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ABSTRACT

Vision has been a powerful tool for navigation of intelligent and man-made systems ever

since the cybernetics revolution in the 1970s. There have been two basic approaches to the

navigation of computer controlled systems: The self-contained bottom-up development of sen-

sorimotor abilities, namely perception and mobility, and the top-down approach, namely artifi-

cial intelligence, reasoning and knowledge based methods.The three-fold goal of autonomous

exploration, mapping and localization of a mobile robot however, needs to be developed within

a single framework. An algorithm is proposed to answer the challenges of autonomous corri-

dor navigation and mapping by a mobile robot equipped with a single forward-facing camera.

Using a combination of corridor ceiling lights, visual homing, and entropy, the robot is able to

perform straight line navigation down the center of an unknown corridor. Turning at the end

of a corridor is accomplished using Jeffrey divergence and time-to-collision, while deflection

from dead ends and blank walls uses a scalar entropy measure of the entire image. When com-

bined, these metrics allow the robot to navigate in both textured and untextured environments.

The robot can autonomously explore an unknown indoor environment, recovering from diffi-

cult situations like corners, blank walls, and initial heading toward a wall. While exploring, the

algorithm constructs a Voronoi-based topo-geometric map with nodes representing distinctive

places like doors, water fountains, and other corridors. Because the algorithm is based entirely

upon low-resolution(32 × 24) grayscale images, processing occurs at over 1000 frames per

second.
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Chapter 1

Introduction

Psychological studies have shown that human intelligence does not require high-resolution

images to ascertain information about the environment for basic navigation. For example

the “selective degradation hypothesis”, developed by Leibowitz [33], says that some visual

abilities such as vehicle steering and speed control remainrelatively easy despite loss in visual

acuity and color vision. For canonical tasks like walking ormoving in a straight line, only

a small percentage of what we see is actually useful, and in fact low-frequency information

alone is sufficient for success. Motivated by this idea, we describe a system that uses only low-

resolution (32×24) grayscale images to navigate a previously unknown corridor environment

and to produce a Voronoi-based topo-geometric map of the environment [41]. By discarding

99% of the information captured from a320 × 240 camera, the approach is computationally

efficient, freeing up much of the CPU for other computation-intensive tasks, such as landmark

recognition.

Our approach has a two-fold goal: autonomous navigation in an unknown environment

and autonomous mapping. Straight line navigation is achieved using a combination of sim-

ple visual competencies such as ceiling lights and homing. Detecting the end of the corridor

and turning is achieved by using direct and relative measures of visual information content.



Similarly, a probabilistic combination of information measures is used to detect and map in-

teresting and salient landmarks on either side of the corridor. The navigation path and the

detected landmarks are combined to plot a simple roadmap type of topo-geometric map of the

environment.

1.1 Mobile robot navigation

Mobile robot navigation has a three-fold fundamental goal:autonomous exploration of an un-

known environment, mapping of the environment, and localization in the environment. Typ-

ically using on-board computation and standard off the shelf hardware, mobile robots using

multiple sensors have been developed for land, sea and aerial navigation and are deployed in

the manufacturing, military, security, consumer and entertainment industries.

1.2 Monocular vision as the sensor

As noted by Horswill [25], there is a correlation between thesurface structure of an image

and the deep structure of objects in the real world. Vision ismore powerful than other sensors

because vision provides different kinds of information about the environment, while other

sensors (such as sonars or lasers) only give us depth. For landmark detection and recognition,

vision provides direct ways to do so and is easy to represent because of the close relation to

the way humans understand landmarks. In addition lasers areexpensive and power-hungry,

and sonars cause interference. Vision based navigation cannow be achieved using a single

off-the-shelf camera which is inexpensive and scalable.

Navigating with a single camera is not easy. Perhaps this is why many approaches rely upon

depth measurements from sonars, lasers, or stereo cameras to solve the problem. Granted,

knowledge of distances to either wall, the shape of obstacles, and so on, would be directly

2



useful for localizing the robot and building a geometric mapof the environment. Stereo vision

has its own difficulties (e.g., it requires texture to compute correspondence, is computationally

expensive and produces inaccurate results for many pixels). Indoor environments in particular

often lack texture, rendering stereo matching an elusive problem in such places. In contrast,

humans are quite good at navigating indoors with one eye closed, even with blurry vision, thus

motivating us to find a different solution.

1.3 Low-resolution vision

Low-resolution vision is not entirely new in vision based navigation. As a matter of fact, the

older navigation systems predominantly used low-resolution vision because image processing

was limited by the technology of the time. For example Horswill [25] used 64 × 48 and

16×12 images in his work. The selective degradation hypothesis [33] serves to strengthen the

axiom that navigation is possible under low visual acuity. The hypothesis itself is a result of

several studies and experiments in psychology [2]. Research showed that two modes of vision

are present in living creatures:recognitionand guidance, which both contribute to visual

perception. But under poor visual conditions such as low-resolution or low illumination, the

recognitionmode deteriorates sharply, while theguidanceor visually induced self-motion still

maintains high efficiency. Schneider [2] showed that animals with poor vision were able to

orient visually toward salient visual events. Therefore combining salient events with low-

resolution provides a natural structure for perceptive, explorative navigation and mapping. An

additional advantage is the gain of CPU time involved in processing, loading and retrieving

images in a potential real-time embedded environment.

It should be noted that recent independent work by Torralbaet al. [56] has also empha-

sized the importance of low-resolution vision. They have shown results on an extensively

constructed database of 70 million images that make a powerful argument in favor of low-

3



resolution vision for non-parametric object and scene recognition. The application to per-

son detection and localization is particularly noteworthyconsidering that they have produced

good results with low-resolution images that are comparable to that of the Viola-Jones detec-

tor which uses high-resolution images. The whole spirit of low-resolution is strengthened by

this argument and one can see that low-resolution images (upto the limits of scotopic vision)

provide enough information for basic visual processing.

1.4 Structure of this report

The next chapter gives a summary of the work done previously in vision based navigation, the

different approaches, the achievements, limitations, andongoing work. Chapter 3 describes

the detailed structure of the algorithm, the percepts, the visual processing for navigation and

for mapping. Chapter 5 discusses a number of experiments conducted on the robot in an indoor

environment, with supporting plots, graphs and image sequences. These give us a sense of the

reliability of the algorithm and its limitations. Chapter 6gives a summary of the thesis, an

outline of future work and concluding discussions.

