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Deep and Superficial Amygdala Nuclei Projections Revealed
In Vivo by Probabilistic Tractography
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Despite a homogenous macroscopic appearance on magnetic resonance images, subregions of the amygdala express distinct functional
profiles as well as corresponding differences in connectivity. In particular, histological analysis shows stronger connections for superfi-
cial (i.e., centromedial and cortical), compared with deep (i.e., basolateral and other), amygdala nuclei to lateral orbitofrontal cortex and
stronger connections of deep compared with superficial, nuclei to polymodal areas in the temporal pole. Here, we use diffusion weighted
imaging with probabilistic tractography to investigate these connections in humans. We use a data-driven approach to segment the
amygdala into two subregions using k-means clustering. The identified subregions are spatially contiguous and their location corre-
sponds to deep and superficial nuclear groups. Quantification of the connection strength between these amygdala clusters and individual
target regions corresponds to qualitative histological findings in non-human primates, indicating such findings can be extrapolated to
humans. We propose that connectivity profiles provide a potentially powerful approach for in vivo amygdala parcellation and can serve
as a guide in studies that exploit functional and anatomical neuroimaging.

Introduction
The amygdala is a gray matter collection of nuclei situated in
anterior temporal lobes, rostral to hippocampus and ventromedial
to the striatum (McDonald, 1998). The amygdala is implicated in a
range of behavioral functions that span relevance detection (Sander
et al., 2003; Zald, 2003), face perception (Adolphs and Spezio,
2006), autonomic expression of emotion (Davis and Whalen,
2001), and value learning (LeDoux, 2000). This functional diver-
sity is mirrored in the complexity of its internal structure which
subsumes �20 different nuclei, based on histological criteria
(Freese and Amaral, 2009). These subdivisions can be broadly
parcellated into a deep group, encompassing the lateral, basal,
and smaller nuclei, and a superficial group, consisting of central,
medial, and cortical nuclei (Pitkänen, 2000).

In aversive learning and the autonomic expression of emo-
tion, different functions are ascribed to these two groups. In ro-
dent experiments, deep nuclei are implicated in establishing a
stimulus/response association, while the centromedial group is
considered a relay for generating learning-based autonomic and
behavioral outputs (LeDoux, 2000) as well as other emotional
responses (Gray and McNaughton, 2000). Paralleling this func-
tional segregation, the two groups also differ in their profile of
afferent/efferent cortical connections (Carmichael and Price,
1995; McDonald, 1998; Pitkänen, 2000), most notably with re-
spect to connections to polymodal area TG in the temporal pole

lateral (TP) and the lateral orbitofrontal cortex (OFC), respec-
tively. More specifically, the temporal pole sends strong projec-
tions to lateral and accessory basal nuclei and light projections to
the basal nucleus which are all situated in the deep group. By
contrast, the lateral OFC has extensive connections to all super-
ficial nuclei, and only to small parts of the lateral (i.e., dorsal
portion) and basal (i.e., magnocellular subdivision) nuclei.

Here, we sought to investigate these distinct projections in
vivo using diffusion imaging and probabilistic tractography. Dif-
fusion imaging characterizes the apparent diffusion properties of
water (Basser et al., 1994a,b). In the brain’s white matter, the
principal diffusion direction corresponds to the orientation of
major fibers in each voxel (Beaulieu and Allen, 1994). Local dif-
fusion properties can be followed through space using probabi-
listic tractography to reconstruct large fiber tracts (Behrens et al.,
2003a). Thus, in principle one can infer the connections from
each point in the amygdala to the cortex.

In the absence of an established method to parcellate individ-
ual amygdala nuclei on magnetic resonance images, we used a
clustering method as a data-driven approach to identify amyg-
dala regions with unique connectivity profiles. Note this algo-
rithm is blind to the spatial position of cortical targets and
therefore blind to our core hypotheses. We predicted we would
find two amygdala regions that differ in the density of connec-
tions to OFC/TP in a manner consistent with in vitro histological
studies, and that these locations would correspond to superficial
and deep nucleus group. We developed our methods on a first
dataset and then acquired a second new dataset, with higher qual-
ity images, so as to independently confirm our results.

