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Abstract 

Sampling plans are statistical process control (SPC) tools used mainly in production processes. 

They are employed to control processes by monitoring the quality of produced products and 

alerting for necessary adjustments or maintenance. Sampling is used when an undesirable change 

(shift) in a process is unobservable and needs time to discover. Basically, the shift occurs when an 

assignable cause affects the process. Wrong setups, defective raw materials, degraded components 

are examples of assignable causes. The assignable cause causes a variable (or attribute) quality 

characteristic to shift from the desired state to an undesired state.  

The main concern of sampling is to observe a process shift quickly by signaling a true alarm, 

at which, maintenance is performed to restore the process to its normal operating conditions. While 

responsive maintenance is performed if a shift is detected, proactive maintenance such as age-

replacement is integrated with the design of sampling. A sampling plan is designed economically 

or economically-statistically. An economical design does not assess the system performance, 

whereas the economic-statistical design includes constraints on system performance such as the 

average outgoing quality and the effective production rate. 

The objective of this dissertation is to study sampling plans by attributes. Two studies are 

conducted in this dissertation. In the first study, a sampling model is developed for attribute 

inspection in a multistage system with multiple assignable causes that could propagate 

downstream. In the second study, an integrated model of sampling and maintenance with 

maintenance at the time of the false alarm is proposed.  

Most of the sampling plans are designed based on the occurrence of one assignable cause. 

Therefore, a sampling plan that allows two assignable causes to occur is developed in the first 

study. A multistage serial system of two unreliable machines with one assignable cause that could 



 
 

occur on each machine is assumed where the joint occurrence of assignable causes propagates the 

process's shift to a higher value. As a result, the system state at any time is described by one in-

control and three out-of-control states where the evolution from a state to another depends on the 

competencies between shifts. A stochastic methodology to model all competing scenarios is 

developed. This methodology forms a base that could be used if the number of machines and/or 

states increase.  

In the second study, an integrated model of sampling and scheduled maintenance is proposed. 

In addition to the two opportunities for maintenance at the true alarm and scheduled maintenance, 

an additional opportunity for preventive maintenance at the time of a false alarm is suggested. 

Since a false alarm could occur at any sampling time, preventive maintenance is assumed to 

increase with time. The effectiveness of the proposed model is compared to the effectiveness of 

separate models of scheduled maintenance and sampling. 

Inspired by the conducted studies, different topics of sampling and maintenance are proposed 

for future research. Two topics are suggested for integrating sampling with selective maintenance. 

The third topic is an extension of the first study where more than two shifts can occur 

simultaneously. 
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Chapter 1 : Introduction 

1. Sampling in production systems 

Products are inspected to ensure that they are good enough to proceed to the next manufacturing 

process or to be forwarded to final stock for shipping to consumers. Lots of products can be 

accepted, rejected, re-inspected, or rectified based on the result of inspection (Montgomery, 2009).  

In quality control, inspection procedures can be classified into three broad categories: no 

inspection, screening (100% inspection), and sampling. No inspection policy can be applied if 

incoming products or raw materials are shipped from a highly certified supplier or produced with 

highly reliable procedures. If a product is expensive, a process is critical, or a new machine or a 

process is introduced in the production system, screening inspection may be an option, but it may 

be carried out with high inspection costs. A common procedure of inspection is sampling, a 

moderate option to compromise between the high cost of screening and the high cost of quality 

loss of no inspection. 

With sampling, inferences about the manufacturing process are drawn. The purpose of 

sampling is not only to control the quality of products produced, but it is also employed to make 

decisions regarding production and maintenance. Measures of production such as the economic 

production quantity and throughput can be determined based on sampling. Furthermore, some 

maintenance decisions are taken according to the results of sampling. The type of maintenance, 

the degree of maintenance, and the time to perform maintenance are some examples of 

maintenance decisions.   

Sampling procedures differ according to how products are produced, inventoried, or shipped. 

Acceptance sampling is designed to inspect from a produced lot (batch). After production ends 

and products accumulate in lots, a sample is taken from a lot to determine whether a lot should be 
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accepted or rejected. In online sampling, multiple samples are taken from the production line at 

specified times. The main purpose is to determine if the process goes out-of-control or not, and 

accordingly, the suitable maintenance action is taken. 

 Basically, an online sampling scheme is built based on a control chart to monitor the 

occurrence of an assignable cause that causes a process to shift from the in-control to the out-of-

control condition. Other versions of sampling procedures are continuous sampling. The basic 

model of continuous sampling assumes that the process is always in-control (Dodge, 1943). It 

alternates between screening and fractional inspection in order to achieve a desired outgoing 

quality with a minimum inspection.  

Sampling could be performed with variable or attribute data. While sampling with variables 

monitor a variable quality characteristic such as a mean of an ingredient concentration, attributes 

sampling use counted data such as the number of defective units. Sampling with 𝑋 and 𝑅 control 

charts are examples of variable sampling, whereas sampling with 𝑛𝑝 and 𝑝 control charts are 

examples of attributes sampling. 

Throughout this dissertation, only online sampling with attributes is studied. The “sampling 

plan” term is used to refer to the setup of sampling parameters used to achieve certain objectives. 

For instance, the best parameters of a sampling plan with the 𝑋 control chart (sample size, control 

limit coefficient, and time between samplings) can be determined by minimizing a cost function.  

2. Dissertation objectives and organization 

This dissertation aims at developing new sampling plans that suit specific production systems 

designs with the adoption of different maintenance strategies. In this dissertation, two studies are 

presented in addition to different problems to be addressed for future work. 
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The first study aims at establishing a methodology of modeling multiple assignable causes in 

multistage systems. During the inspection cycle, multiple assignable causes could occur. The 

occurrence of an assignable cause causes a process to shift from a desired “in control state” to an 

undesired “out-of-control” state. The shift is characterized by an increase of the proportion of 

nonconforming units to an unacceptable level. 

Most sampling plans are built on the assumption that one assignable cause could occur. A few 

studies are conducted in the case of multiple assignable causes. However, it is assumed that only 

one of the assignable causes can occur during the inspection cycle. Thus, the joint occurrence of 

multiple assignable causes in one inspection cycle is investigated. For this purpose, a two-machine 

serial production system that produces a discrete product is assumed.  

Due to the presence of multiple assignable causes, the production system becomes a multistate 

system with one in-control state and three out-of-control states. Moreover, if one shift is not 

detected before the occurrence of another shift, a shift magnitude increases “propagates” to a 

higher value where the magnitude of the propagating shift is a function of the magnitudes of the 

shifts that occur jointly.  

A comprehensive modeling approach is constructed according to the stochastic competition 

and propagation of shifts. The sampling plan parameters are found by minimizing the long-run 

cost rate subject to constraints on the system’s availability, the average time to signal, and the 

effective production rate.  

The second study aims to develop an integrated design of sampling and maintenance with 

multiple maintenance opportunities. This design intent at taking simultaneous decisions regarding 

the time to perform the scheduled maintenance and the sampling parameters with the aim of 

minimizing the long-run cost rate of the inspection cycle. 
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 While most of the sampling procedures assume no maintenance is carried out if a false alarm 

is detected, the proposed design considers the occurrence of a false alarm as a maintenance 

opportunity. There are a few studies that assume the same concept, but with constant maintenance 

cost. Also, those studies don’t illustrate the benefit of having the additional maintenance 

opportunity at the false alarm time. 

 In contrast to those studies, time to accomplish maintenance upon a false alarm is assumed to 

increase with time. This assumption is made because the likelihood of a shift increases with time. 

The integrated approach is compared to other alternatives that consider the modeling of sampling 

and scheduled maintenance separately.  

These studies fill some gaps in the literature and provide a basement for further research. The 

problem of the joint occurrence of multiple assignable causes could be extended to systems 

composed of more than two machines and/or for more than two states for each machine. 

Additionally, some subjects of integrating sampling with selective maintenance are suggested. 

First, a single production unit is assumed. Second, a series-parallel multistate system is examined. 

For this kind of systems, literature concentrates on developing selective maintenance models to 

achieve quantitative output and ignore the quality of production. Hence, joint sampling and 

selective maintenance for such systems is presented. 

The remainder of the dissertation is organized as follows. Chapter 2 addresses the problem of 

the occurrence of multiple assignable causes during a sampling cycle in multistage systems. A 

detailed methodology of modeling competing and propagating shifts is presented. In Chapter 3, an 

integrated design of sampling and scheduled maintenance with multiple maintenance opportunities 

is proposed. Chapter 4 concludes the dissertation and proposes different topics for possible future 

work.   
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Chapter 2 : Optimal Sampling Plan for an Unreliable Multistage Production System 

Subject to Competing and Propagating Random Shifts 

Abstract 

Sampling plans play an important role in monitoring production systems and reducing costs related 

to product quality and maintenance. Most of the existing sampling plans usually focus on one 

assignable cause. However, multiple assignable causes may occur especially for a multistage 

production system, and the resulting process shift may propagate downstream. This chapter 

addresses the problem of finding the optimal sampling plan for a multistage production system 

subject to competing and propagating random quality shifts. In particular, a serial production 

system with two unreliable machines that produce a product at a fixed production rate is studied. 

It is assumed that both machines are subject to random quality shifts due to the presence of 

assignable causes and can suddenly fail with increasing failure rates. If not failed, each machine 

operates either in its in-control state or in its out-of-control (i.e., shifted) state with different 

nonconforming rates. A sampling plan is implemented at the end of the production line to 

determine whether the system has shifted or not. If a process shift is detected, a necessary 

maintenance action will be initiated. The optimal sample size, sampling interval, and acceptance 

threshold are determined by minimizing the long-run cost rate subject to the constraints on average 

time to signal a true alarm, effective production rate, and system availability. A numerical example 

is provided to illustrate the application of the proposed sampling plan, and detailed analyses on the 

effects of key parameters and system constraints are also conducted. 

Keywords: Sampling plan, multistage production systems, competing and propagating random 

shifts. 
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1. Introduction 

Quality improvement is a major concern for the success of a manufacturing enterprise. To be 

competitive, companies often adopt different procedures to improve their production processes 

and offer products with high quality. Although the advances in technology and automation enable 

companies to produce reliable products, the manufacturing environment is always subject to 

variability and random shift that affect product quality. Monitoring processes and inspecting 

products aid to take necessary actions at the right times for process adjustments when a product’s 

quality deviates away from the standards.  

Product inspection is one of process monitoring methods to determine if a process has shifted 

or not. The out-of-control state is attributed to the presence of assignable cause(s) such as tool 

wear, temperature increase, and wrong setups. Specially, an assignable cause makes a process 

variable, such as the process mean, to deviate from its target, or causes an attribute, such as the 

proportion of nonconformity, to increase. In addition to the process shift, the production system 

may fail and stop production. When a process shift or system failure is detected, maintenance 

actions are initiated. Maintenance could be perfect, imperfect, or minimal. In particular, perfect 

maintenance restores a production unit to its good-as-new condition, imperfect maintenance 

restores the unit to a condition between its good-as-new and bad-as-old states, and minimal repair 

makes the unit operational while keeping the unit in the same health condition as before. 

Regarding inspection options, screening (100% inspection), no inspection, sampling plans by 

control charts (online sampling), acceptance sampling, and continuous sampling are the most 

widely used. In practice, an inspection policy is adopted according to the type of production and a 

specific goal. For instance, acceptance sampling is used for batch (lot) production to decide 

whether a batch should be accepted or not. Such inspection procedures can be employed in both 
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single-stage and multistage systems. Specially, a multistage system is composed of multiple 

components, machines, processes, or stages required to make the final product (Shi and Zhou, 

2009). 

A sampling plan is either designed economically or economically-statistically. Economic 

designs aim at minimizing a cost function without focusing on statistical performance, while 

economic-statistical designs consider the performance of a process under some practical 

constraints. The usual performance metrics could be customer-centered such as the average 

outgoing quality (AOQ). Some measures are more producer-centered such as the average fraction 

inspected (AFI), process availability, and throughput. Other metrics, such as schedules’ delays, are 

concerning both parties. Studies on these measures can be found in Bouslah et al. (2013), Cao and 

Subramaniam (2013), and Pandey et al. (2011).  

Existing sampling plans are often developed for a single or a multistage system based on the 

occurrence of one assignable cause. For example, extensive research concentrates on using 𝑋 

control chart to monitor single stage systems in the presence of one assignable cause. In these 

systems, the assignable cause causes a quality characteristic to shift from the in-control state to the 

out-of-control state, and hence, only two states of the system are considered. Although a few 

studies consider cases with multiple assignable causes, it is assumed that only one assignable cause 

can occur during a sampling cycle, and only two states of the production system are considered.  

In this chapter, we develop an economic-statistical sampling plan for a serial production system 

with two unreliable machines by considering the occurrences of more than one assignable cause. 

The term “stage” can be used in lieu of “machine” to refer to a process or a group of machines 

(processes). The sampling plan is modeled based on the competency and downstream propagation 

of process shifts. Sampling parameters are determined by minimizing the long-run cost rate subject 
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to constraints on effective production rate, average time to signal a true alarm and system 

availability. It is assumed that sampling is performed only after the second stage. For example, in 

some systems, the synchronized handling of products from one stage to another does not allow 

any stoppage for inspection after the first stage. In other systems, products are processed 

sequentially or simultaneously by two different processes on the same machine making quality 

inspection impractical due to the machine’s complex configuration.  

Some industrial applications of such a system are as follows. In an automatic blasting and 

painting line, a fabricated steel unit is first blasted for rust removal and then fed into a painting 

chamber. Due to degradation, the disc turbines that provide blasting may still leave some rust on 

the unit’s surface that causes poor paint adhesion. On the other hand, the spray nozzles in the 

painting chamber, if clogged, could cause bad paint coverage. The unit produced is nonconforming 

if one or both of the quality issues occur. An example of two processes being performed 

automatically on one machine is the production of purlins for steel structures. Galvanized sheets 

are fed continuously into a forming machine. Punching holes and bending edges are sequentially 

or simultaneously processed to produce a purlin. Due to the complex configuration of the machine, 

any quality imperfection cannot be observed until the whole process is complete. When the 

punching tips and/or the bending rollers become worn, the purlin is defective because holes, edges, 

or both are imprecisely made. In some industries, inspection may be performed only after the final 

stage due to safety or economic reasons. For instance, small steel bars are first heated and then 

forged to produce small parts such as socket wrenches. Other examples are manufacturing of 

aluminum cans, automated bakery production, powder coating, automatic riveting for stamping 

parts, automatic assembling and wire bonding, and multi-material additive manufacturing of 

electronic devices. 
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The remainder of this chapter is organized as follows: Section 2 reviews the related literature 

and illustrates the contributions. Section 3 describes the problem and the assumptions, and 

provides the notation used throughout this chapter. A comprehensive modeling methodology is 

developed in Section 4. Section 5 provides the mathematical formulation for the optimal design of 

the proposed sampling plan. A numerical example and analyses are given in Section 6. Section 7 

concludes this chapter and recommends several directions for future research. 

2. Literature review and contribution 

2.1. Related work 

In the context of single-stage production systems, Chiu and Huang (1996) consider an economic 

model for a preventively maintained process monitored by an 𝑋 control chart. A cost function is 

minimized without considering statistical performance constraints. Cassady et al. (2000) combine 

age-replacement preventive maintenance and an 𝑋 control chart in an economic design. Linderman 

et al. (2005) propose an economic-statistical cost model considering constraints on the average run 

lengths and three maintenance scenarios. Charongrattanasakul and Pongpullponsak (2011) extend 

this work by sampling with an exponentially weighted moving average (EWMA) chart with 

warning limits along with maintenance at the time of a false alarm. Mehrafrooz and Noorossana 

(2011) consider an additional maintenance scenario due to sudden machine failures. Pandey et al. 

(2011) use an 𝑋 control chart to determine the sequence of batches produced on a single machine 

subject to scheduled preventive maintenance. It is worth pointing out that all these studies focus 

only on one assignable cause. However, this may not be realistic. 

Indeed, multiple assignable causes from different sources, such as raw materials, human errors 

and tool wear, cannot be ignored. Yu and Hou (2006) develop an economic model for an 𝑋 control 

chart with variable sampling intervals to monitor a process with multiple assignable causes. Yu et 
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al. (2010) construct an economic-statistical model with constraints on type-I and type-II errors. 

The same constraints are used by Salmasnia et al. (2017). Unlike these studies where only one 

assignable cause is permitted to occur during an inspection cycle, a case allowing the occurrences 

of multiple assignable causes during an inspection cycle is examined by Yang et al. (2010). An 𝑋 

control chart is designed, but the joint effect of two assignable causes is assumed to be the same. 

Xiang (2013) study the joint optimization of an 𝑋 control chart and preventive maintenance for a 

deteriorating production system. The system is assumed to have multiple degraded states that 

correspond to different assignable causes, and an economic cost model for maintenance, operation, 

and inspection is provided. 

Inspection procedures for multistage systems are diverse. Zantek et al. (2002) assume that the 

variation of a measurement at a stage depends on both the variation of process parameters (i.e., 

pressure, temperature, etc.) at the present stage and the variations of measurements taken at 

preceding stages. Their study aims at identifying which quality and process variables are 

responsible for the variation at the final stage. Jin and Shi (1999) and Zhou et al. (2003) propose 

engineering models for a sheet metal assembly line and an automotive engine heads machining 

line, respectively, to identify sources of variations. Xiang and Tsung (2008) study statistical 

monitoring with group EWMA control charts based on engineering models. The EWMA control 

chart is designed for a given in-control average run length to determine the out-of-control condition 

in a three-stage process where wrong fixturing causes the process to be out-of-control. Without 

process variables, Lam et al. (2005) develop an engineering model for a four-stage machining 

process where the last stage has two streams (parallel machines), and each stage or stream is 

monitored by a separate 𝑋 control chart. It is assumed that only one stage is out-of-control at any 

time and the probability that a stage is out-of-control is constant. The 𝑋 control charts are only 
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designed to alert out-of-control signals according to a desired average time to signal without 

addressing whether any adjustment on the process or any rework on defective products is carried 

out or not. 

Inspection allocation is another focus related to multistage systems. Williams and Peters (1989) 

study inspection allocation in a three-stage serial system monitored by 𝑛𝑝 control charts. Bai and 

Yun (1996) consider a serial three-stage circuit board manufacturing system with two inspection 

stations. Inspection locations and inspection level (number of components tested on a circuit 

board) are determined to minimize the expected total cost of rework, inspection, and defective 

boards delivered to customers. For the same industry, Chevalier and Wein (1997) study the optimal 

testing policy that jointly determines the specification limits and inspection locations. Moreover, 

Rau and Chu (2005) examined a serial multistage system where inspection could be on product 

variables and attributes. Azadeh et al. (2015) study a batch production system where inspection 

allocation, inspection tolerances, and full inspection or acceptance sampling are determined. Other 

studies on inspection allocation are done by Shiau (2002) and Valenzuela et al. (2004). 

The quality and quantity are the two main focuses of a multistage production system. Cao and 

Subramaniam (2013) investigate a serial multistage system where each stage is monitored by a 

continuous sampling plan (CSP). The CSP alternates between 100% and fractional inspections 

based on whether or not a consecutive number of conforming units are observed. Additional 

measures of work in process (WIP) and throughput rate are also considered. Kim and Gershwin 

(2005) study a two-machine system with one buffer using a Markov process. In their work, a 

machine is assumed to have three states: operating producing good parts, operating producing bad 

parts (quality failure state), and complete failure. The effects of quality failure, production rate, 

and buffer size on the system’s yield and effective production rate are analyzed. Kim and Gershwin 
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(2008) also analyze the performance of flow lines with quality and operational failures. Meerkov 

and Zhang (2010) investigate different cases for performance analysis of a serial production system 

with inspection stations and buffers under 100% inspection. Given the number of inspection 

stations and buffers capacities, the study shows the impact of inspection allocation on bottlenecks, 

blocked and starving machines, and effective production rate. Colledani and Tolio (2012) develop 

a Markovian model for a serial system subject to degradation. The critical state that separates the 

desired degradation states from the undesired states is determined by achieving gains in system’s 

yield and effective production rate. It is worth pointing out that engineering models are analytical 

tools for identifying sources of variation for quality improvement. Usually, a strategy with 100% 

inspection of variables is adopted. On the other hand, in most of the inspection allocation models, 

100% inspection or acceptance sampling are used with the purposes of locating inspection and 

determining a testing strategy or inspection level. For both types of models, maintenance is rarely 

studied.  

Liu et al. (2013) study a serial system consisting of two identical units monitored by an 𝑋 

control chart. The value of process shift is assumed to be a constant no matter one or both units 

are in the quality failure state, and an inspection cycle is renewed by one of four maintenance 

scenarios. The system’s performance is evaluated via economic and economic-statistical models 

with constraints on type-I and type-II errors. Zhu et al. (2016) investigate a serial four-stage 

process where attributes sampling is carried out at each stage. In their work, only quality failures 

are considered, and the sampling parameters are found by minimizing the expected total cost of 

inspection, scrap, and repair with respect to constraints on the average number of produced 

products between two false alarms. Zhong and Ma (2017) propose a joint control chart for a two-

stage dependent serial system where the first and second stages are monitored by an 𝑋 and a 
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residual control chart, respectively. Eight maintenance scenarios are investigated for cost 

minimization with constraints on the average run lengths. For more studies on part quality 

inspection in multistage production systems, readers are referred to a recent review by Rezaei-

malek et al. (2019).  

2.2. Contribution of this work 

Clearly, the effects of quality failures, machine failures and maintenance actions on the product 

quality and the effective production rate of a multistage production system are worthy of 

investigation. Although a plenty of studies have been conducted on online sampling for single-

stage production systems, only a few studies have been done on multistage systems. Specially, 

there is a lack of research on online sampling of attribute data for multistage systems.  

This study aims at developing an attribute sampling plan for a serial multistage system of two 

unreliable machines for discrete production. Different from the work of  Liu et al. (2013), this 

work considers two nonidentical machines and allows a quality shift to propagate downstream. 

Indeed, competing process shifts and downstream propagation are two forms of natural 

interactions in a multistage system. To the best of our knowledge, modeling sampling plans by 

attributes with competing shifts in a multistage system with unreliable machines have not been 

studied (Yang et al., 2010; Zhu et al., 2016) in the literature although such a study will have a wide 

variety of industry applications.  

In addition, this work develops a comprehensive economic-statistical model with closed-form 

formulations and establishes a compromise between quality and quantity performances. Unlike the 

studies by Yang et al. (2010), Liu et al. (2013) and Xiang (2013) that focus only on quality-related 

performance, we consider a constraint on system’s availability to increase production, and a 

constraint on effective production rate to increase the fraction of good products. Moreover, a 



15 
 

constraint on average time to signal is also included. This model represents a first step that can be 

extended for a production line with more than two unreliable machines, multiple assignable causes, 

and different levels of maintenance actions. 

3. Problem description 

3.1. Problem statement 

A serial production system consisting of two unreliable machines that operate continuously to 

produce discrete units of a product is considered. Each unit of the product is first processed at 

machine 1 followed by machine 2. Each machine has the proportion of nonconforming (PON) of 

𝑝 , 𝑚 ∈ {1,2} when it is in-control. Due to assignable causes, PON may increase to 𝑝  so that 

the machine enters its out-of-control state. Each machine is subject to two issues: quality shift 

when the PON increases from 𝑝  to 𝑝 , and sudden machine breakdown (failure). Failures are 

observed immediately, whereas quality shifts can be detected only by inspection.  

To inspect the finished units, an attribute sampling plan is employed at the end of the 

production line (i.e., after machine 2) to assess the performance of the production process and to 

initiate necessary maintenance actions. An inspected unit is classified as either conforming or 

nonconforming, and if a half-finished unit is nonconforming upstream (after machine 1), it remains 

nonconforming downstream. The power of detecting a process shift depends on the parameter 

setting of the sampling plan.  

Clearly, sampling may generate two kinds of errors: type I error and type II error. Type I error 

(false alarm) is generated when a process signals an alarm given that the process has not shifted 

yet. Type II error is generated when the sampling plan fails to signal a true alarm when the process 

has already shifted. Determining which machine(s) has/have shifted cannot be done unless the 

system is shut down for close inspections of the two machines. Therefore, whenever there is a 
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failure or a shift, both machines are stopped for maintenance. However, when machines are shut 

down because of a false alarm, no maintenance is carried out and production resumes.  

It is assumed that the time to shift for machine 𝑚 follows the exponential distribution with a 

rate of 𝜆 , whereas time to failure is assumed to follow the two-parameter Weibull distribution 

with an increasing failure rate. During operation, if a machine fails, minimal repair is performed, 

which makes the machine operational but does not reduce its failure rate after repair. If a shift is 

detected, both machines are restored to their good-as-new conditions with PON of 𝑝  and age 0, 

and a new inspection cycle begins. Restoration can be either corrective or preventive. Corrective 

restoration is performed on the machine that has the shift, whereas preventive restoration resets 

the age of the machine that has not shifted to zero.  

Whenever a true alarm is signaled, it is clear that at least one machine has shifted. The sampling 

plan is designed to detect competing and propagating shifts. A propagating shift occurs if one 

machine has already shifted but that shift is not detected until the other machine shifts. Hence, the 

production system is classified as a multistage multistate system. The system at any sampling time 

can be in one of four states: one in-control state, and three out-of-control states. The system’s PON 

(𝑝 ) can be represented by the set 

𝑝 = {𝑝 , 𝑝 , 𝑝 , 𝑝 }, 

where 𝑝 = 𝜙(𝑝 , 𝑝 ) is 𝑝  when the system is in the in-control state (i.e., both machines are in 

control) and 𝜙(∙,∙) is a function of machines’ PONs. 𝑝 , 𝑝 , and 𝑝  represent 𝑝  in the out-of-

control states where 𝑝 = 𝜙(𝑝 , 𝑝 ) is 𝑝  if only machine 1 has shifted, 𝑝 = 𝜙(𝑝 , 𝑝 ) is 𝑝  

if only machine 2 has shifted, and 𝑝 = 𝜙(𝑝 , 𝑝 ) is 𝑝  if the process ends with the propagating 

shift . Note that 𝑝  can evolve to either 𝑝  or 𝑝 , and 𝑝  or 𝑝  can evolve to 𝑝 . Basically, 𝑝  can 

be calculated as:  
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𝑝 = 𝜙 𝑝 , 𝑝 = 1 − (1 − 𝑝 ), (2.1) 

where 𝑓 = {0, machine 𝑚 is in-control; 1, machine 𝑚 is out-of-control}. 

To study the process with competing and propagating shifts, the sampling plan with one 

assignable cause proposed by Lorenzen and Vance (1986) is used as the baseline. The sampling 

plan is illustrated in Figure 2.1. A new inspection cycle starts with both machines being in good-

as-new conditions. Inspection continues until a true alarm is signaled. Therefore, the inspection 

cycle length is defined as the time since the beginning of sampling until the two machines are 

restored correctively and/or preventively back to their good-as-new conditions after a true alarm. 

After each "ℎ" time units (called the sampling interval), 𝑁 units are sampled and inspected. If the 

number of nonconforming units in this sample exceeds an acceptance threshold 𝑟, the two 

machines are investigated to determine if the out-of-control signal is a false alarm or a true alarm. 

All the sampled units found to be nonconforming are rejected without replacement.  

 

 Figure 2.1. Sampling plan proposed by Lorenzen and Vance (1986). 

By taking into account competing and propagating shifts, the sampling plan shown in Figure 

2.1 is modified in Section 4. The objective is to design an attribute sampling plan considering 

stochastic competing and propagating shifts. An optimization model is developed to minimize the 

long-run cost rate and to find the optimal sampling parameters. The assumptions and notation used 
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in this chapter are provided as follows. 

3.2. Assumptions 

The following assumptions are made throughout this chapter: 

 The raw materials are defect free (i.e., incoming quality is perfect). Note that if the 

incoming quality is not perfect, this effect can be folded into the first stage in-control 

nonconforming probability.   

 Quality shift and machine failure are independent. For example, in an automated painting 

line, as the ambient temperature decreases, paint becomes more viscous causing 

undesirable coat quality, but the increased viscosity of paint does not cause a complete 

machine failure. 

 Shifts on the two machines are independent, as the two machines perform different tasks 

involving different types of shifts.  

 The production rates and reliability of the two machines are not significantly different.  

 There are enough storage areas for the finished products and WIP so that the production 

will not be stopped because of lacking storage areas. 

 The system is stopped during sampling, which prevents the process with a potential quality 

shift from running during sampling. This is reasonable if the loss due producing 

nonconforming units is high. Note that the sampling interval (i.e., h) is an important 

decision variable in this study. 

 The two machines do not deteriorate or shift while being stopped.  

 Maintenance requests can only be fulfilled in sequence. In other words, a machine can be 

maintained only after the current maintenance action is complete. This is reasonable when 

only one maintenance team is involved.     
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3.3. Notation 

The notation used throughout this chapter is listed in Table 2.1. 

Table 2.1: Notation list. 