4



Chapter 2

Previous work

Vision-based mobile robot navigation has been studied by many researchers. From the early

work of the Stanford Cart [40] to the current Aibo (the toy robot built by Sony), navigation

has been recognized as a fundamental capability that needs to be developed. According to the

survey of DeSouzaet al. [20], significant achievements have been made in indoor navigation,

with FINALE [29] being one of the more successful systems. FINALE requires a model-

based geometric representation of the environment and usesultrasonic sensors for obstacle

avoidance. NEURO-NAV [37] is another oft cited system that uses a topological representa-

tion of the environment and responds to human-like commands. RHINO [9] is an example of a

robust indoor navigating robot. The highly notable NAVLAB [55] is an example of proficient

outdoor navigation system which use a combination of visionand a variety of other sensors

for navigation and obstacle avoidance. Moravec [40] and Nelsonet al. [43], however, have

emphasized the importance of low-level vision in mobile robot navigation, and Horswill [25]

implemented a hierarchical and complete end-to-end vision-based navigational robot based on

prior training of the environment.

One approach to navigation has been to use corridor lights, which can achieve robust navi-

gation even in long corridors. In some systems, lights are used as landmarks in a teach/replay



approach, with the camera pointing toward the ceiling [32].The drawback of such a config-

uration, of course, is that the robot is blind to anything in front of it, not to mention that the

system must be trained beforehand on the environment to be navigated. In another implemen-

tation, ceiling lights are used as aids in straight line navigation [31], but here again the camera

points toward the ceiling, and the position and orientationof the rectangular lights are used

for straight line navigation. Such a computation does not generalize well to environments in

which the lights are not of a rectangular shape, or to robots with forward-facing cameras. Choi

et al. [11] use a forward facing camera for detecting lights, but their approach also relies upon

the actual geometrical features of the lamps, and it is restrained by the lights disappearing

from the field of view, which is one of the main difficulties of forward-facing cameras. Our

approach incorporates computations to handle this difficulty and to automatically detect and

handle the end of a corridor, without any prior training of the environment or restriction on

light shape.

2.1 Vision based navigation — An overview

Vision is powerful because it is inexpensive, non-intrusive and scalable. The various ways

in which vision is used for navigation have been described indetail, by Desouzaet al. [20].

Vision-based navigation systems can be classified as shown in Figure 2.1 which is a summary

of [20]. This thesis aims to form a bridge between map-building systems and mapless systems,

thus combining the goal of autonomous exploration and mapping.

2.1.1 Mapless navigation

Mapless navigation using vision predominantly uses primitive visual competencies like mea-

surements of 2D motion (such a optical flow), structure from motion, independent motion

detection, estimating time-to-contact and object tracking. While some/all of these can and

6



Figure 2.1: A taxonomy of approaches to vision-based navigation, summarizing [20].

have been used to develop a wandering robot, many open pointsof research need to be men-

tioned. None of these have been tested before on low-resolution systems (as low as32 × 24).

All of these visual competencies are known to face problems in textureless environments.

These competencies can be used for continuous navigation ina predictable path. At a point of

discontinuity such as a corridor end, however, these competencies themselves do not provide

a solution.

2.1.2 Map-based navigation

Map-based navigation systems are a complete solution to thegoal-based navigation problem.

The definition of landmarks is a vital necessity of such a system. Again, historically there have

been two types of visual landmarks: Sparse feature based landmarks and higher level abstract

landmarks.

7
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Figure 2.2: LEFT: Two images shown side-by-side with the SIFT matches between them
shown as cyan lines. In an indoor environment, only a few SIFTfeatures are found with a
160 × 120 image. RIGHT: Even fewer SIFT features are found for a low-resolution32 × 24
image.

• Sparse feature based landmarks: Some of the prominent landmarks used today to rep-

resent visual landmarks in SLAM based systems, are based on edges, rotation invariant

features, or corners. These are in fact represented by the three popular visual landmark

representation techniques: SIFT (Scale Invariant FeatureTransform) [50], Harris Cor-

ners [22] and Shi-Tomasi feature points [53]. These have theadvantage of being robust,

scale invariant and sparse [28]. But again the important points to be noted are as follows.

These representations are computationally quite expensive. Some work has been done

to develop real-time feature detectors, like real-time SLAM [19], GLOH [38] and SURF

[4]. FAST [47, 48] is promising for high-speed, feature-based representations, but such

approaches often leave little CPU time for other tasks and may not work well with tex-

tureless environments. These features work well in well-textured environments with

high-resolution. In poorly textured environments with lowresolution, sparse features

are not robust enough. SIFT in particular is fairly sensitive to resolution and texture, see

Figure 2.2.

• High level abstract landmarks: Another way of representing landmarks is to use all of

the pixels together like the entire image itself, or reducedpixel information. Template

8



matching is a very simple, common yet powerful landmarks representation/matching

technique. Histograms, color maps and other measures are also popular.

2.1.3 SLAM: Simultaneous Localization and Mapping

With regard to mapping, the recent developments in Simultaneous Localization and Mapping

(SLAM) have been based primarily upon the use of range sensors [39, 45, 6]. A few re-

searchers have applied this work to the problem of building maps using monocular cameras,

such as in the vSLAM approach [27], which is a software platform for visual mapping and lo-

calization using sparse visual features. An alternate approach is that of Davisonet al.[18, 17],

who also use sparse image features to build 3D geometric maps.

In these visual SLAM techniques, either a complex matching process for a simple landmark

representation [46] or a simple matching process for a complex landmark representation [50]

is needed for robust robot localization. In indoor corridorenvironments, however, the lack of

texture poses a major obstacle to such an approach. Indeed, popular techniques such as the

Scale Invariant Feature Transform (SIFT) [50] or other feature representations have difficulty

in such cases. Moreover, the computationally demanding nature of these algorithms often

leaves little room for additional processing, and their design requires higher resolution images.

2.1.4 Map-building based navigation

The whole task of map-building described in modern SLAM, visual or not, always has a

manual/tele-operated phase [16, 49, 18]. It is important tonote that in most map-building

systems, the robot is controlled manually. Autonomous navigation is rare, and autonomous

vision-based mapping is even more rare [20]. Notable initiatives include the work done by

Matsumotoet al. [34], who used omnidirectional cameras with stereo and optical flow to

control navigation, and Shahet al. [51], who implemented an autonomous navigation system

9



using a calibrated fish eye stereo lens system. However, these approaches require specialized

cameras. Similarly, autonomous vision-based navigation is rare, with many techniques requir-

ing a training phase in which the robot is controlled manually [5, 10, 35, 36, 26]. As a result,

efficient autonomous map building of indoor environments using a single off-the-shelf camera

has remained an elusive problem.

