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ABSTRACT

Vision has been a powerful tool for navigation of intelligemmd man-made systems ever
since the cybernetics revolution in the 1970s. There haea b&o basic approaches to the
navigation of computer controlled systems: The self-coethbottom-up development of sen-
sorimotor abilities, namely perception and mobility, ahd top-down approach, namely artifi-
cial intelligence, reasoning and knowledge based methidusthree-fold goal of autonomous
exploration, mapping and localization of a mobile robot bwer, needs to be developed within
a single framework. An algorithm is proposed to answer ttalehges of autonomous corri-
dor navigation and mapping by a mobile robot equipped witingls forward-facing camera.
Using a combination of corridor ceiling lights, visual hamgj and entropy, the robot is able to
perform straight line navigation down the center of an unkmaorridor. Turning at the end
of a corridor is accomplished using Jeffrey divergence @and-to-collision, while deflection
from dead ends and blank walls uses a scalar entropy medgheeemtire image. When com-
bined, these metrics allow the robot to navigate in bothuted and untextured environments.
The robot can autonomously explore an unknown indoor enwient, recovering from diffi-
cult situations like corners, blank walls, and initial hemptoward a wall. While exploring, the
algorithm constructs a Voronoi-based topo-geometric miéipmodes representing distinctive

places like doors, water fountains, and other corridorgaBee the algorithm is based entirely

upon low-resolution(32 x 24) grayscale images, processing occurs at over 1000 frames per

second.
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Chapter 1

Introduction

Psychological studies have shown that human intelligemess ¢hot require high-resolution
images to ascertain information about the environment &midnavigation. For example
the “selective degradation hypothesis”, developed by dwitz [33], says that some visual
abilities such as vehicle steering and speed control rerettively easy despite loss in visual
acuity and color vision. For canonical tasks like walkingnooving in a straight line, only
a small percentage of what we see is actually useful, andcinda-frequency information
alone is sufficient for success. Motivated by this idea, wsedbe a system that uses only low-
resolution 82 x 24) grayscale images to navigate a previously unknown cargdgironment
and to produce a Voronoi-based topo-geometric map of theamaent [41]. By discarding
99% of the information captured from320 x 240 camera, the approach is computationally
efficient, freeing up much of the CPU for other computatiotensive tasks, such as landmark
recognition.

Our approach has a two-fold goal: autonomous navigatiomimrgknown environment
and autonomous mapping. Straight line navigation is aeli@wsing a combination of sim-
ple visual competencies such as ceiling lights and homirgge®ing the end of the corridor

and turning is achieved by using direct and relative measofeisual information content.



Similarly, a probabilistic combination of information nsaes is used to detect and map in-
teresting and salient landmarks on either side of the amrridhe navigation path and the
detected landmarks are combined to plot a simple roadmapafifmpo-geometric map of the

environment.

1.1 Mobile robot navigation

Mobile robot navigation has a three-fold fundamental gaatonomous exploration of an un-
known environment, mapping of the environment, and loaéilin in the environment. Typ-
ically using on-board computation and standard off thefdiesidware, mobile robots using
multiple sensors have been developed for land, sea and aavigation and are deployed in

the manufacturing, military, security, consumer and e¢atement industries.

1.2 Monocular vision as the sensor

As noted by Horswill [25], there is a correlation between slueface structure of an image
and the deep structure of objects in the real world. Visianase powerful than other sensors
because vision provides different kinds of information atbthhe environment, while other
sensors (such as sonars or lasers) only give us depth. FElmnéak detection and recognition,
vision provides direct ways to do so and is easy to represegduse of the close relation to
the way humans understand landmarks. In addition laserexg@ensive and power-hungry,
and sonars cause interference. Vision based navigationmarbe achieved using a single
off-the-shelf camera which is inexpensive and scalable.

Navigating with a single camera is not easy. Perhaps thifysmany approaches rely upon
depth measurements from sonars, lasers, or stereo carnesalvé the problem. Granted,

knowledge of distances to either wall, the shape of obstaeled so on, would be directly



useful for localizing the robot and building a geometric ne&fhe environment. Stereo vision
has its own difficulties (e.g., it requires texture to congoerrespondence, is computationally
expensive and produces inaccurate results for many pixatfyor environments in particular
often lack texture, rendering stereo matching an elusigblpm in such places. In contrast,
humans are quite good at navigating indoors with one eyed|assen with blurry vision, thus

motivating us to find a different solution.

1.3 Low-resolution vision

Low-resolution vision is not entirely new in vision basedigation. As a matter of fact, the
older navigation systems predominantly used low-resmhutision because image processing
was limited by the technology of the time. For example Holis[25] used 64 x 48 and
16 x 12 images in his work. The selective degradation hypotheS8ikg&rves to strengthen the
axiom that navigation is possible under low visual acuitiie hypothesis itself is a result of
several studies and experiments in psychology [2]. Rebesdmowed that two modes of vision
are present in living creaturesecognitionand guidance which both contribute to visual
perception. But under poor visual conditions such as losoltgion or low illumination, the
recognitionmode deteriorates sharply, while tipg@idanceor visually induced self-motion still
maintains high efficiency. Schneider [2] showed that ansméth poor vision were able to
orient visually toward salient visual events. Thereforenbming salient events with low-
resolution provides a natural structure for perceptivpl@ative navigation and mapping. An
additional advantage is the gain of CPU time involved in pesing, loading and retrieving
images in a potential real-time embedded environment.

It should be noted that recent independent work by Torratbal. [56] has also empha-
sized the importance of low-resolution vision. They havevah results on an extensively

constructed database of 70 million images that make a paha&rument in favor of low-



resolution vision for non-parametric object and scene geitmn. The application to per-
son detection and localization is particularly notewortbysidering that they have produced
good results with low-resolution images that are comparathat of the Viola-Jones detec-
tor which uses high-resolution images. The whole spiribef-resolution is strengthened by
this argument and one can see that low-resolution image® (ilye limits of scotopic vision)

provide enough information for basic visual processing.

1.4 Structure of this report

The next chapter gives a summary of the work done previoashsion based navigation, the
different approaches, the achievements, limitations,argbing work. Chapter 3 describes
the detailed structure of the algorithm, the percepts, thgal processing for navigation and
for mapping. Chapter 5 discusses a number of experimentiicted on the robot in an indoor
environment, with supporting plots, graphs and image secpse These give us a sense of the
reliability of the algorithm and its limitations. Chapterg/es a summary of the thesis, an

outline of future work and concluding discussions.



