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Machine learning model for event-based prognostics

in gas circulator condition monitoring
Jason J. A. Costello, Graeme M. West, Member, IEEE, Stephen D. J. McArthur, Fellow, IEEE

Abstract—Gas circulator (GC) units are an important rotating
asset used in the Advanced Gas-cooled Reactor (AGR) design,
facilitating the flow of CO2 gas through the reactor core. The
ongoing maintenance and examination of these machines is
important for operators in order to maintain safe and economic
generation. GCs experience a dynamic duty cycle with periods of
non-steady state behavior at regular refuelling intervals, posing
a unique analysis problem for reliability engineers.

In line with the increased data volumes and sophistication of
available technologies, the investigation of predictive and prog-
nostic measurements has become a central interest in rotating
asset condition monitoring. However, many of the state-of-the-
art approaches finding success deal with the extrapolation of
stationary time series feeds, with little to no consideration of
more-complex but expected events in the data.

In this paper we demonstrate a novel modelling approach
for examining refuelling behaviors in GCs, with a focus on
estimating their health state from vibration data. A machine
learning model was constructed using the operational history of
a unit experiencing an eventual inspection-based failure. This new
approach to examining GC condition is shown to correspond well
with explicit remaining useful life (RUL) measurements of the
case study, improving on the existing rudimentary extrapolation
methods often employed in rotating machinery health monitoring.

Index Terms—Condition monitoring, prognostics, machine
learning, support vector machines, logistic regression.

ACRONYMS AND ABBREVIATIONS

AGR Advanced gas-cooled reactor

DE Drive end

GC Gas circulator

GMM Gaussian mixture model

LPR Low power refuelling

ML Machine learning

NDE Non-drive end

PHM Prognostics and health monitoring

PWR Pressuirzed water reactor

RCP Reactor coolant pump

SVM Support vector machine

RUL Remaining useful life
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NOMENCLATURE

x Training input (from ML model)

x′ Test input (from ML model)

y Output (from ML model)

θi ith parameter

θ Parameter set

hθ(x) Hypothesis of model (given test x′)
t Time (in asset life-cycle)

RUL(t) Remaining useful life at t

I. INTRODUCTION

Decision support and monitoring systems have seen wide

application in engineering condition monitoring areas [1]

[2], with automated diagnostics being used to better inform

the processes of maintenance professionals. Increased data

availability coupled with the rising performance expectations

in disciplines such as aerospace, defence and energy has paved

the way for the development and deployment of data-driven

intelligent system techniques: algorithms which utilize cutting-

edge computational approaches to provide useful information

and insights regarding data features and behaviors from the

growing volume of available operational data. The ongoing

maintenance of rotating turbomachinery is no different, with

a variety of automated systems being applied to the condition

monitoring of such assets as steam turbine generators [3], gas

turbines [4] and aero engines [5].

The nuclear industry employs rotating machinery in a va-

riety of different scenarios: from primary cycle assets which

propagate fluid in radioactive conditions to supporting auxil-

iary motors. An important example is the gas circulator (GC)

asset class: an induction motor-based gas propagation rotating

machine which maintains CO2 flow through the reactor core of

the UK designed Advanced Gas-cooled Reactor (AGR). GCs

are subject to extensive data interrogation, archiving and anal-

ysis procedures in order to ensure their continued operation.

With numerous GCs per reactor and multiple reactors under

the auspices of the nuclear operator, GC health monitoring

represents a large data-driven maintenance requirement of

utmost importance to safe generation.

Recent developments in the field of condition monitoring

have seen a marked rise in interest and investment in the

creation of predictive, or prognostic, reliability metrics [6], [7].

The ability to assign a probabilistic view of potential future

states for an asset is a powerful target for the health monitoring

industry, allowing for future failures to be mitigated or avoided

entirely. Many of these techniques extrapolate steady-state

behaviors into the future in order to ascertain the likely time
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t when a failure criteria is met. This often cannot be applied

to rotating machinery systems in power systems due to their

typically non-steady-state duty cycles: often exhibiting regular

changes in conditions due to the everyday requirements of

operating and maintaining generation.

Less investigation in prognostics has been made into sys-

tems which have duty cycles characterized by regular dynamic

events. The AGR GC is one such asset which experiences

periods of non-stationery operation: the reactor design al-

lows for online refuelling periods where intermittent states

of high and low generation correspond with fuel channel

replenishment. Circulators experience a wide dynamic range

during these periods, with a distinctive vibration response to

the changing conditions. These periods of substantial change

have the potential to yield previously unexamined data-based

signals regarding the vibration response, and implicitly the

health, of the GC units.

