found that multivariate Bayesian when considering quality control measurement perform better 

than the previous Multivariate Bayesian control chart, and the maintenance cost was quite equal 

but the interval monitoring is higher for the proposed model. However, due to insufficient 

research in multivariate Bayesian control chart needs to improvethe proposed model with another 

practical application. 

6.2 Suggestion of further research 

It is expected will submit 4 publications from this research related to the results of the analysis 

the proposed model, sensitivity analysis (validation and evaluation). Besides, the finding of the 

proposed model give rise to several issues, it is well recognized that uncertainty influence the 

results and the finding, in particular the one related to quality of data due to error, missing, 

frameworks and method collected data,  it would be important to select the strong tools and 

appropriate techniques for these kind of situation. Even this research work showing interested 
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effectiveness when comparing with other model but still this area needs more research to be 

performed.  To cope with above situation, further research resulting from this work: 

 Since CBM model based on observed data, further the application data mining in this area 

could be challenging steps, 

 Further incorporation artificial intelligence (unsupervised and supervised) to be 

interesting research. 

 Since the data itself is weak to reveal the reality… as well as there is not perfect model, it 

could be necessary to add a new information related to the machine and its environment 

for reducing risk related to uncertainty.  

 Further research in Bayesian control chart for CBM with considering more than three 

state  

 Consoling the efficiency of propose model by testing to another practical application.  

 It could be interesting to consider further Statistical analysis for such CBM problems. 

 Taking into account the concept big data and its requirement. 

 Testing the performance of algorithm using in solving optimization problems. 

 Development integrated model based on Bayesian control chart and Logic fuzzy.  

 Development integrated model based on Bayesian control chart and Analytic hierarchy 

process (AHP).  

 Prior probability affect the results of posterior probability.  

 Validation the model with two kind of data: test data and trial data.  

 Incorporating classification model such as: Receiver Operating Characteristic (ROC).  

 Development framework for automatization CBM. 

In addition, since my research work is novel in Department of Production and System 

(Engineering school), it would be useful to develop a CBM group in SEOR and Research group 

from statistic department in which it can many discipline will integrated in order to develop 

intelligent and optimal model.  
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Annex A Descriptive analysis 
 

 

Table A.1. Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent N Percent N Percent 

Temp_filter 15159 100.0% 0 0.0% 15159 100.0% 

Vibr_Atox Mill  15159 100.0% 0 0.0% 15159 100.0% 

Power_Motor 15159 100.0% 0 0.0% 15159 100.0% 

Press_Atox Mill  15159 100.0% 0 0.0% 15159 100.0% 

Size_particule 10047 66.3% 5112 33.7% 15159 100.0% 

 

 

Table A.2. Descriptives 

 Statistic Std. Error 

Temp_filter Mean 124.7978 .39147 

95% Confidence Interval for 

Mean 

Lower Bound 124.0304  

Upper Bound 125.5651  

5% Trimmed Mean 124.7208  

Median 119.6400  

Variance 2323.095  

Std. Deviation 48.19849  

Minimum .00  

Maximum 304.68  

Range 304.68  

Interquartile Range 24.32  

Skewness .218 .020 

Kurtosis .735 .040 

Vibr_Atox Mill  Mean 2.5078 .01195 

95% Confidence Interval for 

Mean 

Lower Bound 2.4843  

Upper Bound 2.5312  

5% Trimmed Mean 2.5223  

Median 3.3000  

Variance 2.163  

Std. Deviation 1.47083  

Minimum .40  

Maximum 5.30  

Range 4.90  

Interquartile Range 3.20  

Skewness -.524 .020 
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Kurtosis -1.532 .040 

Power_Motor Mean 1323.5150 7.81822 

95% Confidence Interval for 

Mean 

Lower Bound 1308.1904  

Upper Bound 1338.8397  

5% Trimmed Mean 1339.1212  

Median 1951.5600  

Variance 926586.415  

Std. Deviation 962.59359  

Minimum .00  

Maximum 2490.79  

Range 2490.79  

Interquartile Range 2032.95  

Skewness -.574 .020 

Kurtosis -1.555 .040 

Press_Atox Mill  Mean 33.29 .189 

95% Confidence Interval for 

Mean 

Lower Bound 32.92  

Upper Bound 33.66  

5% Trimmed Mean 34.04  

Median 49.00  

Variance 541.671  

Std. Deviation 23.274  

Minimum 0  

Maximum 63  

Range 63  

Interquartile Range 51  

Skewness -.679 .020 

Kurtosis -1.492 .040 

Size_particule Mean 12.7287 .00757 

95% Confidence Interval for 

Mean 

Lower Bound 12.7139  

Upper Bound 12.7436  

5% Trimmed Mean 12.6544  

Median 13.0000  

Variance .576  

Std. Deviation .75920  

Minimum 11.00  

Maximum 19.00  

Range 8.00  

Interquartile Range 1.00  

Skewness 2.089 .024 

Kurtosis 10.556 .049 
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Table A.3. Extreme Values 

 Case Number Value 

Temp_filter Highest 1 14415 304.68 

2 3526 299.68 

3 3525 293.60 

4 14226 289.32 

5 14225 288.75 

Lowest 1 6577 .00 

2 6576 .00 

3 6575 .00 

4 6574 .00 

5 6573 .00a 

Vibr_Atox Mill  Highest 1 2175 5.30 

2 2398 5.30 

3 2176 5.00 

4 12343 4.90 

5 351 4.80b 

Lowest 1 6310 .40 

2 6309 .40 

3 6308 .40 

4 6307 .40 

5 6306 .40c 

Power_Motor Highest 1 12641 2490.79 

2 14123 2460.65 

3 13341 2452.70 

4 13278 2450.51 

5 14122 2440.61 

Lowest 1 15101 .00 

2 14784 .00 

3 14783 .00 

4 14782 .00 

5 14780 .00a 

Press_Atox Mill  Highest 1 4333 63 

2 4332 57 

3 4442 56 

4 4443 56 

5 7687 56d 

Lowest 1 15102 0 

2 15101 0 

3 15100 0 

4 15061 0 
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5 15060 0a 

Size_particule Highest 1 1340 19.00 

2 3034 19.00 

3 7653 19.00 

4 8693 19.00 

5 8958 19.00e 

Lowest 1 9368 11.00 

2 9367 11.00 

3 9366 11.00 

4 9365 11.00 

5 9364 11.00f 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure A.1. Detrended Normal Q-Q plot of Temperature_filter. 

 

 

 

 

 

 

 

 

 

 
 

 

   Figure A.2. Detrended Normal Q-Q plot of Power_filter. 

 

 

 

 



 

189 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure A.3. Detrended Normal Q-Q plot of Power_filter. 
 

 

 

 

 
 

 

 

 

 

 

 

Figure A.4. Detrended Normal Q-Q plot of Power_filter. 
 

 

 

 

 
 

 

 

 

 

 

 

 

Figure A.5. Detrended Normal Q-Q plot of size_particle. 
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AnnexBFitting Weibull distribution for observed data monitoring 
 

 

 

 

 

 

 

 

 

Figure B.1- Weibull distribution plot of vibration       Figure B.2- Weibull distribution plot of vibration Data in stage 1 

in 

stag

e 2. 

 

 

 

 

 

 

 

Figure B.3- Weibull distribution plot of power’motorFigure B.3- Weibull distribution plot of power’motordata in stage 1. 

Data in stage 2. 
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