Chapter 2

Previous work

Vision-based mobile robot navigation has been studied hyymesearchers. From the early
work of the Stanford Cart [40] to the current Aibo (the toy oblbuilt by Sony), navigation
has been recognized as a fundamental capability that nebeésdeveloped. According to the
survey of DeSouzat al.[20], significant achievements have been made in indooiga#ain,
with FINALE [29] being one of the more successful systemsNALE requires a model-
based geometric representation of the environment andulisasonic sensors for obstacle
avoidance. NEURO-NAV [37] is another oft cited system thegsia topological representa-
tion of the environment and responds to human-like commaRH$NO [9] is an example of a
robust indoor navigating robot. The highly notable NAVLABS] is an example of proficient
outdoor navigation system which use a combination of visind a variety of other sensors
for navigation and obstacle avoidance. Moravec [40] anddiett al. [43], however, have
emphasized the importance of low-level vision in mobileatbavigation, and Horswill [25]
implemented a hierarchical and complete end-to-end vibased navigational robot based on
prior training of the environment.

One approach to navigation has been to use corridor lighti€hacan achieve robust navi-

gation even in long corridors. In some systems, lights aeel @s landmarks in a teach/replay



approach, with the camera pointing toward the ceiling [3ije drawback of such a config-
uration, of course, is that the robot is blind to anythingriont of it, not to mention that the
system must be trained beforehand on the environment tovigated. In another implemen-
tation, ceiling lights are used as aids in straight line gation [31], but here again the camera
points toward the ceiling, and the position and orientatbthe rectangular lights are used
for straight line navigation. Such a computation does noegalize well to environments in
which the lights are not of a rectangular shape, or to robdatsfarward-facing cameras. Choi
et al.[11] use a forward facing camera for detecting lights, betrtapproach also relies upon
the actual geometrical features of the lamps, and it isaie&d by the lights disappearing
from the field of view, which is one of the main difficulties afrfvard-facing cameras. Our
approach incorporates computations to handle this diffiarid to automatically detect and
handle the end of a corridor, without any prior training o# #nvironment or restriction on

light shape.

2.1 Vision based navigation — An overview

Vision is powerful because it is inexpensive, non-intresand scalable. The various ways
in which vision is used for navigation have been describedeitail, by Desouzat al. [20].
Vision-based navigation systems can be classified as shofigure 2.1 which is a summary
of [20]. This thesis aims to form a bridge between map-boddiystems and mapless systems,

thus combining the goal of autonomous exploration and nmeyppi

2.1.1 Mapless navigation

Mapless navigation using vision predominantly uses pmaiisual competencies like mea-
surements of 2D motion (such a optical flow), structure frowtion, independent motion

detection, estimating time-to-contact and object tragkiiVhile some/all of these can and

6
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Figure 2.1: A taxonomy of approaches to vision-based n&agasummarizing [20].

have been used to develop a wandering robot, many open pdirdsearch need to be men-
tioned. None of these have been tested before on low-résokystems (as low &2 x 24).

All of these visual competencies are known to face problemgxtureless environments.
These competencies can be used for continuous navigatepriedictable path. At a point of

discontinuity such as a corridor end, however, these coanpets themselves do not provide

a solution.

2.1.2 Map-based navigation

Map-based navigation systems are a complete solution tgpaalebased navigation problem.
The definition of landmarks is a vital necessity of such agystAgain, historically there have
been two types of visual landmarks: Sparse feature basdcthiaks and higher level abstract

landmarks.
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Figure 2.2: LEFT: Two images shown side-by-side with the SIFT matches beatvieem
shown as cyan lines. In an indoor environment, only a few Sd&akures are found with a
160 x 120 image. RGHT: Even fewer SIFT features are found for a low-resoluiénx 24
image.

e Sparse feature based landmari&ome of the prominent landmarks used today to rep-
resent visual landmarks in SLAM based systems, are basedgas grotation invariant
features, or corners. These are in fact represented bytbe plopular visual landmark
representation techniques: SIFT (Scale Invariant Fedaesform) [50], Harris Cor-
ners [22] and Shi-Tomasi feature points [53]. These havadiantage of being robust,
scale invariant and sparse [28]. But again the importamttpdd be noted are as follows.
These representations are computationally quite expenSieme work has been done
to develop real-time feature detectors, like real-time $1JA9], GLOH [38] and SURF
[4]. FAST [47, 48] is promising for high-speed, feature-d@sepresentations, but such
approaches often leave little CPU time for other tasks anglmoawork well with tex-
tureless environments. These features work well in welibi@d environments with
high-resolution. In poorly textured environments with lo@solution, sparse features

are not robust enough. SIFT in particular is fairly sensitivresolution and texture, see

Figure 2.2.

¢ High level abstract landmarksAnother way of representing landmarks is to use all of

the pixels together like the entire image itself, or redupe®! information. Template



matching is a very simple, common yet powerful landmarkseggntation/matching

technique. Histograms, color maps and other measuressareapular.

2.1.3 SLAM: Simultaneous Localization and Mapping

With regard to mapping, the recent developments in Simatias Localization and Mapping
(SLAM) have been based primarily upon the use of range ser{86r 45, 6]. A few re-
searchers have applied this work to the problem of buildigsusing monocular cameras,
such as in the vSLAM approach [27], which is a software platffor visual mapping and lo-
calization using sparse visual features. An alternatecgmpris that of Davisoat al.[18, 17],
who also use sparse image features to build 3D geometric.maps

In these visual SLAM techniques, either a complex matchmoggss for a simple landmark
representation [46] or a simple matching process for a cexlphdmark representation [50]
is needed for robust robot localization. In indoor corridavironments, however, the lack of
texture poses a major obstacle to such an approach. Indepdlap techniques such as the
Scale Invariant Feature Transform (SIFT) [50] or otherdeatepresentations have difficulty
in such cases. Moreover, the computationally demandingreaif these algorithms often

leaves little room for additional processing, and theiigiesequires higher resolution images.

