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Abstract. In recent years, control charts monitoring the coefficient of variation 
(CV), denoted as the ratio of the variance to the mean, is attracting significant 
attention due to its ability to monitor processes in which the process mean and 
process variance are not independent of each other. However, very few studies 
have been done on charts to monitor downward process shifts, which is 
important since downward process shifts show process improvement. In view of 
the importance of today’s competitive manufacturing environment, this paper 
proposes a one-sided chart to monitor the downward multivariate CV (MCV) 
with variable sample size and sampling interval (VSSI), i.e. the VSSID MCV 
chart. This paper monitors the MCV as most industrial processes simultaneously 
monitor at least two or more quality characteristics, while the VSSI feature is 
incorporated, as it is shown that this feature brings about a significant 
improvement of the chart. A Markov chain approach was adopted for designing a 
performance measure of the proposed chart. The numerical comparison revealed 
that the proposed chart outperformed existing MCV charts. The implementation 
of the VSSID MCV chart is illustrated with an example. 

Keywords: average time to signal; downward shifts; expected average time to signal; 
multivariate coefficient of variation; variable sample size and sampling interval. 

1 Introduction 

Control charting is an important technique in Statistical Process Control (SPC). 
It is seen as an efficient process monitoring technique in various industries for 
detecting the presence of assignable causes, as can be seen from several 
research publications (see Djauhari [1], Chen, et al. [2], Wang [3], Chong, et al. 
[4]). In most real industry applications, it is common to deal with processes that 
monitor two, three or more quality characteristics. In this case, great attention is 
paid to multivariate process monitoring. Furthermore, when the process 
standard deviation is in line with the process mean, existing traditional charts 
that are used to monitor the process mean and process variance are unable to 
correctly detect the process signals. In this case it is suitable to use the 
coefficient of variation (CV). The CV is commonly used and its importance is 
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shown through applications in many disciplines. Singh & Singh [5] used CV to 
investigate video frame and region duplication forgery detection. Salmanpour, 
et al. [6] applied CV to resolve the robot path-planning problem with multiple 
objectives. Lengler & Steger [7] studied the CV of neuronal spike trains and 
Zhou, et al. [8] suggested a G1-CV approach for the best development face 
ventilation mode selection. The application of CV in chatter detection [9] and 
spectrophotometric repeatability measurement [10] have also been discussed. 
Ushigome, et al. [11] and Romano, et al. [12] investigated the CV of home 
blood pressure and shear and tensile strength experiments, respectively.  

Kang, et al. [13] were the first researchers to introduce a standard CV control 
chart. In the last decade, numerous CV charts have been proposed to increase 
the effectiveness of existing standard CV charts for detecting CV shifts, such as 
those by Khaw, et al. [14], Yeong, et al. [15], Khaw & Chew [16], Lim, et al. 
[17], etc. Conversely, Yeong, et al. [18] introduced two one-sided multivariate 
CV (MCV) charts (SH MCV) to fill the research gap related to the multivariate 
process. Khaw, et al. [19,20] discussed adaptive MCV and synthetic MCV 
charts to increase the statistical performance of the SH MCV chart of Yeong, et 
al. [18]. Later, run rules and variable parameter MCV charts were introduced 
[21,22]. More recently, an exponentially weighted moving average (EWMA) 
MCV chart was recommended by Giner-Bosch, et al. [23], whereas Haq & 
Khoo [24] considered an adaptive EWMA MCV chart. 

Meanwhile, adaptive control charting methods are known to be practical when 
compared to non-adaptive charts (Epprecht, et al. [25], Deheshvar, et al. [26]). 
From the existing adaptive schemes, the variable sample size and sampling 

interval (VSSI) scheme is one of the best adaptive schemes. After the VSSI X  
chart [27] was developed, the VSSI scheme was extended to various types of 
control charts. For example, Saha, et al. [28] developed an auxiliary information 
based VSSI chart to monitor the process mean. Kosztyan & Katona [29] and 
Khoo, et al. [30] applied risk-based VSSI and VSSIt S control charts, 
respectively. A VSSI median chart with measurement errors and estimated 
parameters have been suggested by Cheng & Wang [31]. 

