19 research outputs found

    Machine learning model for event-based prognostics in gas circulator condition monitoring

    Get PDF
    Gas circulator (GC) units are an important rotating asset used in the Advanced Gas-cooled Reactor (AGR) design, facilitating the flow of CO2 gas through the reactor core. The ongoing maintenance and examination of these machines is important for operators in order to maintain safe and economic generation. GCs experience a dynamic duty cycle with periods of non-steady state behavior at regular refuelling intervals, posing a unique analysis problem for reliability engineers. In line with the increased data volumes and sophistication of available the technologies, the investigation of predictive and prognostic measurements has become a central interest in rotating asset condition monitoring. However, many of the state-of-the-art approaches finding success deal with the extrapolation of stationary time series feeds, with little to no consideration of more-complex but expected events in the data. In this paper we demonstrate a novel modelling approach for examining refuelling behaviors in GCs, with a focus on estimating their health state from vibration data. A machine learning model was constructed using the operational history of a unit experiencing an eventual inspection-based failure. This new approach to examining GC condition is shown to correspond well with explicit remaining useful life (RUL) measurements of the case study, improving on the existing rudimentary extrapolation methods often employed in rotating machinery health monitoring

    Investigation of gas circulator response to load transients in nuclear power plant operation

    Get PDF
    Gas circulator units are a critical component of the Advanced Gas-cooled Reactor (AGR), one of the nuclear power plant (NPP) designs in current use within the UK. The condition monitoring of these assets is central to the safe and economic operation of the AGRs and is achieved through analysis of vibration data. Due to the dynamic nature of reactor operation, each plant item is subject to a variety of system transients of which engineers are required to identify and reason about with regards to asset health. The AGR design enables low power refueling (LPR) which results in a change in operational state for the gas circulators, with the vibration profile of each unit reacting accordingly. The changing conditions subject to these items during LPR and other such events may impact on the assets. From these assumptions, it is proposed that useful information on gas circulator condition can be determined from the analysis of vibration response to the LPR event. This paper presents an investigation into asset vibration during an LPR. A machine learning classification approach is used in order to define each transient instance and its behavioral features statistically. Classification and reasoning about the regular transients such as the LPR represents the primary stage in modeling higher complexity events for advanced event driven diagnostics, which may provide an enhancement to the current methodology, which uses alarm boundary limits

    Self-tuning diagnosis of routine alarms in rotating plant items

    Get PDF
    Condition monitoring of rotating plant items in the energy generation industry is often achieved through examination of vibration signals. Engineers use this data to monitor the operation of turbine generators, gas circulators and other key plant assets. A common approach in such monitoring is to trigger an alarm when a vibration deviates from a predefined envelope of normal operation. This limit-based approach, however, generates a large volume of alarms not indicative of system damage or concern, such as operational transients that result in temporary increases in vibration. In the nuclear generation context, all alarms on rotating plant assets must be analysed and subjected to auditable review. The analysis of these alarms is often undertaken manually, on a case- by-case basis, but recent developments in monitoring research have brought forward the use of intelligent systems techniques to automate parts of this process. A knowledge- based system (KBS) has been developed to automatically analyse routine alarms, where the underlying cause can be attributed to observable operational changes. The initialisation and ongoing calibration of such systems, however, is a problem, as normal machine state is not uniform throughout asset life due to maintenance procedures and the wear of components. In addition, different machines will exhibit differing vibro- acoustic dynamics. This paper proposes a self-tuning knowledge-driven analysis system for routine alarm diagnosis across the key rotating plant items within the nuclear context common to the UK. Such a system has the ability to automatically infer the causes of routine alarms, and provide auditable reports to the engineering staff

    Self-tuning routine alarm analysis of vibration signals in steam turbine generators