Materials and Methods
Data acquisition and preprocessing. We acquired diffusion-weighted im-
ages from a group of 16 healthy right-handed individuals (6 men/10
women, mean age � SD 29.4 � 5.8 years) and a completely independent
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group of 8 healthy right-handed individuals for replication (2 men/6
women, mean age � SD, 23.8 � 3.7 years), subsequently referred to as
dataset 1 and 2. All participants gave written informed consent, and the
study was approved by the local ethics committee.

The experiments were performed on a 3T whole-body MRI scanner
(Magnetom Tim Trio, Siemens Healthcare) operated with an RF body
transmit and 12-channel (dataset 1) or 32-channel (dataset 2) receive
head coil. Diffusion weighted images were acquired using a spin-echo
echoplanar imaging (EPI) sequence, with twice refocused diffusion-
encoding to reduce eddy-current-induced distortions (Reese et al.,
2003). Amplitudes of diffusion-encoding gradients were calibrated for
unbiased measurement of diffusion directions and improved fiber track-
ing (Nagy et al., 2007). We acquired 60 axial slices in interleaved order
[2.3 mm isotropic resolution; image matrix � 96 � 96, field of view �
220 � 220 mm 2, slice thickness � 2.3 mm with no gap between slices,
repetition time (TR) � 9.0 s (dataset 1) and 8.4 s (dataset 2), echo time
(TE) � 90 ms, asymmetric echo shifted forward by 24 phase-encoding
(PE) lines, readout bandwidth (BW) � 2003 Hz/pixel] for 68 images with
unique diffusion encoding directions. The first seven reference images
were acquired with a b-value of 100 s/mm 2, the remaining 61 images with
a b-value of 1000 s/mm 2 (Nagy et al., 2007). EPI images suffer from
susceptibility-induced geometric distortions, particularly in basal brain
regions. To minimize these distortions, two sets of 68 images were col-
lected during each scan with opposite PE gradient polarity. To correct for
head motion, images within each of the two acquisitions were aligned to
a synthetic reference (Chang et al., 2005) using standard procedures in
Camino (http://www.cs.ucl.ac.uk/research/medic/camino/). The two
datasets were then combined to estimate the local magnetic fields and
correct the images using a method which exploits the fact that images
with opposite PE polarity show exactly opposite distortions (Anders-
son et al., 2003). To enhance signal-to-noise in dataset 2, the two
image sets were acquired twice and averaged after correction for mo-
tion, before distortion correction.

Anatomical T1-weighted images were acquired in each participant
using a modified driven equilibrium Fourier transform (MDEFT) se-
quence with optimized parameters as described previously (Deichmann
et al., 2004). For dataset 1, 176 sagittal partitions were acquired with an
image matrix of 256 � 240 (read � phase) and twofold oversampling in
read direction (head/foot direction) to prevent aliasing (1 mm isotropic
spatial resolution, excitation flip angle � � 16°, TR/TE/inversion time �
7.92 ms/2.48 ms/910 ms, BW � 195 Hz/pixel). In dataset 2, we used an
MDEFT sequence with similar parameters but higher resolution (0.77
mm isotropic spatial resolution, 224 sagittal partitions, image matrix �
304 � 288, BW � 196 Hz/pixel). This sequence was acquired twice, and
the two images were coregistered and averaged offline using SPM8 func-
tions (http://www.fil.ion.ucl.ac.uk/spm). For both types of acquisitions,
composite RF excitation pulses were used to compensate for B1 �/RF

transmit field inhomogeneities (Deichmann et
al., 2002). Fat suppression was used to reduce
scalp signal and ringing artifacts due to head
motion (Howarth et al., 2006). Images were
reconstructed by performing a standard 3D
Fourier transform, followed by modulus calcu-
lation. No data filtering was applied in k-space
or in the image domain.