This paper investigates the associated GC vibration response

exhibited during refuelling events, with a focus on extracting

useful health and prognostic measures from this data. A

machine learning approach is presented, which first classifies

the states making up a typical refuelling campaign and then

estimates the temporal position with respect to potential end-

of-life for each of these identified states. After demonstrating

the effectiveness of this approach to GC prognostics on a

real machine example, the paper then discusses the next steps

anticipated with the development of the technique towards

a full predictive system for use in operational reliability

scenarios.

II. MACHINE LEARNING IN RELIABILITY ENGINEERING

Machine learning (ML) refers to a broad family of algo-

rithmic techniques which take advantage of historical data

to learn behaviours, patterns and functions to provide useful

inference in a variety of scenarios: including decision-making.

The defining feature of a problem space apt for the application

of ML approaches is data availability: the increased existence

of historical reliability data regarding rotating plant, engines,

and other key engineering assets has prompted interest in such

techniques amongst the more general class of data-driven [8],

[9] approaches to reliability engineering.

For example, a variety of ML-driven methods have seen

success in as diverse engineering analysis disciplines as wind

generation [10], [11], systems monitoring [12], transportation

[13], and electrical machine [14] health surveillance. Many

condition monitoring methods undertaken manually or through

rudimentary data analyses are now seeking improvement from

data-driven solutions [15]. Along with reliability engineering

as a whole, interest in the nuclear [16] domain has grown in

recent years. Less research exists in prognostics spefically for

the AGR GC asset, which forms part of the motivation behind

this study.

Historically, physics-based models [6], [17] have been dom-

inant for important assets where failure data is less likely

to exist. However, the depth of expertise required for such

approaches, along with the continually increasing availability

of monitoring data, has meant empirical techniques continue

to see investigation in [16], [18] in the diagnostics and

prognostics for high reliability, critical systems like the AGR

GC.

Much of the existing successes of ML in reliability have

been in application to steady-state assets: held at relatively

constant duty cycles without notable change. Kan et al. [19]

correctly identify that non-stationary properties characterise

the operating conditions of many rotating machines, including

those found in the generation industry. Reasoning about future

health in the context of changes of state presents a complex

challenge to the prognostics and health monitoring discipline,

and this is one of the major problems approached in this paper.

Kernel methods such as the support vector machine (SVM)

are often applied [20], [21], [22] to reliability problems,

either as the primary method or as part of a combination of

techniques. Specifically in nuclear energy, [23] found success

in utilising kernel method-based techniques for prognostics

applied to reactor coolant pumps (RCPs) for the pressurized

water reactor (PWR) at the component level. While the RCP

operates in differing conditions from AGR GC units and the

case study differs in nature (the system in [23] specifically

concerns leakage), their function and importance as critical

primary cycle coolant machines is similar.

Logistic regression (LR) has been used to estimate the

likelihood of data belonging to the later stages of a failure

progression [24] and the use of this measure as an implicit

view of long-term machine health. A combination of kernel

methods and logistic regression was also explored by the

authors in [25] as a combined prognostic system development

on machinery bearing monitoring.

III. GAS CIRCULATORS

A. Overview

In the UK, the major design of civil nuclear reactor is

the Advanced Gas-cooled Reactor (AGR). Deployed on seven

sites with fourteen units, the design marks continued efforts of

the UK nuclear industry to utilize the properties of graphite

in core structure and moderation [26]. Propagated by eight

gas circulator (GC) units, the coolant flowing in the AGR

is CO2 gas pressurized to 40 bar. These induction-based

motors maintain safe operating temperatures throughout the

reactor core and transfer the heat energy from the nuclear

fuel assemblies through to the boiler units. GCs therefore

represent a key rotating plant item within the overall AGR

system, responsible for both safe and effective operation. A

schematic of the gas circulator function in relation to the full

core is provided in Fig. 1.

GCs are dynamic and operate at a variety of modes; expe-

riencing a wide range of operational conditions corresponding

to reactor events and maintenance. For example, the rate of

CO2 can be tuned by the inlet guide vane angle parameter,

allowing for circulator output to be tailored to a particular

target power output from the reactor.