Team ARobAS of INRIA have made a compelling statement in their annual report2[54]

about the incompleteness of SLAM. They state that the problem of explorative motion strat-

egy of the robot (or reactive navigation) has rarely been a part of SLAM. They argue that

autonomous navigation and SLAM cannot be treated separately and that a unified framework

is needed for perception, modeling and control. Very few notable initiatives have completely

automated the system for collecting the data required to build a map while navigating. Robust

perception is a basic necessity for a navigating robot that can be deployed in an environment

without human intervention.

2http://www.inria.fr/rapportsactivite/RA2007/arobas/arobas.pdf
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Chapter 3

Approach: Low-resolution competencies

for navigation and mapping

3.1 Algorithm overview

Navigation: The basic navigation system is represented in Figure 3.1. The robot basically

has three modes of operation: the centering mode, the homingmode, and the turning at the

end of the corridor. The robot navigates in a straight line using ceiling lights (when they are

visible) and homing (when the ceiling lights disappear). Control decisions at the end of the

corridor are made by entropy, Jeffrey divergence, and time-to-collision. Turning at the end of

the corridor is controlled by a search for lights and high entropy.

Mapping: Landmarks are detected using two information measures (Jeffrey divergence and

entropy that are measured for the entire navigation path), and marked with respect to the path

obtained from navigation (see Figure 3.2). Corrected odometry is used to find the path as

explained in section 3.8. The landmark detection is a passive process and does not have any

feedback onto the navigation system. Localization is currently not being performed using the



Figure 3.1: Overview of the navigation system. There are three challenges: Autonomous
driving, detecting the end, and action at the end of the corridor. These are achieved by the
three modes of operation: ‘Centering the ceiling lights’, ‘homing’, and ‘turning’ at the end of
the corridor.

detected landmarks. Our ultimate goal is to build a system that uses landmarks for navigation

and localization.

The end-end system is a proof of concept of the above described methods and the working

of the complete system is demonstrated in the sections that follow where we describe each of

these modules in greater detail.
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Figure 3.2: A flow diagram explaining the map-building. Salient regions of interest on either
side of the corridor are detected using information measures and marked as nodes on the
navigation links to form a topo-geometric map.

3.2 Centering using corridor ceiling lights

The image is divided into four adjoining triangles defined bythe two diagonals of the image.

Assuming that ceiling lights reside in the top triangle, we use the mean horizontal location of

the intensities above a threshold to determine whether the robot is traveling in the center of the

corridor. Letting the mean horizontal location in the imageof the light source belmean, then

the robot is centered by setting the rotational velocity to be a factor of(lmean − w/2), wherew

is the width of the image. By servoing on this location, the ability to navigate a long corridor

with stability is achieved, even without any additional information from odometry or other

13



Figure 3.3: Different ceiling lights (in Riggs Hall) and their mean locations (vertical lines)
detected by our algorithm. Notice that there is no restriction on the shape or location of lights.
LEFT: Fluorescent center lamps in the basement. CENTER: Fluorescent lights on either side
pointing toward the reflective ceiling in one wing of floor 1. RIGHT: Sodium vapor center
lamps in another wing of floor 1.

sensors. This approach is not only simpler, but also more powerful and more general, than

previous approaches that analyze the shape of lights. For example, Figure 3.3 shows a variety

of lights that are successfully detected using this method.Note that ceiling lights provide an

added advantage over vanishing points because they are affected by translation, thus enabling

the robot to remain in the center of the corridor while also aligning its orientation with the

walls.

3.3 Distinguishing the corridor by scalar entropy

The entropy of an image is a scalar representing the statistical measure of randomness that can

be used to characterize its texture:

H(K) =
∑

p∈K

−plog p, (3.1)

wherep is the count value for each bin in the histogramK of the imageI (256 bins for a 8-bit

graylevel image). The normalized histogram is an approximation of the probability density

function of a random variable whose realization is the particular set of pixel values found in

the image [23]. The entropy is therefore a measure of the information content in an image.
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According to Shannon’s theory of entropy [52], the entropy is the measure of information

content of a symbol and the rarer its occurrence the greater its information content. When the

robot approaches a planar surface, like a blank wall or the surface of an untextured or struc-

tured object, the entropy drops as the occurrence of any grayvalue is very high; this implies

that the camera is facing a planar obstacle immediately in front of it. In richly textured images,

time-to-collision (TTC) [1] or central image divergence threshold [13] can be used to deter-

mine the position of a frontal obstacle. But in an environment devoid of texture and consisting

of uniform color, these methods will fail. Using entropy (inaddition to the existing methods),

therefore, is a promising way to react to a situation where the image does not provide enough

information for navigation. Other researchers have used entropy for determining the direction

of navigation and for global visual localization using omnidirectional images [8, 21].

Entropy is used in several ways. While driving if the entropydrops sharply, the robot stops

and turns away. In the same manner, while turning at the end ofa corridor, the robot continues

turning as long as either side has low entropy, and the overall entropy is below a threshold

Hlow. That a low entropy value indicates a nearby wall is illustrated in Figure 3.4, where sharp

drops in entropy correspond to images where the robot is facing a blank wall.

Entropy can also be used to find corridors. Figure 3.5 shows a plot of entropy values as

the robot turns on the spot facing three branches of a T-junction. The entropy is high when

the robot is aligned with the corridor, and it drops sharply when the robot faces the wall.

The plot of entropy values for other environments is shown along with laser measurements

at T-junctions in Figures 3.6, 3.7, and 3.8 corresponding tothree different buildings on our

campus (Riggs, EIB and Lowry), indicating that entropy is a powerful measure for detecting

open corridors. Therefore, entropy can be used to detect thepresence of an open corridor for

navigation when other metrics fail, whether in textured or untextured environments.
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Figure 3.4: TOP: Comparison of image entropy, absolute image standard deviation, and cen-
tral optical flow of the image, all measured while the robot traveled in a building. The three
drops in entropy correspond to three turns, when the robot faced the walls. Notice that the
entropy values are more easily distinguished (and less noisy) than those of the other measures.
BOTTOM: The images corresponding to the above values are shown.

