18,421 research outputs found

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography

    Get PDF
    Copyright © 2011 Society for Neuroscience and the authors. The The Journal of Neuroscience uses a Creative Commons Attribution-NonCommercial-ShareAlike licence: http://creativecommons.org/licenses/by-nc-sa/4.0/.Despite a homogenous macroscopic appearance on magnetic resonance images, subregions of the amygdala express distinct functional profiles as well as corresponding differences in connectivity. In particular, histological analysis shows stronger connections for superficial (i.e., centromedial and cortical), compared with deep (i.e., basolateral and other), amygdala nuclei to lateral orbitofrontal cortex and stronger connections of deep compared with superficial, nuclei to polymodal areas in the temporal pole. Here, we use diffusion weighted imaging with probabilistic tractography to investigate these connections in humans. We use a data-driven approach to segment the amygdala into two subregions using k-means clustering. The identified subregions are spatially contiguous and their location corresponds to deep and superficial nuclear groups. Quantification of the connection strength between these amygdala clusters and individual target regions corresponds to qualitative histological findings in non-human primates, indicating such findings can be extrapolated to humans. We propose that connectivity profiles provide a potentially powerful approach for in vivo amygdala parcellation and can serve as a guide in studies that exploit functional and anatomical neuroimaging.The Wellcome Trust, a Max Planck Research Award and Swiss National Science Foundation

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Altered white matter connectivity associated with visual hallucinations following occipital stroke

    Get PDF
    Introduction: Visual hallucinations that arise following vision loss stem from aberrant functional activity in visual cortices and an imbalance of activity across associated cortical and subcortical networks subsequent to visual pathway damage. We sought to determine if structural changes in white matter connectivity play a role in cases of chronic visual hallucinations associated with visual cortical damage. Methods: We performed diffusion tensor imaging (DTI) and probabilistic fiber tractography to assess white matter connectivity in a patient suffering from continuous and disruptive phosphene (simple) visual hallucinations for more than 2 years following right occipital stroke. We compared these data to that of healthy age-matched controls. Results: Probabilistic tractography to reconstruct white matter tracts suggests regeneration of terminal fibers of the ipsilesional optic radiations in the patient. However, arrangement of the converse reconstruction of these tracts, which were seeded from the ipsilesional visual cortex to the intrahemispheric lateral geniculate body, remained disrupted. We further observed compromised structural characteristics, and changes in diffusion (measured using diffusion tensor indices) of white matter tracts in the patient connecting the visual cortex with frontal and temporal regions, and also in interhemispheric connectivity between visual cortices. Conclusions: Cortical remapping and the disruption of communication between visual cortices and remote regions are consistent with our previous functional magnetic resonance imaging (fMRI) data showing imbalanced functional activity of the same regions in this patient (Rafique et al, 2016, Neurology, 87, 1493–1500). Long-term adaptive and disruptive changes in white matter connectivity may account for the rare nature of cases presenting with chronic and continuous visual hallucinations.York University Librarie

    Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia

    Get PDF
    Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2 mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia

    Corticobasal syndrome: neuroimaging and neurophysiological advances

    Get PDF
    Corticobasal degeneration (CBD) is a neurodegenerative condition characterized by 4R-tau protein deposition in several brain regions that clinically manifests itself as a heterogeneous atypical parkinsonism typically expressing in the adulthood. The prototypical clinical phenotype of CBD is corticobasal syndrome (CBS). Important insights into the pathophysiological mechanisms underlying motor and higher cortical symptoms in CBS have been gained by using advanced neuroimaging and neurophysiological techniques. Structural and functional neuroimaging studies often showed asymmetric cortical and subcortical abnormalities, mainly involving perirolandic and parietal regions and basal ganglia structures. Neurophysiological investigations including electroencephalography and somatosensory evoked potentials provided useful information on the origin of myoclonus and on cortical sensory loss. Transcranial magnetic stimulation demonstrated heterogeneous and asymmetric changes in the excitability and plasticity of primary motor cortex and abnormal hemispheric connectivity. Neuroimaging and neurophysiological abnormalities in multiple brain areas reflect the asymmetric neurodegeneration, leading to the asymmetric motor and higher cortical symptoms in CBS. This article is protected by copyright. All rights reserved
    corecore