Accordingly, GCs are carefully monitored, being subject to

extensive health analysis throughout their operational lifetime

in order to avoid unplanned outages. The modernization of the

condition monitoring discipline has seen a rise in the storage,
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Fig. 1. Illustration of AGR core with single gas circulator unit. Diagram
reproduced from [26]

archiving and analysis of data incident from these machines,

with large volumes of historical vibration data surrounding

the GCs now being available for study. Historically, the health

monitoring of these units has shared a large portion in common

with general rotating machinery monitoring - based upon the

low-level, rudimentary analysis of vibration signals. Accord-

ingly, alarm-driven strategies are used to identify changes

in asset behavior and states, with verification of prompted

notifications providing the majority of required analysis for

the condition monitoring engineering staff on a day-to-day

basis. Similar issues have been encountered in steam turbine

generator units, with automated data-driven decision support

systems being developed to address the problem [27].

B. Low power refuelling (LPR)

GC units are also operational during regular low power

refuelling (LPR) events, at which point they experience a

dynamic load duty cycle corresponding to periods of fuel

replenishment in reactor channels. These refuelling events are

characterized by ‘castling’: intermittent periods of low and

moderate generator load to allow online refuelling of individ-

ual channels. This is useful from an operational perspective

as it maintains partial generation during periods normally

associated with outages in other reactor designs.

An example load regime and corresponding vibration re-

sponse is provided by the time series’ in Fig. 2, illustrating

the three distinct levels of load operation associated with

refuelling. For nomenclature purposes in this paper, each of

these LPR states are referred to as Online (full load), Upper

(approx. 70% load) and Lower (approx. 30% load). These

proportions are a feature of the LPR itself: with Lower

corresponding to the periods of fuel replenishment, Upper

corresponding to the intermittent periods of raised generation

between replenishment periods and Online corresponding

to the normal steady-state GC operation state which bookends

each LPR. This three behaviour segmentation of the opera-

tional time series is domain-specific: defined by the operational

and reliability engineering staff managing generation and

overseeing the health monitoring of the circulator units.

Typically, the horizontal- and vertical-axis vibration is

monitored at both the drive end (DE) and non-drive end

(NDE) of circulators to identify the machine’s response to

the changing conditions. The relationship between operational

changes like those seen in the varying load profile and the

resulting response captured by vibration transducers forms the

basis for much of the health monitoring of the GC units.

Previous investigations [28] into the refuelling behavior

of circulators suggests that the LPR is a rich data source

for state estimation metrics and key indicators of long-term

asset health. Building a representative model of the LPR is

therefore presented to be an important area for understanding

GC condition.

IV. REFUELLING MODEL

A. Motivation and strategy

The LPR is considered to be a useful data view for GC

health monitoring for two key reasons:

• LPR events drive the circulators over a large dynamic

and transient range, comparable to the run-up and run-

down conditions experienced by rotating assets in general

which are already widely examined [29], [8] by reliability

experts.

• LPR events occur on a regular basis through the lifetime

of a GC, providing a repeatable stressor event to the

Fig. 2. Typical load and vibration response patterns exhibited during
refuelling
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machine with a corresponding vibration response rich in

potential data-based features.

Taking advantage of these features represents an advance

from the typical steady-state analysis associated with many

existing diagnostic and prognostic systems in vibration mon-

itoring contexts. A data-driven model mapping the latent re-

lationship between the driving load behavior and the resultant

vibration response over subsequent refuelling instances was

built to explore this.

The ML model has two major aims:

• Construct a data-driven view of the individual LPR events

which accurately classifies GC state from the vibration

data,

• Identify if there is a meta-evolution of sequential LPR

event models that provides a quantitative feature mapping

to the RUL of the circulator.

The techniques are intended to be used for the investigation

of predictive metrics and RUL-correlative features in batch

analysis, not for online or real-time monitoring purposes.

B. Modelling overview

The approach outlined in this paper broadly tackles the

health estimation problem with the following steps:

1) Twenty-one labelled LPR events are selected from a four

year operational period,

2) A classifier is built to identify the LPR state {Online,

Upper, Lower} from the vibration response,

3) The classifier is then applied to the entire operational

period to determine LPR-type vibration state for all

historical data,

4) The data is segmented into each of the {Online,

Upper, Lower} classes, ordered by timestamp and

segmented into four temporal slices: {early, mid1,

mid2, late},
5) A classifier is built to identify the likelihood of a

particular LPR state data being in the late temporal

slice. The probabilistic output from this acts as the

implicit RUL measure.