3.4 Homing mode

When the robot nears the end of a corridor, the lights disappear from the camera’s field of view

and the overall entropy drops. When either of these occurs, the robot automatically captures

the current image and stores it as the ‘home’ image. Keeping that image in view, the robot

navigates toward it usinghoming[42]: The current image is compared with the home image
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Figure 3.5: Entropy captured as the robot turned in place at the T-junction of two corridors
in Riggs floor 3. Entropy is high when the robot faces the length of a corridor and drops
sharply on either side, so the three peaks indicate the threecorridor directions (at 0, 90, and
-90 degrees). Maintaining high entropy allows the robot to avoid the specular reflections of
the walls.

after shifting left and right by a maximum disparity of one pixel. The result that yields the

lowest sum of absolute difference (SAD) indicates the robot’s direction of motion. This keeps

the robot in the center of the corridor even when the lights are not visible.
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Figure 3.6: TOP: Entropy (red solid line) and distance (blue dashed line) asthe robot turned
at a corridor T-junction in Riggs floor 3. Distance was measured using a SICK laser scanner.
BOTTOM: Images of the corridor approximately showing the orientation with respect to the
depth values corresponding to them above.

3.5 Detecting the end of the corridor

The end of the corridor is determined by combining three measures: entropy (described in the

previous chapter), relative entropy, and the time-to-collision, in order to navigate in different

indoor environments with different levels of texture/information and lighting.
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Figure 3.7: TOP: Entropy (red solid line) and distance (blue dashed line) asthe robot turned
at a corridor T-junction in EIB floor 1. Distance was measuredusing a SICK laser scanner.
BOTTOM: Images of the corridor approximately showing the orientation with respect to the
depth values corresponding to them above.

3.5.1 Relative entropy

Considering two discrete distributions with probability functionspk andqk, then the Kullback-

Leibler distance ofp with respect toq is given by

D (p, q) =
∑

k

pk log

(

pk

qk

)

, (3.2)
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Figure 3.8: TOP: Entropy and distance (measured using a SICK laser scanner)as the robot
turned at a corridor T-junction in Lowry (near main entrance, floor 1). BOTTOM: Images of the
corridor approximately showing the orientation with respect to the depth values corresponding
to them above.

which is a measure of the distance between two distributions[30]. In other words, it is a

measure of the inefficiency of assuming that the distribution is q when the true distribution is

p [14]. In our application,pk andqk represent the intensity histograms of two images, so that

the relative entropyD measures how different one image is from the other. One drawback of

the Kullback-Leibler measure is that it is not a true distance, becauseD(p, q) 6= D(q, p). For
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a symmetric measure, the Jeffrey divergence is used [57]:

J(p, q) =
∑

k

(

pk log

(

pk

qk

)

+ qk log

(

qk

pk

))

. (3.3)

Jeffrey divergence has been used previously for vision based robot localization for comparing

color histograms in typical SLAM algorithms and has been shown to be a good metric for

histogram comparison [57].

As the robot moves toward the end of the corridor in the homingphase described in the

previous section, the current image is compared with the home image using Jeffrey divergence.

This measures the amount of relative information between the two images, i.e., how different

one image is from the other. The divergence value increases steadily as the robot moves, then

the value increases rapidly as the robot approaches the end of the corridor. This rapid change

signifies that the current image is no longer recognizable as‘home’ (see Figures 3.9 and 3.10).

3.5.2 Time-to-collision detector

Time-to-collision (TTC) is defined as the time taken by the center of projection of a camera

to reach the surface being viewed, if the relative velocity remains constant [24]. Hornet al.

[24] have recently described a novel method to determine thetime-to-collision using image

brightness derivatives (temporal and spatial) without anycalibration or tracking. This method

computes the time to contact with just two frames of a sequence. Although each individual

estimate is noisy, a filtered version (using a median filter oflength 15) of the output yields a

reliable estimate as the camera approaches the object. Of specific importance is the case of

a planar surface for which the algorithm is simple and can be applied to the case of a robot

approaching the end of a corridor. For the case of translation motion along the optical axis
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Figure 3.9: Time-to-collision and Jeffrey divergence for an image sequence in which the robot
approaches a pair of doors in a textureless environment. TOP: Sample images from the se-
quence. BOTTOM: Plot of the TTC (left) and Jeffrey divergence (right) versus time. The
former decreases, while the latter increases; combining the two enables robust detection of the
end of a corridor.

towards a plane perpendicular to the optical axis, the TTC isgiven by

τTTC =
−

∑

(G (x, y))2

∑

G (x, y)Et

, (3.4)

If Ex andEy are spatial image brightness derivatives andEt is the temporal derivative , then

G (x, y) = xEx + yEy, and the summation is over the desired planar object (in somecases

the entire image) [24]. For a detailed derivation from first principles, refer to the Appendix.

Figures 3.9 and 3.10 show that the TTC decreases as the robot approaches the end of a corridor.

It can be seen from these figures that the metrics describe theapproaching end successfully

in both textured (‘information rich’) and relatively textureless environments. By combining

Jeffrey divergence and TTC (J (p, q) ≥ Jth & τTTC ≤ Tmin) , the end of a corridor can be

detected reliably.
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Figure 3.10: Time-to-collision and Jeffrey divergence foran image sequence in a textured
environment in which the robot approaches a brick wall with aventilator. TOP: Sample
images from the sequence. BOTTOM: Plot of the TTC (left) and Jeffrey divergence (right)
versus time.
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Figure 3.11: Time-to-collision and Jeffrey divergence foran image sequence in which the
robot approaches a pair of trash cans with a glass door behindthem in EIB, third floor. TOP:
Sample images from the sequence. BOTTOM: Plot of the TTC (left) and Jeffrey divergence
(right) versus time.
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3.6 Turning at the end of a corridor

The robot displays tropism (an orienting response; a reaction to a stimulus source) at the end

of each corridor, making an autonomous decision to turn in order to find the new adjacent

corridor. While turning, the robot searches for ceiling lights and high overall entropy. The

robot enters a rotational search mode until it finds another source light in the ceiling. If it

sees the light, it corrects its course and follows the light into the new corridor following the

same procedure as above. However, if it does not see any lights on all sides but still senses

the presence of a corridor indicated by an entropy value greater than a thresholdHhigh (see

Figure 3.5), then it navigates in that direction using ‘homing’ as described above and the

process continues. If lights come into view again, the robotfollows the light.

