12,990 research outputs found

    Topological responses from chiral anomaly in multi-Weyl semimetals

    Get PDF
    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore, this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.Comment: 13 pages, 2 tables, 2 figures, accepted by Physical Review

    Chiral plasma instability and primordial Gravitational wave

    Full text link
    It is known that cosmic magnetic field, if present, can generate anisotropic stress in the plasma and hence, can act as a source of gravitational waves. These cosmic magnetic fields can be generated at very high temperature, much above electroweak scale, due to the gravitational anomaly in presence of the chiral asymmetry. The chiral asymmetry leads to instability in the plasma which ultimately leads to the generation of magnetic fields. In this article, we discuss the generation of gravitational waves, during the period of instability, in the chiral plasma sourced by the magnetic field created due to the gravitational anomaly. We have shown that such gravitational wave will have a unique spectrum. Moreover, depending on the temperature of the universe at the time of its generation, such gravitational waves can have a wide range of frequencies. We also estimate the amplitude and frequency of the gravitational waves and delineate the possibility of its detection by future experiments like eLISA.Comment: 8 pages, 2 figure

    Primakoff Physics for CERN COMPASS Hadron Beam: Hadron Polarizabilities, Hybrid Mesons, Chiral Anomaly, Meson Radiative Transitions

    Get PDF
    We describe a hadron physics program attainable with a partially instrumented CERN COMPASS spectrometer, involving tracking detectors and moderate-size ECAL2/HCAL2 calorimeters. COMPASS can realize a state-of-the-art hadron beam physics program based on hadron polarizability, hybrid mesons, chiral anomaly, and meson radiative transition studies. We review here the physics motivation for this hadron beam program. We describe the beam, detector, trigger requirements, and hardware/software requirements for this program. The triggers for all this physics can be implemented for simultaneous data taking. The program is based on using a hadron beam (positive/negative pion, kaon, proton) in COMPASS.Comment: Contribution to the Proceedings of the Charles U./JINR and International U. (Dubna) CERN COMPASS Summer School, Charles University, Prague, Czech Republic, August 1997, Eds. M. Chavleishvili and M. Finger Tel Aviv U. Preprint TAUP TAUP-2473-98. 26 pages, 11 figures, late

    Starspots and spin-orbit alignment for Kepler cool host stars

    Get PDF
    The angle between the spin axis of the host star and the orbit of its planets (i.e., the stellar obliquity) is precious information about the formation and evolution of exoplanetary systems. Measurements of the Rossiter-McLaughlin effect revealed that many stars that host a hot-Jupiter have high obliquities, suggesting that hot-Jupiter formation involves excitation of orbital inclinations. In this contribution we show how the passage of the planet over starspots can be used to measure the obliquity of exoplanetary systems. This technique is used to obtain - for the first time - the obliquity of a system with several planets that lie in a disk, Kepler-30, with the result that the star has an obliquity smaller than 10 degrees. The implications for the formation of exoplanetary systems, in particular the hot-Jupiter population, are also discussed.Comment: To appear in special edition of AN, proceedings of the Cool Stars 17 conference, Barcelona June 201

    How efficient is an integrative approach in archaeological geophysics? Comparative case studies from Neolithic settlements in Thessaly (Central Greece)

    Get PDF
    The geophysical prospection of Neolithic tells imposes specific challenges due to the preservation and nature of the architectural context and the multiple, usually disturbed, soil strata. Contrary to the usual application of a single method, this paper deals with the advantages of using an integrated geophysical approach through the employment of various methodologies to map the Neolithic cul-tural and environmental landscape of Thessalian tells (magoules) in Central Greece. The success and failure of each method in resolving the various features of the magoules are discussed in detail, and as a whole, they demonstrate the benefits of a manifold geophysical prospection of the sites
    • …
    corecore