The VSSI MCV chart [19] has superior performance in the detection of MCV 
shifts when compared to other existing MCV charts. However, a downside of 
this method is that the VSSI MCV chart was developed only for detecting 
upward MCV shifts. In most scenarios, the detection of downward MCV shifts 
is crucial since they show process improvement. With the intention to fill the 
research gap related to downward process monitoring and the excellent features 
of the VSSI scheme, this paper extends the VSSI MCV chart of Khaw, et al. 
[19] and proposes a one-sided downward VSSI (VSSID) chart for monitoring 
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downward MCV shifts. Note that the one-sided VSSID MCV chart can avoid 
biased average time to signal (ATS) performance. The VSSI scheme in Aparisi 
& Haro [32] was adopted to design the VSSID MCV chart. The VSSID MCV 
chart gives the flexibility for practitioner to vary sample size n and sampling 
interval h. The VSSID MCV chart is expected to surpass the existing SHD MCV 
chart.  

Hereafter, Section 2 illustrates the fundamental properties of the SHD MCV 
chart. Section 3 describes the details of the VSSID MCV chart. The performance 
measures were evaluated using the Markov chain method. Performance 
comparisons of the existing VSSID MCV charts in terms of the ATS and 
expected average time of signal (EATS) criteria are discussed in Section 4. In 
Section 5, the new method’s implementation is illustrated with an example. In 
the last section, the research findings and future recommendations are given. 

2 The Downward SH MCV (SHD MCV) Chart 

Let 𝑿 , 𝑿 , … , 𝑿  refer to a multivariate 𝑛  from the p-variate normal 
distribution with  and . Here,  is the mean vector while  denotes the 
covariance matrix. Then, the MCV population statistics are denoted as  
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[33]. The sample MCV, 𝛾, is used for estimating 𝛾 when  and  are unknown. 
To derive 𝛾 from Eq. (1), 𝑿 and S should be computed so that they can replace 
 and , as follows: 
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respectively. 𝑿 denotes the sample mean while S is a sample covariance matrix 
and they are independent. Hence, 𝛾 is obtained as 

  
1

1 2ˆ T
 X S X  (4) 

A chart is set up by using the Phase-I data. If the target in-control MCV, 𝛾  is 
unknown, then it can be estimated from the in-control 𝛾 , which can be assumed 
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from the Phase-I data. Note that 𝛾  is computed based on the root mean square 
estimator  
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0
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where m and 𝛾  are defined as the number of in-control multivariate samples 
from the Phase-I data used to estimate 𝛾  and the squared i-th Phase-I sample 
MCV (for i = 1, 2, …, m), respectively.  

The cumulative distribution function (cdf) of the 𝛾 is derived as [18]  
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where 𝐹   ∙   refers to the cdf of a non-central F distribution, together with p 
and 𝑛 𝑝 degrees of freedom and non-centrality parameter 𝛿, where p denotes 
the number of quality characteristics, where Eq. (6) can be only considered 
valid when 𝑛 𝑝 as the degree of freedom for the non-central F distribution 
must be positive. The non-centrality parameter is obtained as 𝛿 , where 

the shift size 𝜏 1 (in-control process). The out-of-control MCV is computed 
as 𝛾 𝜏𝛾 , where 𝜏 1. Consequently, the inverse cdf of 𝛾 is [18] 
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where  𝐹   ∙   refers to the inverse cdf of a non-central F distribution with p 
and 𝑛 𝑝 degrees of freedom and non-centrality parameter 𝛿. 

