

CRANFIELD UNIVERSITY

Sunday Moses Ochella

Advanced Data-Driven Methods for Prognostics and Life Extension of

Assets Using Condition Monitoring and Sensor Data

School of Water, Energy and Environment

Department of Energy and Power

PhD

Academic Year: 2018 – 2021

Supervisor: Prof. Chris Sansom

Associate Supervisor: Dr. Mahmood Shafiee

December 2021

CRANFIELD UNIVERSITY

School of Water, Energy and Environment

Department of Energy and Power

PhD

Academic Year 2018 – 2021

Sunday Moses Ochella

Advanced Data-Driven Methods for Prognostics and Life Extension of

Assets Using Condition Monitoring and Sensor Data

Supervisor: Prof. Chris Sansom

Associate Supervisor: Dr. Mahmood Shafiee

December 2021

This thesis is submitted in partial fulfilment of the requirements for the

degree of PhD

© Cranfield University 2021. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

Abstract

A considerable number of engineering assets are fast reaching and operating beyond their

orignal design lives. This is the case across various industrial sectors, including oil and

gas, wind energy, nuclear energy, etc. Another interesting evolution is the on-going

advancement in cyber-physical systems (CPS), where assets within an industrial plant are

now interconnected. Consequently, conventional ways of progressing engineering assets

beyond their original design lives would need to change. This is the fundamental research

gap that this PhD sets out to address. Due to the complexity of CPS assets, modelling

their failure cannot be simplistically or analytically achieved as was the case with older

assets. This research is a completely novel attempt at using advanced analytics techniques

to address the core aspects of asset life extension (LE). The obvious challenge in a system

with several pieces of disparate equipment under condition monitoring is how to identify

those that need attention and prioritise them. To address this gap, a technique which

combined machine learning algorithms and practices from reliability-centered

maintenance was developed, along with the use of a novel health condition index called

the potential failure interval factor (PFIF). The PFIF was shown to be a good indicator of

asset health states, thus enabling the categorisation of equipment as “healthy”, “good ” or

“soon-to-fail”. LE strategies were then devoted to the vulnerable group labelled “good –

monitor” and “soon-to-fail”. Furthermore, a class of artificial intelligence (AI) algorithms

known as Bayesian Neural Networks (BNNs) were used in predicting the remaining

useful life (RUL) for the vulnerable assets. The novelty in this was the implicit modelling

of the aleatoric and epistemic uncertainties in the RUL prediction, thus yielding

interpretable predictions that were useful for LE decision-making. An advanced analytics

approach to LE decision-making was then proposed, with the novelty of implementing

LE as an on-going series of activities, similar to operation and maintenance (O&M). LE

strategies would therefore be implemented at the system, sub-system or component level,

meshing seamlessly with O&M, albeit with the clear goal of extending the useful life of

the overall asset. The research findings buttress the need for a paradigm shift, from

conventional ways of implementing LE in the form of a project at the end of design life,

to a more systematic approach based on advanced analytics.

Keywords:

Remaining useful life (RUL), Prognostics and health management (PHM), Condition

monitoring, Artificial intelligence algorithm, Life extension.

iii

Acknowledgements

First and foremost, thanks to my wife, Oyiwodu, who permitted me, for the duration of

this PhD, to get away with being less than a proper husband. Secondly, my children

Enekole and Owoichoche must be acknowledged for acccepting incessant deferral of

some father duties while I undertook this PhD research.

Obviously, a PhD lacks direction and can potentially end up aborted without the right

guidance. My heartfelt thanks go to Dr Mahmoud Shafiee. I particularly recall his cool

and calm voice when he interviewed me on phone on 28th June 2018. He has proved to

be much more than a supervisor. I am thankful for the direction towards which he steered

my PhD research; without his steer from the onset, I would have been left researching a

rather archaic aspect of my field and the catch up game may have proved to be my

undoing. Thanks to him, I have developed 21st century coding skills specific to the field

of engineering asset management and ended up immersed in an up-do-date asset

reliability and prognostics and health management practice. Also thanks to him, I met and

worked with the amiable Prof. Chris Sansom. Prof. Sansom's very professional demeanor

tends to be scary at first, but, on my first real encounter with him, he quickly revealed

himself to be the very understanding and supportive person he is. His availability, support,

and belief in my abilities were very helpful on this otherwise lonely journey.