3.7 Autonomous mapping

The same metrics that were used for navigation — entropy and relative entropy — can be used

to determinedistinctive/salientlandmarks for map building in an incremental process. Boada

et al. [7] have shown a popular framework for Voronoi-based maps and localization. The

Voronoi-based maps are roadmap methods and are preferred for corridor mapping because of

their accessibility, connectivity, and departability[12] and can be constructed incrementally

by the robot. In this approach, the graph consists of the links which represent the obstacle-free

path followed by the robot and the nodes which represent thedistinctive/salientplaces along

the path.

As the robot drives down the corridor, not all images captured aresalient. Just as a human

driving down a highway often experiences long stretches of monotonous scenery broken by

intermittent landmarks, the robot perceives salient regions along either side of the corridor a

small percentage of the time. In our approach to mapping, themeasures of image saliency
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Figure 3.12: Voronoi tessellation of a plane based on a random set of 2D points. (Plot was
generated usingVoroGlide1).

described in the following sections indicate the presence of a nearby landmark by a sudden

increase in their value. These salient images correspond tolocations of landmarks in the

scene. The path followed by the robot along the corridor is automatically augmented with

salient locations that become nodes in a Voronoi-based graph. Together, these form a map

representing the topology of the environment which can be used for later localization and

navigation tasks.

3.7.1 Voronoi diagrams

A Voronoi diagram or tessellation is a decomposition of a metric space into a number of non-

overlapping spaces based on the objects and boundaries in that space. Given a number of

points in a plane the Voronoi diagram divides the plane according to the nearest-neighbor rule.

That is, each point representing an object is associated with that region of he plane that is

closest to it in the Euclidean sense. Ifp andq are two points in the plane andδ is the distance

function, the domain of pointp over pointq is given by

dom {p, q} = {x ∈ R2|δ (x, p) ≤ δ (x, q)} (3.5)
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The resultant tessellation from equation (3.5) is nothing but a half plane bounded by the per-

pendicular bisector of the straight line joiningp andq [3]. Voronoi tessellations arise in nature

and provide a visual interpretation of space (see Figure 3.12). Human intuition is suppos-

edly guided by this visual perception described by the Voronoi diagram. Voronoi diagrams

also have interesting mathematical properties like their duality with Delaunay triangles, and

they act as a tool to solve computational problems. Voronoi diagrams have been used previ-

ously to determine path planning for a point robot. In this case the Voronoi diagram can be

used to build a Hidden Markov Model of the landmark sequencesto affect localization us-

ing the framework. The Voronoi diagram reduces the path planning/localization problem to

bi-dimensional trajectory planning providing a simple andefficient path that is safest for the

robot to follow. These also include the junction landmarks which form a part of the original

Voronoi geometry. The total description is that of the linksrepresenting the free path followed

by the robot with nodes representing the intersection of thelinks and additional nodes repre-

senting the natural and artificial visual landmarks detected along the two sides of the corridor.

It is intuitive to describe landmarks and theirregion of influenceusing the Voronoi as shown in

Figure 3.13. If the width and length of the corridor can be obtained, it is possible to describe

actual areas which correspond to the landmark’s influence. In many ways this is also crudely

representative of the way the human mind identifies landmarks.

3.7.2 Joint probability distribution of distinct landmark measures

For landmark detection only one-sixth of the image is considered on either side (see Figure

3.16), because this narrow region contains landmarks as seen along a corridor. This further

implies that only 33% of the32 × 24 image is used. We determine distinct landmarks along

the hallway by using the measures of image scalar entropy andrelative entropy between two

1http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/
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Figure 3.13: Voronoi interpretation of left and right landmarks. The space in the corridor
can be tessellated by the points representing the landmarksfor geometric mapping (Plot was
generated usingVoroGlide1).

subsequent images. LetX be a normalized random variable representing the entropy ofthe

gradient magnitude ofith image seen along the hallway, and letY represent the Jeffrey diver-

gence between theith and the(i − 1)th image gradients. The joint density of two variables

is generally plotted as a 2D surface, but in several cases we are interested in a time domain

representation with peaks and valleys [44]. In such cases, the Joint Probability Density (JPD)

of the two variables as a function of timet represents thedistinctivenessof the image/event in

the temporal sense as follows:

Pt (X, Y ) =
1

2πσxσy

exp

[

−

(

X2

2σ2
x

+
Y 2

2σ2
y

)]

. (3.6)

This can be described as a measure of how information-rich and unique an image is. A land-

mark is therefore defined as an image that hasinteresting, recognizableinformation that is

distinct from the previous image. It is assumed that two consecutive frames in the sequence

do not have two different potential landmarks. Consideringthe speed of the robot and the
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Figure 3.14: TOP: JPD for the left side of the corridor: Each peak corresponding to the local
maxima defines a region of high saliency — a landmark. BOTTOM: Images corresponding to
the peaks shown in sequence with respect to the peaks from left to right.

capture rate of the camera this assumption is generally true. However, this is a drawback of

the algorithm as it may not generalize to different environments.
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Figure 3.15: TOP: JPD for the right side of the corridor: Each peak corresponding to the local
maxima defines a region of high saliency — a landmark. BOTTOM: Images corresponding to
the peaks shown in sequence with respect to the peaks from left to right.

Because the relative entropy between two images is independent of the absolute entropy

of either one,X andY can be considered as independent variables and the distribution is

plotted over time. Local maxima on the JPD give locations/images that represent landmarks

(see Figures 3.14 and 3.15). It can be seen from the results inFigure 4.3 that even in images of

low-resolution (where traditional point features are hardto detect/track) the simple measures
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Figure 3.16: LEFT: Water fountain in the left one-sixth of the image. RIGHT: Door in the
right one-sixth of the image

indicated above give a clear indication of a landmark. The algorithm does not represent each

landmark uniquely (which would be difficult in a typical indoor environment consisting of

corridors with identical doors) but instead represents locally the presence of a landmark.