2.1.4 Map-building based navigation

The whole task of map-building described in modern SLAMuwsisor not, always has a
manual/tele-operated phase [16, 49, 18]. It is importantdte that in most map-building
systems, the robot is controlled manually. Autonomousgstion is rare, and autonomous
vision-based mapping is even more rare [20]. Notable s include the work done by
Matsumotoet al. [34], who used omnidirectional cameras with stereo andcapfiow to

control navigation, and Shadt al. [51], who implemented an autonomous navigation system



using a calibrated fish eye stereo lens system. Howeveg dm®oaches require specialized
cameras. Similarly, autonomous vision-based navigasioare, with many techniques requir-
ing a training phase in which the robot is controlled manug)] 10, 35, 36, 26]. As a result,
efficient autonomous map building of indoor environmentagia single off-the-shelf camera
has remained an elusive problem.

Team AR0bAS of INRIA have made a compelling statement inrthanual repof{54]
about the incompleteness of SLAM. They state that the proldEexplorative motion strat-
egy of the robot (or reactive navigation) has rarely beenré @aSLAM. They argue that
autonomous navigation and SLAM cannot be treated sepgmatel that a unified framework
is needed for perception, modeling and control. Very fevahlst initiatives have completely
automated the system for collecting the data required td launap while navigating. Robust
perception is a basic necessity for a navigating robot thatoe deployed in an environment

without human intervention.

2http://www.inria.frirapportsactivite/RA2007/arobassbas. pdf
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Chapter 3

Approach: Low-resolution competencies

for navigation and mapping

3.1 Algorithm overview

Navigation The basic navigation system is represented in Figure 3l rdbot basically
has three modes of operation: the centering mode, the homaug, and the turning at the
end of the corridor. The robot navigates in a straight linegiseiling lights (when they are
visible) and homing (when the ceiling lights disappear).nttal decisions at the end of the
corridor are made by entropy, Jeffrey divergence, and topesllision. Turning at the end of
the corridor is controlled by a search for lights and highreoy.

Mapping Landmarks are detected using two information measuréfsgyelivergence and
entropy that are measured for the entire navigation patil) n@arked with respect to the path
obtained from navigation (see Figure 3.2). Corrected odgme used to find the path as
explained in section 3.8. The landmark detection is a pagsiwcess and does not have any

feedback onto the navigation system. Localization is eulyenot being performed using the



l AUTONOMOUS DRIVING

Centering on |,
ceiling lights

Lights visible DETECTING
& && THE END OF Entropy > th.gh
Entropy >H,,, THE CORRIDOR

Jeffrey Divergence > J,
&&
Time-to-collision <7, ..
Il
Entropy <H,

Turning

1

ACTION AT
CORRIDOR END

Figure 3.1: Overview of the navigation system. There aredluohallenges: Autonomous
driving, detecting the end, and action at the end of the dorri These are achieved by the
three modes of operation: ‘Centering the ceiling lightsming’, and ‘turning’ at the end of
the corridor.

detected landmarks. Our ultimate goal is to build a systexhubkes landmarks for navigation
and localization.

The end-end system is a proof of concept of the above dedamie¢hods and the working
of the complete system is demonstrated in the sectionsdhetvfwhere we describe each of

these modules in greater detail.
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0 0 0 D
Overlaid nodes representing
salient regions along the &

corridor

Figure 3.2: A flow diagram explaining the map-building. $atiregions of interest on either
side of the corridor are detected using information measarel marked as nodes on the
navigation links to form a topo-geometric map.

3.2 Centering using corridor ceiling lights

The image is divided into four adjoining triangles definedivy two diagonals of the image.
Assuming that ceiling lights reside in the top triangle, vee the mean horizontal location of
the intensities above a threshold to determine whetheoth&t is traveling in the center of the
corridor. Letting the mean horizontal location in the imagehe light source bé,,...., then
the robot is centered by setting the rotational velocitya@lfactor of /.., — w/2), wherew

is the width of the image. By servoing on this location, theigtto navigate a long corridor

with stability is achieved, even without any additionalarrthation from odometry or other

13



Figure 3.3: Different ceiling lights (in Riggs Hall) and thenean locations (vertical lines)

detected by our algorithm. Notice that there is no restictn the shape or location of lights.
LEFT: Fluorescent center lamps in the basememNTER: Fluorescent lights on either side
pointing toward the reflective ceiling in one wing of floor 1.1dRT: Sodium vapor center

lamps in another wing of floor 1.

sensors. This approach is not only simpler, but also moreedolvand more general, than
previous approaches that analyze the shape of lights. leonge, Figure 3.3 shows a variety
of lights that are successfully detected using this metimte that ceiling lights provide an

added advantage over vanishing points because they actealftey translation, thus enabling

the robot to remain in the center of the corridor while alsgrahg its orientation with the

walls.

3.3 Distinguishing the corridor by scalar entropy

The entropy of an image is a scalar representing the staiistieasure of randomness that can

be used to characterize its texture:

H(K) =Y —plogp, (3.1)

peK

wherep is the count value for each bin in the histograhof the imagel (256 bins for a 8-bit
graylevel image). The normalized histogram is an approtionaof the probability density
function of a random variable whose realization is the paldéir set of pixel values found in

the image [23]. The entropy is therefore a measure of thenmton content in an image.

14



According to Shannon’s theory of entropy [52], the entropythie measure of information
content of a symbol and the rarer its occurrence the greatgformation content. When the
robot approaches a planar surface, like a blank wall or thiasei of an untextured or struc-
tured object, the entropy drops as the occurrence of anywgiag is very high; this implies
that the camera is facing a planar obstacle immediatelyimt of it. In richly textured images,
time-to-collision (TTC) [1] or central image divergencedhhold [13] can be used to deter-
mine the position of a frontal obstacle. But in an environtravoid of texture and consisting
of uniform color, these methods will fail. Using entropy éddition to the existing methods),
therefore, is a promising way to react to a situation wheedriage does not provide enough
information for navigation. Other researchers have us&@py for determining the direction
of navigation and for global visual localization using omtirectional images [8, 21].

Entropy is used in several ways. While driving if the entralpgps sharply, the robot stops
and turns away. In the same manner, while turning at the eactofridor, the robot continues
turning as long as either side has low entropy, and the dvemédopy is below a threshold
H,,,. That alow entropy value indicates a nearby wall is illugtdein Figure 3.4, where sharp
drops in entropy correspond to images where the robot iadegciblank wall.

