1,675 research outputs found

    LOCALIZATION OF PEOPLE IN GNSS-DENIED ENVIRONMENTS USING NEURAL-INERTIAL PREDICTION AND KALMAN FILTER CORRECTION

    Get PDF
    This thesis presents a method based on neural networks and Kalman filters for estimating the position of a person carrying a mobile device (i.e., cell phone or tablet) that can communicate with static UWB sensors or is carried in an environment with known landmark positions. This device is used to collect and share inertial measurement unit (IMU) information — which includes data from sensors such as accelerometers, gyroscopes, and magnetometers — and UWB and landmark information. The collected data, in combination with other necessary initial condition information, is input into a pre-trained deep neural network (DNN) which predicts the movement of the person. The prediction result is then periodically — based on outside measurement availability — updated to produce a more accurate result. The update process utilizes a Kalman Filter approach that relies on empirical and statistical models for DNN prediction and sensor noise. Therefore, the approach combines the principles of artificial intelligence and filtering techniques to produce a complete system which converts raw data to trajectory results of people. The initial tests were completed indoors where known landmark locations were compared with predicted positions. In a second set of experiments, GNSS location signals were combined with position estimation for correction. The final result shows the correction of neural network prediction with data from UWB sensors having known locations. Prediction and correction trajectories are shown and compared with the ground truth for applicable environments. The results show that the proposed system is accurate and reliable for predicting the trajectory of a person and can be used in future applications that require the localization of people in scenarios where GNSS is degraded or unavailable, such as indoors, in forests, or underground

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    Towards Semantically Intelligent Robots

    Get PDF

    Indoor Geo-location And Tracking Of Mobile Autonomous Robot

    Get PDF
    The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates

    An intelligent multi-floor mobile robot transportation system in life science laboratories

    Get PDF
    In this dissertation, a new intelligent multi-floor transportation system based on mobile robot is presented to connect the distributed laboratories in multi-floor environment. In the system, new indoor mapping and localization are presented, hybrid path planning is proposed, and an automated doors management system is presented. In addition, a hybrid strategy with innovative floor estimation to handle the elevator operations is implemented. Finally the presented system controls the working processes of the related sub-system. The experiments prove the efficiency of the presented system

    Advances towards behaviour-based indoor robotic exploration

    Get PDF
    215 p.The main contributions of this research work remain in object recognition by computer vision, by one side, and in robot localisation and mapping by the other. The first contribution area of the research address object recognition in mobile robots. In this area, door handle recognition is of great importance, as it help the robot to identify doors in places where the camera is not able to view the whole door. In this research, a new two step algorithm is presented based on feature extraction that aimed at improving the extracted features to reduce the superfluous keypoints to be compared at the same time that it increased its efficiency by improving accuracy and reducing the computational time. Opposite to segmentation based paradigms, the feature extraction based two-step method can easily be generalized to other types of handles or even more, to other type of objects such as road signals. Experiments have shown very good accuracy when tested in real environments with different kind of door handles. With respect to the second contribution, a new technique to construct a topological map during the exploration phase a robot would perform on an unseen office-like environment is presented. Firstly a preliminary approach proposed to merge the Markovian localisation in a distributed system, which requires low storage and computational resources and is adequate to be applied in dynamic environments. In the same area, a second contribution to terrain inspection level behaviour based navigation concerned to the development of an automatic mapping method for acquiring the procedural topological map. The new approach is based on a typicality test called INCA to perform the so called loop-closing action. The method was integrated in a behaviour-based control architecture and tested in both, simulated and real robot/environment system. The developed system proved to be useful also for localisation purpose

    An Incremental Navigation Localization Methodology for Application to Semi-Autonomous Mobile Robotic Platforms to Assist Individuals Having Severe Motor Disabilities.

    Get PDF
    In the present work, the author explores the issues surrounding the design and development of an intelligent wheelchair platform incorporating the semi-autonomous system paradigm, to meet the needs of individuals with severe motor disabilities. The author presents a discussion of the problems of navigation that must be solved before any system of this type can be instantiated, and enumerates the general design issues that must be addressed by the designers of systems of this type. This discussion includes reviews of various methodologies that have been proposed as solutions to the problems considered. Next, the author introduces a new navigation method, called Incremental Signature Recognition (ISR), for use by semi-autonomous systems in structured environments. This method is based on the recognition, recording, and tracking of environmental discontinuities: sensor reported anomalies in measured environmental parameters. The author then proposes a robust, redundant, dynamic, self-diagnosing sensing methodology for detecting and compensating for hidden failures of single sensors and sensor idiosyncrasies. This technique is optimized for the detection of spatial discontinuity anomalies. Finally, the author gives details of an effort to realize a prototype ISR based system, along with insights into the various implementation choices made