A schematic overview of the entire approach is provided in

Fig. 3, showing the flow of the datasets and dependencies of

input throughout each of the stages. Note that the greyed out

interactions on the flowchart represent the ML input/output

functionality of the trained model. The full approach forward-

chains the labelled data into the temporal model for prognos-

tics, but the LPR model can be used to classify the LPR state

of any given vibration profile input independent of long-term

health considerations.

The following sections discuss the process of selecting and

evaluating the ML approaches for each of these stages to

provide the most accurate prognostic model with the GC case

study.

C. Dataset

A single circulator unit which experienced an eventual

inspection-based failure (i.e. the decision was made post-

inspection to replace the GC in question) was used, with

time series data taken from various periods during 2006 -

2010. This time window includes steady-state online behavior,

numerous LPRs, outages and ad hoc operational condition

adjustmests. A total of twenty-one labelled LPRs were iden-

tified in this dataset and form the basis of the training data

for constructing the model. The atomic format of the data

is (timestamp, load, DE horizontal, DE vertical,

NDE horizontal, NDE vertical). Fig. 4 provides the

full load-based behavior of the circulator with the LPRs used

for training.

The corresponding vibration response to these periods of

variable load form the basis of the data-driven approach to

modelling the event. As discussed in Section III-B, there are

three distinct generator load levels which correspond to the

elements of a refuelling campaign. Defining the mode value

empirically for each of these is achieved by using a k = 3
Gaussian mixture model (GMM) to cluster the distribution of

the mean LPR load profile, the output of which is provided

in Fig. 5. Note that this value of k is selected as the three

behaviours map directly to domain knowledge in the GC mon-

itoring discipline. Other k values would not correspond to the

standard behavioural groups understood by relaibiltiy experts

in the field. Determining these values, which are expressed in

(1), allows for a labelled training dataset dependent on the load

values to be defined at the local minima of the GMM density

(values of 386MW and 603MW respectively). This enables

the resultant vibration response to be classified into each of

the states using a supervised machine learning approach.

fState(x) =







Online, : x > 603
Upper, : 386 ≤ x ≤ 603
Lower : x < 386

(1)

D. Technique selection

Four supervised learning techniques were evaluated in build-

ing the data-driven model:

• Perceptron-based linear model,

• Logistic regression,

• Linear SVM (L1-regularized),

• Linear SVM (L2-regularized).

Linear models were selected after examining the dataset

and the typical training times associated with more complex,

higher-order classifiers: it was decided that a primary study

building discriminant functions with no non-linearity would

provide useful results without the need for excessive compu-

tation. The ML modelling techniques themselves were selected

due to a combination of their historical application to reliabil-

ity engineering problems, and the functionality in multi-class

classification scenarios. Other candidate algorithms include

the relevance vector machine (RVM) [30], nearest neighbour

models and extreme learning machines [31]: comparison of

these approaches would be a worthwhile future development.

As a general overview for linear classification problems,

consider a linearly separable binary classification problem,

defined by a training set {(xi, yi)}i=1,...,m where m is the

number of training tuples and y ∈ {−1, 1}. yi is the label for

the i-th multidimensional input pattern xi.
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Fig. 3. Overview of the system, with solid lines illustrating data selection and dashed lines showing inputs and output of particular models

Fig. 4. Load duty cycle of GC used in the training of the circulator model,
with labelled LPRs highlighted

The parameterization of a particular model can be denoted

θ, which represents a finite array of parameters or weights.

Linear decision boundaries in two dimensional examples (such

Fig. 5. Kernel density estimation of the mixture of load behaviors exhibited
by the circulator over the full dataset, with k = 3 Gaussian mixtures annotated

as the LPR phase space) take the generic parametric form

θ1x+θ0. Classification from a successfully learned separating

hyperplane on a test input pattern x′ is achieved by examining

the decision function:

y(x′|θ) = sgn(θTx′+ θ0) (2)

where sgn(.) denotes a sign or threshold function, defined

as:

sgn(x) =

{

1, x ≥ 0
−1, x < 0

(3)

The LPR classification problem is multi-class (with three

state labels {Online, Upper, Lower}). Each of the trained

models herein follow the one-vs-all strategy for binary classi-

fication: with each class being attributed a defining hyperplane

which denotes membership or non-membership.