Decision variables 
ℎ Sampling interval measured in hours.  
𝑁 Sample size 
𝑟 Acceptance threshold 

Objective function 
𝐿𝑅𝐶𝑅 Long-run cost rate measured in $/hour 

Other variables, constants and indices 
𝑗 Index referring to the sample number at which an inspection cycle ends 

𝑖, 𝑘, 𝑞, 𝑤 Indices 
𝑚 Index for a machine, 𝑚 ∈ {1,2} 
𝐺 Inspection cycle operational time excluding false alarms, minimal repairs, true alarm, 

and restoration times 
𝑆  Shift of machine 𝑚, 𝑚 ∈ {1,2} 
𝑆  Propagating shift 
𝜆  Shift rate of machine 𝑚, 𝑚 ∈ {1,2} 
𝑇  Time to shift of machine 𝑚, exponentially distributed 𝑇 ~Exp(𝜆 ), 𝑚 ∈ {1,2} 
𝜏  Time of occurrence of 𝑆  since the last sampling 

PON Proportion of nonconforming 
𝑝  PON of machine 𝑚, 𝑚 ∈ {1,2}, 𝑓 = {0, machine 𝑚 is in-control; 1, machine 𝑚 is out-

of-control} 
𝑝  PON of the production system  

𝜙(∙,∙) A function that represents 𝑝  in terms of machines’ PONs 
𝑑 Number of nonconforming units found in a sample of size 𝑁 
𝛼 Type I error due to a false signal 

𝑇  Time process stays in the in-control state 

𝑇  Time the process is running with 𝑝 = 𝑝 = ∅(𝑝 , 𝑝 ) 

𝑇  Time the process is running with  𝑝 = 𝑝 = ∅(𝑝 , 𝑝 ) 

𝑇  Time the process is running with  𝑝 = 𝑝 = ∅(𝑝 , 𝑝 ) 

𝛽  Type II error when 𝑝 ∈ {𝑝 , 𝑝 , 𝑝 } 

𝐴𝑅𝐿  Average run length while the process is in-control 
𝐴𝑅𝐿  Average run length while the process is out-of-control with propagating shift 

𝑄  Number of samples taken while the process is in-control 
𝑄 (𝑄 ) Number of samples taken while the process is operating with 𝑝 = 𝑝 (𝑝 ) 

𝑉 (𝑉 ) Number of rejected units found during sampling in the in-control (out-of-control) 

𝑅𝐽𝑈 Total number of rejected units during sampling 
𝑡  Average time of inspecting one unit of the product 
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Table 2.1(Cont.) 

Other variables, constants and indices 
𝑇 (𝑇 ) Average time to search for a false (true) alarm on each machine 

𝑇  Average time to perform a minimal repair on machine 𝑚, 𝑚 ∈ {1,2} 
𝐶𝑅𝑇 (𝑃𝑅𝑇 ) Average corrective (preventive) restoration time on machine 𝑚, 𝑚 ∈ {1,2} 

𝑆  Total time of sampling in an inspection cycle 
𝑇𝑇  Total time of searching for false alarms in one inspection cycle 
𝑇𝑇  Average total time of searching for a true alarm in an inspection cycle 
𝑀𝑅𝑇 Total time of minimal repairs in an inspection cycle 
𝑅𝑇 Total restoration time in an inspection cycle 
𝐶  Average inspection cost per unit time 

𝐶 (𝐶 ) Average cost per unit time of searching for a false (true) alarm 
𝐶  Average cost per unit time of performing a minimal repair 

𝐶 (𝐶 ) Average corrective (preventive) restoration cost per unit time for machine 𝑚, 𝑚 ∈

{1,2}𝐶  Average lost production cost per one unit of the product 
𝐶  Average cost of a rejected unit found during sampling  
𝐶  Average cost of a nonconforming unit received by a consumer  
𝑆  Total cost of sampling in an inspection cycle 

𝐹𝐴  Total cost of searching for false alarms in an inspection cycle 
𝑇𝐴  Average total cost of searching for a true alarm in an inspection cycle 
𝑀𝑅  Total cost of minimal repairs in an inspection cycle 

𝑅𝐶 (𝑅𝐶 ) Average restoration cost if an inspection cycle ends with 𝑆 (𝑆 ) 

𝑅𝐶  Average restoration cost if an inspection cycle ends with 𝑆  

𝑅𝐶 Total restoration cost in an inspection cycle 
𝐿𝑃  Lost production cost in an inspection cycle 
𝐶𝑅𝐽 Total cost of rejected units during sampling 
𝐶𝑁𝐶 Total cost of nonconforming units received by customers 

𝜃 (𝛾 ) Shape (scale) factor of Weibull distribution of machine 𝑚, 𝑚 ∈ {1,2}, 𝜃 > 1 
𝑔  Production rate of stage 𝑚 
𝑔  Production rate of the system, min

 ∈{ , }
{𝑔 } 

ℎ (𝑡) Failure rate of machine 𝑚, 𝑚 ∈ {1,2} 
𝑀 (𝑡) Expected number of failures of machine 𝑚, 𝑚 ∈ {1,2} in time interval [0, 𝑡] 
𝑀𝑁  Number of minimal repairs on machine 𝑚, 𝑚 ∈ {1,2} in an inspection cycle 

𝐴𝑉 System’s availability 
𝑃𝑅  Effective production rate 

𝐴𝑇𝑆 Average time to signal 
𝐶𝑃(𝑁𝐶𝑃) Number of conforming (nonconforming) products produced in one inspection cycle 

𝑇𝑃 Total number of products produced in one inspection cycle 
𝐶𝐶 Inspection cycle total cost 
𝐶𝑇 Inspection cycle total time 
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4. Model development 

4.1. Stochastic cases 

Let 𝐺 be the time at which the inspection cycle terminates due to detecting a shift. The random 

variable 𝐺 ∈ {ℎ, 2ℎ, ⋯ ⋯ , ∞} is the operational time that does not include the stoppage times of 

inspection, false alarms, minimal repairs, true alarms, and restorations, where the sampling interval 

ℎ is the time between two successive inspections. Clearly, the shortest length of 𝐺 is ℎ. Since the 

production process has competing and propagating shifts, 𝐺 can be derived based on the following 

three cases: 

 Case I: Machine 2 shift (𝑆 ) and machine 1 shift (𝑆 ) occur in the same sampling interval, 

i.e., between (𝑖 − 1)ℎ  and 𝑖ℎ  sampling points as shown in Figure 2.2. 

 Case II: 𝑆  is not detected before the occurrence of 𝑆  given that 𝑆  occurs between 

(𝑖 − 1)ℎ  and 𝑖ℎ  sampling points, and 𝑆  occurs after the 𝑖ℎ  sampling point as shown 

in Figure 2.3. 

 Case III: 𝑆  is detected before the occurrence of 𝑆  as shown in Figure 2.4. 

It is worth pointing out that the above cases also apply when 𝑆  occurs before 𝑆 . 

4.1.1. Case I  

Let 𝑇  and 𝑇  be the times to shift of machines 1 and 2, respectively, and 𝑇  and 𝑇  follow the 

exponential distributions with rates 𝜆  and 𝜆 , respectively. Moreover, let 𝜏  and 𝜏  be the times 

of occurrence of 𝑆  and 𝑆 , respectively, since the most recent sampling. As shown in Figure 2.2, 

when 𝑇 > 𝑇 , 𝑆  is missed because it is followed by 𝑆  before taking the next sampling. Then, the 

production process starts to produce units with propagating shift at the time of occurrence of 𝑆 .  
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Figure 2.2. Case I, T > T . 

The probability that 𝑆  and 𝑆  happen in the same sampling interval given that 𝑇 > 𝑇  is  

𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ = 𝜆 𝑒

( )

𝜆 𝑒 𝑑𝑡

( )

𝑑𝑡   

= 𝑒 ( ) 𝑒 ( ) − 𝑒 +
𝜆

𝜆 + 𝜆
𝑒 ( ) − 𝑒 ( )( ) .                 

Thus, the probability that 𝐺 = 𝑗ℎ given that 𝑆  and 𝑆  happen between the (𝑖 − 1)  and 𝑖  

sampling points and 𝑇 > 𝑇  is 

𝑃 𝐺 = 𝑗ℎ, Case I = 𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ 𝛽 1 − 𝛽 , 𝑗 = 1, ⋯ , ∞ (2.2)        

where 𝛽  is the type II error resulting from that the system is producing units with 𝑝 = 𝑝 = 

𝑝 + 𝑝 − 𝑝 𝑝  according to equation 1. Let 𝑑 be the number of nonconforming units in the 

sample, then the type II error 𝛽 ∈{ , , } for 𝑝 ∈ {𝑝 , 𝑝 , 𝑝 } is given as 

𝛽 ∈{ , , } =
𝑁

𝑑
𝑝 (1 − 𝑝 ) . (2.3) 

For instance, in Case I and  𝑇 > 𝑇 , 𝐺 = 2ℎ if 0 ≤ 𝑇 ≤ 𝑇 < ℎ and a shift is not detected until 

𝑗 = 2, or ℎ ≤ 𝑇 ≤ 𝑇 < 2ℎ and a shift is detected at 𝑗 = 2. Then, the probability that 𝐺 = 2ℎ is 
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1 − 𝑒 +
𝜆

𝜆 + 𝜆
𝑒 ( ) − 1 𝛽 1 − 𝛽

+ 𝑒 𝑒 − 𝑒 +
𝜆

𝜆 + 𝜆
𝑒 ( ) − 𝑒 ( ) 1 − 𝛽 . 

The same procedure is followed for 𝑇 > 𝑇 . Hence, 𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ  is given as  

𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ = 𝜆 𝑒

( )

𝜆 𝑒 𝑑𝑡

( )

𝑑𝑡   

= 𝑒 ( ) 𝑒 ( ) − 𝑒 +
𝜆

𝜆 + 𝜆
𝑒 ( ) − 𝑒 ( )( ) ,                    

Thus, the probability that 𝐺 = 𝑗ℎ given that 𝑆  and 𝑆  happen between the (𝑖 − 1)  and 𝑖  

sampling points and 𝑇 > 𝑇  is 

𝑃 𝐺 = 𝑗ℎ, Case I = 𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ 𝛽 1 − 𝛽 , 𝑗 = 1, ⋯ , ∞ (2.4)        

4.1.2. Case II 

For this case, as shown in Figure 2.3, 𝑆  occurs at least one sample after the occurrence of 𝑆 . Due 

to the type II error, 𝑆  is always undetected until after the occurrence of 𝑆 . The minimum value 

of 𝐺 is 2ℎ as a result that 𝑆  happens before taking the first sample (i.e., before time ℎ) but is not 

detected, 𝑆  occurs afterwards, and the total shift is detected at time 2ℎ.  

Figure 2.3. Case II, T > T . 

Note that Figure 2.3 only shows that 𝑆  occurs after one sample after the occurrence of 𝑆 . 
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However, in this case, 𝑆  can occur more than one sample after 𝑆 . 

The probability that 𝐺 = 𝑗ℎ in Case II and 𝑇 > 𝑇  is  

where 𝛽  is the type II (obtained by equation 2.3) that could result if the system is producing units 

with 𝑝 = 𝑝 = 𝑝 + 𝑝 − 𝑝 𝑝 . For instance, 𝑃 𝐺 = ℎ, Case II = 0, and 𝑃 𝐺 = 2ℎ,

Case II = 1 − 𝑒 𝑒 − 𝑒 𝛽 1 − 𝛽 , and so on.  

The same procedure can be followed for 𝑇 > 𝑇 , and 𝑃(𝐺 = 𝑗ℎ, Case II ) is obtained as 

𝑃(𝐺 = 𝑗ℎ, Case II )  =  

𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 𝛽 1 − 𝛽 , 

 𝑗 = 2, … , ∞, 

(2.6) 

where 𝛽  is the type II error (obtained by equation 2.3) that could result if the system is producing 

units with  𝑝 = 𝑝 = 𝑝 + 𝑝 − 𝑝 𝑝 . 

4.1.3. Case III 

In this case, as shown in Figure 2.4, 𝑆  is always detected before the occurrence of 𝑆 , and the 

probability that 𝐺 = 𝑗ℎ given Case III and 𝑇 > 𝑇  can be expressed as 

𝑃 𝐺 = 𝑗ℎ, Case III = 𝑒 𝑒 ( ) − 𝑒 𝛽 1 − 𝛽 ,  

𝑗 = 1, ⋯ , ∞. 

(2.7) 

𝑃(𝐺 = 𝑗ℎ, Case II )  =  

𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 𝛽 1 − 𝛽 , 

 𝑗 = 2, … , ∞, 

(2.5) 
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For example, 𝑃(𝐺 = ℎ, Case III ) = 𝑒 1 − 𝑒 1 − 𝛽 , and 𝑃(𝐺 =

2ℎ, Case III ) = 𝑒 1 − 𝑒 𝛽 1 − 𝛽 + 𝑒 − 𝑒 1 − 𝛽 , and so 

on.  

 

Figure 2.4. Case III, T > T . 

Similarly, when 𝑇 > 𝑇 , 𝑃(𝐺 = 𝑗ℎ, Case III ) can be obtained as 

𝑃 𝐺 = 𝑗ℎ, Case III = 𝑒 𝑒 ( ) − 𝑒 𝛽 1 − 𝛽 ,  

𝑗 = 1, ⋯ , ∞. 

(2.8) 

4.1.4. The operational time 

According to the cases illustrated above, the expected value of the operational time 𝐸[𝐺] can be 

given as 

𝐸[𝐺] =  𝐴 + 𝐴 + 𝐴 + 𝐴 + 𝐴 + 𝐴 , (2.9) 

where 𝐴  to 𝐴  are the weighted expected values of the cycle length given all cases. 𝐴  to 𝐴  are 

obtained as follows, respectively: 

𝐴 = ∑ 𝑗ℎ ∙ 𝑃 𝐺 = 𝑗ℎ, Case I =
( ( ) )( ( ) ( ))

( )( ) ( )
,  

𝐴 = ∑ 𝑗ℎ ∙ 𝑃 𝐺 = 𝑗ℎ, Case I =
( ( ) )( ( ) ( ))

( )( ) ( )
,  
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𝐴 = ∑ 𝑗ℎ ∙ 𝑃 𝐺 = 𝑗ℎ, Case II =

 
( )( )( ( ) ( ) ( ( ) ))

( )( ( ) ) ( )
,  

𝐴 = ∑ 𝑗ℎ ∙ 𝑃 𝐺 = 𝑗ℎ, Case II =

( )( )( ( ) ( ) ( ( ) ))

( )( ( ) ) ( )
,  

𝐴 = ∑ 𝑗ℎ ∙ 𝑃(𝐺 = 𝑗ℎ, Case III ) =
( ) ( )( ( ) )

( ( ) ) ( )
,  

𝐴 = ∑ 𝑗ℎ ∙ 𝑃 𝐺 = 𝑗ℎ, Case III =
( ) ( )( ( ) )

( ( ) ) ( )
.  

4.2. Time and cost of sampling  

The average number of samples taken during the inspection cycle equals to 𝐸[𝐺] ℎ⁄ . Then, the 

expected time of sampling 𝐸[𝑆 ] can be expressed as  

𝐸[𝑆 ] =
𝑡 ∙ 𝑁 ∙ 𝐸[𝐺]

ℎ
, (2.10) 

where 𝑡  is the average time of inspecting one unit of the product. Let 𝐶  be the average cost per 

unit time of sampling, then the expected cost of sampling 𝐸[𝑆 ] is 

𝐸[𝑆 ] = 𝐶  𝐸[𝑆 ].  (2.11) 

4.3. Time and cost of false alarms  

The process is out-of-control once any of the two shifts occurs. Consequently, the time period that 

the process is in-control 𝑇  follows the exponential distribution with 𝑇 =

Min(𝑇 , 𝑇 )~Exp(𝜆 + 𝜆 ). Therefore, the expected time that the process is in-control 𝐸[𝑇 ] is 

𝐸[𝑇 ] =
1

𝜆 + 𝜆
.  

Let 𝑄  be the number of samples taken while the system is in-control. Then the expected value 

𝐸[𝑄 ] can be calculated as 
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𝐸[𝑄 ] = 𝑖 ∙ 𝑒 ( ) − 𝑒 ( )( ) =
1

𝑒( ) − 1
.  

As a result, the expected total time of false alarms 𝐸[𝑇𝑇 ] is given as 

𝐸[𝑇𝑇 ] = 2 𝑇
𝐸[𝑄 ]

𝐴𝑅𝐿
, (2.12) 

where 𝑇  is the average time to search for a false alarm on each machine , 𝐴𝑅𝐿  is the average 

run length when the process is in-control (i.e., the average number of samples taken until a false 

alarm is alerted), and 𝐸[𝑄 ] 𝐴𝑅𝐿⁄  is the average number of false alarms in one cycle. 𝐴𝑅𝐿  is 

given as (Montgomery, 2009)  

𝐴𝑅𝐿 =
1

𝛼
, 

 

where the type I error 𝛼  is reported when 𝑝 = 𝑝 = 𝑝 + 𝑝 − 𝑝 𝑝 , and it is given by 

𝛼 = 1 −
𝑁

𝑑
𝑝 (1 − 𝑝 ) . 

 

 

The direct cost of false alarms is due to the effort taken for identifying false alarms and 

inspecting machines. Let 𝐶  be the average cost per unit time of searching for a false alarm. Then, 

the expected total cost of searching for false alarms 𝐸[𝐹𝐴 ] can be simply expressed as 

𝐸[𝐹𝐴 ] = 𝐶  𝐸[𝑇𝑇 ]. (2.13) 

4.4. Time and cost of searching for a true alarm 

Let 𝐶  be the average cost per unit time of searching for a true alarm, then the average total time 

𝑇𝑇  and cost 𝑇𝐴  of searching for a true alarm are given as follows, respectively: 

𝑇𝑇 = 2 𝑇 , (2.14) 

𝑇𝐴 = 𝐶   𝑇𝑇 . (2.15) 
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4.5. Restoration time and cost 

Restoration time is the time required for machine maintenance and shift removal(s). Since 

inspection ends with a shift, at least one of the two machines needs corrective restoration. Three 

possible scenarios are described next. 

 Inspection cycle ends only with 𝑺𝟏 

For this scenario, machine 1 is correctively restored, and machine 2 is preventively restored. The 

probability that the inspection cycle ends with this scenario equals the probability that 𝑆  is 

detected before the occurrence of 𝑆 . Let 𝐶𝑅𝑇  and 𝑃𝑅𝑇  be the average corrective restoration 

time of machine 1 and the average preventive restoration time of machine 2, respectively, and 𝐶  

and 𝐶  be the average costs per unit time of corrective and preventive restorations on machines 1 

and 2, respectively. Then, the average restoration cost of this scenario 𝑅𝐶  is 

𝑅𝐶 = 𝐶  𝐶𝑅𝑇 + 𝐶  𝑃𝑅𝑇 .  

 Inspection cycle ends only with 𝑺𝟐 

In this scenario, machine 2 is correctively restored, and machine 1 is preventively restored. The 

probability that the inspection cycle ends in this scenario is the probability that 𝑆  is detected 

before the occurrence of 𝑆 . Let 𝑃𝑅𝑇  and 𝐶𝑅𝑇  be the average preventive restoration time of 

machine 1 and the average corrective restoration time of machine 2, respectively, and 𝐶  and 𝐶  

be the average costs per unit time of corrective and preventive restorations on machines 2 and 1, 

respectively.  Then, the average restoration cost of this scenario 𝑅𝐶  is 

𝑅𝐶 = 𝐶  𝑃𝑅𝑇 + 𝐶  𝐶𝑅𝑇 .  

 Inspection cycle ends with propagating shift 𝑺𝟏𝟐 

In this scenario, both machines have shifted, and corrective restorations are carried out on both 

machines. The average cost of restoration of this scenario 𝑅𝐶  is given as 
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𝑅𝐶 = 𝐶  𝐶𝑅𝑇 + 𝐶  𝐶𝑅𝑇 .  

Hence, the expected total restoration cost 𝐸[𝑅𝐶] and time 𝐸[𝑅𝑇] are given as follows, respectively: 

𝐸[𝑅𝐶] = 𝑅𝐶  𝐵 + 𝑅𝐶  𝐵 + 𝑅𝐶  𝐵, (2.16) 

𝐸[𝑅𝑇] = (𝐶𝑅𝑇 + 𝑃𝑅𝑇 ) 𝐵 + (𝑃𝑅𝑇 + 𝐶𝑅𝑇 ) 𝐵 + (𝐶𝑅𝑇 + 𝐶𝑅𝑇 ) 𝐵, (2.17) 

where 𝐵 (𝐵 ) is the probability of Case I given 𝑇 > 𝑇 (𝑇 > 𝑇 ), 𝐵 (𝐵 ) is the probability of 

Case II given 𝑇 > 𝑇 (𝑇 > 𝑇 ), and 𝐵 (𝐵 ) is the probability of Case III given 𝑇 > 𝑇 (𝑇 > 𝑇 ). 

𝐵, and 𝐵  to 𝐵  are given as follows, respectively: 

𝐵 = 𝐵 + 𝐵 + 𝐵 + 𝐵 , 

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case I  =
( ( ) )

( )( ( ) )
,  

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case I  =
( ( ) )

( )( ( ) )
,  

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case II  =
( )( )

( ( ) )( )
,  

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case II  =
( )( )

( ( ) )( )
,  

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case III  = ( ) ,  

𝐵 = ∑ 𝑃 𝐺 = 𝑗ℎ, Case III  = ( ) .  

4.6. Time and cost of minimal repairs 

Minimal repair is performed each time a machine fails unless a shift is detected. By nature, minimal 

repair does not change the failure rate of a failed machine. The failure rate ℎ (𝑡) of machine 𝑚 is 

given as 

ℎ (𝑡) =
𝜃

𝛾

𝑡

𝛾
,  

where 𝜃 > 1 and 𝛾  are the corresponding shape and scale parameters of the Weibull 
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distribution, respectively. Then, the expected number of failures (i.e., minimal repairs) 𝑀 (𝑡) of 

machine 𝑚 during the interval [0, 𝑡] can be obtained as 

𝑀 (𝑡) = ℎ (𝑢)𝑑𝑢 =
𝑡

𝛾
.  

Since machines do not age during downtime, the expected number of minimal repairs on machine 

𝑚 in each inspection cycle 𝐸[𝑀𝑁 ] can be expressed as 

Since the purpose of minimal repair is to make a failed machine operational again with minimal 

resources, the PON of the system will be the same as that right before the failure. Let 

𝑇  and 𝐶 , 𝑚 ∈ {1,2} be the average time and cost per unit time to perform a minimal repair 

on machine 𝑚, respectively. Then, the expected total time 𝐸[𝑀𝑅𝑇] and the expected total cost of 

performing minimal repairs 𝐸[𝑀𝑅 ] are given as follows, respectively:  

𝐸[𝑀𝑅𝑇] = 𝑇 𝐸[𝑀𝑁 ] + 𝑇 𝐸[𝑀𝑁 ], (2.19) 

𝐸[𝑀𝑅 ] = 𝐶 𝑇 𝐸[𝑀𝑁 ] + 𝐶 𝑇 𝐸[𝑀𝑁 ]. (2.20) 

4.7. Cost of lost production 

The time due to stoppages for searching for false alarms and true alarms, sampling, minimal 

repairs, and restoration causes loss in production. Let 𝐶  be the average cost of lost production 

per one unit of the product, then the expected cost of lost production 𝐸[𝐿𝑃 ] can be expressed as  

𝐸[𝑀𝑁 ] =
𝑗ℎ

𝛾
𝑃(𝐺 = 𝑗ℎ), (2.18) 

 

where 

𝑃(𝐺 = 𝑗ℎ) = 𝑃 𝐺 = 𝑗ℎ, Case I + 𝑃 𝐺 = 𝑗ℎ, Case I + 𝑃 𝐺 = 𝑗ℎ, Case II + 

                        𝑃 𝐺 = 𝑗ℎ, Case II  +  𝑃 𝐺 = 𝑗ℎ, Case III + 𝑃 𝐺 = 𝑗ℎ, Case III . 
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𝐸[𝐿𝑃 ] = 𝐶 𝑔 {𝐸[𝑇𝑇 ] + 𝑇𝑇 + 𝐸[𝑆 ] + 𝐸[𝑀𝑅𝑇] + 𝐸[𝑅𝑇]}, (2.21) 

where 𝑔  is the system’s production rate, and it is given by 

𝑔 = min
 ∈{ , }

{𝑔 }, 

where 𝑔  is the production rate of machine 𝑚. 

4.8. Cost of units rejected in all samples 

Any nonconforming unit found in a sample is rejected without replacement, and the production 

process at each sampling time should be in one of the following states: in-control state and three 

out-of-control states. To find the cost of rejected units in all samples, we first define the following 

quantities: 

𝑎 = 𝑑
𝑁

𝑑
𝑝 (1 − 𝑝 ) , 𝑝 ∈ {𝑝 , 𝑝 , 𝑝 , 𝑝 }, 

𝑏 = 𝑑
𝑁

𝑑
𝑝 (1 − 𝑝 ) , 𝑝 ∈ {𝑝 , 𝑝 , 𝑝 , 𝑝 }, 

where 𝑎  represents the expected number of nonconforming units found in a sample if a false or 

a true alarm is alerted, whereas 𝑏  refers to the expected number of nonconforming units found 

in a sample taken if no alarm is alerted. For instance, 𝑎 is the expected number of nonconforming 

units found in the last sample that alerts the true alarm when the process is operating with 𝑆  

,whereas 𝑏  is the expected number of nonconforming units found in a sample taken while the 

process is in control and no false alarm is alerted. 

Any sample taken in the in-control period may indicate no alarm or false alarm, and the 

expected number of samples with false alarms equals to the expected number of false alarms. Then, 

the expected number of rejected units found during inspection when the process is in-control 

𝐸[𝑉 ]  is 
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𝐸[𝑉 ] = 𝛼𝐸[𝑄 ]𝑎 + (1 − 𝛼)𝐸[𝑄 ]𝑏 .  

The expected number of rejected units found during inspection when the process is out-of-

control 𝐸[𝑉 ]  is derived as follows. 

In Case I, units are produced with 𝑝 = 𝑝  .The expected number of samples taken until a true 

alarm is alerted is 𝐴𝑅𝐿  where  𝐴𝑅𝐿  is the average run length when the process is operating 

with 𝑆 , and it is given as (Montgomery, 2009):  

𝐴𝑅𝐿 =
1

1 − 𝛽
. 

 

The average length in the out-of-control state is defined as the average number of samples taken 

since the occurrence of a shift until a true alarm is alerted.  

The last sample which alerts the true signal has 𝑟 < 𝑑 ≤ 𝑁. Hence, the expected number of 

rejected units found during sampling when the process is out-of-control given Case I  

𝐸[𝑉 |Case I] is expressed as  

𝐸[𝑉 |Case I] = 𝑎 + 𝐴𝑅𝐿 − 1 𝑏 ,  

where 𝐴𝑅𝐿 − 1 are the samples that don’t alert a true alarm if 𝑆  occurs 

In Cases II & III, at least one sample is taken with 𝑝 = 𝑝   if  𝑇 > 𝑇 , or with 𝑝 = 𝑝  if  

𝑇 > 𝑇 . Let 𝑄  and 𝑄  be the number of samples taken with 𝑝 = 𝑝 , and 𝑝 = 𝑝 , respectively. 

Then 𝐸 𝑄 Case II  and 𝐸 𝑄 Case II  are given as follows, respectively: 

𝐸 𝑄 Case II =
∑ ∑  ( ) ( ) ( )

∑ ∑  ( ) ( ) ( ) =
( )

,  

𝐸 𝑄 Case II =
∑ ∑  ( ) ( ) ( )

∑ ∑  ( ) ( ) ( ) =
( )

, 

where 𝑞 denotes the number of samples taken between the occurrence times of 𝑆  and 𝑆 . In Case 
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III, 𝑆 (𝑆 )is always detected before the occurrence of 𝑆 (𝑆 ), and hence, 𝐸 𝑄 Case III  and 

𝐸 𝑄 Case III  are given as follows, respectively: 

𝐸 𝑄 Case III =
∑ ∑  ( ) ( )

∑ ∑  ( ) ( ) =
( )

,   

𝐸 𝑄 Case III =
∑ ∑  ( ) ( )

∑ ∑  ( ) ( ) =
( )

,   

where 𝑤 represents the number of samples that process undergoes with 𝑆  until a successful 

detection. The term 𝑒 ( )  indicates that 𝑆  is detected at the sampling time (𝑖 + 𝑤 − 1)ℎ, 

at which, 𝑆  still has not occurred yet. 

Consequently, the expected number of rejected units during the inspection when the process is  

out-of-control 𝐸[𝑉 ] can be obtained as 

𝐸[𝑉 ] = 𝐸[𝑉 |Case I]{𝐵 + 𝐵 } + 𝐸 𝑄 Case II 𝑏 𝐵 + 𝐸 𝑄 Case II 𝑏 𝐵  

                  + 𝐴𝑅𝐿 − 1 𝑏 + 𝑎 {𝐵 + 𝐵 } + 𝐸 𝑄 Case III − 1 𝑏 𝐵 + 

                  𝐸 𝑄 Case III − 1 𝑏 𝐵 + 𝑎 𝐵 + 𝑎 𝐵 . 