    Mobile robot positioning: Sensors and techniques

    Full text link
    Exact knowledge of the position of a vehicle is a fundamental problem in mobile robot applications. In search of a solution, researchers and engineers have developed a variety of systems, sensors, and techniques for mobile robot positioning. This article provides a review of relevant mobile robot positioning technologies. The article defines seven categories for positioning systems: (1) Odometry, (2) Inertial Navigation, (3) Magnetic Compasses, (4) Active Beacons, (5) Global Positioning Systems, (6) Landmark Navigation, and (7) Model Matching. The characteristics of each category are discussed and examples of existing technologies are given for each category. The field of mobile robot navigation is active and vibrant, with more great systems and ideas being developed continuously. For this reason the examples presented in this article serve only to represent their respective categories, but they do not represent a judgment by the authors. Many ingenious approaches can be found in the literature, although, for reasons of brevily, not all could be cited in this article. © 1997 John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34938/1/2_ftp.pd

    Autonomous Navigation and Mapping using Monocular Low-Resolution Grayscale Vision

    Get PDF
    Vision has been a powerful tool for navigation of intelligent and man-made systems ever since the cybernetics revolution in the 1970s. There have been two basic approaches to the navigation of computer controlled systems: The self-contained bottom-up development of sensorimotor abilities, namely perception and mobility, and the top-down approach, namely artificial intelligence, reasoning and knowledge based methods. The three-fold goal of autonomous exploration, mapping and localization of a mobile robot however, needs to be developed within a single framework. An algorithm is proposed to answer the challenges of autonomous corridor navigation and mapping by a mobile robot equipped with a single forward-facing camera. Using a combination of corridor ceiling lights, visual homing, and entropy, the robot is able to perform straight line navigation down the center of an unknown corridor. Turning at the end of a corridor is accomplished using Jeffrey divergence and time-to-collision, while deflection from dead ends and blank walls uses a scalar entropy measure of the entire image. When combined, these metrics allow the robot to navigate in both textured and untextured environments. The robot can autonomously explore an unknown indoor environment, recovering from difficult situations like corners, blank walls, and initial heading toward a wall. While exploring, the algorithm constructs a Voronoi-based topo-geometric map with nodes representing distinctive places like doors, water fountains, and other corridors. Because the algorithm is based entirely upon low-resolution (32 x 24) grayscale images, processing occurs at over 1000 frames per second

    The design and intelligent control of an autonomous mobile robot

    Get PDF
    This thesis presents an investigation into the problems of exploration, map building and collision free navigation for intelligent autonomous mobile robots. The project began with an extensive review of currently available literature in the field of mobile robot research, which included intelligent control techniques and their application. It became clear that there was scope for further development with regard to map building and exploration in new and unstructured environments. Animals have an innate propensity to exhibit such abilities, and so the analogous use of artificial neural networks instead of actual neural systems was examined for use as a method of robot mapping. A simulated behaviour based mobile robot was used in conjunction with a growing cell structure neural network to map out new environments. When using the direct application of this algorithm, topological irregularities were observed to be the direct result of correlations within the input data stream. A modification to this basic system was shown to correct the problem, but further developments would be required to produce a generic solution. The mapping algorithms gained through this approach, although more similar to biological systems, are computationally inefficient in comparison to the methods which were subsequently developed. A novel mapping method was proposed based on the robot creating new location vectors, or nodes, when it exceeded a distance threshold from its mapped area. Network parameters were developed to monitor the state of growth of the network and aid the robot search process. In simulation, the combination of the novel mapping and search process were shown to be able to construct maps which could be subsequently used for collision free navigation. To develop greater insights into the control problem and to validate the simulation work the control structures were ported to a prototype mobile robot. The mobile robot was of circular construction, with a synchro-drive wheel configuration, and was equipped with eight ultrasonic distance sensors and an odometric positioning system. It was self-sufficient, incorporating all its power and computational resources. The experiments observed the effects of odometric drift and demonstrated methods of re-correction which were shown to be effective. Both the novel mapping method, and a new algorithm based on an exhaustive mesh search, were shown to be able to explore different environments and subsequently achieve collision free navigation. This was shown in all cases by monitoring the estimates in the positional error which remained within fixed bounds
    • …
    corecore