Money, it is said, makes the world go round. This PhD journey would not have happened

without the scholarship award from the Petroleum Technology Development Fund

(PTDF) in Nigeria who pleasantly surprised me with one of the most transparent

scholarship award rounds in 2018. For most financial commitments during my studies,

they stood by me and did not let me down. Same goes for my employer, the Department

of Petroleum Resources (DPR), who promptly granted me full leave to study, at short

notice. Surely, I would not have survived the marathon without the DPR's study leave

approval and on-going support during my studies. Also, to my colleagues at the DPR who

have become close friends and brothers to me—Tobe, Osu, Kama and Chidi—your

contributions to my sanity during my studies can actually not be quantified.

My Dad and Mum, Mr and Mrs Isaac and Grace Ochela are thankfully alive to witness

this. Thank you for your belief in education and for providing an upbringing that shaped

iv

and built my desire for academic pursuits. Achieving this PhD is strictly a product of your

vision, in spite of your limited educational attainments.

My childhood friends who always thought I will get a PhD despite my insistence that it

will not happen, John Paul and Akolo Audu, thank you for your push. To Meres Dennis,

my bossom friend and brother, you know your contribution, both intellectually and in

terms of morale. I can not overstate my gratefulness. I will also like to acknowledge my

friend, Dr Philip Enegela, who was always available to share with me his experiences

during his own PhD journey, and was always there to help provide motivation during

some of my dark and lonely moments.

It is, of course, impossible to mention by name everyone who has been help of to me in

the course of this journey. For those who I have not mentioned here that helped in one

way or another to make this journey come to a conclusive end, thanks to you all.

v

Table of Contents

Abstract .. i

Acknowledgements ... iii

List of Figures .. ix

List of Tables .. xii

List of Abbreviations ... xiv

Chapter 1. Introduction .. 1

1.1 Background ... 1

1.2 Aim and objectives of the research... 3

1.3 Thesis structure ... 4

1.4 References .. 11

Chapter 2. Artificial Intelligence in Prognostic Maintenance of Engineering

Systems .. 13

2.1 Introduction .. 14

2.2 Use of AI in prognostic maintenance ... 16

2.2.1 The key: good quality data .. 17

2.2.2 AI algorithms for prognostics .. 22

2.3 Literature review process.. 33

2.3.1 Framework for categorization of the literature .. 34

2.3.2 RUL metrics .. 42

2.4 Key enablers for AI in prognostics ... 44

2.4.1 Infrastructure ... 44

2.4.2 Standards ... 45

2.4.3 Security .. 46

2.4.4 Regulations .. 46

2.4.5 Manpower .. 47

2.5 Future research ... 47

2.6 Conclusion .. 49

2.7 Acknowledgement .. 49

2.8 References .. 50

Chapter 3. Requirements for Standards and Regulations in AI-Enabled

Prognostics and Health Management ... 65

3.1 Introduction .. 66

3.2 Extant standards and regulations .. 67

3.2.1 Standards ... 68

3.2.2 Regulations .. 70

3.2.3 Best practices ... 72

3.3 Fulfilling regulatory compliance .. 73

3.3.1 Further requirements ... 73

3.3.2 Acceptability criterion ... 74

3.4 Demonstration and discussion .. 76

vi

3.4.1 Typical application of acceptability criterion .. 76

3.4.2 Other Considerations ... 77

3.4.3 Potential Challenges .. 77

3.5 Conclusion .. 78

3.6 References .. 78

Chapter 4. Performance Metrics for Artificial Intelligence Algorithms Adopted

in Prognostics and Health Management of Mechanical Systems 81

4.1 Introduction .. 82

4.2 Performance metrics for AI algorithms in PHM .. 83

4.2.1 Conventional metrics ... 84

4.2.2 PHM-specific algorithms ... 86

4.2.3 Other performance metrics .. 93

4.3 Considerations and selection criteria .. 93

4.3.1 User requirements .. 94

4.3.2 Algorithm design requirements ... 95

4.3.3 Other considerations .. 95

4.3.4 Pros and cons of some selected metrics .. 96

4.4 Conclusion and future work ... 97

4.5 Acknowledgments .. 98

4.6 References .. 98

Chapter 5. Adopting Machine Learning and Condition Monitoring P-F Curves in

Determining and Prioritising High-Value Assets for Life Extension........................... 100