Entropy can also be used to find corridors. Figure 3.5 showstaop entropy values as
the robot turns on the spot facing three branches of a TiumciThe entropy is high when
the robot is aligned with the corridor, and it drops sharplyew the robot faces the wall.
The plot of entropy values for other environments is shovem@lwith laser measurements
at T-junctions in Figures 3.6, 3.7, and 3.8 correspondintihtee different buildings on our
campus (Riggs, EIB and Lowry), indicating that entropy isoavprful measure for detecting
open corridors. Therefore, entropy can be used to detegrdsence of an open corridor for

navigation when other metrics fail, whether in textured wtextured environments.

15
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Figure 3.4: ©P. Comparison of image entropy, absolute image standarctienj and cen-
tral optical flow of the image, all measured while the robavéled in a building. The three
drops in entropy correspond to three turns, when the roloetidféhe walls. Notice that the
entropy values are more easily distinguished (and lesgitian those of the other measures.
BoTTOoM: The images corresponding to the above values are shown.

3.4 Homing mode

When the robot nears the end of a corridor, the lights disapipem the camera’s field of view
and the overall entropy drops. When either of these occlesiabot automatically captures
the current image and stores it as the ‘home’ image. Keefiagiimage in view, the robot

navigates toward it usingoming[42]: The current image is compared with the home image

16
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Figure 3.5: Entropy captured as the robot turned in placbeaaftjunction of two corridors

in Riggs floor 3. Entropy is high when the robot faces the Ierafta corridor and drops
sharply on either side, so the three peaks indicate the tmewlor directions (at 0, 90, and
-90 degrees). Maintaining high entropy allows the robotvoicithe specular reflections of
the walls.

after shifting left and right by a maximum disparity of onegli The result that yields the
lowest sum of absolute difference (SAD) indicates the rglabtection of motion. This keeps

the robot in the center of the corridor even when the lighesent visible.
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Figure 3.6: ©P. Entropy (red solid line) and distance (blue dashed linghagobot turned
at a corridor T-junction in Riggs floor 3. Distance was meaduwrsing a SICK laser scanner.
BoTTOM: Images of the corridor approximately showing the origotatvith respect to the
depth values corresponding to them above.

3.5 Detecting the end of the corridor

The end of the corridor is determined by combining three mexss entropy (described in the
previous chapter), relative entropy, and the time-toisiolh, in order to navigate in different

indoor environments with different levels of texture/infaation and lighting.
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Figure 3.7: ©P. Entropy (red solid line) and distance (blue dashed linghagsobot turned
at a corridor T-junction in EIB floor 1. Distance was measuisthg a SICK laser scanner.
BoTTOoM: Images of the corridor approximately showing the origotatvith respect to the
depth values corresponding to them above.

3.5.1 Relative entropy

Considering two discrete distributions with probabilitjmttionsp, andg,, then the Kullback-

Leibler distance ofp with respect tqg; is given by

D(p,q) = prlog (@> (3-2)
- qk
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Figure 3.8: OP: Entropy and distance (measured using a SICK laser scaagsehe robot
turned at a corridor T-junction in Lowry (near main entrarft@r 1). BoTTOM: Images of the
corridor approximately showing the orientation with resie the depth values corresponding
to them above.

which is a measure of the distance between two distributid@s In other words, it is a
measure of the inefficiency of assuming that the distriluitsay when the true distribution is

p [14]. In our applicationp, andq, represent the intensity histograms of two images, so that
the relative entropy) measures how different one image is from the other. One drelkvbf

the Kullback-Leibler measure is that it is not a true dis@recaus® (p, q) # D(q, p). For

20



a symmetric measure, the Jeffrey divergence is used [57]:

T(p9) =) (pk log (%) + qx log <;—Z)) : (3.3)

k

Jeffrey divergence has been used previously for visiondesdeot localization for comparing
color histograms in typical SLAM algorithms and has beermghto be a good metric for
histogram comparison [57].

As the robot moves toward the end of the corridor in the honpihgse described in the
previous section, the currentimage is compared with thediamage using Jeffrey divergence.
This measures the amount of relative information betweenwio images, i.e., how different
one image is from the other. The divergence value incredseadily as the robot moves, then
the value increases rapidly as the robot approaches theféine corridor. This rapid change

signifies that the current image is no longer recognizablease’ (see Figures 3.9 and 3.10).

3.5.2 Time-to-collision detector

Time-to-collision (TTC) is defined as the time taken by thatee of projection of a camera
to reach the surface being viewed, if the relative veloatyains constant [24]. Horet al.
[24] have recently described a novel method to determindithe-to-collision using image
brightness derivatives (temporal and spatial) without@adipration or tracking. This method
computes the time to contact with just two frames of a seqeieAdthough each individual
estimate is noisy, a filtered version (using a median filtden§th 15) of the output yields a
reliable estimate as the camera approaches the object. eCifisgmportance is the case of
a planar surface for which the algorithm is simple and cangdpdied to the case of a robot

approaching the end of a corridor. For the case of translatiotion along the optical axis
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Figure 3.9: Time-to-collision and Jeffrey divergence fori@mage sequence in which the robot
approaches a pair of doors in a textureless environmeaot: Bample images from the se-
guence. BTTOM: Plot of the TTC (left) and Jeffrey divergence (right) vesdime. The
former decreases, while the latter increases; combinggib enables robust detection of the
end of a corridor.

towards a plane perpendicular to the optical axis, the TTgivisn by

2
e~ e B o9
If £, andE, are spatial image brightness derivatives &hds the temporal derivative , then
G (z,y) = zE, + yE,, and the summation is over the desired planar object (in stases
the entire image) [24]. For a detailed derivation from firshpiples, refer to the Appendix.
Figures 3.9 and 3.10 show that the TTC decreases as the pyiyoezhes the end of a corridor.
It can be seen from these figures that the metrics describepiv@aching end successfully
in both textured (‘information rich’) and relatively textless environments. By combining
Jeffrey divergence and TTC(p,q) > Ju & 7rre < Thwin) , the end of a corridor can be

detected reliably.
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Figure 3.10: Time-to-collision and Jeffrey divergence &or image sequence in a textured
environment in which the robot approaches a brick wall witheatilator. Top: Sample
images from the sequence.oBroM: Plot of the TTC (left) and Jeffrey divergence (right)
versus time.
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Figure 3.11: Time-to-collision and Jeffrey divergence &or image sequence in which the
robot approaches a pair of trash cans with a glass door bétémain EIB, third floor. DP:
Sample images from the sequenceoBoM: Plot of the TTC (left) and Jeffrey divergence
(right) versus time.
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3.6 Turning at the end of a corridor

The robot displays tropism (an orienting response; a r@ac¢t a stimulus source) at the end
of each corridor, making an autonomous decision to turn dewoto find the new adjacent
corridor. While turning, the robot searches for ceilinghiggand high overall entropy. The
robot enters a rotational search mode until it finds anotbarce light in the ceiling. If it
sees the light, it corrects its course and follows the light the new corridor following the
same procedure as above. However, if it does not see ang lighéll sides but still senses
the presence of a corridor indicated by an entropy valuetgreélan a threshold,;,, (see
Figure 3.5), then it navigates in that direction using ‘hogiias described above and the

process continues. If lights come into view again, the rdbibaws the light.