Since the distribution of  𝛾 is skewed, the one-sided downward SH MCV chart 
for the downward MCV shifts is suggested [18]. Here, the SHD MCV chart 
contains the lower control limit (LCL). The LCL of the SHD MCV chart is 
specified with the Type-I error probability 𝛼. Then, the LCL can be obtained as 

  1
ˆ 0 0L C L | , ,F n p   , (8) 

where 𝛿  [18]. The probability for the SHD MCV chart for an out-of-

control signal detection is given as 𝐴 Pr 𝛾 LCL .  
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The performance measures for the SHD MCV chart were adopted from Yeong, 
et al. [18]. Thus, the average run length (ARL) and out-of-control expected 
average run length (EARL1) of the SHD MCV charts can be obtained as 

 
1

ARL=
A

 (9a) 

and 

    max
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1 1 0 0EAR L ARL LCL, , , ,I n f d




      (9b) 

Note that 𝛿 , where 𝜏 1. Here, 𝜏 1 will results in in-control ARL 

(ARL0) while 𝜏 1 results in out-of-control ARL (ARL1). When 𝜏 1, the 
values of 0 𝜏 1 correspond to downward MCV shifts, respectively. For the 
EARL1 computation using Eq. (9b), the in-control EARL (EARL0) is set to be 
equal to ARL0 and 𝑓 𝜏  is the probability density function (pdf) of 𝜏. 
Additionally, 𝜏  and  𝜏  are the lower and upper bounds of 𝜏, respectively. 

3 The Downward VSSI MCV (VSSID MCV) Chart 

The existing SHD MCV chart has a static sample size, 𝑛  and sampling interval, 
ℎ . This chart consists of two regions and a border, i.e. the central and action 
regions with LCL. Different from the SHD MCV chart, the VSSID MCV chart 
contains three regions and two borders, i.e. the central, warning and action 
regions, with a lower warning limit (LWL) and LCL. The VSSI scheme can 
vary  𝑛  and ℎ  to enhance the sensitivity of the SHD MCV chart for detecting 
small and moderate downward shifts. The sample size of the proposed chart can 
be differentiated between a small and large sample size, i.e. 𝑛  and 𝑛 , where 
𝑛 𝐴𝑆𝑆 𝑛  while the sampling interval can be differentiated between 
short and long sampling intervals, i.e. ℎ  and ℎ , where ℎ 𝐴𝑆𝐼 ℎ . Note 
that 0ASS  denotes the in-control average sample size whereas ASI  refers to the 

in-control average sampling interval, where ASS and ASI  of the VSSID MCV 
chart are equal to those of 𝑛  and ℎ  of the SHD MCV chart for a fair statistical 
comparison. The VSSID MCV chart works as follows (Figure 1): 

1. When the i-th sample MCV, 𝛾  plots in the central region, then the process 
is said to be in-control and no further action is required. Hence, 𝑛  and ℎ   
should be used to obtain the next sample MCV, 𝛾 . 

2. When 𝛾  plots in the warning region, then the process is said to be still in-
control. However, there is a high possibility for it to go out-of-control. 
Hence, 𝑛  and ℎ  should be used to compute 𝛾 . 
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3. When 𝛾  falls in the action region, the process is said to be out-of-control 
because of the presence of assignable causes. In this case, the practitioner 
should take corrective actions. 

 
Figure 1 Graphical view of the VSSID MCV chart. 

In this paper, the lower control limit of the VSSID MCV chart can be computed 
using Eq. (8), while the LWL is expressed as follows: 

  1
ˆ 0 0LW L | , ,F n p     (10) 

where 𝐹   ∙   |𝑛 , 𝑝, 𝛿  is the inverse CDF of  𝛾 and  𝛿 . Here, the 𝛼   

value is determined to satisfy the desired ATS0 value based on the in-control 
process MCV and 𝛼 𝛼. 

The Markov chain approach was developed for the formula derivation of the 
ATS of the VSSID MCV chart. ATS is defined as the average amount of time 
for an out-of-control signal detection from time of a process shift occurrence.  
Here, the Markov-chain model of the VSSID MCV chart contains three states, 
i.e. the central, warning and action region. States 1 to 2 and 3 denote the 
transient states and absorbing state, respectively, as:  

State 1: 𝛾 ∈ LWL, ∞  
State 2: 𝛾 ∈ LCL, LWL  
State 3: 𝛾 ∈ 0, LCL). 