In the above equation, 𝐸 𝑄 Case II  𝐸 𝑄 Case II  is the expected number of 

samples that don’t alert a true alarm in Case II when a process operates with 𝑆 (𝑆 ), 𝐴𝑅𝐿 − 1  

is the average number of samples that don’t alert a true alarm when the process operates with 𝑆  

in Case II, and 𝑎 represents the expected number of rejected units in the last sample that alert a 

true alarm given Case II. In Case III, 𝐸 𝑄 Case III − 1 𝐸 𝑄 Case III − 1  is the 

expected number of samples that don’t alert a true alarm when the process operates with 𝑆 (𝑆 ), 

and 𝑎 𝑎  is the average number of rejected units found in the last sample that detects 𝑆 (𝑆 ).  

Accordingly, the expected total number and cost of rejected units during inspection 𝐸[𝑉] and 

𝐸[𝐶𝑅𝐽], are given as follows, respectively: 
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𝐸[𝑉] = 𝐸[𝑉 ] + 𝐸[𝑉 ], (2.22) 

𝐸[𝐶𝑅𝐽] = 𝐶 𝐸[𝑉], (2.23) 

where 𝐶  denotes the average cost of a rejected unit. 

4.9. Cost of nonconforming units delivered to customers 

A nonconforming unit found by a customer may cost more than a nonconforming unit found during 

the inspection. Let 𝐶  be the average cost of a nonconforming unit received by a customer, then 

the expected cost of nonconforming units received by customers 𝐸[𝐶𝑁𝐶] is given by 

𝐸[𝐶𝑁𝐶] = 𝐶 𝑔 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] −  𝐸[𝑉] , (2.24) 

where 𝐸[𝑇 ], 𝐸[𝑇 ], and 𝐸[𝑇 ] are the expected values of times that the process could operate 

with 𝑆 , 𝑆 , and 𝑆 , respectively. The details of these terms are given in Section 5.  

4.10. Expected total cycle cost and time 

Based on the above calculations, the expected total cycle cost 𝐸[𝐶𝐶] and the expected total cycle 

time 𝐸[𝐶𝑇] can be obtained as follows, respectively: 

𝐸[𝐶𝐶] = 𝐸[𝑆 ] + 𝐸[𝐹𝐴 ] + 𝑇𝐴 + 𝐸[𝑅𝐶] + 𝐸[𝑀𝑅 ] + 𝐸[𝐿𝑃 ] + 𝐸[𝐶𝑅𝐽] + 𝐸[𝐶𝑁𝐶], (2.25) 

𝐸[𝐶𝑇] = 𝐸[𝐺] + 𝐸[𝑆 ] + 𝐸[𝑇𝑇 ] + 𝑇𝑇 + 𝐸[𝑅𝑇] + 𝐸[𝑀𝑅𝑇]. (2.26) 

5. Optimal design of the sampling plan  

5.1. Mathematical formulation 

The optimal sampling parameters are determined by minimizing the long-run cost rate 𝐿𝑅𝐶𝑅 =

𝐸[𝐶𝐶]/𝐸[𝐶𝑇], which is the ratio between the expected total cycle cost and the expected total cycle 

time. The mathematical formulation of the problem is given as follows.  

min
, ,

               𝐿𝑅𝐶𝑅 =
𝐸[𝐶𝐶]

𝐸[𝐶𝑇]
                                        (2.27) 
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Subject to 𝐴𝑉 ≥ 𝐴 (2.27.1) 

 𝑃𝑅 ≥ 𝑊 (2.27.2) 

 𝐴𝑇𝑆 ≤ 𝐿 (2.27.3) 

 𝑁 ≤ (ℎ − 𝑢 )𝑔 ,       𝑙 ∈ {1,4,5,6} (2.27.4) 

 𝑁 > 𝑟 (2.27.5) 

 𝑁, 𝑟 ∈  integers, 𝑟 ≥ 0, ℎ > 0. (2.27.6) 

The formulation belongs to a Mixed Integer Nonlinear Programming (MINLP) problem. Equation 

(2.27) states that 𝐿𝑅𝐶𝑅 is minimized with respect to the three decision variables 𝑁, 𝑟, and ℎ. 

Equations (2.27.1) - (2.27.3) specify three performance constraints. In equation (2.27.1), the 

system availability 𝐴𝑉 must be greater than or equal to a predefined threshold 𝐴 in order to increase 

the expected total number of units produced in one inspection cycle. However, with increased 

availability, both the expected numbers of conforming and nonconforming units increase. Since 

the latter is undesirable, equation (2.27.2) imposes another constraint on the effective production 

rate 𝑃𝑅  to ensure that the fraction of expected number of conforming units produced is above 

a certain level 𝑊. Moreover, equation (2.27.3) is used to ensure the speed of detecting process 

shifts in terms of the average time to signal 𝐴𝑇𝑆. 𝐴𝑇𝑆 is defined as the average time taken to alert 

a true alarm since the occurrence of a shift. In practice, 𝐴𝑇𝑆 could be short to avoid excess losses 

when producing products in the out-of-control state (i.e., 𝐴𝑇𝑆 should be less than or equal to a 

threshold 𝐿).  

Inspection at each sampling time is carried out from the last unit produced, and a group of 

constraints given by equation (2.27.4) is provided to ensure that units are sampled from only one 

population (i.e., with the same 𝑝 ). These constraints also guarantee that 𝑁 is always less than the 

number of units produced between two inspections. Note that because 𝑢 >  𝑢  when 𝑇 >  𝑇 , 

we have ℎ − 𝑢 <  ℎ − 𝑢 . Moreover, because 𝑢 >  𝑢  when 𝑇 >  𝑇 , we have ℎ − 𝑢 <  ℎ −

𝑢  (𝑢 to 𝑢  are defined below). Therefore, the constraints corresponding to 𝑙 ∈ {2,3} are 
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redundant. Lastly, the decision variables 𝑟 and 𝑁(> 𝑟) are integers where 𝑟 ≥ 0, and ℎ is a positive 

continuous variable as specified in equations (2.27.5) and (2.27.6), respectively. 

Since the three performance measures are essential to the operation of this system, they will 

be elaborated next. 

5.2. System’s availability 

The system’s availability 𝐴𝑉 is defined as:  

𝐴𝑉 =
𝐸[𝐺]

𝐸[𝐶𝑇]
, (2.28) 

which is the ratio between the expected operational time in a cycle and the expected total cycle 

length.  

5.3. Effective production rate 

The effective production rate 𝑃𝑅  is the fraction of the expected numbers of conforming units 

produced 𝐸[𝐶𝑃] in the inspection cycle. 𝑃𝑅  can be obtained as  

𝑃𝑅 =
𝐸[𝐶𝑃]

𝐸[𝑇𝑃]
= 1 −

𝐸[𝑁𝐶𝑃]

𝐸[𝑇𝑃]
, 

where 𝐸[𝑇𝑃] and 𝐸[𝑁𝐶𝑃] are the expected total number and the expected number of 

nonconforming units produced in one cycle, respectively. 𝐸[𝑁𝐶𝑃] is the sum of the number of 

nonconforming units produced in the in-control and the other three out-of-control states. Since 

each state has a different 𝑝 , 𝐸[𝑁𝐶𝑃] and 𝐸[𝑇𝑃] are given as follows, respectively: 

𝐸[𝑁𝐶𝑃] = 𝑔 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] , 

𝐸[𝑇𝑃] = 𝑔 𝐸[𝐺]. 

Therefore, 𝑃𝑅  is  
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𝑃𝑅 = 1 −
𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ] + 𝑝 𝐸[𝑇 ]

𝐸[𝐺]
, (2.29) 

where 𝐸[𝑇 ] = , 𝐸[𝑇 ], 𝐸[𝑇 ], and 𝐸[𝑇 ] are obtained as follows. 

5.3.1. 𝑬[𝑻𝒔𝟏
], 𝑬[𝑻𝒔𝟐

], and 𝑬[𝑻𝒔𝟏𝟐
] 

Let us first define the followings: 

𝑢 (𝑢 ) represent the conditional expectation of 𝜏  given Case I, 𝑇 > 𝑇 (𝑇 > 𝑇 ). 

𝑢 (𝑢 ) represent the conditional expectation of 𝜏  given Case I, 𝑇 > 𝑇 (𝑇 > 𝑇 ). 

𝑢 (𝑢 ) represent the conditional expectation of 𝜏 (𝜏 ) given Case II/III. 

𝐶 (𝐶 ) represent the corresponding probability of Case I, 𝑇 > 𝑇 (𝑇 > 𝑇 ), 

Case I. Given that  𝑆  and 𝑆  occur in the same sampling interval as shown in Figure 2.2, 𝑢 ,  

𝑢   are given as follows: 

𝑢 = 𝐸 𝜏 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ =
∫ ∫ ( ( ) )

( )( )

∫ ∫( )( )

  

=
( ) ( ) ( ) ( ( ))

( )( ( ))
,  

𝑢 = 𝐸 𝜏 |(𝑖 − 1)ℎ ≤𝑇 ≤ 𝑇 < 𝑖ℎ =
∫ ∫ ( ( ) )

( )( )

∫ ∫( )( )

  

=
( ( ) ) ( ( ) )

( )( ( ))
.  

Since 𝑆  occurs before 𝑆  in the same sampling interval, 𝑆  propagates to 𝑆  at the time of 𝑆  

occurrence and prior to the next sampling time. Therefore,  

𝐸 𝑇 Case I = 𝑢 − 𝑢 , 

𝐸 𝑇 Case I = 0, 

  𝐸 𝑇 Case I = ℎ𝐴𝑅𝐿 − 𝑢 , 



38 
 

If 𝑇 > 𝑇 , then 𝑢  and 𝑢  are given as follows, respectively: 

𝑢 = 𝐸 𝜏 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ =
∫ ∫ ( ( ) )

( )( )

∫ ∫( )( )

  

=
( ( ) ) ( ( ) )

( )( ( ))
,  

𝑢 = 𝐸 𝜏 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ =
∫ ∫ ( ( ) )

( )( )

∫ ∫( )( )

  

=
( ) ( ) ( ) ( ( ))

( )( ( ))
.  

Since 𝑆  occurs before 𝑆  in the same sampling interval, 𝑆  propagates to 𝑆  at the time of 𝑆  

occurrence and prior to the next sampling time. Therefore,  

𝐸 𝑇 Case I = 0, 

𝐸 𝑇 Case I = 𝑢 − 𝑢 , 

𝐸 𝑇 Case I = ℎ𝐴𝑅𝐿 − 𝑢 . 

𝐶  and 𝐶  are given as follows, respectively: 

𝐶 = 𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ =
𝜆 1 − 𝑒 + 𝜆 (𝑒( ) − 𝑒 )

(𝜆 + 𝜆 )(𝑒( ) − 1)
, 

𝐶 = 𝑃 (𝑖 − 1)ℎ ≤ 𝑇 ≤ 𝑇 < 𝑖ℎ =
𝜆 1 − 𝑒 + 𝜆 (𝑒( ) − 𝑒 )

(𝜆 + 𝜆 )(𝑒( ) − 1)
. 

Cases II & III. In Case II and Case III, 𝑆  and 𝑆  occur in different sampling intervals as 

shown in Figures 2.3 and 2.4 where 0 ≤ 𝜏 ≤ ℎ, and 0 ≤ 𝜏 ≤ ℎ. Therefore, 𝑢  and 𝑢  are given 

as follows, respectively: 

𝑢 = 𝐸 𝜏 (𝑖 − 1)ℎ ≤ 𝑇 < 𝑖ℎ =
∫ ( ( ) )

( )

∫( )

=
( )

( )
,  
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𝑢 = 𝐸 𝜏 (𝑖 − 1)ℎ ≤ 𝑇 < 𝑖ℎ =
∫ ( ( ) )

( )

∫( )

=
( )

( )
.  

Cases II. 𝐸[𝑇 ] and 𝐸[𝑇 ] depend on how many samples 𝑞, 𝑞 = {1, ⋯ , ∞} are between 𝑇  

and 𝑇 . For instance, if 𝑆  occurs three samples after the occurrence of 𝑆 , then 𝐸[𝑇 ] = 3ℎ −

𝑢 + 𝑢  given that 𝑆  is not detected until the occurrence of 𝑆 . Therefore, if 𝑇 > 𝑇 , then 

𝐶 = 𝐸 𝑇 , Case II  = 

(𝑞ℎ − 𝑢 + 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 = 

=
𝛽 (𝑒 − 1)(𝑒 − 1)(𝑒 (ℎ + 𝑢 − 𝑢 ) + 𝛽 (𝑢 − 𝑢 ))

(𝑒( ) − 1) 𝑒 − 𝛽
, 

𝐸 𝑇 Case II = 0, 

𝐸 𝑇 Case II = ℎ𝐴𝑅𝐿 − 𝑢 , 

In 𝐶 , 𝑆  occurs in the sampling interval [(𝑖 − 1)ℎ, 𝑖ℎ ] and 𝑆  occurs in the sampling interval 

[(𝑖 + 𝑞 − 1)ℎ, (𝑖 + 𝑞)ℎ ] afterwards. For instance, if 𝑆  occurs in [0, ℎ ], then 𝑆  could occur one 

sample afterwards, i.e., [ℎ, 2ℎ ], or two samples afterwards, i.e., [2ℎ, 3ℎ ], and so on. For any 𝑞, 

the sampling plan always fails to detect 𝑆  until the occurrence of 𝑆  resulting in 𝛽  type II error. 

If  𝑇 > 𝑇 , then 

𝐶 = 𝐸 𝑇 , Case II  = 

(𝑞ℎ − 𝑢 + 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 = 

=
𝛽 (𝑒 − 1)(𝑒 − 1)(𝑒 (ℎ + 𝑢 − 𝑢 ) + 𝛽 (𝑢 − 𝑢 ))

(𝑒( ) − 1) 𝑒 − 𝛽
, 

𝐸 𝑇 Case II = 0, 
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𝐸 𝑇 Case II = ℎ𝐴𝑅𝐿 − 𝑢 , 

Cases III.  

If  𝑇 > 𝑇 , then sampling plan is always able to detect 𝑆  before the occurrence of 𝑆  as shown in 

Figure 2.4. Therefore, the system is only operating with 𝑆 . For instance, 𝐸[𝑇 ] = ℎ − 𝑢 , if 𝑆  is 

immediately detected at the next sampling time and before the occurrence of 𝑆 . 𝐸[𝑇 ] = 2ℎ −

𝑢 , if 𝑆  is detected two sampling times since its occurrence and before the occurrence of 𝑆 . 

Sampling fails to detect 𝑆  at the first sampling time, but it can detect it at the second sampling 

time. The following formula generalizes this situation. 

              𝐶 = 𝐸 𝑇 , Case III   

=  (𝑤ℎ − 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) 𝛽 1 − 𝛽  

                    =
1 − 𝛽 𝑒 𝑒 − 1 𝑒 (ℎ − 𝑢 ) + 𝛽 𝑢

(𝑒( ) − 1) 𝑒 − 𝛽
, 

where 𝑤 represents the number of samples that process undergoes with 𝑆  until a success detection. 

The term 𝑒 ( )  indicates that 𝑆  is detected at the sampling time (𝑖 + 𝑤 − 1)ℎ, at which, 

𝑆  still has not occurred yet. For example, if 𝑆  occurs in the time interval [ℎ, 2ℎ ], then 𝐸 𝑇  =

ℎ − 𝑢  if 𝑆  is detected at time 2ℎ, and hence, 𝑖 = 2, 𝑤 = 1, and 

(𝑤ℎ − 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) 𝛽 1 − 𝛽  

= (ℎ − 𝑢 ) 𝑒 − 𝑒 𝑒 1 − 𝛽 . 

 𝐸 𝑇  = 2ℎ − 𝑢  if 𝑆  is detected at time 3ℎ, and hence, 𝑖 = 2, 𝑤 = 2, and 

(𝑤ℎ − 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) 𝛽 1 − 𝛽  

= (2ℎ − 𝑢 ) 𝑒 − 𝑒 𝑒 𝛽 1 − 𝛽 . 
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Note that  

𝐸 𝑇 , Case III  = 𝐸 𝑇 , Case III  = 0. 

If  𝑇 > 𝑇 , then sampling plan is always able to detect 𝑆  before the occurrence of 𝑆 . Therefore, 

the system is only operating with 𝑆 . The same derivation approach as  in 𝑇 > 𝑇  is followed, and 

hence, 

              𝐶 = 𝐸 𝑇 , Case III   

= (𝑤ℎ − 𝑢 ) 𝑒 ( ) − 𝑒 𝑒 ( ) 𝛽 1 − 𝛽  

                    =
(1 − 𝛽 )𝑒 (𝑒 − 1)(𝑒 (ℎ − 𝑢 ) + 𝛽 𝑢 )

(𝑒( ) − 1)(𝑒 − 𝛽 )
. 

Note that  

𝐸 𝑇 , Case III  = 𝐸 𝑇 , Case III  = 0. 

Based on the above calculations, 𝐸[𝑇 ], 𝐸[𝑇 ], and 𝐸[𝑇 ], are given as follows, respectively: 

𝐸[𝑇 ] = {𝑢 − 𝑢 }𝐶 + 𝐶 + 𝐶 , 

𝐸[𝑇 ] = {𝑢 − 𝑢 }𝐶 + 𝐶 + 𝐶 , 

𝐸[𝑇 ] = ℎ𝐴𝑅𝐿 − 𝑢 𝐶 + ℎ𝐴𝑅𝐿 − 𝑢 𝐶 + ℎ𝐴𝑅𝐿 − 𝑢 𝐶               

+ ℎ𝐴𝑅𝐿 − 𝑢 𝐶 , 

where 𝐶  is the probability that the time needed is ℎ𝐴𝑅𝐿 − 𝑢  to alert a true alarm since the 

occurrence of a shift given Case II, 𝑇 > 𝑇 , whereas 𝐶  is the probability that the time needed is 

ℎ𝐴𝑅𝐿 − 𝑢  to alert a true alarm since the occurrence of a shift given Case II, 𝑇 > 𝑇 . 𝐶  and 

𝐶  are given as follows, respectively: 
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𝐶 = 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽  

                   =
𝛽 𝑒 ( ) 𝑒 − 1 𝑒 − 1 𝛽 𝑒( ) − 𝑒( )

(𝑒( ) − 1) 𝑒 − 𝛽 𝛽 𝑒 − 1
, 

𝐶 = 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽  

                     =  
𝛽 𝑒 ( ) (𝑒 − 1)(𝑒 − 1)(𝛽 𝑒( ) − 𝑒( ) )

(𝑒( ) − 1)(𝑒 − 𝛽 )(𝛽 𝑒 − 1)
. 

5.4. Average time to signal 

As defined earlier, 𝐴𝑇𝑆 is the average time taken until the sampling plan is successful to alert a 

true alarm since the occurrence of a shift. However, the process could run with two shifts 

(propagating shift), and hence, the exact definition of 𝐴𝑇𝑆 will be the average time taken to alert 

a true alarm since the occurrence of the earlier shift.  

In Case I, as shown in Figure 2.2, 𝑆  or 𝑆  occurs first, and then, it propagates and becomes 

𝑆  until it is detected. The average number of samples taken to alert a true alarm is 𝐴𝑅𝐿 , and 

hence,  𝐴𝑇𝑆|Case I is 

𝐴𝑇𝑆|Case I =
ℎ𝐴𝑅𝐿 − 𝑢 , 𝑇 > 𝑇

ℎ𝐴𝑅𝐿 − 𝑢 , 𝑇 > 𝑇 .
  

As shown in Figure 2.3 (𝑇 > 𝑇  ), 𝑆  occurs 𝜏  time units since time (𝑖 − 1)ℎ. Therefore, 

𝑞ℎ − 𝑢 + 𝑢  is the elapsed time between the occurrences of 𝑆  and 𝑆 . At the time of the 

occurrence of 𝑆  , the process starts operating with 𝑆  until true detection, i.e., ℎ𝐴𝑅𝐿 − 𝑢  is 

the time needed to alert a true alarm. Summing up these times, ℎ(𝑞 + 𝐴𝑅𝐿 ) − 𝑢  is the 𝐴𝑇𝑆 

since the occurrence of 𝑆 . The same applies when 𝑇 > 𝑇 , but with ℎ 𝑞 + 𝐴𝑅𝐿 − 𝑢 , and 
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therefore, 𝐴𝑇𝑆|Case II is given as 

𝐴𝑇𝑆|Case II =
ℎ(𝑞 + 𝐴𝑅𝐿 ) − 𝑢 , 𝑇 > 𝑇  , 𝑞 = {1, ⋯ , ∞}

 ℎ 𝑞 + 𝐴𝑅𝐿 − 𝑢 , 𝑇 > 𝑇  , 𝑞 = {1, ⋯ , ∞},
  

where 𝑞 refers to the number of samples taken between the occurrence times of the two shifts.  

For Case III, as shown in Figure 2.4, there is no 𝑆 . Therefore, 𝐴𝑇𝑆|Case III is  

𝐴𝑇𝑆|Case III =
𝑤ℎ − 𝑢 , 𝑇 > 𝑇   , 𝑤 = {1, ⋯ , ∞}  

𝑤ℎ − 𝑢 , 𝑇 > 𝑇   , 𝑤 = {1, ⋯ , ∞},
  

where 𝑤 represents the number of samples that process undergoes with 𝑆 (𝑆 ) until a successful 

detection.  

Note that 𝐴𝑇𝑆 Case III  and 𝐴𝑇𝑆 Case III equal to the conditional expectations of 𝑇  and 

𝑇 , respectively, given Case III. Therefore 𝐶  and 𝐶  are used in the equation below. 

Considering all cases, 𝐴𝑇𝑆 is given by 

𝐴𝑇𝑆 = (𝐴𝑇𝑆|Case I) 𝐶 + (𝐴𝑇𝑆|Case I) 𝐶 + 𝐷 + 𝐷 + 𝐶 + 𝐶 , (2.30) 

where  

𝐷 =  𝐴𝑇𝑆 Case II 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 = 

       
( ) ( ) ( )

( ) ( )
,  

𝐷 =  𝐴𝑇𝑆 Case II 𝑒 ( ) − 𝑒 𝑒 ( ) − 𝑒 ( ) 𝛽 = 

( ) ( ) ( )

( ) ( )
.  
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6. Numerical example  

We consider an automatic shot blasting and painting system as shown in Figure 2.5. Small 

fabricated steel parts such as cleats or rails are first loaded into the conveyor (or hanged on a 

monorail) and fed into the shot blasting chamber to remove rust from the surface of each part and 

texturizes it for better paint adhesion. Afterwards, parts are moved to the painting chamber for 

coating. Both blasting and painting are performed in closed environments. In the blasting machine, 

turbine disks that blow shot blasting balls on part surface are subject to degradation. Degradation 

of those disks reduces the amount of balls that hit the surface, so that possible rust could be left on 

the part’s surface. On the other hand, the nozzles of spray guns in the painting chamber may be 

clogged so that they cannot uniformly spray paint and may dip some frozen paint particles on the 

part’s surface. Indeed, painting on a rusty surface and dipping frozen paint particles cause a rough 

paint appearance.  

 

Figure 2.5. Automatic production line of shot blasting and painting. 

At the end of the line, a sampling plan by attributes explained previously is employed for 

inspecting the painted products. The deteriorated turbine disks and spray guns are considered as 

the sources of assignable causes, but they do not cause machines to breakdown. Instead, machine 

failures can be caused by other reasons such as overheating and power outage. 
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Tables 2.2-2.4 show the parameters of shifts, failures, production rate, costs, time elements, 

and bounds of different constraints. 𝑇  is chosen to be greater than 𝑇 , as it is often easier to 

detect a shift when a process actually has shifted, whereas more time may be spent on a false alarm 

to make sure that there is no shift. 𝐶  and 𝐶  are assumed to be equal since the same tooling and 

practices are used for searching. The time and cost of maintenance increase as the degree of a 

maintenance action increases. Specially, corrective restoration may include replacing some 

components (e.g., turbine disk, spray gun, filter, nozzle) and thus require more tooling than other 

types of maintenance. However, a minimal repair needs the minimum resources to make the failed 

machine operational again. Therefore, we have 𝐶 > 𝐶 > 𝐶  and 𝐶𝑅𝑇 > 𝑃𝑅𝑇 > 𝑇 . 

Moreover, since 𝐶  may include indirect costs such as claims and a company’s goodwill, it is 

assumed that 𝐶  is greater than 𝐶  and 𝐶 . 

Table 2.2: Shift and failures parameters, and production rate. 

𝑝  𝑝  𝑝  𝑝  𝜆  𝜆  𝜃  𝜃  𝛾  𝛾  𝑔 , 𝑔  

0.03 0.10 0.05 0.10 0.01 0.03 1.5 2.0 10 10 100,100 

    hr-1 hr-1   hr hr unit/hr 

 

Table 2.3: Cost parameters. 

𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  𝐶  

100 1200 600 1200 600 150 150 200 200 3.00 3.00 4.50 

$/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr $/hr $/unit $/unit $/unit 

 

Table 2.4: Parameters of key time elements and bounds of constraints. 

𝑡  𝐶𝑅𝑇  𝑃𝑅𝑇  𝐶𝑅𝑇  𝑃𝑅𝑇  𝑇  𝑇  𝑇  𝑇  𝐿 𝐴 𝑊 

0.5 50 25 50 25 15 15 15 7.5 3.00 0.800 0.900 

min/unit min min min min min min min min hr   
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The objective function of the MINLP formulated in Section 5 is mathematically complex. 

Thus, Genetic Algorithms (GA) solver in MATLAB R2019b is used to obtain the solution. GA is 

a stochastic method that doesn’t require derivatives and is able to search for different solutions 

within one operation, and hence, the chance of finding a global optimum and avoiding of being 

trapped in the local optimum increases (Charongrattanasakul and Pongpullponsak 2011). The 

population size is set to 20 since only three decision variables are to be determined. The integer 

GA solver in MATLAB overrides settings supplied for creation, crossover, and mutation functions. 

Instead, GA uses special creation, crossover, and mutation functions (MATLAB & Simulink, 

2019). To make the search process for an optimal solution efficient, strict constraint and function 

tolerances are used. Both are set to default values, i.e., 1 × 10  and 1 × 10 , respectively. 

Moreover, UseParallel option is used to compute the fitness value and the feasibility of the 

nonlinear constraints in parallel to speed up computation. GA is designed to stop if any of the 

following criteria is met: 

 The maximum number of generations (iterations) is reached. Here, the default number is 

used (i.e., 100×number of decision variables). 

 The average change in the penalty fitness value is less than the function tolerance over 

stall generations where the maximum stall generations is 50. 

 Time limit is reached. Here, the default setting is used (i.e., infinity). 

 There is no improvement in the objective function during an interval of time called stall 

time limit. Here, the default setting of the stall time limit is used (i.e., infinity). 

The optimal solution is 𝐿𝑅𝐶𝑅∗ =$ 141.61/hr, 𝑟∗ =1, 𝑁∗ = 5, and ℎ∗ =0.428 hrs. The 

optimization problem is solved several times, and on average, the computational time is 133 



47 
 

seconds. To investigate the effects of some input parameters and the bounds of performance 

constraints on the optimal solution, the following analyses are conducted. 

6.1. Effect of 𝑪𝑭𝑨 

Table 2.5 illustrates how the change in 𝐶  affects the optimal solution. Naturally, the expected 

cost of false alarms increases as 𝐶  increases while keeping the same sampling parameters. 

𝐸[𝐹𝐴 ] increases from $219 when 𝐶 = 100 to $329 when 𝐶 = 150. However, 𝐸[𝐹𝐴 ] 

decreases to $304 when 𝐶 = 200 (optimal solution), and then increases again. The increase in 

𝐶  from 150 to 200 allows 𝑟 to increase in order to avoid frequent false alarms by accepting 

nonconforming units during inspection. With the increase in 𝑟, 𝑁 increases to reduce type I error 

𝛼 and to achieve the desired 𝑃𝑅 . Since with 𝑟 = 0 and 𝑁 = 2, 𝛼 becomes high, the only way 

to reduce the average number of false alarms is to reduce the average number of samples taken by 

having longer ℎ. This justifies why ℎ is higher for 𝐶 = 100 and 150, and why it is lower when 

𝐶 = 200, 250, and 300.  

As seen in Table 2.5, there are two setups can be used for inspection: for 𝐶 < 200, the setup 

(𝑟, 𝑁, ℎ) = (0, 2, 0.847) is appropriate, and for 𝐶 ≥ 200, the setup (1, 5, 0.428) is more 

economical. Practitioners can choose between the two setups for a given a value of 𝐶  without 

needing to solve the problem again, i.e., the two setups are usable for wide range of 𝐶 . Moreover, 

more solutions can be created from those setups by changing the decision variables slightly to get 

further reductions in 𝐿𝑅𝐶𝑅 especially if the constraints are not violated significantly. This strategy 

allows more flexibility in selecting the most appropriate solution to cope with possible 

uncertainties and specific conditions. For instance, if a product is produced for a new customer, 

management may decide to reduce ℎ slightly to 0.800 instead of 0.847 (𝐶 < 200) to increase 
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customer satisfaction by increasing inspection frequency regardless the increase in 𝐿𝑅𝐶𝑅. 