Seed region definition. To provide an accu-
rate definition of the seed region, the amygdala
was manually delineated on T1-weighted im-
ages using Anatomist (www.brainvisa.info).
The inferior/posterior and anterior/superior
boundary, in general clearly visible on at least a
few sagittal slices, were marked: the most pos-
terior point were the posterior nuclei border
the ventral horn of the anterior extent of the
lateral (temporal) ventricle and white matter;
the inferior boundary separating amygdala
from hippocampus and lateral ventricle; the
anterior boundary separating amygdala from
white matter, entorhinal cortex, gyrus ambiens
and uncus. We then proceeded from posterior

to anterior in coronal slices (see supplemental Fig. S1 A–C, available at
www.jneurosci.org as supplemental material), using the sagittally
marked boundaries, the hippocampus, the optical tract, and the sulcus
semiannularis as guiding landmarks. Each slice was compared against
schematic tables of an anatomical atlas (Mai et al., 2008). Particular care
was taken not to include the peduncle of the lentiform nucleus, hip-
pocampal tissue, and periamygdaloid tissue between lateral amygdala
and white matter of the temporal lobe. Amygdala boundaries were then
straightened in sagittal slices, and once more controlled in coronal slices.
Seed mask boundaries were automatically smoothed, using the SPM8
functions spm_erode and spm_dilate (see supplemental Fig. S1 D, E, avail-
able at www.jneurosci.org as supplemental material). Mean volume �
SD of the seed masks was 1356 � 209 mm 3 for dataset 1, and 1048 � 217
mm 3 for dataset 2, thus indicating a conservative definition of this struc-
ture (Zald, 2003).

Target region definition. Target masks were provided by automatic
cortical parcellation of T1-weighted images using Freesurfer (version 4.1
for dataset 1; version 4.5 for dataset 2; http://surfer.nmr.mgh.harvard.
edu/) in a standard processing stream that included Talairach registra-
tion, skull stripping (Ségonne et al., 2004), segmentation of gray and
white matter (Dale et al., 1999; Fischl et al., 1999), and probabilistic
labeling of cortical structures (Fischl et al., 2004). To account for parcel-
lation inaccuracies and the lower resolution of the diffusion data, masks
for the lateral OFC and TP were each dilated by 5 mm into every direction
using the FSL function fslmaths (see an example for the final masks in
supplemental Fig. S2, available at www.jneurosci.org as supplemental
material). Both masks were then combined, and the overlap subtracted.
The individual target subregion masks were used for post hoc analysis.

Probabilistic tractography. The FMRIB Software Library (FSL) (version
4.1.4 for dataset 1; version 4.1.2 for dataset 2; www.fmrib.ox.ac.uk/fsl)
was used for tractography. Skull-stripped reference diffusion images
were coregistered to skull-stripped T1-weighted images using FLIRT,
and the inverse transformation was used to transform seed and target
masks into diffusion space. All tractography was done in diffusion space,
and the results were transformed back to T1-weighted masks for post-
processing and display. We calculated probability distributions on two
fiber directions at each voxel using a multiple fiber extension (Behrens et
al., 2007) of a previously published diffusion modeling approach (Behrens et
al., 2003a,b). Drawing on these distributions, we estimated fiber tracts
between seed and ipsilateral target region. This approach draws a sample
from each fiber orientation distribution at the current voxel and chooses
the sample closest to the orientation of its previous step. The connection
probability between a seed and any other voxel in the brain is given by the
number of traces arriving at the target site. To suppress tracts that
reached the target indirectly via alternative amygdala projections, we
used the thalamus, brainstem and bilateral target as a termination mask

Figure 1. Illustration of the clustering method on data from an individual participant. A, Reordered cross-correlation matrix
after k-means clustering with k � 2 clusters. B, Sagittal view of resulting clusters shows spatial contiguity and localization in
accordance with a deep/superficial segmentation.
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(stop mask), i.e., every trace was stopped once
it exited the termination mask. Because some
parts of the amygdala have a larger physical
distance from the target mask than others,
these would have higher overall connection
likelihood with the whole target, and this could
possibly bias the clustering algorithm used for
automated parcellation. Hence, we corrected
probability counts by the length of the path-
way, as described previously (Tomassini et al.,
2007). This approach gives greater weight to
longer connections and penalizes short ones.
To analyze connections from the resulting
amygdala subregions to the target regions, we
were interested in absolute measures of con-
nectivity and did not correct for distance.