The transition probabilities matrix (tpm), given a change 𝜏 is given as: 
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31 32 33

,

P P P
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where 𝑃  refers to the transition probability, which can be seen from the 
previous state j to the current state k, when the MCV has a shift change 𝜏. The 
transient states in matrix  𝑷  in Eq. (11) are listed as follows: 
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 2 2 2 1 2
ˆP r L C L L W L , ,P n p      (12c) 

   ˆ ˆ2 1 2 2 1 2L W L , , L C L , ,F n p F n p   
 (12d) 

Subsequently, the ATS of the VSSID MCV charts can be computed as 

   1
A T S = T b I Q t  (13) 

I and Q are the identity and transient state transition probability matrices with 
2 2 dimension, respectively, whereas 𝒕 ℎ , ℎ  is a sampling intervals 
vector. Subsequently, 𝒃 𝑏 , 𝑏  represents the initial probability vector, 
satisfying 𝑏 𝑏 1. Here, 𝑏  and 𝑏  are the time spent proportions in the 
central and warning regions, respectively. Both 𝑏  and 𝑏  are obtained based on 
𝜏 1, where 
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subject to the specified values of ASS0 and ASI0, where 

 0 1 1 2 2ASS n b n b   (15a) 

 0 2 1 1 2ASI h b h b   (15b) 

Generally, 𝜏 must be specified when computing the ATS. The EATS can be 
applied to measure the chart’s performance when the exact value of  𝜏 cannot be 
specified [19]. The in-control EATS (EATS0) value of the VSSID MCV chart is 
set as ATS0 value and the EATS1 value is obtained as  

    max

min
1 1 1 2 1 2 0EATS ATS LCL,LWL, , , , , , , , ,n n h h f d




        (16) 
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The actual shape of  𝑓 𝜏  is hard to be fitted if there is no information on 𝑓 𝜏 . 
In this circumstance,  can be assumed to follow a uniform distribution over the 
interval 𝜏 , 𝜏 . This distribution was adopted by most researchers, i.e. 
Chong, et al. [34], Khaw, et al. [19], etc. Here, a uniform distribution can be 
used if the random variable is uncertain, excluding its upper and lower bounds 
[35]. Castagliola, et al. [36] have suggested the interval 𝜏 , 𝜏 0.5,1  
for the downward EWMA CV2 chart. 

The optimization procedure to compute the optimal parameter combinations  
𝑛 , 𝑛 , ℎ , 𝛼  of the VSSID MCV chart for minimizing the ATS1 and EATS1  

values for detecting downward MCV shifts, 𝜏 and shift interval  𝜏 , 𝜏  
were considered in this study. Note that ℎ  is set as 0.1 and ATS0 = 370. The 𝛼   
parameter is used to obtain the LWL of the VSSID MCV chart using Eq. (10). 
The application of the optimization procedure is for  

1. Min , , , ATS 𝜏 , subject to constraint ATS0 = 370, ASS 𝑛   and 

ASI ℎ  , 

2. Min , , , E𝐴𝑇𝑆 𝜏 , 𝜏 , subject to constraint  EATS0 = 370, 

ASS 𝑛  and ASI ℎ  . 

Subsequently, the procedure of optimization of the VSSID MCV chart is given 
as 

Step 1: Specify 𝑛 , ℎ , ℎ , 𝑝, 𝜏 (for ATS 𝜏 ) or 𝜏 , 𝜏  (for 
E𝐴𝑇𝑆 𝜏 , 𝜏 . 

Step 2: Let 𝑛 𝑝 1  and 𝑛 𝑛 1. 