Table 2.5: Effect of 𝐶  on the optimal sampling plan compared to the current setting. 

𝐶  𝑟 𝑁 ℎ 𝐿𝑅𝐶𝑅 

100 0 2 0.847 135.16 

150 0 2 0.847 138.78 

200 1 5 0.428 141.61 

250 1 5 0.428 144.19 

300 1 5 0.428 146.86 

 

6.2. Effect of 𝑪𝑳𝑷 

The effect of 𝐶  is depicted in Table 2.6. Since the expected total cost increases with the increase 

in wasted time due to non-productive times such as sampling and false alarms, high 𝐶  values 

(𝐶 = 4,𝐶 = 5) decrease 𝑁 and increase ℎ in order to increase 𝐴𝑉. For instance, the achieved 

𝐴𝑉 when 𝐶 =5 is 83.2% whereas 𝐴𝑉 =82.0% when  𝐶 =1 A lower value of 𝑁 means less 

time will be spent at each sampling, and a higher value of ℎ means a smaller number of samples 

will be taken in each cycle, and hence, resulting in higher 𝐴𝑉. Therefore, for 𝐶 = 4 and 𝐶 = 

5, 𝐿𝑅𝐶𝑅 has a less sampling cost but a higher cost of rejected units received by customers. On the 

contrary, a low 𝐶 , such as 𝐶 = 1 and 𝐶 = 2, permits inspecting more units each time of 

sampling but with a lower ℎ.  

The higher values of 𝑁 in the first two scenarios reduce the number of false alarms by accepting 

nonconforming units during the inspection (𝑟 = 1), and the lower ℎ reduces the cost of rejected 

units received by customers. Again, as shown in Table 2.6, practitioners can choose the setup (0, 

2, 0.847) for any 𝐶 ≥ 4 and (1, 5, 0.428) for any 𝐶 < 4. Hence, given the value of 𝐶 , the 

corresponding setup can be immediately identified. 
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Table 2.6: Effect of 𝐶  on the optimal sampling plan compared to the current setting. 

𝐶  𝑟 𝑁 ℎ 𝐿𝑅𝐶𝑅 

1 1 5 0.428 105.71 

2 1 5 0.428 123.67 

3 1 5 0.428 141.61 

4 0 2 0.847 159.22 

5 0 2 0.847 176.04 

 

6.3. Effect of quality shift parameters 

The effect of quality shift parameters is illustrated in Table 2.7. With low shift rates as in the first 

two scenarios, the inspection process tends to be intensive. This results in a higher number of false 

alarms compared to scenarios with high shift rates, and hence, the costs, such as lost production 

and nonconforming units received by customers, also increase. However, the increases in those 

costs are absorbed by a longer operational time and a longer in-control period, and thus cause a 

reduction in 𝐿𝑅𝐶𝑅.  

Compared to the current optimal solution, the increases in the total operational and the in-

control times for the first scenario are 47.11% and 60.00%, respectively. In addition, 93.02% of 

the operational time is in the in-control period for the first scenario whereas it is 73.25% for the 

optimal solution and 68.24% for the last scenario. Lower shift rates increase both 𝐴𝑉 and 𝑃𝑅 . 

For instance, in the first scenario, 𝐴𝑉 and 𝑃𝑅  equal 90.00% and 92.10%, respectively. On the 

contrary, in the last scenario, 𝐴𝑉 and 𝑃𝑅  are 80.30% and 91.30%, respectively. As seen in the 

first scenario, the value of 𝐿𝑅𝐶𝑅 is 39% and 47.2% less than 𝐿𝑅𝐶𝑅 of the optimal solution and 

the last scenario, respectively.  

Since the shift rate is one of the features of a machine, the decision maker can focus on how to 
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reduce the shift rate. Redesigning or replacing machines to achieve a cost reduction could be a 

valuable option. For example, an automated painting chamber can be reinsulated with a better 

insulation material to avoid spraying products with high viscous paint in a cold environment and 

hence, avoiding undesirable coating. 

Table 2.7: Effect of shift parameters on the optimal sampling plan compared to the current 
setting. 

𝜆  𝜆  𝑟 𝑁 ℎ 𝐿𝑅𝐶𝑅 

0.0025 0.0225 0 2 0.860 86.26 

0.005 0.025 0 2 0.832 128.20 

0.01 0.03 1 5 0.428 141.61 

0.015 0.035 1 5 0.435 152.78 

0.02 0.04 1 5 0.440 163.49 

 

6.4. Influence of 𝑨𝑻𝑺 constraint L. 

Table 2.8 illustrates the influence of 𝐴𝑇𝑆 constraint L on 𝐿𝑅𝐶𝑅 and the parameters of the sampling 

plan while keeping 𝐴𝑉 ≥ 0.80 and 𝑃𝑅 ≥ 0.90. Clearly, 𝐿𝑅𝐶𝑅 significantly decreases, and 𝐴𝑉 

has a noticeable increase while 𝑃𝑅  slightly decreases with the increase in 𝐿. Consequently, 𝐿 

can be further increased to get more reduction in 𝐿𝑅𝐶𝑅. Actually, with 𝐿 = 13.95 hours, 𝐿𝑅𝐶𝑅 = 

111.24, 𝐴𝑉 = 0.900, 𝑃𝑅 = 0.900, 𝑟=1, 𝑁=3, and ℎ=0.730.  

Any increment beyond 13.95 hours violates the constraint on 𝑃𝑅 . The constraint on 𝐴𝑉 is 

violated for any value of 𝐿 that’s less than 1.75 hours, at which 𝐴𝑉 = 0.800, 𝑃𝑅  = 0.918, 

𝐿𝑅𝐶𝑅=156.53, 𝑟=0, 𝑁=2, and ℎ=0.491. To conclude, further reductions in 𝐿𝑅𝐶𝑅 can be gained if 

𝐴𝑇𝑆 is increased from 3 to 13.95 while keeping other constraints unviolated. If more interest is in 

signaling an early true alarm, 𝐴𝑇𝑆 can be further reduced down to 1.75 without affecting other 
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constraints but increasing 𝐿𝑅𝐶𝑅. 

Table 2.8: Influence of 𝐴𝑇𝑆 on the optimal sampling plan compared to the current setting. 

𝐿 𝑟 𝑁 ℎ 𝐿𝑅𝐶𝑅 𝐴𝑉 𝑃𝑅  

1.75 0 2 0.491 156.53 0.800 0.918 

2.00 0 2 0.560 151.56 0.812 0.918 

2.50 0 2 0.700 145.42 0.826 0.917 

3 1 5 0.428 141.61 0.821 0.916 

3.50 1 5 0.500 137.09 0.833 0.915 

4.00 1 4 0.367 133.71 0.840 0.914 

13.95 1 3 0.730 111.24 0.900 0.900 

 

6.5. The marginal effect of 𝒉. 

Figure 2.6 shows how the change in the sampling interval ℎ affects 𝐿𝑅𝐶𝑅 and the performance 

measures when keeping other parameters and constraints unchanged. As shown in Figure 2.6.a, 

𝐴𝑉 increases as ℎ increases from 0.214 hours to 0.856 hours, and then decreases as ℎ goes beyond 

0.856 hours. Since 𝐴𝑇𝑆 is a function of ℎ and 𝐴𝑅𝐿 , 𝐴𝑇𝑆 is an increasing linear function of ℎ 

for given values of 𝑟 and 𝑁 (constant 𝐴𝑅𝐿 ) as shown in Figure 2.6.b. Moreover, with lower 

values of ℎ, more inspection is carried out, and therefore, 𝑃𝑅  tends to be higher as illustrated 

in Figure 2.6.c.  

As ℎ increases, the number of nonconforming units produced between two inspection 

increases, and hence, 𝑃𝑅  gets lower. Lastly, 𝐿𝑅𝐶𝑅 significantly decreases when ℎ increases 

from 0.214 hours to 0.856 hours, achieves the lowest value of 130.21 at ℎ= 0.856 hours, and starts 

to increase slowly beyond ℎ = 0.856 hours as illustrated in Figure 2.6.d. With a low value of ℎ, 

𝐿𝑅𝐶𝑅 tends to be high since costs of false alarms, inspection, and lost production significantly 

increase. Overall, if more interest is in reducing 𝐿𝑅𝐶𝑅, ℎ can be increased beyond ℎ∗ = 0.428 by 
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violating some constraints. This may be satisfying if the violations are not significant. For instance, 

with ℎ= 0.856, 𝐿𝑅𝐶𝑅 is reduced to 130.21, but 𝐴𝑇𝑆 increases to 5. 

 

Figure 2.6. The marginal effect of ℎ when 𝑟 =1, 𝑁 = 5. 

6.6. The marginal effect of 𝒓 

Figure 2.7 illustrates the marginal effect of 𝑟 on 𝐿𝑅𝐶𝑅 and the performance measures. Compared 

to the optimal setting 𝑟∗ = 1, as seen in Figure 2.7.a, 𝐴𝑉 drops to 0.650 when 𝑟 = 0, and 𝐴𝑇𝑆 

decreases to 0.63 as shown in Figure 2.7.b.  As 𝑟 increases, 𝐴𝑇𝑆 increases quite fast. Moreover, a 

higher value of 𝑟 tends to accept more nonconforming units during the inspection, and hence, 

𝑃𝑅  is lower for higher 𝑟 as illustrated in Figure 2.7.c. Having 𝑟 = 0, the corresponding number 

of false alarms is about 8 and 70 times of the numbers of false alarms for 𝑟 = 1 and 𝑟 = 2, 

respectively. This drastically increases 𝐿𝑅𝐶𝑅 to 219 due to poor 𝐴𝑉 as depicted in Figure 2.7.d. 

Basically, 𝑟 is not flexible to change compared to ℎ, as changing 𝑟 causes significant violations on 
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the constraints. Therefore, attention should be paid when changing the value of 𝑟. 

 

Figure 2.7. The marginal effect of 𝑟 when ℎ = 0.428, 𝑁 = 5. 

6.7. The marginal effect of 𝑵.  

In Figure 2.8, the marginal effect of 𝑁 on 𝐿𝑅𝐶𝑅 and the corresponding performance measures are 

provided. In Figure 2.8.b, 𝐴𝑇𝑆 has a noticeable increase when 𝑁 decreases to 4 and 3, then it 

slowly decreases as 𝑁 goes to 6 and 7. Since 𝐴𝑇𝑆 increases with the increase in ℎ and 𝐴𝑅𝐿 , a 

low value of 𝑁 increases type II error, and hence, increases 𝐴𝑅𝐿 . The increase in 𝐴𝑇𝑆 is 

observable as 𝑁 decreases such as when 𝑁=3.  

As seen in Figure 2.8.c, 𝑃𝑅  increases with the increase in 𝑁. As 𝑁 increases, type II error 

decreases and a smaller number of nonconforming units are produced. The linear trends in Figures 

8.a and 8.d are expected since as 𝑁 increases, the times and costs of inspection and false alarms 
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increase causing 𝐿𝑅𝐶𝑅 to increase and 𝐴𝑉 to decrease. Like ℎ, 𝑁 is flexible to change for benefit 

to some extent. For instance, 𝐿𝑅𝐶𝑅 can be reduced to 130 if 𝐴𝑇𝑆 is violated and increased to 4.7 

when 𝑁 is reduced to 4. In addition, 𝑁 can be increased to 6 in order to reduce 𝐴𝑇𝑆 to less than 

2.5 hours resulting in a slight decrease in 𝐴𝑉 but an increase in 𝐿𝑅𝐶𝑅 ≈ 150. 

 

Figure 2.8. The marginal effect of 𝑁 when ℎ = 0.428, 𝑟 = 1. 

7. Conclusion and future work 

Most of online sampling studies investigating multiple assignable causes are conducted on 

single-stage system. A few studies consider the multiplicity of assignable causes in multistage 

systems. However, those studies assume identical stages, 𝑋 control chart, same shift level, 

economic model, no failures, or no quality related costs. This chapter presents a sampling plan for 

attributes for a serial production system consisting of two unreliable machines where each machine 
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is subject to sudden failure and shift in quality.  

A comprehensive economic-statistical model is developed to investigate the joint effect of 

different shifts by considering the stochastic competency and propagation of the shifts during 

manufacturing. The developed model generalizes all previous works and compromises between 

the quality and the quantity performances. The proposed sampling plan minimizes the long-run 

cost rate subject to constraints on system availability, effective production rate, and average time 

to signal. A thorough analysis is conducted on some input parameters, the constraint on average 

time to signal, and the marginal effects of decision variables.  

Different managerial insights are provided. Specially, investigating the effects of process 

parameters, such as shift rates, helps management take long-term decisions (e.g., system overhaul 

and replacement). Moreover, the analysis shows that when some decision variables are flexible to 

change, some adjustments can be made to emphasize specific needs.  

There are some situations where the assumptions given in Section 3 do not hold. First, if the 

production rates and reliability of the two machines are significantly different and there are limited 

areas for storing WIP, the faster and the more reliable machine may have to be stopped to reduce 

WIP and reducing the related inventory costs. Then, issues like starving and blocking arise. As a 

result, the developed model in this work is unsuitable, and a new model must be developed to 

include additional decisions about buffer size and inventory control. Second, if the two machines 

are dependent (i.e., a failure or a shift of one machine affects the other), a more complex model 

and different maintenance strategies are needed. Third, to avoid producing more nonconforming 

units, we assume the system will be preventively stopped during sampling. This is worthwhile if 

the sampling interval is long (the chance for the system to have a shift is high) and measuring the 

sampled units takes a while. If the production is allowed to continue during sampling, a delay time 
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due to searching for a true alarm must be added to the average time to signal, and an additional 

cost due to potentially producing more nonconforming units must be considered. 

 Beyond these, this work can be extended in other directions. In particular, a multistage system 

with more than two machines can be considered. Moreover, more than two states of product quality 

and multiple deterioration states of each machine can be considered. Clearly, the number of system 

states exponentially increases as the number of machines and/or the number of states of each 

machine get bigger. For such a complex situation, a simulation-based optimization approach may 

be utilized. Finally, other system configurations, such as a series-parallel system and parallel-series 

system, can be studied to deal with cases involving multiple identical machines that perform the 

same actions during production. 
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Chapter 3 : Integrated Decision Making for Attributes Sampling and Proactive 

Maintenance in a Discrete Manufacturing System 

Abstract 

An integrated optimal design of attributes sampling and scheduled maintenance for a discrete 

manufacturing system is proposed in this chapter. It is assumed that the failure of a critical 

component causes the process to shift, and the time to failure follows the Weibull distribution with 

an increasing failure rate. The developed model for integrated decision making is focused on online 

sampling with the binomial and truncated negative binomial distributions. Since the likelihood of 

the process to have a shift increases with time, multiple maintenance opportunities are offered to 

assist a manager in making a timely and economical maintenance decision based on product 

inspection results. In addition to performing scheduled maintenance and unscheduled corrective 

maintenance at the time of a true alarm, an additional maintenance opportunity when a false alarm 

occurs is also considered. The optimal scheduled maintenance time and sampling parameters are 

determined by minimizing the long-run cost rate. A numerical example is provided to illustrate the 

proposed integrated maintenance and attributes sampling plan. The results show that the integrated 

approach outperforms the alternatives that consider different models separately. More importantly, 

showing the benefit of doing maintenance upon a false alarm provides a manager with a new idea 

in managing a deteriorating manufacturing system. 

Keywords: Integrated design of sampling and maintenance, attributes sampling, truncated 

negative binomial distribution, multiple maintenance opportunities. 
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1. Introduction 

The performance of a production process can be assessed by its ability to deliver products with 

acceptable quality. To improve quality, companies continuously invest in labor and new 

technologies. However, such investments increase the costs of operations. Hence, the proper 

understanding of the interactions between operations is crucial to avoid additional costs.  

Maintenance and quality are two key operational areas that have been extensively studied. 

Quality of products basically depends on the condition of the manufacturing system on which 

products are produced. It is practical to control quality through planning for maintenance where 

maintenance can be scheduled periodically as a proactive procedure. Also, a manufacturing system 

can be monitored by Statistical Process Control (SPC) tools. These tools such as sampling are 

widely used to control manufacturing processes by providing proper information for immediate 

maintenance if processes are adversely affected. 

Sampling is an inspection procedure that compromises between the high cost of 100% 

inspection and the high cost of quality loss if no inspection is carried out. It aims at ensuring the 

conformity of products and monitoring processes for unusual failures. A sampling plan refers to 

the setup of sampling parameters chosen to achieve a certain objective. For instance, sample size, 

control limit coefficient, and time between two samplings for inspection with 𝑋 control chart are 

elected by minimizing a cost function. 

A Sampling plan is mainly used to monitor a production system when a failure in a process is 

unobservable. This type of failure is called a shift, and generally, it doesn’t cause the system to 

stop suddenly. Instead, production continues with a shift until it is detected by sampling. Process 

shifts have different causes and forms. For example, degradation of a machine could increase the 

percentage of nonconforming units produced, whereas a wrong setup could cause the average 
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concentration of an ingredient of a drink to increase above a desired level. Any sampling plan is 

designed in such a way an alarm is alerted when a predefined inspection criterion is not met. If a 

shift is confirmed, the cause of the shift is eliminated by maintenance interventions. Maintenance 

actions are versatile form minor adjustments to overhauls where major repairs that may include 

replacing failed or degraded components are carried out with considerable time and cost. 

Sampling and maintenance are designed separately in many studies. In sampling models, 

maintenance is performed only if a shift in a process is detected, and no scheduled (planned) 

maintenance is carried out. Some examples are the models developed by Li et al. (2016) and Yeong 

et al. (2013). On the other hand, studies such as Samrout et al. (2009) and Moghaddam and Usher 

(2010) consider only scheduled maintenance without sampling. 

 Considering only scheduled maintenance, the process may operate with a shift for a 

considerable duration before the time of maintenance is reached whereas, in a sampling model, the 

type II error could delay shift detection. Furthermore, preventive maintenance can be carried out 

at the scheduled time with less time and cost before a process undergoes significant degradation. 

Therefore, integrating sampling and scheduled maintenance in one model could be economically 

beneficial since two maintenance opportunities are provided. Integrated (joint) modeling of 

sampling and maintenance can be found in studies conducted by Yeung et al. (2008) and Zhong 

and Ma (2017).  

In integrated models, maintenance is carried out at a scheduled time called maintenance 

interval or at the time the sampling plan detects a shift, whichever occurs first. The decisions about 

how long the maintenance interval is and what are the best sampling parameters are taken 

simultaneously. It has been shown in some studies that the integrated models ordinarily outperform 

the standalone models of sampling and maintenance.  
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Basically, in an integrated model, there are two maintenance opportunities: the scheduled 

maintenance, and maintenance at the time of shift detection (true alarm). A few studies consider 

the time at which a false alarm is alerted as another maintenance opportunity. All those studies 

assume that, at this opportunity, the maintenance time is the same regardless of at what time the 

false alarm is signaled. Furthermore, there are no explanations about how it is beneficial to perform 

maintenance at the time of the false alarm.  

The objective of this chapter is to develop an integrated model of maintenance and sampling 

by attributes in which multiple maintenance opportunities are offered and the time of maintenance 

at the false alarm opportunity increases with time. The performance of the integrated model is 

compared to the performance of the separate models of maintenance and sampling. Three 

economic models are developed, and the long-run cost rate of each model is minimized. 

The remainder of this chapter is organized as follows. Section 2 reviews the literature and 

illustrates the contributions of this study. Section 3 describes the problem and provides the 

assumptions and notation used throughout this chapter. In Section 4, the integrated and separate 

models of sampling and maintenance are developed. Section 5 shows the experimental work and 

sensitivity analyses. Last, Section 6 concludes this study and recommends future work. 

2. Literature review and contribution 

2.1. Related works 

Sampling models for production systems are versatile. A sampling procedure is designed to 

suit the type of production and serve a certain purpose. Acceptance sampling is used in lot (batch) 

production in order to decide on accepting or rejecting a produced lot. Some studies on acceptance 

sampling are Kaya (2009) and Duarte and Saraiva (2008). Continuous sampling (CS) is another 

sampling procedure that is first developed by Dodge (1943). Basically, a CS model assumes that 
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the process is always in control, and it alternates between 100% and fractional inspections in order 

to achieve a desired outgoing quality with a minimum inspection. The most common sampling 

procedure is the online sampling, i.e., sampling that uses control charts to monitor production 

processes and alert for maintenance if unusual failures in a process are detected. 

Duncan (1956) designs a sampling plan of 𝑋 control chart that maximizes an income function. 

Lorenzen and Vance (1986) generalize Duncan’s model for various control charts. Sampling by 

the exponentially weighted moving average (EWMA) chart with a quality loss function is studied 

by Serel (2009). All these studies propose economic models, i.e., no constraints are considered. 

Saniga (1989) introduces an economic-statistical model with constraints on type I error, type II 

error, and the average time to signal for sampling design with 𝑋 and 𝑅 control charts. Yeong et al. 

(2013) propose economic and economic-statistical designs with constraints on the average run 

lengths (ARLs) for the synthetic 𝑋 control chart under different quality loss functions. Safaei et al. 

(2015) study the uncertainty of process parameters in the design of sampling with 𝑋 control chart. 

More studies on sampling designs are Rahim (1993), Lee and Rahim (2001), Ben-Daya and 

Duffuaa (2003), Christopher et al. (2010), and Seif et al. (2015). 

Models for scheduled maintenance have also been extensively developed. Barlow and Hunter 

(1960) develop a periodic replacement model for a system that is minimally repaired if a failure 

occurs during the maintenance period. Das and Sarkar (1999) propose a preventive maintenance 

model for a production system with (S,s) inventory policy. A deteriorating system that is 

preventively repaired if reliability reaches a threshold and replaced after a successive number of 

preventive maintenance times is investigated by Liao et al. (2010). Lin and Huang (2010) suggest 

non-periodic scheduled preventive maintenance for a deteriorated system. Huynh et al. (2012) 

construct an age-based maintenance model for a system subject to continuous degradation and 
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shock failures. Zong et al. (2013) determine the optimal replacement policy for a deteriorating 

system subject to shocks and increasing repair times. Further studies on scheduled maintenance 

are El-Ferik and Ben-Daya (2006), Lee et al. (2006), and Mujahid and Rahim (2010). 

In the context of integrated models, Cassady et al. (2000) design an integrative model of 𝑋 

control chart and age-replacement preventive maintenance. The process shift is assumed to be 

attributed to a component’s failure where time to failure follows the Weibull distribution with an 

increasing failure rate. Linderman et al. (2005) propose three maintenance scenarios by which the 

process is renewed. The process shift follows the Weibull distribution, and a cost function is 

constructed with constraints on ARL(s). Another model for the multivariate exponentially 

weighted moving average (MEWMA) control chart is developed by Ardakan et al. (2016). Rasay 

et al. (2018) study Chi-square sampling in a two-stage dependent process. Eight maintenance 

scenarios are developed based on the states of the two processes.  

Rahim and Ben-Daya (1998) design an integrated plan with variable sampling intervals to 

determine the economic production quantity (EPQ), maintenance interval, and the 𝑋 control chart 

parameters. The same procedure is assumed by Ben-Daya and Rahim (2000). Imperfect preventive 

maintenance is carried out at each sampling time to reduce the shift rate by an amount proportional 

to the level of maintenance performed. Pandey et al. (2012) consider a system monitored by 𝑋 

control chart and subject to complete failures and quality shifts. Imperfect preventive maintenance 

is performed at a scheduled time, whereas minimal repair is carried out to restore the system when 

a failure occurs, or a shift is detected. The same design procedure is followed by Shrivastava et al. 

(2016) for the joint modeling of the cumulative sum (CUSUM) control chart and preventive 

maintenance. Liu et al. (2017) assume that imperfect preventive maintenance is performed each 

time the 𝑋 control chart alerts for maintenance, and the system is replaced after a specified number 
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of imperfect preventive maintenance or after a complete failure.  

Zhou and Zhu (2008) add a new maintenance scenario to the scenarios developed by 

Linderman et al. (2005). In their model, maintenance is carried out when a false alarm is alerted. 

This work is extended by Charongrattanasakul and Pongpullponsak (2011) for the integrated 

design of the EWMA control chart. Six maintenance scenarios are built due to considering warning 

zones and maintenance at the time of the false alarm. False alarm maintenance is also assumed by 

Mehrafrooz and Noorossana (2011). Six maintenance scenarios that consider complete failure are 

developed. The Shewhart individual-residual control chart is used to monitor a system of two 

stages (Zhong and Ma, 2017). Considering maintenance at the time of false alarm and all states of 

the two stages, eight maintenance scenarios are developed.  

A deteriorating production system with multiple out-of-control states and monitored by 𝑋 

control chart is studied by Xiang (2013). For this system, imperfect preventive maintenance is 

carried out when a true alarm is alerted or at a scheduled time, whereas corrective maintenance is 

performed when a complete failure occurs. Multiple out-of-control states are also assumed by 

Tagaras (1988). Yin et al. (2015) present the concept of delayed monitoring. It assumed that 

inspection at the beginning of the operation can be delayed for avoiding unnecessary inspection 

costs since the process is highly likely to be in control and less prone to breakdowns. Both quality 

shift and equipment failure are assumed to be independent stochastic processes that follow Weibull 

distributions with increasing failure rates. More literature on integrated sampling and maintenance 

plans can be found in Panagiotidou and Tagaras (2007) and Radhoui et al. (2009).  

As reviewed above, different versions and subjects of the integrated models are presented. 

While most of the models are constructed based on 𝑋 control chart, a few studies investigate other 

charts such as Chi-square and EWMA. Further, some models consider issues such as multiple out-
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of-control states, complete failures, delayed monitoring, imperfect maintenance, false alarm 

maintenance, and variable sampling intervals. Such issues increase the number of scenarios of 

renewing an inspection (or production) cycle.  

2.2. Contribution of this work 

A common assumption in most of existing models is that no maintenance is performed upon a 

false alarm. This assumption is reasonable if the time to shift follows the exponential distribution 

(i.e., with a constant failure rate). However, when the time to shift has an increasing failure rate, 

only a few studies allow performing maintenance upon a false alarm, and these studies always 

assume a constant maintenance time and cost regardless of at what time a false alarm is alerted.  

This chapter focuses on three main issues that have not been well addressed in the intergrated 

models. First, assuming a constant maintenance time when a false alarm is alerted may not be 

practical. Since a false alarm may happen earlier in an inspection cycle, the likelihood of a shift is 

small, and hence, maintenance may be unnecessary. Instead, relating the maintenance time to the 

likelihood of the occurrence of a shift is more practical and economical. In other words, more 

maintenance time may be spent if the likelihood of shift is higher, and less time may be spent if 

the likelihood of shift is lower. Second, the benefit of taking the maintenance opportunity on a 

false alarm is not clarified in previous studies. In this chapter, a detailed analysis is conducted to 

show the value of this opportunity and the merit of having multiple maintenance opportunities in 

the integrated model. This is illustrated by comparing the integrated model with the individual 

models for sampling and scheduled maintenance in terms of their performance. Third, integrated 

modeling of maintenance and sampling by attributes such as sampling with np control charts has 

not or rarely been investigated.  

Another important technical contribution is on sampling. Since an inspection cycle may end 
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with a true alarm, false alarm, or scheduled maintenance, sampling is carried out according to a 

combination of binomial and truncated negative binomial distributions. It is worth pointing out 

that inspections based on the negative binomial distribution is rarely studied. Although  Huang, 

Lo, and Ho (2008) and Huang, Lin, and Ho (2013) develop inspection procedures based on the 

negative binomial distribution, their procedures involve approximations and are used for 

acceptance sampling, not online sampling, as investigated here. 

3. Problem description 

3.1. Problem statement 

Consider a production process that operates continuously and produces discrete units of one 

product. The production process begins in the in-control state and produces the product with a 

proportion of nonconforming (PON) equals to 𝑝 . Due to usage and aging, the process may start 

producing products with an undesirable PON equals to 𝑝  (𝑝 > 𝑝 ), at which, the process shifts 

to the out-of-control state. Unlike a sudden breakdown which is noticed immediately, the shift in 

the process is unobservable. Therefore, a sampling plan by attributes is used for inspecting 

products and detecting the shift in the process. 

 It is assumed that the process’s shift is related to the failure of a critical component in the 

production unit. Such an assumption can be found in Cassady et al. (2000). It is supposed that the 

failure of the critical component doesn’t cause the production unit to break down. Instead, it only 

causes PON to increase from 𝑝  to 𝑝 . Since the chance of the shift’s occurrence increases with 

the increase of the production unit usage, it is assumed that the time to shift follows the two-

parameter Weibull distribution with an increasing failure rate. 