3.7 Autonomous mapping

The same metrics that were used for navigation — entropyelatve entropy — can be used
to determindalistinctive/salientandmarks for map building in an incremental process. Boada
et al. [7] have shown a popular framework for Voronoi-based maps lanalization. The
Voronoi-based maps are roadmap methods and are preferredrf@or mapping because of
their accessibility, connectivity, and departabilid2] and can be constructed incrementally
by the robot. In this approach, the graph consists of theshatkich represent the obstacle-free
path followed by the robot and the nodes which represendigtenctive/salienplaces along
the path.

As the robot drives down the corridor, not all images captumessalient Just as a human
driving down a highway often experiences long stretches @fiatonous scenery broken by
intermittent landmarks, the robot perceives salient nregi@ong either side of the corridor a

small percentage of the time. In our approach to mappingmbasures of image saliency
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Figure 3.12: Voronoi tessellation of a plane based on a mnansket of 2D points. (Plot was

generated usingoroGlide").

described in the following sections indicate the preserice rearby landmark by a sudden
increase in their value. These salient images correspomacations of landmarks in the

scene. The path followed by the robot along the corridor teraatically augmented with

salient locations that become nodes in a Voronoi-basedhgrapgether, these form a map
representing the topology of the environment which can kel der later localization and

navigation tasks.

3.7.1 Voronoi diagrams

A Voronoi diagram or tessellation is a decomposition of arroefpace into a number of non-
overlapping spaces based on the objects and boundarieatisgace. Given a number of
points in a plane the Voronoi diagram divides the plane atingrto the nearest-neighbor rule.
That is, each point representing an object is associatdd thét region of he plane that is
closest to it in the Euclidean senseplandq are two points in the plane ads the distance

function, the domain of point over pointg is given by

dom{p,q} = {x € Ry|d (x,p) <0 (x,q)} (3.5)
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The resultant tessellation from equation (3.5) is nothingabhalf plane bounded by the per-
pendicular bisector of the straight line joinipg@ndgq [3]. Voronoi tessellations arise in nature
and provide a visual interpretation of space (see Figur2)3.Human intuition is suppos-
edly guided by this visual perception described by the Voraliagram. Voronoi diagrams
also have interesting mathematical properties like theality with Delaunay triangles, and
they act as a tool to solve computational problems. Vororagrams have been used previ-
ously to determine path planning for a point robot. In thisecthe Voronoi diagram can be
used to build a Hidden Markov Model of the landmark sequemcedfect localization us-
ing the framework. The Voronoi diagram reduces the pathrphayilocalization problem to
bi-dimensional trajectory planning providing a simple afficient path that is safest for the
robot to follow. These also include the junction landmarksah form a part of the original
Voronoi geometry. The total description is that of the lilkpresenting the free path followed
by the robot with nodes representing the intersection ofittks and additional nodes repre-
senting the natural and artificial visual landmarks detkateng the two sides of the corridor.
It is intuitive to describe landmarks and theggion of influenceising the Voronoi as shown in
Figure 3.13. If the width and length of the corridor can beagied, it is possible to describe
actual areas which correspond to the landmark’s influentendny ways this is also crudely

representative of the way the human mind identifies landmark

3.7.2 Joint probability distribution of distinct landmark measures

For landmark detection only one-sixth of the image is cogr®@d on either side (see Figure
3.16), because this narrow region contains landmarks asaerg a corridor. This further
implies that only 33% of th82 x 24 image is used. We determine distinct landmarks along

the hallway by using the measures of image scalar entropyedative entropy between two

Ihttp://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/
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Figure 3.13: Voronoi interpretation of left and right landrks. The space in the corridor
can be tessellated by the points representing the landrf@ariggometric mapping (Plot was
generated usingoroGlidé").

subsequent images. Lat be a normalized random variable representing the entroplyeof
gradient magnitude af” image seen along the hallway, andYetepresent the Jeffrey diver-
gence between th#" and the(i — 1)”‘ image gradients. The joint density of two variables
is generally plotted as a 2D surface, but in several casegevini@rested in a time domain
representation with peaks and valleys [44]. In such cakes]dint Probability Density (JPD)
of the two variables as a function of timeepresents thdistinctivenessf the image/event in
the temporal sense as follows:

PUX,Y) = — exp {—<X2+Y2)}. (3.6)

2 2
2m0 L0y 207 20,

This can be described as a measure of how information-ridhuaique an image is. A land-
mark is therefore defined as an image that inésresting recognizableinformation that is
distinct from the previous image. It is assumed that two eonsve frames in the sequence

do not have two different potential landmarks. Considetimg speed of the robot and the
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Figure 3.14: Dr: JPD for the left side of the corridor: Each peak correspogdb the local

maxima defines a region of high saliency — a landmar&rBom: Images corresponding to
the peaks shown in sequence with respect to the peaks froto kajht.

capture rate of the camera this assumption is generally tlogvever, this is a drawback of

the algorithm as it may not generalize to different envirenis.
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Figure 3.15: DP: JPD for the right side of the corridor: Each peak correspumntb the local
maxima defines a region of high saliency — a landmar&rBom: Images corresponding to
the peaks shown in sequence with respect to the peaks froto lejht.

Because the relative entropy between two images is indeperad the absolute entropy
of either one,X andY can be considered as independent variables and the digirbs
plotted over time. Local maxima on the JPD give locationafies that represent landmarks

(see Figures 3.14 and 3.15). It can be seen from the resuitgune 4.3 that even in images of

low-resolution (where traditional point features are hiardetect/track) the simple measures
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Figure 3.16: IEFT: Water fountain in the left one-sixth of the imagel@RT: Door in the
right one-sixth of the image

indicated above give a clear indication of a landmark. Tigerthm does not represent each
landmark uniquely (which would be difficult in a typical indloenvironment consisting of

corridors with identical doors) but instead representallg¢he presence of a landmark.