Step 3: Compute 𝛼 using nonlinear equation solver, subject to constraint 
ATS0=370. Then compute 𝛼  and ℎ  using Eq. (17) and Eq. (18) listed as 
follows: 

 
   ˆ2 0 0 0 0 1
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[1 ]n n F n p n n
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and 

 
   0 2 1 1 0 1

2

2 0

.
h n n h n n

h
n n

  



 (18) 

Step 4: Compute ATS 𝜏  value (or E𝐴𝑇𝑆 𝜏 , 𝜏  value) using Eq. (13) 
(or Eq. (16)) with the optimal parameter combination 𝑛 , 𝑛 , ℎ , 𝛼  obtained 
from Steps 1 to 3. 
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Step 5: Let  𝑛 1 while retaining the same value of 𝑛 . 

Step 6: Repeat steps 3 to 5 until 𝑛 𝑛 1. 

Step 7: Reset 𝑛  to 𝑝 1 and let 𝑛 1. 

Step 8: Repeat steps 3 to 7 until 𝑛 31. Here, 𝑛 31 can be viewed as a 
guideline. The practitioner will decide the maximum value of the sample size by 
depending on the characteristics of the process. 

Step 9: Identify and select the parameter combination 𝑛 , 𝑛 , ℎ , 𝛼  that 
minimizes the ATS 𝜏  value (or E𝐴𝑇𝑆 𝜏 , 𝜏  value) as the optimal 
parameter 𝑛 , 𝑛 , ℎ , 𝛼  combination. 

4 Numerical Comparison 

The existing SHD MCV chart has ℎ 1. Since ATS ℎ ARL, then ATS = 
ARL for the SHD MCV chart. For a fair performance comparison with the 
existing SHD MCV chart, the ASI ℎ  of the VSSID MCV chart is specified 
as unity. In this study, the 𝑛 , 𝑛  parameter combinations were varied to 
minimize the ATS1 value, for detecting downward MCV shifts subject to 
constraints  3 𝑛 𝑛 𝑛 31 and 4 𝑛 𝑛 𝑛 31, for p = 2 
and 3, respectively, where 𝑛 5 and 10 were considered. Note that these 
constraints were adopted from Yeong, et al. [18] and Khaw, et al. [19]. Thus, 
the computed 𝑛 , 𝑛 , ℎ , ℎ , 𝛼, 𝛼  parameter combinations using the 
aforementioned optimization procedure were varied to minimize the ATS1 and 
EATS1 values, for detecting downward MCV shifts, 𝜏 ∈ 0.5, 0.6, 0.7, 0.8, 0.9   
and 𝜏 , 𝜏 ∈ 0.5,1 , where 𝑝 ∈ 2,3 , 𝑛 ∈ 5,10  and 𝛾 ∈
0.1, 0.3, 0.5 . We assume ATS0 = 370.  

Table 1 presents the optimal parameter 𝑛 , 𝑛 , ℎ , 𝛼  combinations of the 
VSSID MCV chart that minimize the ATS1  and EATS1 values, for 𝜏 ∈
0.5, 0.6, 0.7, 0.8, 0.9  and 𝜏 , 𝜏 ∈ 0.5,1 , where 𝑝 ∈ 2,3 , 𝑛 ∈
5,10  and 𝛾 ∈ 0.1, 0.3, 0.5 . For example, from Table 1, to minimize the 

ATS1 value for detecting downward MCV shift 𝜏 0.5, when 𝑝 2, 𝑛 5, 
ℎ 0.1 and 𝛾 0.1, the optimal parameter combination  𝑛 , 𝑛 , ℎ , 𝛼  is 3, 
10, 1.360 and 0.2876. These optimal parameter combinations presented in Table 
1 were used to compute the ATS1  and EATS1 values for the VSSID MCV chart 
in Table 2. Table 2 presents the ATS1 and EATS1 values for the VSSID MCV 
and SHD MCV charts [18], for 𝜏 ∈ 0.5, 0.6, 0.7, 0.8, 0.9  and 𝜏 , 𝜏 ∈
0.5,1 , where 𝑝 ∈ 2,3 , 𝑛 ∈ 5,10  and 𝛾 ∈ 0.1, 0.3, 0.5 . In order to show 