The proposed integrated sampling and maintenance plan is shown in Figure 3.1. At each time 

of sampling, one unit is inspected to see if it is conforming or nonconforming. The process is 
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assumed to keep operating at the time of inspection, and if an inspected unit is nonconforming, it 

is rejected without replacement. The time between two inspections ℎ is called the sampling 

interval. Sampling continues until the number of nonconforming units found during the inspection 

𝑋 exceeds a predefined acceptance number 𝑟 by one unit or until 𝑛 units are inspected, whichever 

occurs first. Therefore, the shortest inspection cycle length is (𝑟 + 1)ℎ due to 𝑟 + 1 consecutive 

nonconforming units are found since the beginning of the inspection, whereas the longest length 

is 𝑡 = 𝑛ℎ, at which, the scheduled maintenance is performed. 

 

Figure 3.1. The proposed integrated sampling and maintenance plan. 

Whenever 𝑋 = 𝑟 + 1, an alarm is signaled, and the process is stopped for investigation. The 

outcome of the investigation is either a false alarm or a true alarm. With a false alarm, the process 

is still in control, whereas, with true alarm, the process is out-of-control. For both alarms, the 

production process is halted for maintenance. If the production process continues without any 

signal (i.e., 𝑋 < 𝑟 + 1) for 𝑛 inspections, the production process is shut down for the scheduled 

maintenance. Since maintenance is scheduled at time 𝑡  if no prior signal is alerted, it may not be 

necessary to sampling at time 𝑡 . However, in this study, we assume that inspection is carried out 

at time 𝑡  to eliminate the inspected unit if it is found nonconforming. This is reasonable especially 
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if the inspection cost and time are minimal and the aftersales costs such as warranty and claims 

are significant.  

Maintenance could be preventive or corrective. Preventive maintenance is performed if a false 

alarm is alerted or if the scheduled maintenance time 𝑡  is reached with no shift. Since the failure 

rate is increasing, the time spent for preventive maintenance at the time of the false alarm is 

assumed to increase with the increase of the likelihood of shift occurrence. On the other hand, the 

scheduled preventive maintenance is performed with constant time at time 𝑡 . Regardless of where 

the false alarm occurs, the false alarm maintenance time is always assumed to be less than the 

scheduled preventive maintenance time. If a shift is observed, either with a true alarm or at time 

𝑡 , corrective maintenance is carried out to replace the critical component. Any maintenance action 

retrieves the process to the in-control state, and by the completion of maintenance, the inspection 

cycle ends, and a new cycle begins with PON = 𝑝 . Figure 3.2 illustrates how the integrated 

sampling and maintenance plan works. 

Sampling 

Number of 
nonconfor
ming units 

= r+1?

Stop and 
check the 
process

Process 
shifts?

Perform 
preventive 

maintenance

Perform 
corrective 

maintenance

YES

Number of 
inspected 
units=n?

NO

Start new 
inspection 

cycle

YES

NO

Returns process to the in-control state

NO YES

 

Figure 3.2. Decision flowchart of the integrated plan 

As illustrated in Figures 3.1 and 3.2, the integrated design of attribute sampling and scheduled 
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maintenance offers different maintenance opportunities. The decision variables 𝑟, 𝑛, and ℎ are 

determined by minimizing the long-run cost rate (𝐿𝑅𝐶𝑅). The assumptions about system operation 

and the notation used in this paper are provided next. 

3.2. Assumptions 

The following assumptions are made throughout this chapter: 

 A failure of a critical component in the production unit causes quality to shift. A 

“production unit” refers to a machine or a production line. It is common that some 

components fail (or degrade) more frequently than others. For instance, in an automatic 

painting process, spraying nozzles clog by time causing an unacceptable coat applied to 

products. 

 Time to shift (failure) follows the two-parameter Weibull distribution with an increasing 

failure rate. 

 Production continues at the time of sampling. This assumption can be made to get gains in 

production especially if the production rate is high, the shift rate is low, or PON is small.  

 A nonconforming inspected product is rejected without replacement. 

 When an alarm is alerted, the production unit is stopped since close investigation is needed. 

Also, maintenance cannot be performed while a production unit is operating. 

 The raw materials are defect free (i.e., incoming quality is perfect). Note that if the 

incoming quality is not perfect, this effect can be folded into the in-control nonconforming 

probability.   

 The production unit doesn’t deteriorate while being stopped. 

 There is enough storage area for the finished products so that the production will not be 

stopped because of lacking storage areas. 
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3.3. Notation 

The notation that is used throughout this chapter is shown in Table 3.1. 

Table 3.1: Notation list 

Decision variables 

ℎ Sampling interval measured in hours, a decision variable, ℎ > 0.  
𝑛 Number of samples until the scheduled maintenance, a decision variable, 𝑛 > 𝑟. 
𝑟 Acceptance number, a decision variable, 𝑟 ≥ 0. 
𝑚 Time until scheduled maintenance in the maintenance policy, a decision 

variable, 𝑚 > 0. 
Objective functions 

𝐿𝑅𝐶𝑅, 𝐿𝑅𝐶𝑅 ,
 𝐿𝑅𝐶𝑅  

Long-run cost rate of the integrated, sampling, and maintenance policies, 
respectively. 𝐿𝑅𝐶𝑅 is measured by $/hr. 

Other variables, constants and indices 

𝑃𝑂𝑁 Proportion of nonconforming:𝑃𝑂𝑁 = 𝑝  in the in-control state, 𝑃𝑂𝑁 = 𝑝  in the 
in the out-of-control state. 

𝑛 , 𝑛  Number of samples taken with 𝑝 and 𝑝 , respectively, given no signal is alerted, 
𝑛 + 𝑛 = 𝑛. 

𝑋 Number of nonconforming units found during inspection, 𝑋 ∈ {0, ⋯ , 𝑟}. 

𝑋 , 𝑋  Number of nonconforming units found in 𝑛 and 𝑛 , respectively. 𝑋 + 𝑋 = 𝑋. 

𝑌 Total number of inspected units in an inspection cycle. 

𝑗 Index refers to the sample’s number. 

𝑖 Number of the conforming inspected units in the inspection cycle. 

𝑡  Time at which a signal is alerted, 𝑡 = (𝑟 + 1 + 𝑖)ℎ. 

𝑘 , 𝑘  Number of samples taken with 𝑝  and 𝑝 , respectively, given a signal is alerted and. 
inspection  ends before or right upon 𝑡 , 𝑘 = 𝑗 − 1, 𝑘 = 𝑟 + 2 + 𝑖 − 𝑗,𝑘 +
𝑘 = 𝑘 = 𝑟 + 1 + 𝑖.       
 𝑘  𝑘 = 𝑘 − 1. 

𝑄  A set that represents the possible values of 𝛿: 𝑄 = 1, 𝑥, 𝐸 𝑉 Ω , 𝛿 ∈ 𝑄 . 

𝑄  A set that represents the possible values of 𝜋:  

𝑄 = 1, 𝑡 , 𝐸 𝑉 Ω , 𝐸 𝑉 Ω
,

, 𝐸 𝑉 Ω , 𝜋 ∈ 𝑄 . 

𝜇 Production rate measured in units per hour. 
𝛽, 𝜂 Shape and scale factors of the Weibull distribution, 𝜂 measured in hours. 

𝑐 (𝑐 ) Average cost of inspecting (rejecting) one unit of a product, measured in $/unit. 

𝑐  Average cost of a nonconforming uninspected unit, measured in $/unit. 

𝑐  Average cost per each unit unproduced, measured in $/unit. 

𝑐 (𝑐 ) Average cost per hour ($/hr) of performing preventive (corrective) maintenance 

𝑐  Average cost per hour ($/hr) for of searching a true or false alarm 
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Table 3.1 (Cont.)  

Other variables, constants and indices 

𝐶  Average cost of corrective maintenance  

𝑐  Average cost of a new component 

𝑇 (𝑇 ) Average time in hours to conclude that there is a shift (no shift) 

𝑇  Average time to perform scheduled preventive maintenance, measured in hours 

𝑡  Fixed maintenance time in hours 

𝑡 , , 𝑡 ,  Time of preventive maintenance at the false alarm opportunity in the integrated and 
sampling policies, respectively. 

𝑡  Average time in hours of performing corrective maintenance 

𝑀𝑇, 𝑀𝑇 , 𝑀𝑇  Total maintenance time in the inspection cycle of the integrated, sampling, and 
maintenance policies, respectively. 

𝑀𝐶, 𝑀𝐶 , 𝑀𝐶  Total maintenance cost in the inspection cycle of the integrated, sampling, and 
maintenance policies, respectively. 

𝑉, 𝑉 , 𝑉  Total number of uninspected units that found nonconforming in the inspection 
cycle of the integrated, sampling, and maintenance policies, respectively 

𝐶𝑈𝑁, 𝐶𝑈𝑁 , 𝐶𝑈𝑁  Total number of uninspected nonconforming units produced in the inspection cycle 
of the integrated, sampling, and maintenance policies, respectively. 

𝑆𝐶, 𝑆𝐶  Sampling cost of the integrated and sampling policies, respectively 

𝑅𝐶, 𝑅𝐶  Rejection cost of the integrated and sampling policies, respectively 

𝐿𝑃𝐶, 𝐿𝑃𝐶 , 𝐿𝑃𝐶  Lost production cost in the integrated, sampling, and maintenance policies, 
respectively 

𝐶𝐿, 𝐶𝐿 , 𝐶𝐿  Inspection cycle length in hours of the integrated, sampling, and maintenance 
policies, respectively. 

𝐶𝐶, 𝐶𝐶 , 𝐶𝐶  Inspection cycle total cost of the integrated, sampling, and maintenance policies, 
respectively. 

𝑇  Time to shift, i.e., time that process stays in control  

𝑇 ,
  Time to shift given a shift occurs in time interval [(𝑗 − 1)ℎ, 𝑗ℎ] 

𝑇 ,
  Time to shift given a shift occurs in time interval [(𝑟 + 𝑖)ℎ, (𝑟 + 1 + 𝑖)ℎ]  

 𝜏 ,  The elapsed time for shift occurrence since the last sampling time given that the 
shift occurs in the time interval [(𝑗 − 1)ℎ, 𝑗ℎ] 

𝑇 ,  Time to shift in the maintenance policy 

𝐹𝐴  False alarm occurs at sample 𝑗 

𝑁 ,  Number of samples taken until a true alarm is alerted given that 𝑥  nonconforming 
units found in the 𝑗 − 1 samples taken before the occurrence of the shift. 

𝑇𝐴 ,  A true alarm is alerted at sample 𝑗 given that 𝑥  nonconforming units found in the 
𝑗 − 1 samples taken before the occurrence of the shift. 

𝐶 The operational time of the inspection cycle under the sampling policy. 
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4. Model development 

In this section, the integrated model, as well as the separate models of sampling and maintenance, 

are constructed. Moreover, the optimization problem of each model is formulated.  

4.1. The integrated model of sampling and scheduled maintenance 

Let 𝑋 be the total number of nonconforming units found during inspection. Then, 𝑋 ∈ {0, ⋯ , 𝑟, 𝑟 +

1}. If 𝑋 = 𝑟 + 1 at any time of sampling, a signal is alerted, and the production process is stopped 

for maintenance. If 𝑋 < 𝑟 + 1, the production process continues to the next sampling time. 

Sampling continues if there is no signal until 𝑛 units are inspected. At that time, the production 

process is shut down for scheduled maintenance whether a signal is alerted or not. Hence, the 

shortest cycle length is 𝑡 = (𝑟 + 1)ℎ at which 𝑟 + 1 inspected units are consecutively found 

nonconforming since the beginning of inspection, and the longest cycle length is 𝑡 = 𝑛ℎ. 

Accordingly, the following cases are defined. 

 Case 1: Inspection cycle ends at time 𝑡  and 𝑋 < 𝑟 + 1. In this case, the inspection cycle 

length (𝐶𝐿) equals 𝑡 = 𝑛ℎ plus the maintenance time. 

Case 1.1: After investigation, the process is still in control. 

Case 1.2: After investigation, the process has shifted (out-of-control). 

 Case 2: Inspection cycle ends before or right upon 𝑛 inspections and 𝑋 = 𝑟 + 1. For this 

case, 𝐶𝐿 ∈ {𝑡 , ⋯ , 𝑡 } plus the maintenance time. 

Case 2.1: After investigation, the process is still in control, and a false alarm is reported. 

Case 2.2: After investigation, the process has shifted, and a true alarm is confirmed. 

Figure 3.3 shows the maintenance actions corresponding to the above two cases. Cases 1.1, 1.2, 

2.1, and 2.2 are explained below. 
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Figure 3.3. Maintenance actions of the integrated model. 

4.1.1. Case 1.1: Process has not shifted by time 𝒕𝒏 

As shown in Figure 3.4, the process continues with no signal is alerted until time 𝑡 , at which, the 

scheduled maintenance time is reached. At that time, no shift is detected, and hence, preventive 

maintenance is carried out. Here, 𝐶𝐿 = 𝑡 + 𝑇 , where 𝑇  is the preventive maintenance time of 

the scheduled maintenance. 

 

Figure 3.4. Inspection cycle with no signal alerted nor shift observed by time 𝑡 . 

Since no shift is found, all units are produced with 𝑃𝑂𝑁 = 𝑝 . Let us define 𝐴 ,  as follows:  
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𝐴 , = 𝑒 𝛿
𝑛

𝑥
𝑝 (1 − 𝑝 ) , (3.1) 

where 𝛿 ∈ 𝑄 , 𝑄 = 1, 𝑥, 𝐸 𝑉 Ω . Then, 𝐴 ,  represents the probability that inspection ends 

at time 𝑡  with no signal and no shift are recorded. 

4.1.2. Case 1.2: Process has shifted before or right upon 𝒕𝒏 

In Figure 3.5, the process has shifted prior to or right upon time 𝑡 , but the sampling plan fails to 

alert a true signal at any sampling time. The operational time consists of the in-control time in 

which 𝑃𝑂𝑁 = 𝑝  and the out-of-control time in which 𝑃𝑂𝑁 = 𝑝 , and hence, 𝐶𝐿 = 𝑡 + 𝑡 , 

where 𝑡  is corrective maintenance time.  

 

Figure 3.5. Inspection cycle with shift observed at time 𝑡   and no signal alerted. 

Assume that the shift has occurred between 𝑡  and 𝑡  sampling times where 𝑗 ∈ {1, ⋯ , 𝑟 +

1, ⋯ , 𝑛}, 𝑡 = (𝑗 − 1)ℎ, and 𝑡 = 𝑗ℎ. Let 𝑛  and 𝑛  denote the number of samples “units” taken 

with 𝑝  and the number of samples taken with 𝑝 , respectively. Then, 𝑛 = 𝑗 − 1 and 𝑛 = 𝑛 −

𝑗 + 1 where 𝑛 + 𝑛 = 𝑛. Also, define 𝑋  and 𝑋  as the number of nonconforming units found in 

𝑛  and the number of nonconforming units found in 𝑛 , respectively, where 𝑋 + 𝑋 = 𝑋, 𝑋 ∈

{0, ⋯ , 𝑟}. Apparently, the sizes of 𝑛  and 𝑛  vary with the shift’s occurrence location, and 

therefore, the following scenarios are defined.  
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Scenario 1.1. 𝒏 ≥ 𝟐𝒓 

1. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 ≥ 𝒓 and 𝒏𝟐 ≥ 𝒓 

Here, the shift occurs at least 𝑟 samples since the beginning of inspection and at least 𝑟 samples 

far away from 𝑡 . Since 𝑛 ≥ 𝑟 and 𝑛 ≥ 𝑟 imply that 𝑗 ≥ 𝑟 + 1 and 𝑗 ≤ 𝑛 − 𝑟 + 1, the range in 

which the shift could occur is 𝑟 + 1 ≤ 𝑗 ≤ min {𝑛, 𝑛 − 𝑟 + 1}. The upper bound should be 𝑛 −

𝑟 + 1, but because 𝑟 could equal 0, the upper bound is modified to be min {𝑛, 𝑛 − 𝑟 + 1}. Let us 

define 𝐴 ,  as follows:   

𝐴 , = 𝛿 𝑒 − 𝑒
𝑗 − 1

𝑥

 { , }

𝑝 (1

− 𝑝 )
𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 ) , 

 

 

(3.2) 

where 𝐴 ,  is the probability of this subscenario. As illustrated above, this subscenario always 

applies if 𝑛 ≥ 2𝑟, 𝑟 ≥ 0. 

2. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 < 𝒓 and 𝒏𝟐 ≥ 𝒓 

𝑗 − 1 < 𝑟 and 𝑛 − 𝑗 + 1 ≥ 𝑟 imply that 𝑗 < 𝑟 + 1 and 𝑗 ≤ 𝑛 − 𝑟 + 1, and hence,  1 ≤ 𝑗 ≤

min {𝑟, 𝑛 − 𝑟 + 1}. Since 𝑛 ≥ 2𝑟, substituting  min{𝑛} = 2𝑟 reveals that 𝑛 − 𝑟 + 1 = 𝑟 + 1, and 

therefore, the shift could occur in the range 1 ≤ 𝑗 ≤ 𝑟. Because 𝑛 < 𝑟 and 𝑟 is a nonnegative 

integer, 𝑟 must be greater than 0, which means that this subscenario exists if 𝑛 ≥ 2𝑟, 𝑟 ≥ 1. As 

seen in the quantity 𝐴 ,  defined below, all nonconforming units can be fully found in 𝑛  or in 𝑛  

given that 0 ≤ 𝑥 ≤ 𝑗 − 1 as shown in the first term. The second term represents the situation when 

the number of nonconforming units exceeds 𝑛  given that 𝑗 ≤ 𝑥 ≤ 𝑟. 
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𝐴 , = 𝑒 − 𝑒   

𝛿
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )

+ 𝛿
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 ) , 

 

 

(3.3) 

where 𝐴 ,  refers to the probability of this subscenario. 

3. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 ≥ 𝒓 and 𝒏𝟐 < 𝒓 

𝑛 ≥ 𝑟 and 𝑛 < 𝑟 means that 𝑗 ≥ 𝑟 + 1 and 𝑗 > 𝑛 − 𝑟 + 1, and hence, the range in which the 

shift could occur is max{𝑟 + 1, 𝑛 − 𝑟 + 2} ≤ 𝑗 ≤ 𝑛. Substituting the minimum 𝑛 = 2𝑟 makes 𝑛 −

𝑟 + 2 always greater than 𝑟 + 1. Therefore, the range of the shift’s occurrence is 𝑛 − 𝑟 + 2 ≤ 𝑗 ≤

𝑛. In the quantity 𝐴 ,  given below, 𝑋 such that 0 ≤ 𝑥 ≤ 𝑛  can be found in 𝑛 and/or 𝑛  without 

restrictions, whereas for 𝑛 + 1 ≤ 𝑥 ≤ 𝑟, 𝑋 cannot be fully found in 𝑛 . 

𝐴 , = 𝑒 − 𝑒   

𝛿
𝑗 − 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥
𝑝 (1 − 𝑝 )

+ 𝛿
𝑗 − 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥
𝑝 (1

− 𝑝 ) , 

 

 

 

 

(3.4) 

where 𝐴 ,  stands for the probability of this subscenario. Note that 𝑟 ≥ 2 to satisfy the condition 

of 𝑛 − 𝑟 + 2 ≤ 𝑗 ≤ 𝑛, and therefore, this subscenario applies if 𝑛 ≥ 2𝑟 and 𝑟 ≥ 2. 
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Scenario 2.1. 𝒏 < 𝟐𝒓 

1. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 < 𝒓 and 𝒏𝟐 < 𝒓 

Since 𝑗 − 1 < 𝑟 and 𝑛 − 𝑗 + 1 < 𝑟, a shift could occur in those intervals such that 𝑛 − 𝑟 + 2 ≤

𝑗 ≤ 𝑟 as shown in the quantity 𝐴 ,  defined below. Finding all 𝑥 in 𝑛 or in 𝑛  implies that 0 ≤

𝑥 ≤ min {𝑗 − 1, 𝑛 − 𝑗 + 1} as seen in the first summation. In the second term, there is a minimum 

number of nonconforming units must be found in 𝑛  or in 𝑛 . For instance, if 𝑛 = 10 and 𝑟 = 7, 

then 5 ≤ 𝑗 ≤ 7, and if the shift happens between 𝑡  and 𝑡 , then to find 𝑥 = 7, the range of 𝑋  is  3 

≤ 𝑥 ≤ 6 

     𝐴 , = 𝑒 − 𝑒  

𝛿
𝑗 − 1

𝑥

 { , }

𝑝 (1 − 𝑝 )
𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )  

+ 𝛿
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1

{ , }

{ , ( )}{ , }

− 𝑝 ) ,                                                                                                                               

                                                                                                                                               (3.5)  
where 𝐴 ,  represents the probability of this subscenario. Since 𝑛 < 2𝑟 implies that 𝑛 + 𝑛 ≤

2𝑟 − 1, but because max{𝑛 } = max{𝑛 } = 𝑟 − 1, this subscenario doesn’t exist for 𝑛 = 2𝑟 − 1, 

and it only exists for 𝑛 < 2𝑟 − 1. Also, 𝑟 ≥ 3 to meet that 𝑛 − 𝑟 + 2 ≤ 𝑗 ≤ 𝑟, 𝑛 > 𝑟, and 𝑛 < 2𝑟. 

2. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 < 𝒓 and 𝒏𝟐 ≥ 𝒓 

Here, 1 ≤ 𝑗 ≤ min {𝑟, 𝑛 − 𝑟 + 1}. Since 𝑛 < 2𝑟, max{𝑛} = 2𝑟 − 1, and hence, max{𝑛 − 𝑟 +

1} = 𝑟. Therefore, 𝑛 − 𝑟 + 1 ≤ 𝑟 and the range of 𝑗 become 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 + 1. Let us define 

𝐴 ,  as follows: 
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where 𝐴 ,  is the probability of this subscenario. The conditions 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 + 1, 𝑛 >

𝑟, 𝑛 < 𝑟, 𝑛 ≥ 𝑟, and 𝑛 < 2𝑟 imply that 𝑟 ≥ 3 if 𝑛 < 2𝑟 − 1, and 𝑟 ≥ 2 if 𝑛 = 2𝑟 − 1. 

3. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 such that 𝒏𝟏 ≥ 𝒓 and 𝒏𝟐 < 𝒓 

For this subscenario, 𝑗 − 1 ≥ 𝑟 and 𝑛 − 𝑗 + 1 < 𝑟, and therefore, 𝑗 ≥ 𝑟 + 1 and 𝑗 > 𝑛 − 𝑟 + 1. 

For max{𝑛} = 2𝑟 − 1, 𝑗 ≥ 𝑟 + 1, and hence, the range of 𝑗 is 𝑟 + 1 ≤ 𝑗 ≤ 𝑛. Define 𝐴 ,  as  

𝐴 , = 𝑒 − 𝑒   

𝛿
𝑗 − 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥
𝑝 (1 − 𝑝 ) +  

𝛿
𝑗 − 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥
𝑝 (1 − 𝑝 ) , (3.7) 

then 𝐴 ,  is the probability of this subscenario. Again 𝑟 ≥ 3 if 𝑛 < 2𝑟 − 1 to satisfy that 𝑟 +

1 ≤ 𝑗 ≤ 𝑛, 𝑛 > 𝑟, 𝑛 ≥ 𝑟, 𝑛 < 𝑟, and 𝑛 < 2𝑟 . Also, 𝑟 ≥ 2 if 𝑛 = 2𝑟 − 1 to meet the same 

conditions. 

For scenarios 1.1 and 2.1, let us define the followings: 

(1) 𝑎  returns 1 if 𝑛 ≥ 2𝑟 & 𝑟 ≥ 0, and = 0 otherwise. 

(2) 𝑎  returns 1 if 𝑛 ≥ 2𝑟 & 𝑟 ≥ 1, and = 0 otherwise. 

 𝐴 , = 𝑒 − 𝑒  

 𝛿
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 )  

 + 𝛿
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 )

𝑛 − 𝑗 + 1

𝑥 − 𝑥
𝑝 (1 − 𝑝 ) , (3.6) 
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(1) 𝑎  returns 1 if 𝑛 ≥ 2𝑟 & 𝑟 ≥ 2, and = 0 otherwise. 

(2) 𝑎  returns 1 if 𝑛 < 2𝑟 − 1 & 𝑟 ≥ 3, and = 0 otherwise. 

(3) 𝑎  returns 1 if 𝑛 = 2𝑟 − 1 & 𝑟 ≥ 2, and = 0 otherwise. 

Consequently, the quantity 𝐴  is defined as follows: 

 𝐴 = 𝑎 𝐴 , + 𝑎 𝐴 , + 𝑎 𝐴 , + 𝑎 𝐴 , + 𝐴 , + 𝐴 , + 𝑎 𝐴 , + 𝐴 , , (3.8) 

where 𝐴  refers to the total probability of Case 1.2.  

The above equation states that only one of Scenarios 1.1 and 2.1 is applied.  Moreover, if 𝑛 ≥

2𝑟 and because of the equality condition, there must be at least one point such that 𝑛 ≥ 𝑟 and 

𝑛 ≥ 𝑟 and it is not always true to have 𝑛 < 𝑟, 𝑛 ≥ 𝑟 and/or  𝑛 ≥ 𝑟, 𝑛 < 𝑟. For instance, if 

𝑟 = 0, a shift always occurs such that 𝑛 ≥ 𝑟 and 𝑛 ≥ 𝑟. If 𝑛 < 2𝑟, it is not always necessary to 

have 𝑛 < 𝑟 and 𝑛 < 𝑟. But it must have 𝑛 < 𝑟, 𝑛 ≥ 𝑟 and 𝑛 ≥ 𝑟, 𝑛 < 𝑟. For example, if 

𝑛 = 5, 𝑟 = 3, there are no points such that 𝑛 < 𝑟 and 𝑛 < 𝑟. Instead, there are always some 

points such that 𝑛 < 𝑟, 𝑛 ≥ 𝑟 and other points such that 𝑛 ≥ 𝑟, 𝑛 < 𝑟. Accordingly, the first 

three terms in the above equation cover the Scenario 1.1, the fourth term covers the Scenario 2.1 

given 𝑛 < 𝑟 and 𝑛 < 𝑟 and the last term covers the Scenario 2.1 given there are no points such 

that 𝑛 < 𝑟 and 𝑛 < 𝑟. 

4.1.3. Case 2.1: Process has not shifted by time 𝒕𝒓 𝟏 𝒊 

As depicted in Figure 3.6, a signal is alerted at time 𝑡  since 𝑋 = 𝑟 + 1, but the process has 

found not shifted, i.e., a false alarm is alerted. The stoppage could be before or right upon 𝑡 , and 

𝐶𝐿 is the time until the first false alarm has occurred plus the preventive maintenance time, and 

therefore, sampling until the first false alarm occurs follows the truncated negative binomial 

distribution with 𝑃𝑂𝑁 = 𝑝  as shown by equation (3.9). 



82 
 

 

Figure 3.6. Inspection cycle ends with a false alarm.  

Let 𝜑  denotes the probability that a process ends at 𝑡  with a signal alerted and no 

shift is observed. Then, 𝜑  is given as  

𝜑 = 𝑒
𝑟 + 𝑖

𝑟
𝑝 (1 − 𝑝 ) , 𝑖 ∈ {0, ⋯ , 𝑛 − 𝑟 − 1}, (3.9) 

where 𝑖 represents the number of conforming units found during inspection until the time of 

alerting a signal. For instance, 𝑖 = 0 means that sampling is stopped when finding 𝑟 + 1 

nonconforming units consecutively since the beginning of sampling. In other words, 𝑟 + 1 units 

are found nonconforming out of 𝑟 + 1 units inspected. Also, 𝑖 = 𝑛 − 𝑟 − 1 refers to that 𝑟 + 1 

nonconforming units are found by time 𝑡 . Define 𝐵 ,  as  

𝐵 , = 𝜋 𝜑 , (3.10) 

where 𝜋 ∈ 𝑄 , 𝑄 = 1, 𝑡 , 𝐸 𝑉 Ω , 𝐸 𝑉 Ω
,

, 𝐸 𝑉 Ω ,  and 𝐵 ,  refers to the probability 

that inspection ends with a false alarm.  

4.1.4. Case 2.2: Process has shifted before or right upon 𝒕𝒓 𝟏 𝒊 

For this subcase, the sampling plan alerts a signal at time 𝑡  and a shift is confirmed, i.e., a 

true alarm is alerted. Figure 3.7 shows that 𝐶𝐿 is the sum of the time until the true alarm is 

alerted and the corrective maintenance time.  
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Figure 3.7. Inspection cycle ends with a true alarm. 

Under this subcase, the total number of the inspected units is 𝑘 = 𝑟 + 1 + 𝑖, and the last 

nonconforming unit is found at 𝑡 . If the shift occurs between 𝑡  and 𝑡 , 𝑗 ∈ {1, ⋯ , 𝑟 + 1 +

𝑖}, then the number of samples “units” taken with 𝑝  is 𝑘 = 𝑗 − 1, and the number of samples 

taken with 𝑝  is 𝑘 = 𝑟 + 1 + 𝑖 − 𝑘 = 𝑟 + 2 + 𝑖 − 𝑗. For all subscenarios illustrated below either 

in scenario 1.2 or scenario 2.2, the occurrence of a shift between 𝑡  and 𝑡  is not considered. 