3.8 Geometric correction of odometry

Since the robot's odometry is prone to drift over large dists, these plots include an ef-
fective method to reduce the drift using the motor commarsngoy the vision module. It
is important to note that this correction was done mainlydisplay purposes and for map-
ping and does not play any role in navigation. Inspired bywek of Crowley [15], which
combines the measured position and the expected positsaulman motor commands using a
Kalman filter and a retroactive odometric correction usiegser fusion [32], we simply use
the motor commands issued by the vision module to incrertigngadate the odometry. It is
important to note that this correction was done only for theiinlg mode (straight line naviga-
tion using ceiling lights and homing) and only for updatihg heading of the robot. During

the turning mode there is no vision control till the ceilinghts and high entropy are seen.
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Therefore drift error at turns persists in rotation. Bustimcremental method is sufficient for
the general purpose of this initiative and for a display féete Figure 3.17).

Let t,,.4ue b€ the time taken for one iteration of any vision module thuattmls the robot
and letw, be the desired rotational velocity command sent to the rivbote iteration. Then

the estimated angle by which the robot turned in one itenasigiven by

67‘ = Wylmodule (3 7)

wherew, is used to control the rotational velocity of the robot. Tobat’s heading is updated
using the valud, calculated as above in the centering and homing modes. &tliiges the
drift error considerably as the ceiling lights enable alyastable straight line navigation. The

robot’'s odometry is not updated in the turning mode.
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Figure 3.17: A flow diagram explaining the odometry corracti Odometry heading is cor-
rected using visual control output during centering usiaijrgy lights and homing,,,que

is the time taken for one iteration of either of these visuadoies. In turning mode, the
rotational velocity is a constant +£ and the robot's odometry is trusted.

32



Chapter 4

Experimental results

4.1 Platform and primary test environment

Figure 4.1: The Pioneer 3 robot used for all the experimeiste that 50 hours of experi-
ments were run on this setup.



The algorithm was tested on an all-terrain robotic platfd?rmaneer Ill manufactured by
ActivMedia Robotics. We mounted a forward-facing Logité@hickcam Pro4000 webcam
on it as shown in Figure 4.1. ARIA is the interface used foeifeécing the portable PC/laptop
with the microcontrollers on board the robot which are resae for the low level motor
controls and odometry. The command center is the portablarfeiChe application was built
using Visual C++. The algorithm was tested in all the flooms@ment and floors 1, 2, and
3) of Riggs Hall on our campus. For historical reasons, theetfloors do not share the same
appearance in terms of the color of the walls, the placemahiedights, the locations of the
doors, the locations of nearby corridors, and so on. In @aer, the corridors have entirely
different lighting conditions, ranging from a single rowfaforescent lamps to sodium vapor
lamps or lights on either sides of the corridor ceiling (segife 4.2). The texture (information
content) in the corridors is also different, with the basetrteaving textureless walls and
floors of uniform color (see Figure 4.2). Only the grayscal®imation from the32 x 24

downsampled images from the camera was used.

4.2 Navigation

On all four floors the robot autonomously navigated the doms, turning at the end of each
corridor using the algorithm described. At the end of a camithe robot turned left arbitrarily
by ninety degrees and then right, searching for lights agtl bntropy; otherwise the robot
turned in the open direction based on high entropy. Figurés44, 4.5, and 4.6 show the
path followed by the robot on all of the floors, overlaid on ada&onstructed map of the
environment to provide context for interpreting the resulh the basement the robot turned
right, then turned left (arbitrarily), navigated to the enfdthe corridor, then turned around
180 degrees and headed back down the last short corridoe iopgposite direction. On the

third floor the robot turned left twice at the end of each @wrj and repeated the process in
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Figure 4.2: Example experimental sites shown in high-td¢gm to reveal the difference in
texture and lighting. ©p LEFT: Riggs basement, dp RIGHT: Riggs floor 1, BOTTOM
LEFT: Riggs floor 2, BTTOM RIGHT: Riggs floor 3.

the short wing of the corridor. In the first floor the robot tedright twice at the end of each
corridor, and in the second floor, the robot turned left tvatéhe end of each corridor. In all

cases the robot remained close to the center of the coradoidling collision with the walls

or static obstacles.

4.3 Mapping

Figures 4.3, 4.4, 4.5 and 4.6 also show the generated Velmssd map overlaid. Most
of the important landmarks have been captured. The nodessesged in the Figure 4.6

represent distinctive regions along the corridor of thedtfiioor. With odometry combined
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Figure 4.3: Automatically generated Voronoi map of the baesat of the building.
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Figure 4.5: Automatically generated Voronoi map of the selciboor of the building.

Location(Riggs)| N, | Np F | M | % success
Basement 15,14} 15,13/ 1,2 1,1| 93.3,78.5
Floor 1 12,111 10,10| 2,0| 2,1 | 66.67, 90.9
Floor 2 13,15| 14,11 4,1 | 2,5| 76.92, 66.6
Floor 3 12,13| 14,13| 4,3| 2,3| 83.3,76.9

Table 4.1: Quantitative landmark detection results. Frefntb right: the number of land-
marks N, the total number detected by the algorithvip, the number of false landmarks
detectedt’, the number of landmarks missed by the algorithihand the percentage of suc-
cess in detecting landmarks. Each cell in the table conth@swumber for left and right,

separated by a comma.

it can be described as a topo-geometric map similar to therigéion in [7] as it combines

real distances with the skeleton. The landmarks seen taetheflthe robot are represented

by a square, and the landmarks seen on the right are repeddantin asterisk. At corridor
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Figure 4.6: Automatically computed Voronoi-based map witkles representing the approxi-
mate distinctive landmarks on the third floor of the buildiitgcan be seen that the landmarks
have been verified by the returning robot in the top wing ofdbeidor.

junctions it can be seen that left and right landmarks opefTéis is because the robot turns at
junctions to search for lights. Furthermore, the multipd@ié at junctions are recognized as

one landmark because they are all captured during theanotafithe robot at junctions. It is

interesting to observe the top wing of the corridor in Figdii@. The left and right landmarks
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Figure 4.7: Landmark images containing a landmark on thesigé of the image.