the superior performance of the proposed chart, the downward variable 
sampling interval (VSI) and variable sample size (VSS) charts were included in 
the performance comparison by letting 𝑛 𝑛 𝑛  and ℎ ℎ ℎ , 
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respectively. The VSSID MCV chart outperformed the VSID MCV, VSSD MCV 
and SHD MCV [18] charts, for detecting downward MCV shifts in terms of the 
ATS1 and EATS1 criteria. For instance, in Table 2, when 𝑝 2 , 𝑛 5, 
𝛾 0.3 and 𝜏 0.7, the VSSID MCV, VSID MCV, VSSD MCV and SHD 
MCV charts yielded ATS1 = 15.68, 33.33, 18.12 and 135.30, respectively. 
Another example can be shown from Table 3, when 𝑝 3, 𝑛 10, 𝛾 0.1   
and 𝜏 , 𝜏 0.5,1 , the VSSID MCV, VSID MCV, VSSD MCV and 
SHD MCV charts yielded EATS1 = 57.47, 61.74, 71.82 and 203.86, respectively. 
The results show that the VSSID MCV charts yielded the best ATS1 and EATS1 
values to detect small and moderate downward MCV shifts. 

5 Example 

The implementation of the VSSID MCV chart is demonstrated with the dataset 
from Khatun, et al. [37]. The data deal with the measurements of a spring, i.e. 
spring inner diameter 𝑋  and spring elasticity 𝑋 . The Phase-I data consist 
of m = 10 samples, each with 𝑛 5. Table 4 presents the Phase-I sample 
means, sample variances, and sample covariances. The Phase-I in-control 
sample MCV is assumed based on the root mean square method, expressed in 

Eq. (5) as 
10

2

1

1
ˆ

10
i

i




 0.001042. Consequently, the LCL of the SHD MCV chart 

[18] can be computed using Eq. (8) as follows: 

  (19) 

for the upward SHD MCV chart. Here, 𝛼 is set as 0.0027 to satisfy ATS0=370. 
Figure 2 shows the SHD MCV chart. The Phase-I process is declared in-control 
as all the 𝛾  are plotted above the LCL of the SHD MCV chart. 

Suppose that a practitioner wants to find an unexpected decrease in MCV shifts 
of the process for the Phase-II process monitoring. The VSSID MCV chart was 
designed to compute the ATS1 for the downward MCV shift 𝜏 0.7. The 
optimal parameter 𝑛 , 𝑛 , ℎ , ℎ , 𝛼 , 𝛼  combination for the VSSID MCV chart 
is obtained using the aforementioned optimization procedure in Section 3 as 
𝑛 , 𝑛 , ℎ , ℎ , 𝛼 , 𝛼  = (4, 31, 0.1, 1.0346, 0.0396, 0.0027), subject to  

ATS0=370. Subsequently, the LCL = 0.0001 and LWL = 0.0009 can be 
obtained using Eq. (8) and Eq. (10). Note that the pair 𝑛 , ℎ  is first 
considered since the initial probabilities obtained from Eq. (14a) and Eq. (14b) 
show that 𝑏 0.75 𝑏 0.25 for the VSSID MCV chart. Thus, State 1 is 
used as the initial state. 

1
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5
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Table 4 Phase-I data. 