Therefore, 𝑘  is reduced to 𝑘 = 𝑟 + 1 + 𝑖 − 𝑗. Since, for this case, inspection continues until a 

true alarm is signaled, sampling from 𝑘  follows the truncated negative binomial distribution with 

𝑃𝑂𝑁 = 𝑝 , whereas sampling form 𝑘  follows the binomial distribution with 𝑃𝑂𝑁 = 𝑝 . 

Scenario 1.2. 𝒓 + 𝒊 ≥ 𝟐𝒓 

1. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋, 𝒋 ∈ {𝟏, ⋯ , 𝒓 + 𝒊} such that 𝒌𝟏 ≥ 𝒓 and 𝒌𝟐 ≥ 𝒓.  

In this subscenario, 𝑗 − 1 ≥ 𝑟 and 𝑟 + 1 + 𝑖 − 𝑗 ≥ 𝑟, and hence, 𝑟 + 1 ≤ 𝑗 ≤ 𝑖 + 1, 𝑖 ≥ 𝑟. 

Because 𝑟 could be 0, the upper bound is modified to min{𝑟 + 𝑖, 𝑖 + 1}. Again, the upper bound 

is modified to max {min{𝑟 + 𝑖, 𝑖 + 1} , 1} to consider the case when 𝑟 = 0 and sampling ends at 

𝑡  due to shift detection. Since 𝑋 = 𝑟 + 1 and the last nonconforming unit must be found in 𝑘 , 

the range of  𝑋  is 0 ≤  𝑥 ≤ 𝑟. The probability that inspection ends at 𝑡  considering this 

subscenario 𝜙 ,  is 
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𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑥
𝑝 (1        

 { { , }, }

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑟 − 𝑥
𝑝 (1 − 𝑝 ) . 

 

 

  

Since max{𝑖} = 𝑛 − 𝑟 − 1, this subscenario exists if 𝑟 + max{𝑖} ≥ 2𝑟. In other words, it exists if 

𝑛 − 2𝑟 − 1 ≥ 0 and 𝑟 ≥ 0.  

Let us define 𝐵 ,  as  

𝐵 , = 𝜋 ∙ 𝜙 , , (3.11) 

where 𝐵 ,  represents the probability of this subscenario.  

2. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋, 𝒋 ∈ {𝟏, ⋯ , 𝒓 + 𝒊}, such that 𝒌𝟏 < 𝒓 and 𝒌𝟐 ≥ 𝒓 

 𝑗 − 1 < 𝑟 and 𝑟 + 1 + 𝑖 − 𝑗 ≥ reveals that 1 ≤ 𝑗 ≤ min { 𝑟, 𝑖 + 1}. Since min{𝑖} = 𝑟, then 

min{𝑖 + 1} = 𝑟 + 1, and hence, 1 ≤ 𝑗 ≤ 𝑟. Since 1 ≤ 𝑗 ≤ 𝑟, this subscenario applies if 𝑛 − 2𝑟 −

1 ≥ 0 and 𝑟 ≥ 1. The probability that inspection ends at 𝑡  considering this subscenario 

𝜙 ,  is 

𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑥
𝑝 (1                                                

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑟 − 𝑥
𝑝 (1 − 𝑝 ) . 

 

 

  

Define 𝐵 ,  as  

𝐵 , = 𝜋 ∙ 𝜙 , ,  (3.12) 

where 𝐵 ,  is the probability of the above subscenario. 
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3. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋, 𝒋 ∈ {𝟏, ⋯ , 𝒓 + 𝒊}, such that 𝒌𝟏 ≥ 𝒓 and 𝒌𝟐 < 𝒓 

𝑗 − 1 ≥ 𝑟 and 𝑟 + 1 + 𝑖 − 𝑗 < 𝑟 imply that max{𝑟 + 1, 𝑖 + 2} ≤ 𝑗 ≤ 𝑟 + 𝑖. Since min{𝑖} = 𝑟 

entails that min{𝑖 + 2} = 𝑟 + 2, 𝑖 + 2 is always greater than 𝑟 + 1, and then, the range of 𝑗 is 𝑖 +

2 ≤ 𝑗 ≤ 𝑟 + 𝑖. The probability that inspection ends at 𝑡  considering this subscenario 

𝜙 ,  is 

𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑟 − 𝑥
𝑝 (1

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑥
𝑝 (1 − 𝑝 ) . 

 

 

 

Define 𝐵 ,  as  

𝐵 ,  = 𝜋 ∙ 𝜙 , , (3.13) 

where 𝐵 ,   refers to the probability of the above subcenario. Because of 𝑖 + 2 ≤ 𝑗 ≤ 𝑟 + 𝑖, this 

subscenario applies if 𝑛 − 2𝑟 − 1 ≥ 0 and 𝑟 ≥ 2. 

Scenario 2.2. 𝒓 + 𝒊 < 𝟐𝒓 

The above subscenarios apply only if 𝑟 + 𝑖 ≥ 2𝑟, i.e., they only apply if 𝑛 − 2𝑟 − 1 ≥ 0 and 𝑖 ≥

𝑟. However, an inspection cycle may end at 𝑡  where 0 ≤ 𝑖 < 𝑟 and 𝑛 − 2𝑟 − 1 ≥ 0.  Also, 

if 𝑛 − 2𝑟 ≤ 0, none of the above subscenarios exists because there is no 𝑖 such that 𝑖 ≥ 𝑟. Thus, 

the subscenarios explained below may exist when 𝑛 − 2𝑟 − 1 ≥ 0 and 0 ≤ 𝑖 < 𝑟 or when 𝑛 −

2𝑟 ≤ 0, 0 ≤ 𝑖 ≤ 𝑟. 

1. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 , 𝒋 ∈ {𝟏, ⋯ , 𝒓 + 𝒊}, such that 𝒌𝟏 < 𝒓 and 𝒌𝟐 < 𝒓 

Since 𝑗 − 1 < 𝑟 and 𝑟 + 1 + 𝑖 − 𝑗 < 𝑟, the range of 𝑗 is 𝑖 + 2 ≤ 𝑗 ≤ 𝑟. Because the last 

nonconforming unit must be found at 𝑡 , the other 𝑟 nonconforming units are found right upon 
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or before 𝑡 . It is impossible to find 𝑟 nonconforming units in 𝑘  since 𝑘 < 𝑟, and hence, there 

is a minimum number of nonconforming units that must be found in 𝑘 . This equal 𝑟 −

(𝑟 + 1 + 𝑖 − 𝑗) = 𝑗 − 1 − 𝑖, and therefore, the range of 𝑋  is 𝑗 − 1 − 𝑖 ≤ 𝑥 ≤ 𝑗 − 1. The 

probability that sampling ends at 𝑡  considering this subscenario 𝜙 ,  is 

𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑥
𝑝 (1

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑟 − 𝑥
𝑝 (1 − 𝑝 ) . 

 

 

 

Solving 𝑟 + 𝑖 < 2𝑟 and 𝑖 + 2 ≤ 𝑗 ≤ 𝑟 entails that 0 ≤ 𝑖 ≤ 𝑟 − 2, and hence, 𝑟 ≥ 2 since min{𝑖} =

0. If 𝑛 − 2𝑟 − 1 ≥ 0 or 𝑛 = 2𝑟, then 0 ≤ 𝑖 ≤ 𝑟 − 2. If 𝑛 < 2𝑟, then 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1. Thus, the 

range of 𝑖 is 0 ≤ 𝑖 ≤ min {𝑟 − 2, 𝑛 − 𝑟 − 1}.  Define 𝐵 ,   as  

𝐵 ,  = 𝜋 ∙

 { , }

𝜙 , , (3.14) 

where 𝐵 ,   represents the probability of this subscenario. 

2. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 , 𝒋 = {𝟏, ⋯ , 𝒓 + 𝒊}, such that 𝒌𝟏 < 𝒓 and 𝒌𝟐 ≥ 𝒓 

Because 𝑗 < 𝑟 + 1 and 𝑗 ≤ 𝑖 + 1, the range of 𝑗 is 1 ≤ 𝑗 ≤ min {𝑟, 𝑖 + 1}. Since max{𝑖} = 𝑟 − 1 

as 𝑟 + 𝑖 < 2𝑟, then max{𝑖 + 1} = 𝑟. Therefore, the range of 𝑗 becomes 1 ≤ 𝑗 ≤ 𝑖 + 1, and the 

probability that inspection ends at 𝑡  of this subscenario 𝜙 ,  is 

𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑥
𝑝 (1

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑟 − 𝑥
𝑝 (1 − 𝑝 ) . 
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Solving 1 ≤ 𝑗 ≤ 𝑖 + 1, 𝑟 + 𝑖 < 2𝑟, and 𝑘 < 𝑟 reveals that 0 ≤ 𝑖 ≤ 𝑟 − 1 and 𝑟 ≥ 1 if 𝑛 − 2𝑟 −

1 ≥ 0 or 1 ≤ 𝑖 ≤ min {𝑟 − 1, 𝑛 − 𝑟 − 1} and 𝑟 ≥ 1 if 𝑛 − 2𝑟 ≤ 0 . Thus, 𝐵 ,   is defined as 

𝐵 , = 𝜋

 { , } 

𝜙 , ,   (3.15) 

where 𝐵 ,  denotes the probability of the above subscenario. 

3. Shift occurs between 𝒕𝒋 𝟏 and 𝒕𝒋 , 𝒋 = {𝟏, ⋯ , 𝒓 + 𝒊}, such that 𝒌𝟏 ≥ 𝒓 and 𝒌𝟐 < 𝒓 

Here, 𝑗 ≥ 𝑟 + 1 and 𝑗 > 𝑖 + 1, and therefore, the range of 𝑗 is max{𝑟 + 1, 𝑖 + 2} ≤ 𝑗 ≤ 𝑟 + 𝑖. 

Because max{𝑖} = 𝑟 − 1 as 𝑟 + 𝑖 < 2𝑟, then max{𝑖 + 2} = 𝑟 + 1. Hence, 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑖 is 

the range of 𝑗. The probability that sampling ends at 𝑡  in this subscenario 𝜙 ,  is 

𝜙 , = 𝑒 − 𝑒
𝑗 − 1

𝑟 − 𝑥
𝑝 (1

− 𝑝 )
𝑟 + 1 + 𝑖 − 𝑗

𝑥
𝑝 (1 − 𝑝 ) . 

 

 

 

Having 𝑟 + 𝑖 < 2𝑟 and 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑖 needs 1 ≤ 𝑖 ≤ 𝑟 − 1 and 𝑟 ≥ 2 if 𝑛 − 2𝑟 − 1 ≥ 0 or 

1 ≤ 𝑖 ≤ min {𝑟 − 1, 𝑛 − 𝑟 − 1} and 𝑟 ≥ 2 if 𝑛 − 2𝑟 ≤ 0. Therefore, 𝐵 ,   is defined as 

𝐵 , = 𝜋

 { , }

𝜙 ,  ,  (3.16) 

where 𝐵 ,  expresses the probability of this subscenario. 

Let us define the quantity 𝐵 ,  as  

𝐵 , = 𝑏 𝐵 , + 𝑏 𝐵 , + 𝑏 𝐵 , + 𝑏 𝐵 , + 𝐵 , + 𝑏 𝐵 , , (3.17) 

where 𝐵 ,  represents the probability of Case 2 given that a shift has occurred within (0, 𝑡 ] 

and a true alarm is alerted at 𝑡 , and 
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(1) 𝑏  returns 1 if 𝑛 − 2𝑟 − 1 ≥ 0 & 𝑟 ≥ 0, and = 0 otherwise. 

(2) 𝑏  returns 1 if 𝑛 − 2𝑟 − 1 ≥ 0 & 𝑟 ≥ 1, and = 0 otherwise.  

(3) 𝑏  returns 1 if 𝑛 − 2𝑟 − 1 ≥ 0 & 𝑟 ≥ 2, and = 0 otherwise. 

(4) 𝑏  returns 1 if 𝑟 ≥ 2, and 0 otherwise. 

(5) 𝑏  returns 1 if 𝑟 ≥ 1, and 0 otherwise. 

Shift occurs between 𝒕𝒓 𝒊 and 𝒕𝒓 𝟏 𝒊  

Scenarios 1.2 and 2.2 exclude the occurrence of a shift in the last sampling interval, i.e., between 

𝑡  and 𝑡 . Let 𝜎  represent the probability that sampling ends at time 𝑡  given that 

the shift occurs between 𝑡  and 𝑡 . Then, 𝜎  is given by 

𝜎 = 𝑒 − 𝑒
𝑟 + 𝑖

𝑟
 𝑝 (1 − 𝑝 ) 𝑝 .  

Define 𝐵 ,  as follows: 

𝐵 , =

⎩
⎪
⎨

⎪
⎧ 𝜋 𝜎 , 𝑟 > 0

𝜋 𝜎 , 𝑟 = 0,

 
 

(3.18) 

where 𝐵 ,  is the probability of this scenario. Note that when 𝑟 = 0, 𝑖 starts from 1 because the 

case 𝑟 = 0, 𝑖 = 0 is already considered in the previous scenarios. 

4.1.5. Cost of sampling 

Let 𝑌 be the number of inspected units in each inspection cycle. In Case 1, 𝑌 = 𝑛, and in Case 2, 

𝑌 ∈ {𝑟 + 1, ⋯ , 𝑛}. Let 𝑐  denote the average cost of inspecting one unit, then the expectation 

𝐸[𝑌] and the expected cost of sampling 𝐸[𝑆𝐶] are given as follows, respectively: 
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𝐸[𝑌] = 𝑛 𝐴 , + 𝐴 +
𝐵 , + 𝐵 , + 𝐵 ,

ℎ
, 

(3.19) 

𝐸[𝑆𝐶] = 𝑐 𝐸[𝑌]. (3.20) 

4.1.6. Cost of rejected units found during inspection 

Any nonconforming unit found during inspection is rejected without replacement with an average 

cost of 𝑐  per unit. In Case 1, 𝑋 ∈ {0, ⋯ , 𝑟}, and in Case 2, 𝑋 = 𝑟 + 1. Therefore, the expectation 

𝐸[𝑋] and the expected cost of the rejected units 𝐸[𝑅𝐶] are given as follows, respectively: 

𝐸[𝑋] = 𝐴 , + 𝐴 + (𝑟 + 1) 𝐵 , + 𝐵 , + 𝐵 , , (3.21) 

𝐸[𝑅𝐶] = 𝑐 𝐸[𝑋]. (3.22) 

4.1.7. Cost of uninspected nonconforming units  

One risk associated with inspection is delivering a high percentage of nonconforming units to 

customers. Usually, the cost of a nonconforming unit received by a customer could cost more than 

the cost of producing the unit itself. Costs related to the producer’s reputation, return, and decline 

in sales may be considered.  

Let 𝑇 ,
  represent the time to shift from the in-control state to the out-of-control state given 

(𝑗 − 1)ℎ < 𝑇 < 𝑗ℎ, where 𝑇  denotes the time to shift, i.e., time process stays in control. Then, 

the expectation 𝐸 𝑇 ,
  is given by 

𝐸 𝑇 ,
 =

∫ 𝑡
𝛽
𝜂

𝑡
𝜂

𝑒 𝑑𝑡
( )

𝑒
( )

− 𝑒

. 

Define the following events: 

(1) Ω : inspection ends at time 𝑡 with no shift and no alarm. 

(2) Ω : a shift occurs such that (𝑗 − 1)ℎ ≤ 𝑇 < 𝑗ℎ, but no alarm is signaled by time 𝑡 . 
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(3) Ω : inspection ends at time 𝑡  with an alarm alerted and no shift is observed. 

(4) Ω , : inspection ends at time 𝑡  with an alarm alerted and a shift has occurred such that 

(𝑗 − 1)ℎ ≤ 𝑇 < 𝑗ℎ. 

(5) Ω : inspection ends at time 𝑡  with an alarm alerted and a shift has occurred such that 

(𝑟 + 𝑖)ℎ ≤ 𝑇 < (𝑟 + 1 + 𝑖)ℎ. 

Let 𝜇 be the average production rate, then the expected total number of products produced by 

time 𝑡  is 𝑛ℎ𝜇. Given Ω , 𝑛 units are inspected, and the expected total number of uninspected 

units that could be nonconforming 𝐸 𝑉 Ω  is obtained as 

𝐸 𝑉 Ω = (𝑛ℎ𝜇 − 𝑛)𝑝 = 𝑛𝑝 (ℎ𝜇 − 1). 

If the process has shifted before or right upon 𝑡 , then the cycle length consists of the in-control 

period in which 𝑃𝑂𝑁 = 𝑝  and the out-of-control period in which 𝑃𝑂𝑁 = 𝑝 . Thus, given Ω , 

the expected total number of uninspected units that could be nonconforming 𝐸 𝑉 Ω  is 

𝐸 𝑉 Ω = 𝐸 𝑇 ,
 𝜇 −

,
 

𝑝 + 𝑛ℎ − 𝐸 𝑇 ,
 𝜇 −

,
 

𝑝 ,  

∀ 𝑗 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑗 ∈ 𝐽 , 𝑗 ∈ 𝐽 ,  

where, 

 𝐽 = {𝑗: 𝑟 + 1 ≤ 𝑗 ≤ min{𝑛, 𝑛 − 𝑟 + 1}}, 

 𝐽 = {𝑗: 1 ≤ 𝑗 ≤ 𝑟}, 𝐽 = {𝑗: 𝑛 − 𝑟 + 2 ≤ 𝑗 ≤ 𝑛}, 

 𝐽 = {𝑗: 𝑛 − 𝑟 + 2 ≤ 𝑗 ≤ 𝑟}, 

 𝐽 = {𝑗: 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 + 1},   
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 𝐽 = {𝑗: 𝑟 + 1 ≤ 𝑗 ≤ 𝑛},  

,
 

 represents the expected number of the inspected units in the in-control period, and 

,
 

 represents the expected number of the inspected units in the out-of-control period.  

Given Ω , the expected total number of uninspected units that could be nonconforming 

𝐸 𝑉 Ω  is 

𝐸 𝑉 Ω = (𝑟 + 1 + 𝑖)(ℎ𝜇 − 1)𝑝 ,  

∀𝑖 ∈ 𝐼 , 𝐼 = {𝑖: 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1}. 

The expected total number of the uninspected nonconforming units 𝐸 𝑉 Ω
,  given Ω ,  and 

𝐸 𝑉 Ω  given Ω  are obtained as follows, respectively: 

𝐸 𝑉 Ω
,

= 

𝐸 𝑇 ,
 𝜇 −

,
 

𝑝 + (𝑟 + 1 + 𝑖)ℎ − 𝐸 𝑇 ,
 𝜇 −

( ) ,
 

𝑝 ,      

∀𝑖 ∈ 𝐼 & 𝑗 ∈ 𝐽 , 𝐼 & 𝑗 ∈ 𝐽 , ∀𝑖 ∈ 𝐼 & 𝑗 ∈ 𝐽 , ∀𝑖 ∈ 𝐼 & 𝑗 ∈ 𝐽 , ∀𝑖 ∈ 𝐼 & 𝑗 ∈

𝐽 , ∀𝑖 ∈ 𝐼 & 𝑗 ∈ 𝐽 , 

𝐸 𝑉 Ω = 𝐸 𝑇 ,
 𝜇 −

𝐸 𝑇 ,
 

ℎ
𝑝 + 

                     (𝑟 + 1 + 𝑖)ℎ − 𝐸 𝑇 ,
 𝜇 −

( ) ,
 

𝑝 ,    ∀𝑖 ∈ 𝐼 , 

where 

𝐼 = {𝑖: 𝑟 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1}, 𝐽 = {𝑗: 𝑟 + 1 ≤ 𝑗 ≤ max {min(𝑟 + 𝑖, 𝑖 + 1) , 1}, 𝑖 ∈ 𝐼 }, 
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𝐼 = {𝑖: 𝑟 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1}, 𝐽 = {𝑗: 1 ≤ 𝑗 ≤ 𝑟}, 𝑖 ∈ 𝐼 }, 

𝐼 = {𝑖: 𝑟 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1}, 𝐽 = 𝑗: 𝑖 + 2 ≤ 𝑗 ≤ 𝑟 + 𝑖, 𝑖 ∈ 𝐼 ,  

𝐼 = {𝑖: 0 ≤ 𝑖 ≤ min (𝑟 − 2, 𝑛 − 𝑟 − 1)}, 𝐽 = 𝑗: 𝑖 + 2 ≤ 𝑗 ≤ 𝑟, 𝑖 ∈ 𝐼 , 

𝐼 = {𝑖: 0 ≤ 𝑖 ≤ min (𝑟 − 1, 𝑛 − 𝑟 − 1)}, 𝐽 = 𝑗: 1 ≤ 𝑗 ≤ 𝑖 + 1, 𝑖 ∈ 𝐼 , 

𝐼 = {𝑖: 1 ≤ 𝑖 ≤ min (𝑟 − 1, 𝑛 − 𝑟 − 1)}, 𝐽 = 𝑗: 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑖, 𝑖 ∈ 𝐼 , 

𝐼 = {𝑖: 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1 if 𝑟 > 0 ,   1 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 1 if 𝑟 = 0 }, and 

𝐸 𝑇 ,
 =

∫ 𝑡
𝛽
𝜂

𝑡
𝜂

𝑒 𝑑𝑡
( )

( )

𝑒
( )

− 𝑒
( )

, 𝑖 ∈ 𝐼 .  

Based on the above events and calculations, the expected total number of uninspected 

nonconforming units produced in one inspection cycle 𝐸[𝑉] is obtained as 

𝐸[𝑉] = 𝐸 𝑉 Ω 𝐴 , + 𝐴 + 𝐵 , + 𝐵
,

, + 𝐵 , . (3.23) 

Let 𝑐  denote the average cost per each uninspected unit that found nonconforming, then the 

expected cost of the uninspected nonconforming units 𝐸[𝐶𝑈𝑁] in one inspection cycle is 

𝐸[𝐶𝑈𝑁] = 𝑐 𝐸[𝑉]. (3.24) 

4.1.8. Time and cost of maintenance 

The scheduled preventive maintenance is performed if no shift is observed at time 𝑡 . Since it is 

scheduled (planned), it is performed with known and pre-allocated resources. Therefore, a constant 

average time 𝑇  is assumed for the scheduled maintenance. As explained previously, preventive 

maintenance at the time of false alarm depends on how much the process has shifted. Hence, the 
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time of maintenance can be expressed as a function of the cumulative shift at time 𝑡 . This 

equivalent to the cumulative density function (CDF) of the Weibull distribution by time 𝑡 , 

and therefore, the average time of performing preventive maintenance 𝑡 ,  at sampling time 

𝑡  if a false alarm is alerted is obtained as 

𝑡 , = 𝑡 + 1 − 𝑒 𝑇 , 𝑖 ∈ {0, ⋯ , 𝑛 − 𝑟 − 2}, (3.25) 

where 𝑡 (< 𝑇 ) is fixed maintenance time.  

For all 𝑖 ∈ {0, ⋯ , 𝑛 − 𝑟 − 2}, 𝑡 , < 𝑇 . To satisfy this condition, 𝑡 , < 𝑇 , where 

𝑡 ,  is the time of preventive maintenance performed if a false alarm is alerted in the previous 

sample before the scheduled maintenance time. 

By corrective maintenance, the failed component is replaced. Therefore, the average cost of 

corrective maintenance 𝐶  is given by  

𝐶 = 𝑐 𝑇 +𝑐 𝑡 + 𝑐 , (3.26) 

where 𝑐  is the average cost for searching a false or a true alarm, 𝑇  is the average time to conclude 

there is a shift, 𝑐  is the average cost per unit time of replacing the component, 𝑡  is the average 

time of replacement, and 𝑐  is the average cost of a new component.  

Considering all kinds of maintenance, the expected total time and cost of performing 

maintenance 𝐸[𝑀𝑇] and 𝐸[𝑀𝐶] are given as follows, respectively: 

𝐸[𝑀𝑇] =  (𝑇 + 𝑇 ) 𝐴 , + 𝜑 + 𝑇 + 𝑡 , 𝜑  
 

                   + (𝑇 +𝑡 ) 𝐴 + 𝐵 , + 𝐵 , , (3.27) 

𝐸[𝑀𝐶] = (𝑐 𝑇 + 𝑐 𝑇 ) 𝐴 , + 𝜑   
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                   + 𝑐 𝑇 + 𝑐 𝑡 , 𝜑 + 𝐶 𝐴 + 𝐵 , + 𝐵 , , 
 

(3.28) 

where 𝑐  is the average cost per unit time of performing preventive maintenance, 𝑇  is the 

average time to conclude there is no shift if a false signal is alerted, and 𝜑  is the probability of 

signaling a false alarm at time 𝑡 .  

The first term in 𝐸[𝑀𝑇] equation refers to the total time of scheduled preventive maintenance. 

This includes the time of detecting no shift and time of maintenance. Note that a false alarm could 

be alerted at the end of the cycle since sampling is carried out at time 𝑡 , but because the scheduled 

maintenance time is reached, no false alarm maintenance is performed. The second term implies 

that false alarm maintenance could be carried at all sampling times except for the last sampling 

time, i.e., 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 − 2. The last term entails that total corrective maintenance time includes 

the time of detecting a shift and time of replacement. 

4.1.9. Cost of lost production 

Let 𝑐  be the average loss cost per each unit unproduced, then the expected cost of lost production 

due to the lost time in maintenance 𝐸[𝐿𝑃𝐶] is 

𝐸[𝐿𝑃𝐶] = 𝑐 𝜇𝐸[𝑀𝑇]. (3.29) 

4.1.10. Expected inspection cycle length and cost 

The length of the inspection cycle 𝐶𝐿 consists of the operational time plus the time spent in 

maintenance. The time of inspection is not included since the process is not stopped for inspection. 

The inspection cycle total cost 𝐶𝐶 consists of costs of sampling, rejected units, uninspected 

nonconforming units, maintenance, and lost production. According to all scenarios explained in 
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Cases 1 and 2, the expected cycle length 𝐸[𝐶𝐿] and the expected total cycle cost 𝐸[𝐶𝐶] are given 

as follows, respectively: 

𝐸[𝐶𝐿] = 𝑡 𝐴 , + 𝐴 + 𝐵 , + 𝐵 , + 𝐵 , + 𝐸[𝑀𝑇], (3.30) 

𝐸[𝐶𝐶] = 𝐸[𝑆𝐶] + 𝐸[𝑅𝐶] + 𝐸[𝐶𝑈𝑁] + 𝐸[𝑀𝐶] + 𝐸[𝐿𝑃𝐶]. (3.31) 

The first term in 𝐸[𝐶𝐿] equation represents the cycle length if no signal is alerted, i.e., 𝐶𝐿 = 𝑡 =

𝑛ℎ. The second term refers to the weighted cycle length when a false or a true alarm is alerted at 

any sampling time, i.e., 𝐶𝐿 = {𝑡 , ⋯ , 𝑡 }. The last term is the expected downtime due to 

maintenance intervention. 

4.1.11. Mathematical formulation of the integrated model 

The sampling parameters and the scheduled maintenance time are determined by minimizing the 

long-run cost rate 𝐿𝑅𝐶𝑅. By the renewal reward theory (Ross, 2003), 𝐿𝑅𝐶𝑅 is the ratio of the 

expected total cost 𝐸[𝐶𝐶] to the expected total time 𝐸[𝐶𝐿] as  

The mathematical formulation of the optimization problem is 

min
, ,

 𝐿𝑅𝐶𝑅                                                   (3.33) 

subject to (𝑛 − 1)ℎ < 𝑍,  (3.33.1) 

 𝑛 > 𝑟,  (3.33.2) 

 𝑛, 𝑟 ∈ integers, 𝑟 ≥ 0,   ℎ > 0.  (3.33.3) 

In this mixed integer nonlinear programming (MINLP) problem, 𝐿𝑅𝐶𝑅 is minimized with respect 

to 𝑛, 𝑟, and ℎ. The constraint shown by equation (3.33.1) is explained below. As illustrated in 

equations (3.33.2) - (3.33.3), 𝑛 is a positive integer whereas 𝑟 is a nonnegative integer, for which 

𝑛 is greater than 𝑟, and ℎ is a continuous positive variable.  

𝐿𝑅𝐶𝑅 =
𝐸[𝐶𝐶]

𝐸[𝐶𝐿]
. (3.32) 
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Constraint (𝒏 − 𝟏)𝒉 < 𝒁 

To meet that 𝑡 , < 𝑇 , the condition 𝑡 , < 𝑇  must hold since 𝑡 , is the longest 

time of preventive maintenance that can be performed at the time of false alarm. According to 

equation (3.25), 

𝑡 , = 𝑡 + 1 − 𝑒 𝑇 = 𝑡 + 1 − 𝑒
( )

𝑇 . 

Solving 

𝑡 + 1 − 𝑒 𝑇 < 𝑇  

reveals that  

(𝑛 − 1)ℎ < 𝜂 − ln
/

, 

where 

𝑍 = 𝜂 − ln
/

. 

4.2. Sampling model 

In this model, there is no scheduled maintenance, and inspection continues until the first false 

alarm or a true alarm is alerted. The sampling model can be obtained by considering only Case 2 

in the integrated model and by setting the upper bounds in all equations of Case 2 to ∞. However, 

a simpler formulation is provided below. 