Automated parcellation. Cross-correlation
between the connectivity patterns of all vox-
els in the seed mask were calculated and used for automatic parcella-
tion (Johansen-Berg et al., 2004; Behrens and Johansen-Berg, 2005).
The cross-correlation matrix was fed into k-means segmentation for
automated clustering using an algorithm published in Hartigan (1975).
Two hundred iterations with a predetermined number of two clusters
were performed, resulting in two subsets of seed voxels. This approach
minimizes the mean squared difference of each cluster’s elements from
its centroid, while maximizing the squared difference between cluster
centroids (see Fig. 1A for an example of a reordered cross correlation
matrix). For final analysis, seed voxel location was taken into account for
k-means clustering to ensure contiguous voxel clusters. The algorithm is,
however, completely blind to target voxel location, and therefore unbi-
ased in relation to our hypotheses. The initial cluster assignments were
randomly determined. To exclude a possibility that the initialization

influences the clustering solution, we randomly chose three amygdalae
from different individuals and repeated the clustering 1000 times with dif-
ferent random initial cluster assignments. The resulting assignment was con-
gruent across all 1000 repetitions for 99.97%, 100%, and 100% of the voxels,
for the three amygdalae, respectively. This shows that in our datasets cluster-
ing is independent of the starting points.

Between-subject alignment. For display purposes alone, all T1-
weighted images from each dataset were brought into a common space
using DARTEL (Ashburner, 2007) in SPM8 which allows for improved
between-subjects alignment. Based on the estimated deformations, clus-
ter images were then brought into the same space, and overlaid to provide
group probability maps.

Statistical analysis. Probabilistic tractography measures the likelihood
of connection between each voxel in each of the two amygdala subregions

Figure 2. Group probability maps for the two clusters and two datasets in dataset-specific DARTEL space.

Figure 3. Three-dimensional rendering of group maximum probability maps in dataset-specific DARTEL space, thresholded at
p � 0.3 and seen from a frontal, slightly elevated angle. The deep cluster 1 is shown in blue, and the superficial cluster 2 in red.

620 • J. Neurosci., January 12, 2011 • 31(2):618 – 623 Bach et al. • Deep and Superficial Amygdala Projections



with each of the two target subregions (Behrens et al., 2003a). These
values were extracted, averaged across each cluster, and analyzed in a 2
(seed) � 2 (target) � 2 (hemisphere) ANOVA. Data are displayed as
average percentage of traces arriving at the target region.

Results
In a first analysis where k-means clustering did not take into
account voxel position, 98.7 � 1.7% (dataset 1, mean � SD) and

98.2 � 3.4% (dataset 2) of voxels were
grouped into two spatially contiguous
clusters across the group, as illustrated in
Figure 1 in a representative individual; the
remaining voxels did not spatially connect
to the cluster to which they were assigned.
For our final analysis, voxel position was
part of the clustering algorithm and en-
sured that 99.9 � 0.4% and 99.9 � 0.2%
of voxels were assigned to contiguous
clusters. In all amygdalae, we consistently
identified a more anterior/inferior/lateral
(cluster 1) and a more posterior/superior/
medial cluster (cluster 2), with mean vol-
umes of 634 � 89 mm 3 and 735 � 191
mm 3 for dataset 1, and 474 � 100 mm 3

and 582 � 161 mm 3 for dataset 2. As
group probability maps in Figure 2 show,
these clusters correspond to the anatomi-
cal location of deep and superficial nuclei.
Figure 3 illustrates the morphological re-
lations in a three-dimensional view of
maximum group probability maps for the
two samples, in sample-specific group
space.