    Get PDF
    This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques

    A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector

    Get PDF
    The increasing availability of data, gathered by sensors and intelligent machines, is chang-ing the way decisions are made in the manufacturing sector. In particular, based on predictive approach and facilitated by the nowadays growing capabilities of hardware, cloud-based solutions, and new learning approaches, maintenance can be scheduled—over cell engagement and resource monitoring—when required, for minimizing (or managing) unexpected equipment failures, improving uptime through less aggressive maintenance schedules, shortening unplanned downtime, reducing excess (direct and indirect) cost, reducing long-term damage to machines and processes, and improve safety plans. With access to increased levels of data (and over learning mechanisms), companies have the capability to conduct statistical tests using machine learning algorithms, in order to uncover root causes of problems previously unknown. This study analyses the maturity level and contributions of machine learning methods for predictive maintenance. An upward trend in publications for predictive maintenance using machine learning techniques was identified with the USA and China leading. A mapping study—steady set until early 2019 data—was employed as a formal and well-structured method to synthesize material and to report on pervasive areas of research. Type of equipment, sensors, and data are mapped to properly assist new researchers in positioning new research activities in the domain of smart maintenance. Hence, in this paper, we focus on data-driven methods for predictive maintenance (PdM) with a comprehensive survey on applications and methods until, for the sake of commenting on stable proposal, 2019 (early included). An equal repartition between evaluation and validation studies was identified, this being a symptom of an immature but growing research area. In addition, the type of contribution is mainly in the form of models and methodologies. Vibrational signal was marked as the most used data set for diagnosis in manufacturing machinery monitoring; furthermore, supervised learning is reported as the most used predictive approach (ensemble learning is growing fast). Neural networks, followed by random forests and support vector machines, were identified as the most applied methods encompassing 40% of publications, of which 67% related to deep neural network with long short-term memory predominance. Notwithstanding, there is no robust approach (no one reported optimal performance over different case tests) that works best for every problem. We finally conclude the research in this area is moving fast to gather a separate focused analysis over the last two years (whenever stable implementations will appear)

    Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry

    Get PDF
    The demand for cost-effective, reliable and safe machinery operation requires accurate fault detection and classification to achieve an efficient maintenance strategy and increase performance. Furthermore, in strategic sectors such as the oil and gas industry, fault prediction plays a key role to extend component lifetime and reduce unplanned equipment thus preventing costly breakdowns and plant shutdowns. This paper presents the preliminary development of a simple and easy to implement machine learning (ML) model for early fault prediction of a centrifugal pump in the oil and gas industry. The data analysis is based on real-life historical data from process and equipment sensors mounted on the selected machinery. The raw sensor data, mainly from temperature, pressure and vibrations probes, are denoised, pre-processed and successively coded to train the model. To validate the learning capabilities of the ML model, two different algorithms-the Support Vector Machine (SVM) and the Multilayer Perceptron (MLP)-are implemented in KNIME platform. Based on these algorithms, potential faults are successfully recognized and classified ensuring good prediction accuracy. Indeed, results from this preliminary work show that the model allows us to properly detect the trends of system deviations from normal operation behavior and generate fault prediction alerts as a maintenance decision support system for operatives, aiming at avoiding possible incoming failures

    Data-Driven Prognostics in Industrial Service Business

    Get PDF
    There is a shift in the manufacturing industries in which original equipment manufacturers (OEM) are gaining increasingly large portion of their revenue from services rather than the manufacturing of goods. This change is called servitisation. Additionally, the advancements in information technology are opening new possibilities and opportunities, such as in how data can be processed, analysed and used to create data-driven applications to support the business functions. The possibilities are, however, still largely unexploited especially in the field of maintenance services. The data-driven prognostics could not only enhance the existing maintenance activities, but also create new ways of partnership and service development between the OEMs and their clients. This could induce further growth and increase in the servitisation level. However, there is lack of insight of how the methods could be applied to practice; especially case studies are few in quantity. Hence, this study aims to increase understanding of the practical application of the data to support maintenance service business. This study examines the application of data-driven methods, mainly machine learning, to aid valve maintenance business of a service providing OEM. The aim is to create a data-driven system to forecast failures in devices and generate automated service recommendations. The forecasting was based on idea that the failures would induce a detectable pattern in the measured data prior a failure. The chosen machine learning method, the neural networks, excel in this kind of task and hence can predict failures. The study is conducted in practical setting as a case study with real data. Various systems and processes were examined, and data was extracted for analysis. With this data several models for prediction were built. However, the accuracy of these was ultimately deemed insufficient for generation of service recommendations and hence all the set goals were not fully reached. As the greatest contributing factors for the poor performance of the forecasts, the data itself and the operations related to it were identified. The data was hard to access and lacking both in quality and quantity as it is recorded, stored and managed with day-to-day operations in mind. As result, we found that significant portions of data were deleted or were recorded with accuracy insufficient for this research. However, through the analysis of these factors several concrete points of development emerged. The outcome of this study also confirms the inherent challenges regarding service partnering and intercompany data-transfer presented in literature. A need for standardised and light-weight legal frameworks and methods of data sharing was identified. Without these, the potential may not be fully realisable in practice and hence more case practically oriented studies on the subject are required. To conclude, the OEM had too optimistic view of the availability, quality and quantity of data, which resulted in an attempt, which did not reach all the set goals. On the other hand, the academic literature shows that there is great potential in these methods. Data refined into wisdom which may support decisions and actions can facilitate value generation in services. The findings encourage OEM to improve the collection, storage and management of data and other organisations to carefully evaluate whether their capabilities are sufficient