Let 𝑗 denote the sample number at which the first false alarm occurs. Then, the probability that 

the first false alarm 𝑃 𝐹𝐴  occurs at time 𝑡  is 

𝑃 𝐹𝐴 = 𝑒
𝑗 − 1

𝑟
𝑝 (1 − 𝑝 ) , 𝑗 ∈ {𝑟 + 1, ⋯ , ∞}.  
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If the inspection cycle ends with a true alarm, the average number of samples until a true alarm 

is alerted equals the average number of trials 𝛾 until 𝑟 + 1 successes given a probability of success 

𝑝. Generally, 𝛾 is the expected value of the negative binomial distribution, and it is given as 

(Montgomery, 2009) 

𝛾 =
𝑟 + 1

𝑝
. 

Let 𝑁 be the number of samples taken until a true alarm is alerted. Given that the shift occurs 

in the time interval [(𝑗 − 1)ℎ, 𝑗ℎ], 𝑗 ∈ {1, ⋯ , ∞}, and there are 𝑥  nonconforming units found in 

the (𝑗 − 1) samples, the conditional expectation 𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ] and 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ) are 

given by: 

𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ] = (𝑗 − 1) +
𝑟 + 1 − 𝑥

𝑝
, 

𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ) = 𝑒
( )

− 𝑒
𝑗 − 1

𝑥
𝑝 (1 − 𝑝 ) , 

where 𝑥 ∈ {0, ⋯ , 𝑗 − 1} if 𝑗 ∈ {1, ⋯ , 𝑟}, and 𝑥 ∈ {0, ⋯ , 𝑟} if 𝑗 ∈ {𝑟 + 1, ⋯ , ∞}. 

4.2.1. Cost of sampling 

Let 𝐶 be the operational time in one inspection cycle, then its expected value 𝐸[𝐶] is 

𝐸[𝐶] = 

𝑗ℎ𝑃 𝐹𝐴 + 𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ]ℎ 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 )

+ 𝜔 𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ]ℎ 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ), 

 

 

 

(3.34) 
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where  

𝜔 =
0           , 𝑟 = 0
1           ,  𝑟 ≥ 1.

 

Then, the expected cost of inspection 𝐸[𝑆𝐶 ] is given by 

𝐸[𝑆𝐶 ] = 𝑐 𝐸[𝐶] ℎ⁄ . (3.35) 

4.2.2. Cost of rejected units found during inspection 

In the sampling model, always 𝑟 + 1 units are rejected, and hence, the expected rejection cost 

𝐸[𝑅𝐶 ] is  

𝐸[𝑅𝐶 ] = 𝑐 (𝑟 + 1).  (3.36) 

4.2.3. Cost of uninspected nonconforming units  

If the inspection cycle ends at time 𝑗ℎ because of a false alarm, the expected number of uninspected 

nonconforming units produced given a false alarm 𝐸 𝑉 𝐹𝐴  is obtained as 

𝐸 𝑉 𝐹𝐴 = 𝑝 𝑗(ℎ𝜇 − 1), 𝑗 ∈ {𝑟 + 1, ⋯ , ∞}. 

Let 𝜏 ,  denote the time elapsed since time (𝑗 − 1)ℎ until shift’s occurrence given that the 

shift occurs in [(𝑗 − 1)ℎ, 𝑗ℎ]. Then, the expectation 𝐸 𝜏 ,  is given by 

𝐸 𝜏 , =
∫  (𝑡 − (𝑗 − 1)ℎ) 

𝛽
𝜂

 
𝑡
𝜂

𝑒 𝑑𝑡
( )

𝑒
( )

− 𝑒

. 

Define 𝑇𝐴 ,  as the event of alerting a true alarm given that the shift occurs in time interval 

[(𝑗 − 1)ℎ, 𝑗ℎ] and there are 𝑥  nonconforming units found in the (𝑗 − 1) samples. Then, the 

expected number of uninspected nonconforming units given a true alarm is  
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𝐸 𝑉 𝑇𝐴 , = (𝑗 − 1)ℎ + 𝐸 𝜏 , 𝜇 − (𝑗 − 1) 𝑝 +  𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ]ℎ −

𝐸 𝜏 , 𝜇 − 𝐸[𝑁|𝐽 = 𝑗, 𝑋 = 𝑥 ] 𝑝 .  

Therefore, the expected number 𝐸[𝑉 ] and the expected cost 𝐸[𝐶𝑈𝑁 ] of uninspected 

nonconforming units produced in one inspection cycle can be expressed as 

𝐸[𝑉 ] = 𝐸 𝑉 𝐹𝐴 𝑃 𝐹𝐴   + 𝐸 𝑉 𝑇𝐴 , 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ) 

                +𝜔 𝐸 𝑉 𝑇𝐴 , 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ), 

 

 

 

(3.37) 

𝐸[𝐶𝑈𝑁 ] = 𝑐 𝐸[𝑉 ]. (3.38) 

4.2.4. Time and cost of maintenance 

As explained previously in the integrated model, the preventive maintenance at the time of the 

false alarm is a function of the Weibull distribution CDF and 𝑇 . Although scheduled maintenance 

is not performed here, the variable preventive maintenance time is expressed as a fraction of 𝑇  as 

follows: 

𝑡 , = 𝑡 + 1 − 𝑒 𝑇 , 

where 𝑡 ,  represents the time of preventive maintenance performed if a false alarm is alerted at 

time 𝑡 . 

The expected maintenance time and cost, 𝐸[𝑀𝑇 ] and 𝐸[𝑀𝐶 ], are given as follows, 

respectively: 
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      𝐸[𝑀𝑇 ] = 𝑇 + 𝑡 , 𝑃 𝐹𝐴 +  (𝑇 +𝑡 )𝑃(𝑇𝐴),  (3.39) 

𝐸[𝑀𝐶 ] = 𝑐 𝑇 + 𝑐 𝑡 𝑃 𝐹𝐴 + 𝐶 𝑃(𝑇𝐴), (3.40) 

where 𝑃(𝑇𝐴) denotes the total probability of alerting a true alarm and is given by 

      𝑃(𝑇𝐴) = 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ) + 𝜔 𝑃(𝐽 = 𝑗, 𝑋 = 𝑥 ).  

4.2.5. Cost of lost production 

The expected cost of lost production is 

𝐸[𝐿𝑃𝐶 ] = 𝑐 𝜇𝐸[𝑀𝑇 ]. (3.41) 

4.2.6. Expected inspection cycle length and cost 

The expected cycle length and cost, 𝐸[𝐶𝐿 ] and 𝐸[𝐶𝐶 ], are given as follows, respectively: 

𝐸[𝐶𝐿 ] = 𝐸[𝐶] + 𝐸[𝑀𝑇 ], (3.42) 

𝐸[𝐶𝐶 ] = 𝐸[𝑆𝐶 ] + 𝐸[𝑅𝐶 ] + 𝐸[𝐶𝑈𝑁 ] + 𝐸[𝑀𝐶 ] + 𝐸[𝐿𝑃𝐶 ] (3.43) 

4.2.7. Mathematical formulation of the sampling model 

The mathematical formulation of the optimization problem under the sampling policy is given by 

min
,

 𝐿𝑅𝐶𝑅 =
𝐸[𝐶𝐶 ]

𝐸[𝐶𝐿 ]
                                                 (3.44) 

Subject to  𝑟 ∈  integers, 𝑟 ≥ 0,   ℎ > 0, (3.44.1) 

where 𝐿𝑅𝐶𝑅  is the long-run cost rate of the sampling policy. In this formulation, the long-run 

cost rate of the sampling model 𝐿𝑅𝐶𝑅  is minimized with respect to the two decision variables 𝑟 

and ℎ as illustrated in equation (3.44). Like the integrated 𝑟 is nonnegative and ℎ is continuous 

positive as seen in equation (3.44.1). 
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4.3. Scheduled maintenance model 

In this model, no sampling is carried out and maintenance is only performed at the scheduled time. 

The objective of this model is to find the optimal maintenance interval 𝑚 at which maintenance is 

carried out and the long-run cost rate is minimized.  

4.3.1. Cost of uninspected nonconforming units  

Let 𝑇 ,  represent the time until a shift has occurred, then 𝐸 𝑇 ,  is obtained as 

𝐸 𝑇 , =
∫ 𝑡 

𝑡
𝜂

𝛽
𝜂

 𝑒 𝑑𝑡

1 − 𝑒

. 

At time 𝑚, the process is either found shifted or not and therefore, the expected number and cost 

of nonconforming units produced, 𝐸[𝑉 ] and 𝐸[𝐶𝑈𝑁 ], are given as follows, respectively: 

 𝐸[𝑉 ] = 𝑚𝜇𝑝 𝑒 + 𝐸 𝑇 , 𝜇𝑝 + 𝑚 − 𝐸 𝑇 , 𝜇𝑝 1 − 𝑒 , (3.45) 

𝐸[𝐶𝑈𝑁 ] = 𝑐 𝐸[𝑉 ], (3.46) 

where 𝑚𝜇𝑝  represents the number of uninspected nonconforming units produced if the process 

has not shifted by time 𝑚, whereas 𝐸 𝑇 , 𝜇𝑝  and 𝑚 − 𝐸 𝑇 , 𝜇𝑝  represent the expected 

number of nonconforming units produced in the in-control and out-of-control periods, 

respectively, if the process has shifted by time 𝑚. 

4.3.2. Time and cost of maintenance 

At time 𝑚, an investigation is performed to determine whether the process has shifted or not, and 

hence, preventive or corrective maintenance is carried out, accordingly. The expected time and 

cost of maintenance, 𝐸[𝑀𝑇 ] and 𝐸[𝑀𝐶 ], are given by 
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𝐸[𝑀𝑇 ] = (𝑇 + 𝑇 )𝑒 + (𝑇 + 𝑡 ) 1 − 𝑒 , (3.47) 

𝐸[𝑀𝐶 ] = (𝑐 𝑇 + 𝑐 𝑇 )𝑒 + 𝐶 1 − 𝑒 . (3.48) 

As shown above, scheduled preventive maintenance with time 𝑇  is performed if the 

investigation reveals that there is no shift. Otherwise, scheduled corrective maintenance is carried 

out with time 𝑡 . For each kind of maintenance, the time of investigation (concluding no shift or 

shift) is added. 

4.3.3. Cost of lost production 

The expected cost of lost production 𝐸[𝐿𝑃𝐶 ] is obtained as 

𝐸[𝐿𝑃𝐶 ] = 𝑐 𝜇𝐸[𝑀𝑇 ] (3.49) 

4.3.4. Expected inspection cycle length and cost 

In the maintenance model, the length of the inspection cycle consists of the time of operation (time 

until scheduled maintenance) 𝑚 and the time of maintenance. Since no sampling is carried out, the 

cycle cost consists only of costs of uninspected nonconforming units, maintenance, and lost 

production. The expected cycle length and cost of the maintenance model, 𝐸[𝐶𝐿 ] and 𝐸[𝐶𝐶 ], 

are given as follows, respectively: 

𝐸[𝐶𝐿 ] = 𝑚 + 𝐸[𝑀𝑇 ], (3.50) 

𝐸[𝐶𝐶 ] = 𝐸[𝐶𝑈𝑁 ] + 𝐸[𝑀𝐶 ] + 𝐸[𝐿𝑃𝐶 ] (3.51) 

4.3.5. Mathematical formulation of the maintenance model 

The mathematical formulation of the optimization problem under the maintenance policy is  

min 𝐿𝑅𝐶𝑅 =
𝐸[𝐶𝐶 ]

𝐸[𝐶𝐿 ]
,                                                  (3.52) 



103 
 

subject to 𝑚 > 0.   (3.52.1) 

In this formulation, the long-run cost rate of the maintenance model 𝐿𝑅𝐶𝑅  is minimized with 

respect to 𝑚 as shown in equation (3.52). The decision variable 𝑚 is continuous and positive as 

represented by equation (3.52.1). 

5. Numerical example  

In this section, a numerical example is provided to illustrate the proposed integrated maintenance 

and sampling plan. Sensitivity analysis is carried out to analyze the influence of model parameters 

on the obtained solutions. To depict the performance of the integrated plan, the optimal solutions 

are compared to the optimal solutions of the other two individual models of sampling and 

maintenance.  

In an automatic powder coating line as shown in Figure 3.8, small fabricated steel products 

such as cleats and base plates are powder coated in a closed chamber where sampling by attributes 

is employed. The nozzles of the guns that spray powder on products could wear out due to usage 

and accumulation of dry powder and dirt. As a result, the contaminated powder will nonuniformly 

sprayed coatings. 

 

Figure 3.8. Maintenance and sampling in a powder coating system. 
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For this system, corrective maintenance is performed to replace worn nozzles, clean unworn 

ones, and perform other necessary adjustments. On the contrary, upon scheduled preventive 

maintenance, all nozzles are cleaned, and necessary adjustments are made. For both kinds of 

maintenance, the guns are dismantled and the whole spraying system is flushed. Preventive 

maintenance at the false alarm time aims at performing minimum cleaning of nozzles, and it 

depends on the accumulated dirt and power. The parameters related to this system are shown in 

Table 3.2. Specially, we have 𝑐 > 𝑐 , 𝑡 > 𝑇 , and it is assumed that 𝑇 > 𝑇  as more time 

is often needed to assure exactly that there is no shift in the system. 

Table 3.2: Parameters used in the numerical example 

Cost parameters   Time parameters  Process parameters 

𝑐 =5 𝑐 =500  𝑡 =0.5 𝑇 =0.25  𝑝 =0.05 𝛽 =1.5 

𝑐 =5 𝑐 =500  𝑇 =1.5 𝑇 =0.5  𝑝 =0.10 𝜂 =25 

𝑐 =20 𝑐 =1000  𝑡 =3   𝜇 =1000  

𝑐 =35 𝑐 =2000       
 

The objective function of the integrated model formulated in Section 4 is mathematically 

complex. Thus, in this study, the genetic algorithm (GA) is used to solve this problem. GA is a 

stochastic method that doesn’t require derivatives and is able to search for different solutions 

within one operation, and hence, the chance of finding a global optimum and avoiding being 

trapped in the local optimum increases (Charongrattanasakul and Pongpullponsak, 2011). 

5.1. Solution procedure 

The GA solver in MATLAB R2019b is used to solve the mixed-integer nonlinear problem 

(MINLP) of the integrated model and the other two separate models of sampling and maintenance. 

The population size is chosen to be 10 since only three decision variables are to be determined. 
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Any supplied settings for mutation, crossover, and creation functions are ignored by the GA solver 

for integer problems. Instead, special mutation, crossover, and creation functions are used 

(MATLAB & Simulink, 2019). In order to make the search process for an optimal solution 

efficient, the constraint tolerance and the function tolerance are set to their default values, i.e., 

1 × 10  and 1 × 10 , respectively. Moreover, UseParallel option is used to compute the fitness 

value and the nonlinear constraint feasibility in parallel in order to speed up the computation. GA 

is designed to stop if any of the following criteria is met: 

 The maximum number of generations (iterations) is reached. Here, the default number is 

used (i.e., 100×number of decision variables). 

 The average change in the penalty fitness value is less than the function tolerance over 

stall generations where the maximum stall generations is 50. 

 Time limit is reached, i.e., GA runs for a specified time. The default setting is used, i.e., 

infinity. 

 There is no improvement in the objective function during an interval of time called stall 

time limit. Here, the default setting of the stall time limit is used (i.e., infinity). 

The relationship between 𝑛 and ℎ is given by the constraint (𝑛 − 1)ℎ < 𝑍. As 𝑛 increases, ℎ 

decreases, and vice versa. If 𝑛 = 1, ℎ falls in the range 0 < ℎ < ∞. If 𝑛 = 2, ℎ falls in the range 

0 < ℎ < 𝑍, and if 𝑛 = 3, ℎ falls in the range 0 < ℎ < 𝑍 2⁄ , and so on. Since ℎ is a continuous 

variable, the ranges of 𝑛 and ℎ are very large, and hence, the solution space is huge. To facilitate 

computation, the problem is divided into subproblems with respect to 𝑟. At each level of 𝑟, 𝑟 =

0, 1, 2, ⋯, GA is used to solve each subproblem according to the solution procedure illustrated 

below in Table 3.3. The same procedure is used to solve the individual models of sampling and 

scheduled maintenance.  
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When 𝑟 = 0, 𝑛 ≥ 1 (since 𝑛 > 𝑟) and ℎ → ∞. For 𝑟 = 1, 𝑛 ≥ 2 and ℎ < 𝑍, and for 𝑛 ≥ 3, 

0 < ℎ < 𝑍 2⁄ . The upper bound of ℎ when 𝑟 = 0 is set as multiples of the upper bound of ℎ when 

𝑟 = 1. Let ℎ  and 𝑛  denote the upper bounds of ℎ and 𝑛, respectively, at a given 𝑟. Also, let 𝑒 be 

a positive integer multiplier. Then, ℎ = 𝑒𝑍. As shown in the solution procedure in Table 3.3, 

ℎ = = , where 𝑛  is the lowest value of 𝑛 given 𝑟, i.e., 𝑛 = 𝑟 + 1. 𝑛  and 𝑒 are chosen 

by the user.  

Table 3.3: Solution procedure to solve the MINLP of the integrated model. 

Step 0. Begin with 𝑟 ← 0. Set ℎ =
𝑒𝑍,   𝑟 = 0

,    𝑟 ≥ 1
, and 𝑛 =

> 1,           𝑟 = 0
> 𝑛 ,,    𝑟 ≥ 1. 

Step 1. Solve the problem using GA. 

Step 2. If 𝑛∗ = 𝑛 , increase 𝑛  and return to Step 1. 

           Otherwise, if 1 ≤ 𝑛∗ < 𝑛 , record the best 𝐿𝑅𝐶𝑅(𝑟, 𝑛∗, ℎ∗), and go to Step 3. 

Step 3. Increment 𝑟 by 1 and return to Step 0. Record the best 𝐿𝑅𝐶𝑅(𝑟 + 1, 𝑛∗, ℎ∗) 

Step 4. If 𝐿𝑅𝐶𝑅(𝑟 + 1, 𝑛∗, ℎ∗) < 𝐿𝑅𝐶𝑅(𝑟, 𝑛∗, ℎ∗), then return to Step 3. ; otherwise, output the best 

            solution 𝐿𝑅𝐶𝑅(𝑟, 𝑛∗, ℎ∗). 

The problem is solved with processor Intel(R) Core(TM) i7-7500U CPU @2.7GHz 2.90 GHz. 

20 instances are solved at each 𝑟 level. Table 3.4 shows the solution for each instance and the 

corresponding computational time (CPUT). Searching for an optimal solution stops at 𝑟 = 2, at 

which, the optimal solution exceeds the optimal solution at 𝑟 = 1. The problem is also solved for  

𝑟 = 3, and five instances are run, but 𝐿𝑅𝐶𝑅 keeps increasing. The optimal solution at 𝑟 = 3 is  

𝑛 = 123, ℎ = 0.203, and 𝐿𝑅𝐶𝑅 = 2652.64, and the average CPUT=5653 seconds. 

Therefore, the optimal solution obtained is 𝑟∗ =1, 𝑛∗ =53, and ℎ∗ =0.402. The optimal long-

run cost rate is 𝐿𝑅𝐶𝑅∗ =2637.26. The optimal solution of the corresponding sampling model is 

𝑟∗ =1, ℎ∗ =0.338, and 𝐿𝑅𝐶𝑅∗ =2644.17, whereas the optimal solution of the corresponding 

maintenance model is 𝑚∗ =15.56 and 𝐿𝑅𝐶𝑅∗ =2655.20.  
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Table 3.4: Optimal solutions at different levels of 𝑟. 

Instance 
number 

𝑟 = 0  𝑟 = 1  𝑟 = 2 

𝑛 ℎ 𝐿𝑅𝐶𝑅 
CPUT 
(sec) 

 𝑛 ℎ 𝐿𝑅𝐶𝑅 
CPUT 
(sec) 

 
𝑛 ℎ 𝐿𝑅𝐶𝑅 

CPUT 
(sec) 

1 20 0.946 2648.23 76.86  18 0.931 2651.56 112.85  88 0.282 2643.00 1416.23 
2 50 0.481 2681.15 340.69  25 0.717 2646.79 228.49  55 0.361 2649.11 370.25 
3 6 2.748 2647.67 26.22  49 0.424 2637.42 546.77  76 0.294 2643.25 1042.85 
4 10 1.724 2645.99 31.55  20 0.851 2650.07 263.17  90 0.262 2642.04 2637.08 
5 12 1.466 2645.80 36.09  36 0.506 2640.38 181.97  91 0.261 2642.04 2662.65 
6 15 1.200 2646.20 54.05  92 0.276 2650.20 1696.2  66 0.321 2645.41 1313.13 
7 16 1.159 2646.37 54.87  51 0.411 2637.29 443.90  92 0.258 2642.06 2868.17 
8 13 1.366 2645.83 47.96  55 0.395 2637.29 639.74  89 0.265 2642.06 2367.75 
9 13 1.375 2645.83 40.07  52 0.406 2637.70 532.77  91 0.260 2642.04 2160.75 

10 5 3.278 2648.43 19.57  51 0.411 2637.29 635.13  72 0.278 2643.62 1604.80 
11 11 1.585 2645.85 36.13  53 0.402 2637.26 622.84  84 0.270 2642.16 2257.04 
12 57 0.471 2683.86 317.93  54 0.398 2637.27 716.70  90 0.261 2642.04 2609.31 
13 4 4.037 2649.38 162.10  60 0.379 2637.59 770.12  89 0.263 2642.04 2515.38 
14 14 1.287 2645.94 74.82  52 0.406 2637.70 659.54  32 0.540 2660.86 536.30 
15 9 1.894 2646.24 33.79  58 0.379 2637.49 729.35  27 0.646 2664.00 275.22 
16 12 1.472 2645.79 40.75  51 0.413 2637.30 216.85  93 0.257 2642.08 2798.39 
17 6 2.748 2647.67 26.13  53 0.402 2637.26 606.17  89 0.263 2642.04 2372.55 
18 14 1.291 2645.94 52.11  53 0.402 2637.27 719.82  93 0.257 2642.08 2822.81 
19 21 0.906 2648.90 84.72  92 0.276 2650.20 1794.5  77 0.289 2642.95 1769.28 
20 14 1.275 2645.98 49.26  51 0.411 2637.29 632.96  87 0.267 2642.09 2084.17 

Average (CPUT) 80.28     637.50     1924.21 

 

5.2. Sensitivity analysis 

To investigate the effect of the model parameters on the optimal solutions, the model parameters 

given in Table 3.2 are changed by ±25%. The sensitivity analysis is performed for the three models, 

and the results are illustrated in Table 3.5. As shown in Table 3.5, the integrated model generally 

outperforms the separate models of sampling and maintenance except for two cases. For the first 

case, decrementing 𝑝  by 25% makes 𝑝  not large relative to 𝑝 , and hence, losses due to producing 

nonconforming units in the out-of-control state reduce. It may be unnecessary to perform a 

frequent inspection, and it is more economical to follow the maintenance or the integrated policies 

since the process becomes more stable. For the other case, as 𝛽 is reduced by 25%, the sampling 

policy becomes more economical. Since the shift is a result of a component failure, low 𝛽(> 1) 

means that the failure rate increases slower than a failure rate of higher 𝛽, and therefore, the 
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maintenance policy becomes less preferable. In both cases, the integrated policy can be used since 

𝐿𝑅𝐶𝑅 is very close to 𝐿𝑅𝐶𝑅  or 𝐿𝑅𝐶𝑅 .  

Table 3.5: Sensitivity analysis on model parameters. 

Incremented 
/decremented 

by 

Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 
+25%𝑇  16.766 2762.88  1 0.328 2730.71  1 66 0.362 2727.24* 

−25%𝑇  14.269 2536.91  2 0.251 2551.94  0 3 4.920 2535.37* 

+25%𝜇 15.275 3268.41  2 0.233 3238.44  1 60 0.368 3235.66* 

−25%𝜇 16.045 2041.63  1 0.360 2045.27  0 9 1.955 2037.03* 

+25%𝜂 17.695 2544.52  2 0.271 2521.02  1 61 0.425 2517.36* 

−25%𝜂 13.268 2817.17  1 0.302 2824.19  0 6 2.344 2812.67* 

+25%𝛽 15.025 2567.88  2 0.211 2562.88  1 52 0.366 2550.67* 

−25%𝛽 17.324 2767.20  2 0.321 2740.72*  2 110 0.327 2740.94 
+25%𝑡  15.561 2655.20  2 0.261 2662.03  1 39 0.501 2650.72* 

−25%𝑡  15.561 2655.20  1 0.312 2622.30  1 69 0.339 2619.10* 

+25%𝑐  12.951 3084.56  1 0.274 3057.02  1 64 0.307 3052.03* 

−25%𝑐  19.675 2198.60  1 0.468 2209.14  0 4 5.144 2196.37* 

+25%𝑐  15.561 2655.20  1 0.350 2656.68  1 46 0.443 2647.51* 

−25%𝑐  15.561 2655.20  2 0.232 2626.66  2 101 0.243 2624.92* 

+25%𝑐  15.940 2702.78  1 0.344 2692.31  1 52 0.412 2685.04* 

−25%𝑐  15.186 2607.25  1 0.332 2595.92  1 54 0.392 2589.35* 

+25%𝑐  18.347 2817.97  2 0.290 2810.09  1 46 0.512 2803.98* 

−25%𝑐  12.638 2471.14  1 0.274 2461.77  1 58 0.319 2456.30* 

+25%𝑇  16.013 2670.73  2 0.257 2663.68  1 48 0.444 2656.81* 

−25%𝑇  15.098 2638.94  1 0.317 2621.69  1 58 0.366 2616.01* 

+25%𝑐  15.346 2687.39  1 0.330 2677.91  1 52 0.398 2670.59* 

−25%𝑐  15.770 2622.89  2 0.250 2610.11  1 54 0.404 2603.75* 

+25%𝑡  15.092 2723.88  1 0.321 2716.21  1 48 0.411 2708.69* 

−25%𝑡  16.013 2583.71  2 0.256 2567.72  1 54 0.416 2562.67* 

+25%𝑝  17.176 2966.08  2 0.312 2977.68  0 4 4.454 2963.73* 

−25%𝑝  14.595 2340.34  1 0.268 2297.52  1 84 0.291 2293.74* 

+25%𝑝  12.548 2763.99  2 0.207 2692.32  1 77 0.299 2690.90* 

−25%𝑝  25.528 2486.41*  1 0.683 2520.64  0 2 12.92 2487.12 
+25%𝑐  15.561 2655.20  1 0.338 2644.35  1 53 0.404 2637.42* 

−25%𝑐  15.561 2655.20  1 0.338 2643.98  1 52 0.406 2637.12* 

+25%𝑐  15.544 2657.89  1 0.338 2646.99  1 53 0.402 2640.05* 

−25%𝑐  15.579 2652.51  1 0.339 2641.35  1 53 0.403 2634.47* 

+25%𝑇  15.536 2659.02  1 0.337 2648.19  1 54 0.405 2641.24* 

−25%𝑇  15.587 2651.37  1 0.339 2640.14  1 53 0.403 2633.26* 

+25%𝑐  15.642 2657.98  1 0.342 2647.93  1 55 0.396 2640.86* 

−25%𝑐  15.481 2652.40  1 0.334 2640.37  1 54 0.395 2633.68* 
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Noticeable changes in the decision variables have been observed when parameters such as 𝜂, 

𝛽, 𝑇 , 𝜇, 𝑐 , 𝑐 , 𝑐 , 𝑝 , and 𝑝  are changed. Some of those parameters have an obvious impact 

on all policies. For instance, 𝑚 increases from 12.55 to 25.53 as 𝑝  decreases from 0.125 (+25%) 

to 0.075 (-25%) causing 𝐿𝑅𝐶𝑅  to approach 𝐿𝑅𝐶𝑅. For the same setup, ℎ jumps to 12.92 and 0.68 

in the integrated and sampling policies, respectively. Since 𝑝 =0.075 becomes close to 𝑝 =0.05, a 

smaller number of nonconforming units are produced, and hence, a frequent inspection may be 

unnecessary. Some other parameters have more influence on certain policies than others. For 

example, the maintenance policy is not affected by changing 𝑐  since there is no inspection 

carried out in this policy whereas, under the other two policies, a small 𝑐  allows 𝑛 and 𝑟 to 

increase, and ℎ to decrease so more units can be inspected. The changes in 𝑐 , 𝑐 , 𝑇 , 𝑐  and 

𝑐  don’t make a noticeable influence on 𝑚, 𝑟, 𝑛, and ℎ in all policies. Further sensitivity analysis 

is performed on some parameters as illustrated as follows. 

5.2.1. Effect of 𝒑𝟎 

Table 3.6 and Figure 3.9.a depict the effect of 𝑝  on the optimal solutions of the three models. 