3.8 Geometric correction of odometry

Since the robot’s odometry is prone to drift over large distances, these plots include an ef-

fective method to reduce the drift using the motor commands given by the vision module. It

is important to note that this correction was done mainly fordisplay purposes and for map-

ping and does not play any role in navigation. Inspired by thework of Crowley [15], which

combines the measured position and the expected position based on motor commands using a

Kalman filter and a retroactive odometric correction using sensor fusion [32], we simply use

the motor commands issued by the vision module to incrementally update the odometry. It is

important to note that this correction was done only for the driving mode (straight line naviga-

tion using ceiling lights and homing) and only for updating the heading of the robot. During

the turning mode there is no vision control till the ceiling lights and high entropy are seen.
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Therefore drift error at turns persists in rotation. But this incremental method is sufficient for

the general purpose of this initiative and for a display plot(see Figure 3.17).

Let tmodule be the time taken for one iteration of any vision module that controls the robot

and letωv be the desired rotational velocity command sent to the robotin one iteration. Then

the estimated angle by which the robot turned in one iteration is given by

θr = ωvtmodule (3.7)

whereωv is used to control the rotational velocity of the robot. The robot’s heading is updated

using the valueθr calculated as above in the centering and homing modes. This reduces the

drift error considerably as the ceiling lights enable a fairly stable straight line navigation. The

robot’s odometry is not updated in the turning mode.
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Figure 3.17: A flow diagram explaining the odometry correction. Odometry heading is cor-
rected using visual control output during centering using ceiling lights and homing.tmodule

is the time taken for one iteration of either of these visual modules. In turning mode, the
rotational velocity is a constant +/-K and the robot’s odometry is trusted.
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Chapter 4

Experimental results

4.1 Platform and primary test environment

Figure 4.1: The Pioneer 3 robot used for all the experiments.More that 50 hours of experi-
ments were run on this setup.



The algorithm was tested on an all-terrain robotic platformPioneer III manufactured by

ActivMedia Robotics. We mounted a forward-facing LogitechQuickcam Pro4000 webcam

on it as shown in Figure 4.1. ARIA is the interface used for interfacing the portable PC/laptop

with the microcontrollers on board the robot which are responsible for the low level motor

controls and odometry. The command center is the portable PCand the application was built

using Visual C++. The algorithm was tested in all the floors (basement and floors 1, 2, and

3) of Riggs Hall on our campus. For historical reasons, the three floors do not share the same

appearance in terms of the color of the walls, the placement of the lights, the locations of the

doors, the locations of nearby corridors, and so on. In particular, the corridors have entirely

different lighting conditions, ranging from a single row offluorescent lamps to sodium vapor

lamps or lights on either sides of the corridor ceiling (see Figure 4.2). The texture (information

content) in the corridors is also different, with the basement having textureless walls and

floors of uniform color (see Figure 4.2). Only the grayscale information from the32 × 24

downsampled images from the camera was used.

4.2 Navigation

On all four floors the robot autonomously navigated the corridors, turning at the end of each

corridor using the algorithm described. At the end of a corridor, the robot turned left arbitrarily

by ninety degrees and then right, searching for lights and high entropy; otherwise the robot

turned in the open direction based on high entropy. Figures 4.3, 4.4, 4.5, and 4.6 show the

path followed by the robot on all of the floors, overlaid on a hand-constructed map of the

environment to provide context for interpreting the results. In the basement the robot turned

right, then turned left (arbitrarily), navigated to the endof the corridor, then turned around

180 degrees and headed back down the last short corridor in the opposite direction. On the

third floor the robot turned left twice at the end of each corridor, and repeated the process in
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Figure 4.2: Example experimental sites shown in high-resolution to reveal the difference in
texture and lighting. TOP LEFT: Riggs basement, TOP RIGHT: Riggs floor 1, BOTTOM

LEFT: Riggs floor 2, BOTTOM RIGHT: Riggs floor 3.

the short wing of the corridor. In the first floor the robot turned right twice at the end of each

corridor, and in the second floor, the robot turned left twiceat the end of each corridor. In all

cases the robot remained close to the center of the corridor,avoiding collision with the walls

or static obstacles.

4.3 Mapping

Figures 4.3, 4.4, 4.5 and 4.6 also show the generated Voronoi-based map overlaid. Most

of the important landmarks have been captured. The nodes represented in the Figure 4.6

represent distinctive regions along the corridor of the third floor. With odometry combined
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Figure 4.3: Automatically generated Voronoi map of the basement of the building.
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Figure 4.4: Automatically generated Voronoi map of the firstfloor of the building.

36



−20 −10 0 10 20 30
−10

0

10

20

30

40

50

x (m)

y 
(m

)

 

 
Navigation plot
Right landmark
Left landmark

door

fire extinguisher

water fountain

shelf

start

end

Figure 4.5: Automatically generated Voronoi map of the second floor of the building.

Location(Riggs) NL ND F M % success
Basement 15,14 15,13 1,2 1,1 93.3, 78.5
Floor 1 12,11 10,10 2,0 2,1 66.67, 90.9
Floor 2 13,15 14,11 4,1 2,5 76.92, 66.6
Floor 3 12,13 14,13 4,3 2,3 83.3, 76.9

Table 4.1: Quantitative landmark detection results. From left to right: the number of land-
marksNL, the total number detected by the algorithmND, the number of false landmarks
detectedF , the number of landmarks missed by the algorithmM , and the percentage of suc-
cess in detecting landmarks. Each cell in the table containsthe number for left and right,
separated by a comma.

it can be described as a topo-geometric map similar to the description in [7] as it combines

real distances with the skeleton. The landmarks seen to the left of the robot are represented

by a square, and the landmarks seen on the right are represented by an asterisk. At corridor
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Figure 4.6: Automatically computed Voronoi-based map withnodes representing the approxi-
mate distinctive landmarks on the third floor of the building. It can be seen that the landmarks
have been verified by the returning robot in the top wing of thecorridor.

junctions it can be seen that left and right landmarks overlap. This is because the robot turns at

junctions to search for lights. Furthermore, the multiple doors at junctions are recognized as

one landmark because they are all captured during the rotation of the robot at junctions. It is

interesting to observe the top wing of the corridor in Figure4.6. The left and right landmarks
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Figure 4.7: Landmark images containing a landmark on the left side of the image.

Figure 4.8: Landmark images containing a landmark on the right side of the image.

validate each other because the robot returns along the samepath in the opposite direction.

Some example enlarged images with left and right landmarks are shown in Figures 4.7 and

4.8.