1) Perceptron-based linear: Also referred to as a single-

layer perceptron, linear modelling using the perceptron learn-

ing rule is a binary classification technique used to create a

discriminant function between two classes of behavior. The

approach can also be extended to multi-class scenarios: which

is relevant in the LPR state classification problem, where there

are three classes of interest.

The perceptron learning approach can be outlined as fol-

lows:

• A primary state is initialised (typically θ, θ0 = 0),

• With values for θ, θ0, the function is examined for each

input example - comparing the hypothesised output with

each target label. In the instance θ, θ0 = 0, every example

is labelled y = +1 due to (3),

• When a disparity between an output and target label exists

(when y = +1 is hypothesis against an example labelled
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y = −1, for example), the perceptron amends the values

of θ, θ0 to better reflect the training examples.

The values of θ are updated at each iteration using the rule:

for the ith parameter:

θi ← θi + α(y − hθ(x))× xi (4)

where α is a selected parameter known as the learning

rate; the selection of which impacts the magnitude with which

updates are made to the values of θ. Perceptron-based linear

classifiers can been proven to converge [32] when presented

with a linearly separable data domain.

2) Logistic regression: Where the perceptron linear model

described previously had a discrete decision function char-

acterized by a hard threshold (training examples close to the

decision boundary are treated ‘as incorrect’ as those far away),

logistic regression models make the threshold continuous by

smoothing over the boundary with a logistic function. This is

particularly useful for noisy datasets, where an absolute linear

separation is not possible.

The decision boundary can be recast from the linear model

example as:

y(x′|θ) =
1

1 + eθ
T
x′

(5)

with a corresponding learning update rule:

θi ← θi + α(y − hθ(x))× hθ(x)(1− hθ(x))× xi (6)

3) Support Vector Machine (SVM): Support vector ma-

chines (SVMs) seek to create a maximum margin between data

classes by searching for the most optimal separating hyper-

plane. In contrast to iterating through a family of parametrized

discriminant functions through means of a θi update rule

(as with the perceptron-based linear and logistic regression

examples), SVMs are an example of kernel methods: where the

training domain is recast into a new feature space by applying

a kernel function to each data point. A generic kernel mapping

function can be defined as:

A generic mapping form can be expressed as:

k(x1,x2) = φ(x1).φ(x2) (7)

where φ(.) is a defined kernel mapping function. Kernel

space views of training data can be made utilizing a variety of

kernel mapping selections, with the most rudimentary kernel

function being the linear kernel φ(x) = x. With this alteration

to the feature space, the decision function for the linear

classification problem can be now defined as:

h(x′|y) = sgn(
∑

i

θiyi(x′.xi)− θ0) (8)

SVMs seek to maximize the margin around the selected

hyperplane, which is demonstrated to be the minimization of

a term containing ||θ|| in some form [33]. For L1-SVMs, the

optimization goal is:

TABLE I
CROSS-VALIDATION AND TEST SCORES FOR EACH CLASSIFIER

CV results Test acc.

Classifier Hyperparameter Value CV score Score

Linear perceptron α 0.1233 88.5% 76.05%

Linear logistic α 8E−5 87.8% 71.55%
Linear L1-SVM C 10.975 87.8% 75.69%
Linear L2-SVM C 58.57 87.9% 88.23%

minimize
1

2
||θ||2 + C

m
∑

i=1

ξi (9)

while for L2-SVMs, this is altered to:

minimize
1

2
||θ||2 +

C

2

m
∑

i=1

ξ2i (10)

where C is the margin hyperparameter and ξ is the slack

variable. Training of both L1- and L2-SVM approaches in this

study focus on the C margin setting (with the slack variable

remaining constant), as this denotes the balance between

margin maximization and classification error total. Finding

a suitable C often determines the efficacy of an SVM to

generalize across a domain of application.

4) Training methodology: In order to build a robust set

of candidate models for each of the algorithms, k-fold cross

validation [34] was used throughout the training and testing

process, with k = 21 in line with the number of LPR instances

in the dataset. A grid search over a range of hyperparameters

for each of the selected model types identified the best

estimator for each: the results of which are illustrated in

the diagrams presented in Fig 6 and summarized in Table

I. Hyperparameters are algorthmic variables set as initial

conditions which dictate the learning behavior for machine

learning models in the training phase: in this example, the

perceptron and logistic models depend on learning rate α and

the SVMs [35] depend on C, which manages the balance

between classifier accuracy and misclassification errors in the

training dataset.