5.1 Introduction .. 101

5.2 Theoretical background .. 103

5.2.1 Reliability-Centered Maintenance (RCM) .. 104

5.2.2 Data mining concepts and cluster analysis .. 112

5.3 Methodology ... 116

5.3.1 Phase 1 – data preparation and sensor selection .. 116

5.3.2 Phase 2, route 1 – fit linear model, construct health indicator and

implement health stage division ... 119

5.3.3 Phase 2, route 2: k-means clustering using fleet data 122

5.4 Case studies .. 123

5.4.1 Data description ... 123

5.4.2 Application of the proposed technique .. 124

5.5 Results and discussion .. 128

5.5.1 Three-stage HS division .. 129

5.5.2 Four-stage HS division .. 133

5.5.3 Summary of results .. 137

5.5.4 Importance of experts’ judgements and other considerations 137

5.6 Conclusion and future work ... 138

5.7 References .. 139

vii

Chapter 6. Uncertainty Quantification in Remaining Useful Life Prediction

Using Bayesian Neural Networks .. 143

6.1 Introduction .. 144

6.2 Uncertainty quantification in PHM .. 147

6.2.1 Types of uncertainties .. 148

6.2.2 Approaches to uncertainty quantification .. 149

6.3 BNN algorithm for RUL prediction ... 153

6.3.1 BNN Background .. 153

6.3.2 BNN model for RUL prediction .. 160

6.4 Case Studies .. 162

6.4.1 Dataset description .. 163

6.4.2 Data pre-processing ... 164

6.4.3 Hyperparameter tuning and BNN training .. 165

6.4.4 Prediction and results .. 166

6.4.5 Engine degradation trajectories ... 170

6.5 Conclusion .. 171

6.6 References .. 173

Chapter 7. An Advanced Analytics Approach to Asset Life Extension Decision-

Making. .. 179

7.1 Introduction .. 179

7.2 Overview of LE practices ... 183

7.2.1 Approaches to LE .. 184

7.2.2 Fundamental requirements for LE ... 189

7.2.3 Overview of decision-making models in asset LE 191

7.3 Methodology ... 193

7.3.1 Assumptions, initial conditions, and background assessments 193

7.3.2 Implication for logistics planning and LE action .. 195

7.3.3 RUL prediction with uncertainty quantification .. 196

7.3.4 Acceptability criterion for regulatory approval ... 199

7.4 Case studies .. 200

7.4.1 Data-driven condition assessment ... 200

7.4.2 Results and discussion ... 202

7.4.3 Additional comments and future work. ... 207

7.5 Conclusion .. 209

7.6 References .. 210

Chapter 8. Discussion: Research Findings, Implications and Suggestions for

Future Work. .. 215

8.1 Introduction .. 215

8.2 Overview of key findings and intellectual contributions.................................... 216

8.2.1 Research objectives and related novelties achieved 216

8.2.2 Summary of specific novelties and the potential impacts of research

findings ... 218

viii

8.2.3 Major limitations and challenges. .. 221

8.3 Conclusion .. 221

8.4 Suggestions for future work ... 223

8.5 References .. 224

APPENDICES .. 227

Appendix A MATLAB Codes for Chapter 5 ... 227

Appendix B Codes for Chapter 6 - RUL prediction using BNN 245

ix

List of Figures

Figure 1-1 Showing the RUL, an important parameter for LE decision-making. 2

Figure 1-2 Mind map of the various chapters and key subsections in the thesis 7

Figure 1-3 Interconnection between the various aspects of the research and how they map
to the research objectives. .. 10

Figure 2-1 Flow process for the use of AI for prognostics ... 17

Figure 2-2: A simplified illustration of the engine simulated in C-MAPSS (adopted from
Sexena and Goebel, (2008)). ... 19

Figure 2-3 Datasets used in prognostics research ... 22

Figure 2-4 Categorization of common AI algorithms .. 23

Figure 2-5 Tree structure showing various deep learning algorithms 25

Figure 2-6. Two alternative routes for using hybrid/fusion approach to estimate RUL. 27

Figure 2-7. Bagging, boosting and stacking approaches to ensemble AI learning 30

Figure 3-1 Stages of AI-enabled PHM and their mapping to the OSA-CBM functional
layers. ... 68