Table 4.1 shows the analysis of the results. The landmarks are counted in the order of

the robot’s navigation path, while the returning landmarksare not counted. Also note that in

some cases two entities that are immediately next to each other are detected as one distinct

region/landmark (e.g., a door with an adjoining shelf on thewall). This detection process

is a simple probabilistic estimation and not efficient enough because not all the landmarks

are successfully detected. More work needs to be done to define a robust measure using the

saliency metrics.

4.4 Odometry drift correction

Good improvement in odometry is seen after drift correction. But since correction is not

done in the turning mode, and only the heading is corrected, drift errors are not completely

eliminated. The correction procedure is detailed in section 3.8. However, the efficiency of the
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Figure 4.9: LEFT: Ground truth versus corrected odometry and raw odometry for navigation
in Riggs floor 3: observe that drift is reduced in the corrected odometry. RIGHT: Raw versus
corrected odometry for navigation in Riggs floor 1: Note the improvement. NOTE: The ground
truth was determined by placing markers manually along the path traveled by the robot and
then taking measurements of the markers in the corridor.

navigation route should not be tested by odometry alone as sufficient errors persist over long

distances. In order to estimate the extent of error, an experiment was conducted by manually

measuring the navigation path of the robot by placing markers at regular intervals. The ground

truth as determined by the markers and the navigation as determined by the corrected odometry

and the raw odometry are overlaid in Figure 4.9, for Riggs floor 3. A plot of corrected versus

raw odometry is also shown for Riggs floor 1 and in both cases, the improvement seen by the

odometry correction is considerable.
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Location No. of successful trials / No. of total trialsPercentage success
Basement 2/2 100%
Floor 1 2/2 100%
Floor 2 2/2 100%
Floor 3 8/8 100%

Table 4.2: Repeatability: The number of successful trials of repeated runs in each of the floors.

4.5 Analysis of results

4.5.1 Experimental trials

The robot was tested successfully on all the four floors in Riggs multiple times. Success in

all of these cases were measured by whether the robot was ableto start off at one end of the

corridor and reach the other end without any manual intervention (see Table 4.2). The analysis

of these results tend to be more of a qualitative nature than quantitative because of the goal

of this initiative. This is true of most systems interactingwith a complex environment where

the factors controlling the success of the system are too many to be elaborately estimated in a

quantitative manner.

Also these results are run on a real indoor environment with emphasis on the navigation

aspects. For this reason, the system was not tested on any arbitrary dataset. Most datasets

available are suited for SLAM like environments that use high-resolution based processes

with very few frames/images of a given environment.

On each floor the robot was able to navigate successfully at least twice and has been tested

successfully in the third floor for eight trials. An overlay of four of those trials is shown in

Figure 4.10.

To test the robustness of the system, several long trials were conducted. In the last wing

of the third floor corridor, the robot successfully continued navigating for approximately45

minutes navigating more that850 metersautonomously as shown in figure 4.11. It would
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Image Conversions and display0.04ms
Jeffrey Divergence 0.02ms
Time-to-collision 0.26ms
Homing 0.08ms
Get the mean of ceiling lights 0.06ms
Entropy 0.06ms
Downsampling 0.18ms
Total 0.70ms

Table 4.3: Performance: Time taken by the different vision modules.

have continued running, but it had to be stopped manually because the laptop battery had

completely discharged. In the basement, the robot ran successfully for 20 minutes in the

main wing (The side door was closed for this experiment, blocking the connecting corridors).

Although it successfully drove past a brightly lit vending machine at one end several times,

eventually it mistook it for ceiling lights and had to be manually stopped to prevent it from

crashing into it.

The robot showed successful navigation in different situations like when it was started fac-

ing a nearby wall as shown in Figure 4.12 and when it was started very close to a wall as seen

in Figure 4.13. In both cases it is seen that the robot recovers quickly from the difficult initial

conditions and proceeds navigating in the expected manner.In both these trials it is seen that

acceptable changes in actual starting position, orientation and location do not affect the navi-

gation of the robot. The measures of entropy helps the robot to recover from walls and dead

ends and continues navigation by searching for lights and high entropy as described earlier.

4.5.2 Computational efficiency

The algorithm is efficient, capable of running at over 1000 frames per second (see Table 4.3).

Therefore with a standard 30 Hz camera, the algorithm consumes approximately 3% of the

CPU, thus freeing the processor for other concurrent tasks.In our experiments, the robot was
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run indoors at a moderate speed of 0.4 m/s for two reasons. Onereason was to avoid con-

tingencies in the indoor environment because the system does not currently support dynamic

obstacle avoidance. The other reason was that near the end ofthe corridor, the robot has to

stop and turn. It needs to maintain a constant speed throughout because of TTC calculation.

When it stops, the momentum allows the robot to move a few inches beyond that desired.

This needed to be controlled by a reasonable speed. Future work will involve dynamic speed

control at the end.

4.6 Other environments and failure modes

[h] Though the algorithm is not specialized for a particularenvironment, it currently works

well only for a certain class of environments, namely those with ceiling lights symmetrically

distributed in the corridor, no specular surfaces or structures near the actual lights and there is

not much graffiti on the lower ends of walls/doors. The structure also assumes that corridors

are placed at right angles to each other because in the turning mode the robot searches for

corridors from−90◦ to +90◦. The robot failed in Fluor Daniel building (EIB), because of

the complex structure of the reception hallway. Ceiling lights here were not visible from a

forward facing camera, and one side of the hallway was enclosed by glass looking outdoor.

The system also failed in Lowry hall because of glass panels situated on either sides of walls

that provided a specular distraction. Simple experiments run for TTC and Jeffrey divergence

at corridor ends in different environments yielded successful results (see Figure 3.11).

In another trial in the basement, it had to be stopped at the very end because of a double glass

door present at the end (see Figure 4.14). The basement provides a challenging environment

for the robot because of the vending machines and highly reflective walls and floors. The

problem with glass doors is two-fold. Firstly they reflect light and confuse the robot. Secondly,

when the robot approaches a glass door, it sees the objects behind it and leads to erroneous
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estimation of TTC and Jeffrey divergence. The main weaknessof this algorithm is the use

of ceiling lights. A continuous measure of ceiling symmetryrather than ceiling lights might

overcome the problems with reflections and also allow navigation in different environments.