From the results of the grid search, the trained L2-SVM

classifier was selected with its stand-out accuracy of 88.23%

on the test data. From a generic time series classification

perspective, this can be considered a good rate of accuracy:

slightly over one-in-ten points will be misclassified, with the

temporal nature of LPR behaviors further mitigating this.

(i.e. questionable results could be examined in the context of

nearby results in time to verify which state the given point

most likely belongs to).

E. Identifying LPR state

The predicted classes for the full dataset for both the DE

and NDE orientations of the circulator are shown in phase

space in Fig. 7, showing clear clustering in DE space of the

vibration response values. This is useful as it generalizes the

learned behaviors in each of the labelled LPR instances to

the full operational dataset and helps confirm the supposition
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that the vibration responses for each of the LPR states can be

segmented and examined independently.

The NDE phase space view example shows less distinct

class separation, suggesting that the DE features are the most

indicative when describing the vibration response at each of

the LPR states. This difference in response is likely due to the

physical orientation of the GC: with the NDE end separated

from the driving mechanisms housed at the DE. Presenting GC

vibration data in the context of the learned typical behavior

from a sufficiently trained model allows for the comparative

analysis of individual or group refuelling sessions with new

data points and the learned hyperplanes of the model.

To summarize, the trained model has the ability to define

LPR state from a vibration-only input, with no operational

values required. This is useful as it allows for the engineer to

determine periods of behavior which correspond to historical

normality and identify those which do not, entirely from the

Fig. 6. Grid search results for each of the trained machine learning
techniques, with the most accurate hyperparameter setting for each highlighted

Fig. 7. State prediction from the L2-SVM of the full dataset for both the
DE and NDE time series

response data defined by the GC unit. Taking this entirely data-

driven view of the circulator allows for a deeper investigation

of long-term condition metrics: as described in the next

section.

V. HEALTH MONITORING

Providing a quantitative measure of normality for a given

point on the lifecycle for a GC, the model output labels can

be used to both segment large volumes of historical circulator

vibration response into the LPR state labels and examine
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any temporal component to changes in these groupings. This

presents a number of opportunities for advanced condition

monitoring techniques when considering the evolution of the

learned model across different periods in the circulator history.

This section highlights the potential to calculate the remaining

useful life of a GC using the approach.

A. State estimation

To evaluate membership to states indicative of machine

health in the history of the GC, each of the LPR classes of

Online, Upper and Lower were examined independently

(defined via the output of the successful L2-SVM model).

These were subsequently divided into four consecutive tem-

poral states: {early, mid1, mid2, late} after ordering the

data points by timestamp. Note that the assumption is that as

the GC in the example progresses through its lifetime that

some latent damage variable is trending towards a failure cri-

teria condition, which triggered the eventual de-comissioning

of the asset.

Each of these LPR state-to-temporal state dataset pairs were

used as input to a further logistic regression classification

model (selected due to its continuous value class boundary,

allowing for probabilistic membership values). Given an input

of vibration response data from Online, Upper or Lower,

this classifier provides a predictive output to membership of

each of the temporal states. This allows for a prediction to

be made about the likely period of the GC life-cycle the data

comes from.

The three plots in Fig. 8 show the estimated class mem-

bership of the ordered data for each of the LPR behaviors;

demonstrating that the Online and Upper labelled data have

the strongest ‘ordering’ of the temporal class i.e. {early,

mid1, mid2, late} are largely in order, when compared

with the less ordered Lower results. This suggests that these

two classes from the LPR modelling approach have a potential

implicit mapping to the long-term health of the GC in this

example.

B. Remaining useful life (RUL) estimation

For each point in the operational history of the GC time

series, the RUL can be defined as:

RUL(t) = tFailure − t (11)

where tFailure is the end of the time series corresponding to

the point of failure and t is any timestamp with vibration data.

Explicit RUL measurements are unavailable during operation,

so the goal of a prognostic system is to find some implicit

metric of the explicit RUL which best approximates it.

Since the late temporal state corresponds closest to the

exhibited vibration behavior at the end of GC life, strong

evidence for membership to this class can be interpreted as an

indicator that the selected data is nearing the failure criteria.