Figure 4.8: Landmark images containing a landmark on th# sgle of the image.

validate each other because the robot returns along the gatihen the opposite direction.
Some example enlarged images with left and right landmakslaown in Figures 4.7 and
4.8.

Table 4.1 shows the analysis of the results. The landmaksaunted in the order of
the robot’s navigation path, while the returning landmaakes not counted. Also note that in
some cases two entities that are immediately next to eadr atlke detected as one distinct
region/landmark (e.g., a door with an adjoining shelf onwadl). This detection process
is a simple probabilistic estimation and not efficient erfobbgcause not all the landmarks
are successfully detected. More work needs to be done toedefinbust measure using the

saliency metrics.

4.4 Odometry drift correction

Good improvement in odometry is seen after drift correcti®ut since correction is not
done in the turning mode, and only the heading is correctefi,edrors are not completely

eliminated. The correction procedure is detailed in sec3&. However, the efficiency of the
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Figure 4.9: LEFT: Ground truth versus corrected odometry and raw odometrgdaigation
in Riggs floor 3: observe that drift is reduced in the corrécidometry. RGHT: Raw versus
corrected odometry for navigation in Riggs floor 1: Note theiovement. W TE: The ground
truth was determined by placing markers manually along #th praveled by the robot and
then taking measurements of the markers in the corridor.

navigation route should not be tested by odometry aloneféisisnt errors persist over long
distances. In order to estimate the extent of error, an @xeeat was conducted by manually
measuring the navigation path of the robot by placing mar&eregular intervals. The ground
truth as determined by the markers and the navigation aswietd by the corrected odometry
and the raw odometry are overlaid in Figure 4.9, for Riggsrf&0A plot of corrected versus

raw odometry is also shown for Riggs floor 1 and in both casesinhprovement seen by the

odometry correction is considerable.
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Location | No. of successful trials / No. of total trialsPercentage success
Basement 2/2 100%
Floor 1 2/2 100%
Floor 2 2/2 100%
Floor 3 8/8 100%

Table 4.2: Repeatability: The number of successful triitepeated runs in each of the floors.

4.5 Analysis of results

4.5.1 Experimental trials

The robot was tested successfully on all the four floors irgRigultiple times. Success in
all of these cases were measured by whether the robot wasoadtiat off at one end of the
corridor and reach the other end without any manual intéiweiisee Table 4.2). The analysis
of these results tend to be more of a qualitative nature thamtifative because of the goal
of this initiative. This is true of most systems interactimgh a complex environment where
the factors controlling the success of the system are toy itaelme elaborately estimated in a
guantitative manner.

Also these results are run on a real indoor environment withbleasis on the navigation
aspects. For this reason, the system was not tested on atnagridataset. Most datasets
available are suited for SLAM like environments that usehhigsolution based processes
with very few frames/images of a given environment.

On each floor the robot was able to navigate successfullyaat tevice and has been tested
successfully in the third floor for eight trials. An overlaf/four of those trials is shown in
Figure 4.10.

To test the robustness of the system, several long triale w@nducted. In the last wing
of the third floor corridor, the robot successfully contidugavigating for approximatelg5

minutes navigating more thaB50 metersautonomously as shown in figure 4.11. It would
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Image Conversions and display.04ms
Jeffrey Divergence 0.02ms
Time-to-collision 0.26ms
Homing 0.08ms
Get the mean of ceiling lights | 0.06ms
Entropy 0.06ms
Downsampling 0.18ms
Total 0.70ms

Table 4.3: Performance: Time taken by the different visimduies.

have continued running, but it had to be stopped manuallalme the laptop battery had
completely discharged. In the basement, the robot ran ssfidly for 20 minutesin the
main wing (The side door was closed for this experiment,blagthe connecting corridors).
Although it successfully drove past a brightly lit vendin@gchine at one end several times,
eventually it mistook it for ceiling lights and had to be maty stopped to prevent it from
crashing into it.

The robot showed successful navigation in different situatlike when it was started fac-
ing a nearby wall as shown in Figure 4.12 and when it was stadey close to a wall as seen
in Figure 4.13. In both cases it is seen that the robot resay@ckly from the difficult initial
conditions and proceeds navigating in the expected matmboth these trials it is seen that
acceptable changes in actual starting position, oriemtand location do not affect the navi-
gation of the robot. The measures of entropy helps the rabadover from walls and dead

ends and continues navigation by searching for lights agl @éntropy as described earlier.

4.5.2 Computational efficiency

The algorithm is efficient, capable of running at over 10@®rfes per second (see Table 4.3).
Therefore with a standard 30 Hz camera, the algorithm corsuapproximately 3% of the

CPU, thus freeing the processor for other concurrent tdeksur experiments, the robot was

42



run indoors at a moderate speed of 0.4 m/s for two reasons.réxsen was to avoid con-
tingencies in the indoor environment because the system matecurrently support dynamic
obstacle avoidance. The other reason was that near the e¢hd obrridor, the robot has to
stop and turn. It needs to maintain a constant speed throtigpecause of TTC calculation.
When it stops, the momentum allows the robot to move a fewdaadseyond that desired.
This needed to be controlled by a reasonable speed. Futukewilbinvolve dynamic speed

control at the end.

4.6 Other environments and failure modes

[h] Though the algorithm is not specialized for a particidavironment, it currently works
well only for a certain class of environments, namely thogé eeiling lights symmetrically
distributed in the corridor, no specular surfaces or stmas near the actual lights and there is
not much graffiti on the lower ends of walls/doors. The suuetlso assumes that corridors
are placed at right angles to each other because in the gumndde the robot searches for
corridors from—90° to +90°. The robot failed in Fluor Daniel building (EIB), because of
the complex structure of the reception hallway. Ceilindiigyhere were not visible from a
forward facing camera, and one side of the hallway was eadlty glass looking outdoor.
The system also failed in Lowry hall because of glass pairieiated on either sides of walls
that provided a specular distraction. Simple experimamdor TTC and Jeffrey divergence
at corridor ends in different environments yielded sudtesssults (see Figure 3.11).