Sample 
number 

(i) 

Sample means Sample variances and covariances 

𝜸𝒊 
Spring inner 

diameter  
𝑿𝟏𝒊  

Spring 
elasticity  

𝑿𝟐𝒊  
𝑺𝟏𝒊

𝟐  𝑺𝟐𝒊
𝟐  𝑺𝟏𝟐𝒊 

1 28.24 45.93 0.0044 0.0484 -0.0127 0.0008 
2 28.33 45.88 0.0118 0.0029 -0.0022 0.0009 
3 28.31 45.69 0.0016 0.0169 -0.0036 0.0007 
4 28.26 45.89 0.0006 0.0118 0.0007 0.0008 
5 28.31 45.84 0.0011 0.0222 -0.0003 0.0011 
6 28.28 45.89 0.0034 0.0134 -0.0063 0.0004 
7 28.33 45.78 0.0040 0.0071 -0.0036 0.0008 
8 28.31 45.78 0.0025 0.0081 0.0009 0.0014 
9 28.32 45.80 0.0027 0.0492 0.0070 0.0017 
10 28.32 45.80 0.0009 0.0077 0.0017 0.0010 

 

Figure 2 SHD MCV chart for the Phase-I process. 

Figure 3 presents the VSSID MCV chart. In Table 5, the VSSID MCV chart does 
not detect any out-of-control signal. However, the processing time has been 
shortened to 6.61 hours (or equivalently 6 hours 37 minutes) instead of 10 
hours. Conversely, when the out-of-control signals are detected, the practitioner 
should look into the underlying process for identifying the assignable cause(s). 
After that, immediate corrective action should be taken to revert the out-of-
control process to the normal condition.  
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Table 5 Phase-II data. 

Phase-II data 

Sample 
number 

(i) 

Sample means 
Sample variances and 

covariances 
𝜸𝒊 

𝒏𝟏 
(or 𝒏𝟏) 

𝒉𝟏 
(or 𝒉𝟐) 

Cumulative 
time 

(in hours) 
Spring inner 

diameter  
𝑿𝟏𝒊  

Spring 
elasticity 

𝑿𝟐𝒊  
𝑺𝟏𝒊

𝟐  𝑺𝟐𝒊
𝟐  𝑺𝟏𝟐𝒊 

1 28.27 45.83 0.0075 0.0695 -0.0207 0.0009 4 1.0346 1.0346 
2 28.30 45.83 0.0018 0.0136 -0.0044 0.0004 4 1.0346 2.0692 
3 28.34 45.75 0.0004 0.0154 0.0010 0.0007 31 0.1 2.1692 
4 28.29 45.84 0.0055 0.0291 -0.0099 0.0013 31 0.1 2.2692 
5 28.25 45.92 0.0013 0.0472 0.0012 0.0013 4 1.0346 3.3038 
6 28.30 45.80 0.0032 0.0160 -0.0066 0.0004 4 1.0346 4.3384 
7 28.32 45.89 0.0061 0.0122 -0.0023 0.0016 31 0.1 4.4384 
8 28.25 45.88 0.0003 0.0193 -0.0017 0.0004 4 1.0346 5.4730 
9 28.27 45.84 0.0074 0.0111 0.0020 0.0021 31 0.1 5.5730 
10 28.25 45.95 0.0052 0.0337 -0.0119 0.0007 4 1.0346 6.6076 

 
Figure 3 VSSID MCV chart for the Phase-II process. 

6 Conclusion 

A one-sided VSSID MCV chart was proposed to monitor the downward MCV 
shifts in terms of the ATS1 and EATS1 criteria. In the existing literature, the 
existing VSSID MCV chart only monitors upward MCV shifts. In certain 
scenarios, the detection of downward MCV shifts is very important as it shows 
process improvement. This research circumvents this problem by proposing a 
one-sided VSSID MCV chart. Additionally, the proposed one-sided chart is also 
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able to circumvent biased ATS and EATS performances. The VSSID MCV 
chart outperforms the SHD MCV chart in detecting small and moderate 
downward MCV shifts in terms of the ATS1 and EATS1 criteria. The 
application of the proposed chart was illustrated using an example with a real 
dataset. The one-sided VSSID MCV chart is flexible in allows the n and h 
parameters to be varied by referring to the current process quality. This 
flexibility is able to increase the effectiveness of the process monitoring system 
and save production costs at the same time. In future research, the design of the 
one-sided VSSID MCV chart can be further extended with measurement errors 
as well as estimated process parameters.  
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