Fig. 9 compares explicit RUL with the membership likelihood

to the late state with each of the LPR model behaviors.

Similar to the strong temporal segmentation shown by the

states, the Online and Upper data subsets correlate well

with the explicit RUL. This is quantified by the Pearson’s cor-

relation values provided in II, which highlight that probability

of membership to the late temporal class for vibration data

classified as part of the Upper LPR behaviour is strongly

inversely correlated with the true RUL data. (For comparison,

the correlation values for the mid2 classes are also provided

without their associated diagrams). The results suggest that GC

vibration response data corresponding to operating conditions

seen at both full and 70% generation have indicative properties

relating to machine degradation with continued operation of

the circulator. In particular, membership to the late temporal

state of the vibration data labelled as part of the Upper LPR

behaviors appears to follow the explicit RUL best among the

three options: from both a visual and quantitatively correlative

perspective.

TABLE II
CORRELATION BETWEEN LATE TEMPORAL CLASS & TRUE RUL

Temporal class LPR behaviour Pearson’s corr.

late Online -0.838
late Upper -0.938

late Lower -0.472
mid2 Online -0.041
mid2 Upper 0.542
mid2 Lower -0.146

In terms of in-scenario use, these results point to vibration

data labelled as belonging to the Upper LPR state as the most

indicative of long-term damage trends. An engineering system

Fig. 8. Most probable temporal state for each of Online, Upper and
Lower behaviors
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Fig. 9. Explicit RUL compared with probabilistic state membership for late

to query the most probable temporal class of incoming data

from this LPR state could be used to survey LPR health on

a day-to-day basis, with further investigation of the machine

required when the probabilistic output of the late class

membership begins to rise.

VI. DISCUSSION & NEXT STEPS

As demonstrated, the modelling approach identified that

data belonging to the Upper LPR state class provides a

monotonically increasing probabilistic output when examin-

ing late state class membership from the temporal model.

This strongly suggests that the vibration response exhibited

by GCs during these operational periods contains important

information regarding the health of the unit: a segmentation

of the data that has been previously disregarded in favor

of generic measures. The evidence presented in Fig. 9 in

particular shows a direct mapping between explicit RUL

and the derived temporal measures from this data. From an

engineering perspective, there are two options in extracting

value from this discovery: utilize the modelling approach as is

in making RUL predictions, or focus more investigative effort

on building metrics from data during Upper LPR conditions.

It should be acknowledged that the ML techniques investi-

gated herein are fairly mature and the combination of kernel

methods with logistic regression in particular is not novel

[25] in application to relibaility monitoring. However, the

combination of event state identification (classification of the

LPR states using the vibration data) on non-stationary periods

of operation and subsequent health state estimation utilising

the probablistic membership of late lifetime from specific

event behaviours is a new approach in AGR GC monitoring.

The nature of the LPR event itself is a defining element of the

prognostic problem, and serves as the platform for enhanced

predictive capabilities.

The procedure outlined was built on the operational history

of a single circulator undergoing degradation with continued

use as a means of exploring new long-term health monitoring

metrics in the vibration signals. While robust testing and cross-

validation was done using as much of the data as possible,

the classification models for both the LPR state and temporal

state only apply to this machine example. A wider domain of

circulator data should be investigated in order to construct a

general model for GC refuelling vibration response, taking

into consideration multiple examples of both normal and

degradation-type behavior. This would allow for previously

unexamined (from the perspective of this health monitoring

approach) circulators to be benchmarked against an aggregate

degradation pattern which covers an aggregate of numerous

circulators.

Another potential improvement could be in empirically

investigating the optimal number of temporal states employed

by the logistic regression classifier, which was heuristically set

to 5 consecutive time slices in the degradation history. This

could be further bolstered by the exploration of the underlying

ML algorithms themselves: with potential improvements likely

to come from alternative kernel methods [30], or alternatively

the ensembling of each of the investigated algorithms.

VII. CONCLUSION

This paper has presented a new data-driven modelling

approach for the health monitoring of AGR GC units, using

a combination of L2-SVM and logistic regression machine

learning techniques. The method moves away from steady-

state monitoring and selects key data points from a particular

period of GC operation: the semi-regular LPR event. Evolution

of this data segmentation has been shown to follow the

progression of GC operational history and the explicit RUL

towards de-commissioning for an example unit which went

through an eventual inspection-based failure.
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