    A Gaussian process based fleet lifetime predictor model for unmonitored power network assets

    Get PDF
    This paper proposes the use of Gaussian Process Regression to automatically identify relevant predictor variables in a formulation of a remaining useful life model for unmonitored, low value power network assets. Reclosers are used as a proxy for evaluating the efficacy of this method. Distribution network reclosers are typically high-volume assets without on-line monitoring, leading to an insufficient understanding of which factors drive their failures. The ubiquity of reclosers, and their lack of monitoring, prevents the tracking of their individual remaining life, and, confirms their use in validating the proposed process. As an alternative to monitoring, periodic inspection data is used to evaluate asset risk level, which is then used in a predictive model of remaining useful life. Inspection data is often variable in quality with a number of features missing from records. Accordingly, missing inputs are imputed by the proposed process using samples drawn from an advanced form of joint distribution learned from test records and reduced to its conditional form. This work is validated on operational data provided by a regional distribution network operator, but conceptually is applicable to unmonitored fleets of assets of any power network

    Advanced data-driven methods for prognostics and life extension of assets using condition monitoring and sensor data.

    Get PDF
    A considerable number of engineering assets are fast reaching and operating beyond their orignal design lives. This is the case across various industrial sectors, including oil and gas, wind energy, nuclear energy, etc. Another interesting evolution is the on-going advancement in cyber-physical systems (CPS), where assets within an industrial plant are now interconnected. Consequently, conventional ways of progressing engineering assets beyond their original design lives would need to change. This is the fundamental research gap that this PhD sets out to address. Due to the complexity of CPS assets, modelling their failure cannot be simplistically or analytically achieved as was the case with older assets. This research is a completely novel attempt at using advanced analytics techniques to address the core aspects of asset life extension (LE). The obvious challenge in a system with several pieces of disparate equipment under condition monitoring is how to identify those that need attention and prioritise them. To address this gap, a technique which combined machine learning algorithms and practices from reliability-centered maintenance was developed, along with the use of a novel health condition index called the potential failure interval factor (PFIF). The PFIF was shown to be a good indicator of asset health states, thus enabling the categorisation of equipment as “healthy”, “good ” or “soon-to-fail”. LE strategies were then devoted to the vulnerable group labelled “good – monitor” and “soon-to-fail”. Furthermore, a class of artificial intelligence (AI) algorithms known as Bayesian Neural Networks (BNNs) were used in predicting the remaining useful life (RUL) for the vulnerable assets. The novelty in this was the implicit modelling of the aleatoric and epistemic uncertainties in the RUL prediction, thus yielding interpretable predictions that were useful for LE decision-making. An advanced analytics approach to LE decision-making was then proposed, with the novelty of implementing LE as an on-going series of activities, similar to operation and maintenance (O&M). LE strategies would therefore be implemented at the system, sub-system or component level, meshing seamlessly with O&M, albeit with the clear goal of extending the useful life of the overall asset. The research findings buttress the need for a paradigm shift, from conventional ways of implementing LE in the form of a project at the end of design life, to a more systematic approach based on advanced analytics.Shafiee, Mahmood (Associate)PhD in Energy and Powe
    corecore