Landmark detection in floor 2 was poor because of the specularreflections from the white

laminated posters on the walls. Landmark detection is also affected by the navigation path of

the robot. If the robot navigates very close to a wall for a period of time, then during that time

several landmarks are missed or wrongly detected. These factors also contribute to the large

number of false positives in the detected landmarks.
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Figure 4.10: Four trial runs on the third floor of Riggs. It canbe seen that the route has been
successfully re-traced. The error seen at the last wing is due to accumulation of odometric
drift. Though this was corrected using the vision module motor commands, some drift persists
due to variation in processing time and image capture delay.
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Figure 4.11: Robot navigated Riggs floor 3 and runs for about 45 minutes in the last wing
of the corridor autonomously. The navigation path was measured manually using markers at
regular intervals (ground truth). The robot navigated a distance greater that 850 meters in this
trial.
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Figure 4.12: Robot starts facing the right wall in Riggs floor3, recovers before its reaches the
wall, turns and continues navigation.
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Figure 4.13: Robot starts very close to a wall in Riggs floor 3,corrects its path using ceiling
lights (correcting orientation and horizontal position) and continues navigation.

Figure 4.14: Three examples of navigation failure. LEFT: Lowry Hall, glass panel on top
right, CENTER: EIB: Glass structure on one side and ceiling lights not effective, RIGHT:
Riggs basement: Double glass door.
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Chapter 5

Conclusion and future work

The navigational behavior of a mobile robot is modeled by a set of visual percepts that work

in conjunction to correct its path in an indoor environment based on different metrics. Special

emphasis is placed on using low-resolution images for computational efficiency and metrics

that capture information content and variety that cannot berepresented using traditional point

features and methods. The resultant algorithm enables end-to-end navigation in indoor en-

vironments with self-directed decision making at corridorends, without the use of any prior

information or map. The system forms the basis of an autonomous mapping system that is

built using the same low-resolution metrics to present a Voronoi-based topo-geometric map

that can be used for robot localization.

The primary contribution of this work is the implementationusing low-resolution images

that yields a high computational efficiency without sacrificing robustness. This work also

takes a small step towards combining perceptual navigationwith mapping and localization.

Though the navigational competencies are simple and fairlyspecialized, they have proved to

work well in a class of indoor environments and most importantly continued navigation has

been achieved by the decision making at corridor ends. All ofthese built into a system with a



simple mapping capability added, work well in a given typical building with stable navigation

seen across all the floors (which have different appearances).

Future work may involve several activities that make the existing algorithm more robust,

making it environment independent, achieving localization with the given mapping algorithm,

or using machine intelligence to train the system in an indoor environment to learn typical

information content along the corridor. Another goal associated with the mapping could be

the development of a layered approach where higher resolution image processing will augment

the system to handle complex requirements like landmark matching. The Joint Probability

Distribution can be made more robust using multiple temporal derivatives and smoothing.

The ultimate goal is to achieve local-global localization by an autonomous navigating robot in

an environment-independent manner.
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APPENDIX

Time-to-contact relative to a planar surface: derivation from

first principles

Horn et al. [24] have described the calculation of time-to-contact using spatial and temporal

image derivatives and can be computed using just two frames in a sequence. The system does

not use any tracking or calibration.

If the distance from the approaching surface isZ, then the time-to-contact is defined as

T =
−Z
dZ
dt

where dZ
dt

is the derivative of the distance with respect to time. According to perspective

projection equations, ifS is the length of the cross-section of the approaching planarobject

ands is the size of its image, then,s
f

= S
Z

wheref is the focal length of the camera, which

implies thatS dZ
dt

+ Z ds
dt

= 0 (see Figure 5.1).

ThenS dZ
dt

= −Z ds
dt

which implies that

−Z
dZ
dt

= τTTC =
S
ds
dt

(A-1)



Figure 5.1: Perspective projection.

Considering the brightness constancy assumption of an imageE, (the brightness of a pixel

corresponding to a point on the object does not change with time), we have

E (x + ∆x, y + ∆y, t + ∆t) = E(x, y, t)

Assuming small motion between successive frames (small∆x and∆y), the above can be

expanded using first order Taylor’s series to get

Ex

dx

dt
+ Ey

dy

dt
+ Et = 0

or

uEx + vEy + Et = 0 (A-2)

whereu = dx
dt

andv = dy

dt
respectively ,Ex = ∂E

∂x
andEy = ∂E

∂y
are spatial image brightness

derivatives andEt = ∂E
∂t

is the temporal brightness derivative.

Once again obtaining perspective projection equations of the camera

x

f
=

X

Z
and

y

f
=

Y

Z
(A-3)

52



Figure 5.2: Camera moving such that optical axis is perpendicular to the approaching surface.

whereX, Y , andZ are coordinates of a point in space andx, y are corresponding image

coordinates. Differentiating equation (A-3) with respectto time, we get

u

f
=

U

Z
−

X

Z

W

Z
and

v

f
=

V

Z
−

Y

Z

V

Z
(A-4)

whereU , V , W are temporal derivatives ofX, Y , Z respectively and represent velocity of the

point on the object relative to the camera.u, v are temporal derivatives ofx andy (the motion

field in the image). Substituting equation (A-3) in equation(A-4), we get

u

f
=

U

Z
−

x

f

W

Z
, and

v

f
=

V

Z
−

y

f

V

Z
(A-5)

which leads to

u =
1

Z
(fU − xW ) and v =

1

Z
(fV − yW ) (A-6)

Considering the simple case where the translation is perpendicular to the optical axis (see

Figure 5.2),U andV can be set to0 in equation (A-6).

u = −x
W

Z
and v = −y

V

Z
(A-7)
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Substituting equation (A-7) in equation (A-2), we get

−
W

Z
(xEx + yEy) + Et = 0 (A-8)

or

CG + Et = 0 (A-9)

whereC = −W
Z

from equation (A-1) and is the inverse of TTC, andG = xEx + yEy.

Formulating a least squares method to minimize
∑

(CG + Et)
2 where the sum is over all

pixels of interest, which could be the whole image, we get

∑

(CG + Et) G = 0

C =

∑

G (x, y)Et

−
∑

(G (x, y))2
(A-10)

It is evident that whenC increases, TTC decreases. Intuitively this explains that as the cam-

era approaches the surface being viewed, the temporal change in brightness values increases

rapidly and the spatial change decreases (because when the object/surface grows bigger, the

sum of spatial gradients is lower), and therefore the TTC decreases as the object/surface looms

closer to the camera.
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