Figure 4 shows maximum group prob-
ability maps, across each dataset, that de-
termine whether any target voxel has
relatively stronger connections to one or
other seed cluster, as identified by the

clustering algorithm. That is, for each target voxel we determined
whether in the clustering procedure it contributed more to con-
nections with cluster 1 or cluster 2, and these binary images were
then aligned and overlaid for all participants. It can be seen that,
across the group, the OFC has stronger connections with putative
superficial nucleus subgroup, consistent with the animal litera-
ture, while TP has more connections with the putative deep nu-
clei. This is particularly evident in the high quality dataset 2.

This pattern of result could be confirmed when we separately
analyzed connection strength of the seed clusters with individual
target subregions in a 2 (seed) � 2 (target) � 2 (hemisphere)
ANOVA. There were no effects involving hemisphere in either of
the two datasets. In dataset 1, TP had much stronger connections
to both clusters than OFC (F1, 15 � 49.3; p � 0.001), and cluster 1
had stronger connections than cluster 2 (F1, 15 � 9.5; p � 0.01). A
significant cluster � target interaction (F1, 15 � 8.8; p � 0.01)
revealed differential connections of each cluster with the two
targets, respectively. This effect was reflected in the ratio of con-
nections to the two target regions which were �9:1 in favor of the
TP for cluster 1, but only 6:1 in favor of the TP for cluster 2.
Dataset 2 revealed an even clearer pattern where both targets had
similar connections overall (F1, 7 � 1.5; NS), cluster 1 had stron-
ger connections overall than cluster 2 (F1, 7 � 14.5; p � 0.01), and
the differential connections were reflected in a significant clus-
ter � target interaction (F1, 7 � 10.8; p � 0.05). The connection
ratios to the target regions were 4:1 in favor of TP for cluster 1,
and 2.4:1 in favor of OFC for cluster 2, as shown in Figure 5.

Discussion
We investigated in vivo the connection profile of amygdala sub-
regions with the lateral OFC and TP using diffusion weighted
imaging and probabilistic fiber tracking. In the absence of an
existing method to differentiate amygdala subregions using in

Figure 4. Group maximum probability maps of binary images that indicate whether any target voxel had relatively stronger
connections to one or the other seed cluster, as determined by the clustering algorithm. Target voxels that have stronger connec-
tions to the deep cluster 1 are shown in blue; target voxels that connect more strongly to the superficial cluster 2 are red.

Figure 5. We determined the average connection likelihood from each amygdala cluster to
each of the two target subregions. Here, we show the average percentage of traces arriving at
each target region for dataset 2, where connections from the deep cluster are shown in blue,
and connections from the superficial cluster in red. The interaction shown here is significant at
p � 0.05.
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vivo magnetic resonance images we employed clustering methods
to separate distinct amygdala regions based on differences in their
connectivity profile. This method is blind to the labeling of cor-
tical regions as OFC and TP and takes into account the whole
target region.

Two key findings emerged. First, we show that it is possible to
robustly distinguish two amygdala subregions based on their
connectivity profile. Furthermore, these regions consist of spa-
tially contiguous voxel groups, and their anatomical location
shows a high degree of face validity in their correspondence to
superficial and deep amygdala nuclear groups. Second, we dem-
onstrate that this separation is dependent on connections to in-
dividual cortical subregions, namely OFC and TP, such that the
deep cluster connects more strongly to TP, and the superficial
cluster connects more strongly to OFC. This is in keeping with
tract tracing studies in non-human primates that provide evi-
dence that lateral OFC has connections to all superficial nuclei
and TP has connections to lateral, basal, and accessory basal nu-
clei (McDonald, 1998). Our result suggests that these findings
can be extrapolated to humans, and additionally allow for a quan-
titative description of connection likelihood, as opposed to qual-
itative or semiquantitative tract tracing techniques.

To the best of our knowledge, this is the first report detailing in
vivo cortical connections to amygdala subregions. Previous re-
ports have focused on connections of the amygdala as a whole
(Bracht et al., 2009). The wider importance of our findings is that
ideas such that amygdala-prefrontal connections influence asso-
ciative learning (Cohen et al., 2008) and distinct aspects of emo-
tional processes (Kim and Whalen, 2009) can now be tested more
rigorously. Indeed, given the putative differential role of deep and
superficial amygdala nucleus in learning and emotion, it should
now be possible to ascribe greater anatomical specificity to hu-
man in vivo data.