When 𝑝  is very small relative to 𝑝 , 𝑛 becomes very large relative to 𝑟, and therefore, the 

probability that the inspection cycle ends with a false alarm or a true alarm increases. This enables 

the process to stay more in the in-control state to avoid excessive costs of operating in the out-of-

control state and benefits from the reduced maintenance cost of a false alarm. Since there is no 

inspection in the maintenance policy, the process may enter the out-of-control state earlier, and 

𝐿𝑅𝐶𝑅  becomes much higher than 𝐿𝑅𝐶𝑅 and 𝐿𝑅𝐶𝑅 . For instance, 𝐿𝑅𝐶𝑅  is 6.3% higher than 

𝐿𝑅𝐶𝑅 for 𝑝 = 0.01875. Moreover, 𝑚 reduces to avoid running longer in the out-of-control time. 

When 𝑝  increases and approaches 𝑝 , the benefit of carrying out inspection reduces, and hence 
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𝑚 increases. For instance, when 𝑝 = 0.8125, ℎ ≈ 𝑚 =25.2, and the integrated policy reduces to 

the maintenance policy since 𝑝  is very close to 𝑝 , and there is no need for inspection. 

Table 3.6: Effect of 𝑝  on the optimal solutions of all models. 

𝑝  
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 
0.01875 13.69 1864.12  1 0.1819 1756.22  1 150 0.1906 1753.18* 

0.025 13.94 2023.24  1 0.2091 1939.04  1 130 0.2168 1936.37* 

0.03125 14.24 2182.00  1 0.2379 2119.71  1 104 0.2513 2116.69* 

0.0375 14.60 2340.34  1 0.2683 2297.52  1 84 0.2906 2293.74* 

0.04375 15.03 2498.13  1 0.3012 2472.36  1 67 0.3388 2467.31* 

0.05 15.56 2655.20  1 0.3382 2644.17   1 53 0.4016 2637.26* 

0.05625 16.25 2811.31  2 0.2740 2812.71  1 41 0.4956 2803.40* 

0.0625 17.18 2966.08  2 0.3117 2977.68  0 4 4.4539 2963.73* 

0.06875 18.51 3118.84  1 0.5114 3138.68  0 3 6.3297 3117.91* 

0.075 20.66 3268.31  1 0.6378 3293.39  0 2 10.4782 3268.26* 

0.08125 25.16 3411.33*  1 0.9830 3436.23  0 1 25.2338 3411.94 

 

5.2.2. Effect of 𝒑𝟏 

As shown in Table 3.7 and Figure 3.9.b, when 𝑝  is slightly higher than 𝑝 , the process almost 

runs with no considerable shift, and hence, 𝑚 tends to be large and inspection may become 

unnecessary. When 𝑝  is 0.075 or 0.0875, 𝐿𝑅𝐶𝑅  approximately equals 𝐿𝑅𝐶𝑅. Even though ℎ in 

the sampling policy increases at those values of 𝑝  in order to reduce inspection frequency and get 

some reduction in 𝐿𝑅𝐶𝑅 , 𝐿𝑅𝐶𝑅  is still higher than the corresponding 𝐿𝑅𝐶𝑅 and 𝐿𝑅𝐶𝑅 . On the 

other hand, as 𝑝  increases, inspection becomes more important, and it can be carried out either by 

the integrated or the sapling policies. For 0.075 ≤ 𝑝 ≤ 0.125, it is more economical to carry out 

inspection by the integrated policy to benefit from the scheduled maintenance, while beyond 

𝑝 =0.125, either the integrated or the sampling policies can be used. With 𝑟=2 and small ℎ in 

both integrated and sampling policies, the process runs with frequent inspection and without a 
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signal for a longer time. It is worth mentioning that the maintenance policy performs poorly with 

high 𝑝 . For instance, 𝐿𝑅𝐶𝑅  at 𝑝 =0.2,0.1875, 0.175, and 0.1625 is higher than 𝐿𝑅𝐶𝑅 by 8.3%, 

7.5%, 6.6%, and 5.7%, respectively. 

Table 3.7: Effect of 𝑝  on the optimal solutions of all models. 

𝑝  
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 

0.075 25.53 2486.41*  1 0.6827 2520.64  0 2 12.9221 2487.12 

0.0875 18.50 2583.61  1 0.4064 2600.94  0 4 4.7768 2582.11* 

0.1 15.56 2655.20  1 0.3382 2644.17   1 53 0.4016 2637.26* 

0.1125 13.79 2713.76  2 0.2208 2672.41  1 69 0.3247 2668.96* 

0.125 12.55 2763.99  2 0.2069 2692.32  1 77 0.2990 2690.90* 

0.1375 11.62 2808.32  2 0.1976 2707.42  1 85 0.2807 2707.16* 

0.15 10.88 2848.17  2 0.1909 2719.26  2 139 0.1922 2718.34* 

0.1625 10.28 2884.50  2 0.1859 2728.79  2 142 0.1869 2728.54* 

0.175 9.77 2917.96  2 0.1820 2736.61  2 150 0.1826 2736.41* 

0.1875 9.34 2949.02  2 0.1759 2743.19*  2 159 0.1683 2744.09 

0.2 8.96 2978.05  2 0.1763 2748.59*  2 160 0.1674 2749.30 

 

 

Figure 3.9. Effects of 𝑝  and 𝑝  on 𝐿𝑅𝐶𝑅 of all policies. 
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5.2.3. Effect of 𝜼 

Table 3.8 and Figure 3.10.a illustrate the influence 𝜂 on the performance of the three policies.  

Table 3.8: Effect of 𝜂 on the optimal solutions of all models. 

𝜂 
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 

9.375 9.8817 3296.86*  1 0.3219 3349.05  0 2 5.0175 3298.12 

12.5 10.8624 3083.35  1 0.2803 3119.56  0 3 3.717 3082.94* 

15.625 12.0649 2931.42  1 0.287 2951.4  0 4 3.1292 2929.09* 

18.75 13.268 2817.17  1 0.3021 2824.19  0 6 2.3437 2812.67* 

21.875 14.4354 2727.62  1 0.3197 2724.53  1 47 0.4008 2715.89* 

25 15.5614 2655.2  1 0.3382 2644.17  1 53 0.4016 2637.26* 

28.125 16.6467 2595.2  2 0.258 2577.51  1 58 0.4098 2572.19* 

31.25 17.6946 2544.52  2 0.2709 2521.02  1 61 0.4253 2517.36* 

34.375 18.7082 2501.04  2 0.2842 2472.86  1 65 0.4365 2470.49* 

37.5 19.6909 2463.24  2 0.2973 2431.25  1 68 0.4508 2429.9* 

40.625 20.6452 2430.02  2 0.3101 2394.9  2 113 0.3195 2394.04* 

 

As known, 𝜂 refers to the characteristic life of a component, i.e., for the Weibull distribution, the 

time at which the CDF value equals 0.6321. Therefore, a smaller 𝜂 means that the process takes a 

shorter time before a shift occurs since the failure rate becomes higher. Although inspection can 

help in detecting a shift, it might be subject to type II error. Hence, performing maintenance at 

shorter scheduled times with or without inspection is more economical for small values of 𝜂 as 

shown for 𝜂 ≤15.625 where 𝐿𝑅𝐶𝑅 ≤ 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅 .  

On the contrary, as 𝜂 increases, the failure rate slows down, and the process stays in control 

for a longer time. This permits to perform multiple inspections that could speed up shift detection 

or generate a false alarm. However, to maximize the benefit from operating in the in-control period, 

𝑟 increases to delay the occurrence of a false alarm as illustrated for 𝜂 ≥28.125 in the sampling 

policy and for 𝜂 ≥40.625 in the integrated policy.  
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Generally, 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅  for 18.75≤ 𝜂 ≤ 37.5 since the integrated policy benefits 

from both the scheduled maintenance time and the reduced cost of false alarm. The integrated 

policy doesn’t benefit much from the scheduled maintenance as 𝜂 ≥40.625 since the failure rate 

becomes very slow. Overall, the maintenance or the integrated policies can be used for very low 

𝜂, the integrated policy should be used for medium 𝜂, and the sampling or the integrated policies 

can be used for large 𝜂 as seen in Figure 3.10.a. 

5.2.4. Effect of 𝜷 

 In Table 3.9 and Figure 3.10.b, all policies are examined for different values of 𝛽.  

Table 3.9: Effect of 𝛽 on the optimal solutions of all models. 

𝛽 
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 

1.125 17.32 2767.20  2 0.3208 2740.72*  2 110 0.3268 2740.94 

1.3125 16.21 2707.97  1 0.3797 2691.56*  2 112 0.2392 2695.06 

1.5 15.56 2655.20  1 0.3382 2644.17  1 53 0.4016 2637.26* 

1.6875 15.20 2608.70  1 0.3113 2601.36  1 52 0.3815 2591.37* 

1.875 15.03 2567.88  2 0.2105 2562.88  1 52 0.3663 2550.67* 

2.0625 14.96 2532.05  2 0.2021 2528.39  1 49 0.3712 2514.82* 

2.25 14.98 2500.51  2 0.1967 2498.37  1 49 0.3665 2483.40* 

2.4375 15.04 2472.65  2 0.1933 2472.17  1 47 0.3772 2455.81* 

2.625 15.14 2447.93  2 0.1912 2449.30  1 46 0.3799 2431.45* 

2.8125 15.25 2425.89  2 0.1900 2429.29  1 45 1.6179 2409.88* 

3 15.39 2406.16  2 0.1892 2411.72  1 45 0.3881 2390.69* 

 

As explained above in the effect of 𝜂, the sampling and the integrated policies are more 

economical than the maintenance policy when the failure rate is slow, and it also applies for 𝛽 too. 

For instance, at time equals to 𝜂, the failure rate is 𝛽 𝜂⁄ . Since 𝛽 generally is small relative to 𝜂, 

the failure rate increases slowly with the increase of 𝛽. This justifies why sampling and integrated 

policies are preferable for a wide range of 𝛽. For instance, for very small 𝛽=1.125, the failure rate 
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is very low, and it may not be necessary to have scheduled maintenance. Basically, for 𝛽 ≤2.4375, 

𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅  whereas, for 𝛽 >2.4375, 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅 < 𝐿𝑅𝐶𝑅  as shown in 

Figure 3.10.b. 

 

Figure 3.10. Effects of 𝜂 and 𝛽 on 𝐿𝑅𝐶𝑅 of all policies. 

5.2.5. Effect of 𝒄𝒄𝒖𝒏 

Table 3.10 and Figure 3.11.a show how  𝑐  affects the performance of all policies.  

The expected total cost of the inspected units produced without inspection in one cycle depends 

on how many units produced with 𝑝  and 𝑝 . The necessity of inspection increases as 𝑐  

increases. While the maintenance policy is economical for low 𝑐 , the integrated policy 

dominates the other two policies for 21.875≤ 𝑐 . The flexibility of the integrated policy allows 

𝑛 to increase and ℎ to decrease for higher 𝑐 , and hence, an alarm could be alerted earlier to 

avoid further losses. At the same time, the maximum cycle length is minimized so scheduled 

maintenance can be expedited. For clarification, the maximum cycle length when 𝑐 =48.125 is 

70*0.2730=19.11 whereas, it is 73*0.2497=18.23 when 𝑐 =52.50. 
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Table 3.10: Effect of 𝑐  on the optimal solutions of all models. 

𝑐  
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 

17.5 32.53 1691.47*  1 1.3224 1714.21  0 1 32.6330 1692.00 

21.875 23.71 1954.67  1 0.6261 1975.85  0 2 12.0282 1954.33* 

26.25 19.67 2198.60  1 0.4677 2209.14  0 4 5.1435 2196.37* 

30.625 17.37 2431.05  1 0.3885 2430.36  1 45 0.4937 2421.90* 

35 15.56 2655.20  1 0.3382 2644.17  1 53 0.4016 2637.26* 

39.375 14.13 2872.69  1 0.3013 2852.68  1 58 0.3494 2846.87* 

43.75 12.95 3084.56  1 0.2740 3057.02  1 64 0.3068 3052.03* 

48.125 11.94 3291.45  1 0.2512 3257.91  1 70 0.2730 3253.59* 

52.5 11.04 3493.82  1 0.2320 3455.80  1 73 0.2497 3451.99* 

56.875 10.24 3691.96  1 0.2154 3650.99  1 75 0.2323 3647.60* 

 

 

Figure 3.11. Effects of 𝑐  and 𝑐  on 𝐿𝑅𝐶𝑅 of all policies. 

5.2.6. Effect of 𝒄𝒍𝒑 

 In Table 3.11 and Figure 3.11.b, the influence of 𝑐  on all policies is investigated.  
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Table 3.11: Effect of 𝑐  on the optimal solutions of all models. 

𝑐  
Maintenance model  Sampling model  Integrated model 

𝑚 𝐿𝑅𝐶𝑅   𝑟 ℎ 𝐿𝑅𝐶𝑅   𝑟 𝑛 ℎ 𝐿𝑅𝐶𝑅 

1.875 7.06 2119.20  0 0.2642 2139.22  0 8 0.9833 2118.48* 

2.5 9.23 2252.66  1 0.2119 2261.99  0 17 0.6694 2245.53* 

3.125 11.03 2367.67  1 0.2428 2364.48  0 17 0.7907 2357.22* 

3.75 12.64 2471.14  1 0.2744 2461.77  1 58 0.3187 2456.30* 

4.375 14.13 2566.37  1 0.3057 2554.81  1 55 0.3611 2548.74* 

5 15.56 2655.20  1 0.3382 2644.17  1 53 0.4016 2637.26* 

5.625 16.96 2738.81  2 0.2662 2728.75  1 50 0.4508 2722.22* 

6.25 18.35 2817.97  2 0.2904 2810.09  1 46 0.5118 2803.98* 

6.875 19.75 2893.24  2 0.3169 2888.84  1 41 0.5934 2882.49* 

7.5 21.19 2965.00  2 0.3469 2964.98  1 36 0.6980 2957.81* 

8.125 22.69 3033.53  2 0.3812 3038.46  1 30 0.8719 3029.93* 

 

The amount of lost production depends on the production rate and the expected maintenance 

time. Surprisingly, the increase in 𝑐  causes 𝑚 to increase which automatically increases the 

expected time and cost of maintenance. Such a trend might be due to that the increase in 𝑐  results 

in longer operational time in order to absorb the increase in the expected total cycle cost since 

𝐿𝑅𝐶𝑅 = 𝐸[𝐶𝐶 ] 𝐸[𝐶𝐿 ]⁄ . For the integrated policy, the increase in 𝑐  from 1.875 to 3.75 

causes 𝑛 to increase and ℎ to decrease to end the cycle earlier by alerting an alarm. For 𝑐  from 

4.375 to 8.125, 𝑛 decreases and ℎ increases in order to maximize the cycle length and benefit from 

operating with longer cycle length. The same applies to the sampling policy as 𝑟 increases from 1 

to 2. For the very low and the very high 𝑐 , the integrated policy dominates the other two policies 

mainly because of the scheduled maintenance whereas, for the middle values of 𝑐 , the integrated 

policy benefits more from inspection. This justifies why the sampling policy is less economical 

for low and high values of 𝑐  and why the integrated policy dominates the other two policies for 

the whole range of 𝑐 . 
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6. Conclusion and future work 

In this chapter, an integrated model for attributes sampling and proactive maintenance is 

introduced with a special consideration on maintenance upon a false alarm. Since the inspection 

cycle may end with scheduled maintenance, a true alarm, or the first false alarm, the developed 

model is built with sampling based on binomial and truncated negative binomial distributions. The 

analysis demonstrates that the integrated model generally outperforms the separate models for 

maintenance and sampling and having multiple maintenance opportunities makes the integrated 

model more flexible than the separate alternatives. For instance, for 𝑝 ≤ 0.05, the sampling model 

performs better than the maintenance model whereas, for 𝑝 > 0.05, the maintenance model is 

better. However, for the full range, the integrated model may be used instead. The sensitivity 

analysis shows the benefit of taking the maintenance opportunity upon a false alarm. Indeed, the 

integrated model benefits from the discounted false alarm maintenance more than the scheduled 

maintenance in some situations such as when 𝑝  is small relative to 𝑝  or when 𝜂 is large.  

 This work can be extended in different ways for future research. First, the integrated model 

can be further expanded to involve production schedules and delays, and inventory. Second, 

gradual performance deterioration and complete failure of the production unit can be considered. 

Third, multiple shifts are often encountered in practice and thus are worth further investigation. 

Last, since the process shift may cause both the proportion of nonconforming and the production 

rate to deteriorate, advanced models need to be developed to handle the increased complexity. 
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Chapter 4 : Conclusions and Future Research 

Quality and maintenance are two key operational areas in any production system. Sampling is an 

SPC approach that is used to alert for unusual variations that may occur in production systems. 

The aims of sampling are to control the quality of produced products and to alert for maintenance 

if a shift in a process has occurred.  

This dissertation focuses on modelling sampling schemes with attributes in production systems 

that produce discrete products. Two studies are conducted in Chapters 2 and 3. While a sampling 

model in a multistage system with multiple assignable causes is developed in Chapter 2, an 

integrated model of sampling and scheduled maintenance is proposed in Chapter 3. 

1. Conclusions 

In Chapter 1, a multistage system of two unreliable machines is studied with one assignable cause 

that could occur on each machine. The study mainly aims at modelling such systems where a 

propagating shift can occur downstream. Therefore, a stochastic methodology based on the 

competencies of shifts is constructed to model all possible scenarios. This methodology forms the 

base that could be extended for more than two-machine systems. The sampling model is built to 

compromise between the quantity and the quality of the produced products. An economic-

statistical design with constraints on availability, effective production rate, and average time to 

signal is built. Results show the applicability and usability of the model. Moreover, sensitivity 

analyses on some parameters and decision variables provide managerial insights that could be 

beneficial for practitioners. 

In Chapter 2, an integrated model of sampling and scheduled maintenance is proposed. In this 

model, the scheduled maintenance and the parameters of sampling are determined jointly. Multiple 

maintenance opportunities are offered by this model. In addition to the traditional maintenance 
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opportunities at the times of true alarm and scheduled maintenance, a preventive maintenance 

opportunity at the time of the false alarm is included. The maintenance time of this opportunity is 

assumed to increase with time, and hence, the maintenance time is expressed as a function of the 

Weibull distribution CDF. Results show that the integrated model generally outperforms the 

separate models of maintenance and sampling. The flexibility of the integrated model makes it 

used instead of the separate models for wide ranges of model parameters. Furthermore, the benefit 

of having a false alarm opportunity is illustrated in the sensitivity analysis. Last, the developed 

model can be used for sampling with the truncated negative binomial distribution.  

2. Future research 

Three topics are proposed for future research. The first topic aims at developing an integrated 

model of selective maintenance and sampling on a single machine. An integrated model of 

selective maintenance and sampling is explained in the second topic. Those two topics are 

proposed because of all selective maintenance model focus on maximizing a quantitative measure 

and ignore the quality of produced products. The third topic extends the study investigated in 

Chapter 2 by considering more than two competing shifts.  

2.1. An integrated model of sampling and selective maintenance on a single machine  

Selective maintenance is a new topic in maintenance that is first introduced by Rice et al. (1998). 

Some systems are required to perform a sequence of operations (or missions) with finite breaks 

between each operation. It may be impossible to perform all desirable maintenance activities 

within the maintenance break and before the beginning of the next mission due to limitations on 

maintenance resources (Cassady, 2001). Figure 4.1 illustrates the basic selective maintenance 

model. 
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Figure 4.1: The basic selective maintenance model. 

A shown in Figure 4.1., the system is available for maintenance at the end of mission 𝑘. An 

essential assumption of all selective maintenance models is that the states of the system’s 

components are exactly known at the end of mission 𝑘 and before starting maintenance. A 

component at the end of mission 𝑘 could be in the operational state or in the failure state (binary-

state component).  

A component could also have a nominal operational state, degraded operational states, and a 

failure state (multistate component). Due to the limited maintenance resources during the 

maintenance break, not all components may be maintained. Given the duration of the next mission 

𝐿(𝑘 + 1), maintenance break time, and maintenance options for each component, a subset of 

components is selected for maintenance such that the performance of the system in the next 

mission 𝑘 + 1 is maximized. The system’s reliability and availability are some examples of system 

performance. 

The integrated design of sampling and selective maintenance aims at maximizing the 

availability of a production system. The production system (or production unit) operates for a 

definite period. At the end of this period, the production unit is available for maintenance. It is 

assumed that the production unit consists of different components, and the failure of any 

component causes the failure of the production unit.  
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During operation, the production process is monitored by a sampling plan by attributes to 

ensure the quality of products produced. A presence of an assignable cause causes the proportion 

of nonconforming (PON) products produced to increase. The shift in quality (an increase of PON) 

cannot be observed without inspecting products. The necessary adjustment to the process is made 

when a shift is detected by sampling. 

Both the system failure and the shift in quality require to stop the system for restoration. It is 

assumed that if a system failure occurs during operation, minimal repair is performed to restore 

the system to the operational state. However, if a quality shift is detected, the assignable cause is 

removed. In both cases, the system is nonoperational (unavailable). Accordingly, the objective of 

the integrated design is to find the best setup of sampling parameters and determine the subset of 

components selected for maintenance such that the system’s availability in the next operational 

period is maximized. As shown in Figure 4.2, the operational period consists of multiple sampling 

cycles where each cycle ends with shift removal. In each cycle, the system is stopped if a false or 

a true alarm is alerted. It also stopped for maintenance to remove the assignable cause.  

In this model, the states of the components are expressed by their ages. A component that 

receives replacement starts the next production period with age zero. A component that is not 

selected for maintenance begins the next duration of the same age that ends within the previous 

duration. Imperfect maintenance reduces the age of a selected component to an age greater than 0 

and less than the age it ends within the previous duration. Different models proposed in the 

literature can be used to model imperfect maintenance. Some of these models are the Kijima type 

I model (Kijima et al., 1988), Kijima type II model (Kijima,1989), improvement factor method 

(Malik, 1979), and hybrid imperfect model (Lin et al., 2000). In some cases, it is not necessary to 

maintain a component to its perfect state to achieve the desired system’s performance in the next 
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mission. Instead, an imperfect repair can be carried out with less time and cost. Therefore, an 

imperfect repair can reduce the overall maintenance cost/time. 

 

Figure 4.2. The integrated model of sampling and selective maintenance. 

The above description of the integrated model assumes that the shift and the failure processes 

are independent. However, these processes could be dependent such that the increasing failure rate 

of a component could increase the shift rate. Also, the failures of all components are assumed to 

be stochastically independent. The failure dependency between components could be also 

considered.  

2.2. An integrated model of sampling and selective maintenance for a multistage 

multistate system (MSS) with discrete states of the output 

Many production lines consist of machines connected in a series-parallel configuration. The whole 

system consists of subsystems connected in series, and each subsystem consists of independent 

machines connected in parallel. Each machine has more than one discrete state of the output. Such 

systems are called multistage multistate systems (MSS). For clarification, consider the series-

parallel system shown in Figure 4.3 below. 
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Figure 4.3. MSS with a series-parallel configuration. 

The whole system consists of 𝑆 series subsystems where production flows from subsystem 1 

to subsystem 2 until a finished product is produced at subsystem 𝑆. Each subsystem consists of 

𝑙 , 𝑠 ∈ {1, ⋯ , 𝑆} independent machines connected in parallel where a product can be processed at 

any of these machines. Each machine has multiple degradation states where each state corresponds 

to a discrete performance rate. Let 𝑖 be the state of machine 𝑗 in subsystem 𝑠 at time 𝑡, then 

𝑖 ∈ {0, ⋯ , 𝑚 }. 

The corresponding performance rates of the above set are represented by the set 

𝑔 ∈ {𝑔 , ⋯ , 𝑔 }, 

where 𝑔  is the highest performance rate that corresponds to state 𝑚  and 𝑔  is the lowest 

performance rate that corresponds to the lowest state 0. When a machine degrades from a higher 

state to a lower state, the performance rate decreases accordingly. Usually, the performance rate 

𝑔  is measured by the capacity, i.e., production rate. 

The MSS performance rate 𝐺(𝑡) at any time 𝑡 is a random variable that depends on the 

machines’ states in all subsystems, and hence, 𝐺(𝑡) can be represented as 

𝐺(𝑡) = Φ 𝑔 (𝑡), ⋯ , 𝑔 (𝑡) , 
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where Φ(∙, ⋯ ,∙) is a function of machines’ performance rates at time 𝑡. 

Let 𝐹 (𝑡) be the performance of subsystem 𝑠 at time 𝑡, then 

𝐹 (𝑡) = 𝑔 (𝑡). 

Following these definitions, 𝐺(𝑡) can be rewritten as 

𝐺(𝑡) = min{𝐹 (𝑡)}. 

At the end of the production period, all machines’ states are known, and maintenance is carried 

out selectively within a limited time. With selective maintenance, a machine state could be 

upgraded to a better state or not. The objective of selective maintenance is to maximize the system 

reliability in the next production period within the available maintenance resources. The reliability 

of the system is defined as the probability that the output of the system exceeds a certain demand, 

and hence, system reliability 𝑅 can be defined as the probability that the system successfully 

completes the next mission 𝑘 + 1, i.e, the system’s performance rate exceeds the demand rate 

𝑊  at the end of mission 𝑘 + 1. In other words, 𝑅 is given as 

𝑅 = 𝑃 (𝐺(𝑡) ≥ 𝑊 ). 

Constant transition rates are assumed, and a continuous-time Markov chain for each machine 

can be used to find the probabilities of states at the end of the production period. Such studies of 

the series-parallel system can be found in Pandey et al. (2013) and Liu and Huang (2010). These 

studies develop quantitative models of selective maintenance and don’t consider the quality of the 

produced products. Therefore, the integrated model of sampling and selective maintenance for 

MSS aims at maximizing the system’s reliability (or availability) in order to meet the demand rate 
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with acceptable quality. Although sampling helps in controlling the quality of produced products 

if the quality degrades because of the occurrence of assignable causes, the sampling practice 

decreases the availability of the system due stoppages of false alarms and performing an 

adjustment to the process when a true alarm is confirmed. This directly influences the decisions of 

selective maintenance, and therefore, combining sampling and selective maintenance in an 

integrative design is required when both quality and quantity are of interest. 

2.3. Sampling with propagating shifts in multistage systems with more than two 

machines and two states 

In Chapter 2, sampling with propagating shifts in a two-machine serial system is presented. 

However, a system could consist of more than two machines. This makes the problem more 

complicated since the number of scenarios, due to the competencies among shifts, becomes larger. 

For instance, if there are three machines in the system, there will be one in-control state and seven 

out-of-control states. The number of a system’s states increases exponentially as the number of 

machines increases.  

As shown in Chapter 2, there are two competing shifts such that 𝑇 > 𝑇  or 𝑇 > 𝑇 , whereas 

with three shifts, there are six competing scenarios such that 𝑇 > 𝑇 > 𝑇 , ⋯ ⋯, and 𝑇 > 𝑇 >

𝑇 . Moreover, when three shifts are considered, Case II will consist of three subcases, and Case III 

will consist of four subcases as shown in Table 4.1. As illustrated in Table 4.1, for the scenario 

𝑇 > 𝑇 > 𝑇 , (𝑇 𝑇 𝑇 ) means that all three shifts occur in the same interval,  

(𝑇 , 𝑇 , 𝑇  ) means that the three shifts occur at different intervals, and  

(𝑇 𝑇 , 𝑇  ) means that 𝑆  and 𝑆  occur in the same interval while 𝑆 occurs in a different interval. 

Since there are 6 competing scenarios and each scenario has 8 possible subcases, the total number 



130 
 

of instances to model is 48. Generally, if 𝑎 denotes the number of shifts “number of machines”, 

there is always (𝑎!) possible competing scenarios 

Table 4.1: A scenario development in a three-machine system. 

Scenario Case I Case II Case III 

𝑇 > 𝑇 > 𝑇  (𝑇 𝑇 𝑇 ) (𝑇 , 𝑇 , 𝑇  ) (𝑇 , 𝑇 , 𝑇  )    
𝑆  is detected 

(𝑇 , 𝑇 , 𝑇  ) 
𝑆  is not detected, but the 
propagated shift of 𝑆  and 𝑆  is 
detected 

(𝑇 𝑇 , 𝑇  ) (𝑇 𝑇 , 𝑇  ) 
the propagated shift of 𝑆  and 𝑆  
is detected 

(𝑇 , 𝑇 𝑇 ) 
(𝑇 , 𝑇 𝑇 ) 
𝑆  is detected 

 

If there are four shifts, there are 4! = 24 competing scenarios, and for each scenario, there are 

7 subcases for Case II and 12 subcases under Case III with a total of 20 cases including Case I. 

This means that there are 24 × 20 = 480 possible instances for modeling. Therefore, there is a 

necessity to create a methodology or an algorithm to count these large numbers of scenarios and 

reduce the computational burden maybe by eliminating the least effect scenarios. Moreover, a 

simulation-based solution could be an option. 

In the above design, it is always considered that there is only one in-control state and the rest 

are out-of-control states. Thus, another extension of the above design is to consider a set of in-

control “desired” states and another set of out-of-control “undesired” states. This may help in 

reducing the total number of scenarios to be modeled. 
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