In another trial in the basement, it had to be stopped at thyearel because of a double glass
door present at the end (see Figure 4.14). The basementipsoaichallenging environment
for the robot because of the vending machines and highlyctaféewalls and floors. The
problem with glass doors is two-fold. Firstly they refleghit and confuse the robot. Secondly,

when the robot approaches a glass door, it sees the objdutglbieand leads to erroneous
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estimation of TTC and Jeffrey divergence. The main weakoésis algorithm is the use
of ceiling lights. A continuous measure of ceiling symmatther than ceiling lights might
overcome the problems with reflections and also allow na@mgan different environments.
Landmark detection in floor 2 was poor because of the spereflactions from the white
laminated posters on the walls. Landmark detection is dfectad by the navigation path of
the robot. If the robot navigates very close to a wall for aqeeof time, then during that time
several landmarks are missed or wrongly detected. Thesmd$aaso contribute to the large

number of false positives in the detected landmarks.
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Figure 4.10: Four trial runs on the third floor of Riggs. It d@seen that the route has been
successfully re-traced. The error seen at the last wing estdaccumulation of odometric
drift. Though this was corrected using the vision moduleanobmmands, some drift persists
due to variation in processing time and image capture delay.
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Figure 4.11: Robot navigated Riggs floor 3 and runs for absutéhutes in the last wing
of the corridor autonomously. The navigation path was measmanually using markers at
regular intervals (ground truth). The robot navigated gadlise greater that 850 meters in this
trial.
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Figure 4.12: Robot starts facing the right wall in Riggs fl8precovers before its reaches the
wall, turns and continues navigation.
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Figure 4.13: Robot starts very close to a wall in Riggs flooc@yects its path using ceiling
lights (correcting orientation and horizontal positionplacontinues navigation.

Figure 4.14: Three examples of navigation failureeFll: Lowry Hall, glass panel on top
right, CENTER EIB: Glass structure on one side and ceiling lights notatiffe, RGHT:
Riggs basement: Double glass door.
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Chapter 5

Conclusion and future work

The navigational behavior of a mobile robot is modeled bytatgisual percepts that work
in conjunction to correct its path in an indoor environmeswdd on different metrics. Special
emphasis is placed on using low-resolution images for caatjpmal efficiency and metrics
that capture information content and variety that cannotpeesented using traditional point
features and methods. The resultant algorithm enabledsceadd navigation in indoor en-
vironments with self-directed decision making at corridods, without the use of any prior
information or map. The system forms the basis of an automsmaoapping system that is
built using the same low-resolution metrics to present aoNor-based topo-geometric map
that can be used for robot localization.

The primary contribution of this work is the implementatiesing low-resolution images
that yields a high computational efficiency without sacific robustness. This work also
takes a small step towards combining perceptual navigatitnmapping and localization.
Though the navigational competencies are simple and fepécialized, they have proved to
work well in a class of indoor environments and most impdiyacontinued navigation has

been achieved by the decision making at corridor ends. Atege built into a system with a



simple mapping capability added, work well in a given typlmalding with stable navigation
seen across all the floors (which have different appearances

Future work may involve several activities that make thestxg algorithm more robust,
making it environment independent, achieving localizatiéth the given mapping algorithm,
or using machine intelligence to train the system in an imdowironment to learn typical
information content along the corridor. Another goal agsted with the mapping could be
the development of a layered approach where higher resolimiage processing will augment
the system to handle complex requirements like landmarkimrag. The Joint Probability
Distribution can be made more robust using multiple temlipdeaivatives and smoothing.
The ultimate goal is to achieve local-global localizatigrem autonomous navigating robot in

an environment-independent manner.
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APPENDIX

Time-to-contact relative to a planar surface: derivation rom
first principles

Horn et al. [24] have described the calculation of time-to-contachgsipatial and temporal
image derivatives and can be computed using just two framasequence. The system does
not use any tracking or calibration.
If the distance from the approaching surface jghen the time-to-contact is defined as
-7

az
dt

T —

d - . . . . . . .
whered—f is the derivative of the distance with respect to time. Adauy to perspective
projection equations, if is the length of the cross-section of the approaching plabgact

ands is the size of its image, ther;, = % where f is the focal length of the camera, which

H H az ds H
implies thatS% + Z% = 0 (see Figure 5.1).

ThenS% —= — 74 which implies that
—7Z S
az TTC = 3 (A‘l)

dt dt
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Figure 5.1: Perspective projection.

Considering the brightness constancy assumption of anarhaghe brightness of a pixel

corresponding to a point on the object does not change witd)tiwe have

E(r+ Az,y + Ay, t + At) = E(z,y,1)

Assuming small motion between successive frames (sthaland Ay), the above can be

expanded using first order Taylor’s series to get

dx dy
EFE,—+FE,—+FE =
vgp T g TE=0

or

uby, +vE, + Ey =0 (A-2)

whereu = % andv = % respectively E, = £ andE, = & are spatial image brightness
derivatives andv; = %—’f is the temporal brightness derivative.

Once again obtaining perspective projection equationsetamera

and (A-3)

N >
NI~

|8
~l<=
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Figure 5.2: Camera moving such that optical axis is perperali to the approaching surface.

where X, Y, and Z are coordinates of a point in space andy are corresponding image

coordinates. Differentiating equation (A-3) with respectime, we get

= — — and = — — (A-4)

N
N| =
N| <

14
Z

NS
SE

u v
f f

whereU, V, W are temporal derivatives of, Y, Z respectively and represent velocity of the

point on the object relative to the cametav are temporal derivatives afandy (the motion

field in the image). Substituting equation (A-3) in equatiér), we get

N| =

y
> (A-5)

Sk
|

, and

N| S
|

|
RS
e
<

which leads to

1 1
qu(fU—xW) and UZE(fV—yW) (A-6)

Considering the simple case where the translation is pdipelar to the optical axis (see

Figure 5.2),U andV can be set t0 in equation (A-6).

U=—r— and ov=-—-y— (A-7)
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Substituting equation (A-7) in equation (A-2), we get
w
— (xE, +yE,))+ E =0 (A-8)

or

CG+E =0 (A-9)

whereC' = —% from equation (A-1) and is the inverse of TTC, afid= zE, + yE,,.
Formulating a least squares method to minimiZéC'G + E,)* where the sum is over all

pixels of interest, which could be the whole image, we get

Y (CG+E)G=0

_ Z G (IL’, y) Et
—2(G (z,9))?

Itis evident that wheW' increases, TTC decreases. Intuitively this explains th#t@cam-

C (A-10)

era approaches the surface being viewed, the temporal ehatgightness values increases
rapidly and the spatial change decreases (because whebhjdut/surface grows bigger, the
sum of spatial gradients is lower), and therefore the TTCalses as the object/surface looms

closer to the camera.
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