To reveal amygdalo-cortical connections, the technique pre-
sented here involves a data driven in vivo segmentation of the
amygdala based on connectivity profiles, an approach blind to
target region location and therefore unbiased. Such segmentation
can be used in a wide range of applications, such as guiding anal-
ysis and interpretation of functional imaging studies. Parcellating
the amygdala into meaningful subregions in vivo, using magnetic
resonance images, has heretofore presented a major methodolog-
ical challenge due to its small size and macroscopically homoge-
nous appearance. A recent methodological paper has proposed a
method to find clusters within the amygdala based on diffusion
direction in gray matter (Solano-Castiella et al., 2010). Our ap-
proach is different and relies on exploiting the connectivity of
individual amygdala subregions.

Human neuroimaging studies have often investigated neural
activity in the amygdala across a range of experimental contexts,
but these studies typically do not provide precision in relation to
anatomy rendering it difficult to localize activation patterns. A
few functional magnetic resonance imaging (fMRI) studies have
tried to delineate responses in nucleus groups by manual drawing
of regions of interest corresponding to superficial and deep
amygdala in native space (Etkin et al., 2004), or using masks
based on cytoarchitectonic probability maps in MNI space (Ball
et al., 2007; Goossens et al., 2009; Roy et al., 2009). The limitation
of the former approach is the fact that manual delineation of
individual amygdala nuclei on T1-weighted images has not yet
been described in the anatomical or radiological literature. The
use of probability maps on the other hand has a strong theoretical
justification but this approach does not account for individual
variation in anatomy such that there is a large uncertainty asso-

ciated with these findings. We suggest our approach provides a
more nuanced means to define amygdala regions of interest for
functional neuroimaging studies and can be used to elucidate,
with greater precision, the role of these subregions in higher
primates.

While our finding of differential amygdala connectivity is ro-
bust across two datasets, the use of these connectivity profiles to
identify amygdala subregions has some noteworthy limitations.
In particular, across the group there was much less variation of
cluster location and connections with the cortical masks in data-
set 2 where diffusion weighted images were acquired four times
instead of twice. This points to a potentially low signal-to-noise
ratio in the diffusion weighted data, and possibly also to suscep-
tibility artifacts. The use of several acquisitions and careful arti-
fact correction is likely to be of importance for such data,
particularly in regions such as the amygdala which are small in
extent and located close to susceptibility interfaces. The same
reasoning applies to the manual delineation of the amygdala as a
whole which we propose is more accurate in the higher quality T1
images of dataset 2 as apparent in smaller volumes. Although we
propose that the two clusters map on to deep and superficial
nuclear collections, we accept that it is difficult to equate the
clusters with exact nuclear groups. Caution is warranted based on
animal histology, where the dorsal lateral and magnocellular
basal nuclei might connect both to OFC and TP (McDonald,
1998) such that the clustering algorithm might group them into
either cluster. Consequently, there is a possibility that the extent
of the superficial cluster might be overestimated. Furthermore,
the low resolution of our current diffusion data does not allow
any insight into the fine divisions between amygdala nuclei
within each nuclear group. Finally, if parcellation of amygdala
nuclei is the main goal, it is likely to prove useful to include more
target areas, especially if high image quality allows reliable trac-
tography for areas with weak, but nonetheless specific, amygdala
connections, such as the medial prefrontal cortex.

To summarize, we show that the amygdala can be grouped
into two distinct subregions based on their distinct cortical con-
nection profiles. The location of these subgroups is consistent
with deep and superficial amygdala nuclei, and their connections
are broadly consistent with predictions from monkey tracer stud-
ies. Thus, histological findings from non-human primates con-
cerning the connectivity of amygdala nuclei can be extrapolated
to humans. Our approach provides a potential method that can
be exploited to provide a more rigorous functional anatomy of
the amygdala.
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