Figure 3-2 Overall flow of AI-enabled PHM process within the context of compliance
with standards and regulations... 75

Figure 4-1 A classification framework for PHM performance metrics. 84

Figure 4-2 Considerations for PHM metrics selection ... 94

Figure 5-1 RCM decision logic flowchart – adapted from Liang et al. (2012). 105

Figure 5-2 (a) A typical P-F curve, (b) A P-F curve for fatigue crack propagation (adapted
from Regan (2012)). .. 109

Figure 5-3 Effect of a life-extension action on P-F curve. ... 111

Figure 5-4 Dendrogram for the two types of hierarchical clustering – adapted from Han
et al. (2012). ... 113

Figure 5-5 Broad classification of health indicator construction and health stage division
approaches. .. 120

Figure 5-6 Methodological approach for determining the most vulnerable equipment for
life-extension. .. 122

Figure 5-7 The values for (a) trendability (b) monotonicity (c) prognosability and the
combined metrics for 14 sensors. .. 125

Figure 5-8 Degradation trend for 10 selected sensors on units 1, 2 and 3.................... 126

x

Figure 5-9 Constructed HIs using trained data for all 100 units within the fleet. 127

Figure 5-10 Constructed HIs for the 20 units using the test dataset. 128

Figure 5-11 Comparison of predicted and true health indices...................................... 129

Figure 6-1: Minimizing the KL divergence between the approximate and true posterior is
equivalent to maximizing the evidence lower bound (ELBO) – adapted from
Barber & Bishop, (1998) and Goan & Fookes, (2020). 157

Figure 6-2 BNNs implementing (a) VI, with network weights modelled as distributions,
and (b) MC dropout (adapted from (Duerr et al., 2020)). 159

Figure 6-3 (a) Linearly degrading RUL (b) Typical degradation of components (P-F
curve) (c) Modelling of the RUL for the training data. 161

Figure 6-4 Scaled and smoothed sensor data for units 5 and 12 showing monotonically
increasing or decreasing signals .. 165

Figure 6-5: Predicted degradation trajectory for some sample units, showing the credible
intervals.. 170

Figure 7-1 The impact of single and multiple life extension actions on an asset (adapted
from Ochella et al., (2021)]). ... 183

Figure 7-2 The general workflow for technical assessment during LE process. 185

Figure 7-3. Annotated P-F curve showing the important points during the degradation of
a system (adapted from Kalgren et al., (2006)). .. 194

Figure 7-4 The system-level HI versus time, showing the critical intervention window to
prevent failure. ... 195

Figure 7-5. HI values and the associated actionable decision support implications
(adapted from Kalgren et al., (2006)). ... 196

Figure 7-6 Plot showing increasing failure probability as asset degrades with time. RUL
at each point obtained as distributions. .. 197

Figure 7-7 The overall flow of the LE decision-making model. 198

Figure 7-8 P-F curves for 100 turbofan engines within the asset portfolio. 201

Appendices

Figure A-1 Plot of normalised sensor data for units 1 and 2 .. 232

Figure A-2 Plot of fitness values for 14 sensors ... 233

Figure A-3 Plot of normalised data for 10 selected sensors for units 1, 2 and 3. 234

Figure A-4 Plot of condition indicators for all 100 units in the FD001 dataset. 238

Figure A-5 Predicted health index degradation trajectory for units 1 to 20. 240

xi

Figure A-6 Plot comparing scaled true PFIF to predicted PFIF for all 100 units. 241

Figure A-7 Silhouette plot showing similarity between the sensor data for the 100 units
clustered into 3 groups using k-means clustering. 242

Figure A-8 Silhouette plot showing similarity between the sensor data for the 100 units
clustered into 4 groups using k-means clustering. 244

Figure B-1 Plot of scaled and smoother data for 14 sensors for sample units (units 5 and
12) .. 247

Figure B-2 Plot of fitness values for 14 sensors ... 249

Figure B-3 Plot of scaled and smoothed data for 12 selected sensors for sample units
(units 5 and 12) .. 250

Figure B-4 Plot comparing the distribution of RUL values for the units in the training data
to those in the validation data. ... 256

Figure B-5 History plot showing the trend of training loss and validation loss for 83
epochs .. 260

Figure B-6 Plot showing the predicted mean RUL values and the credible intervals for all
100 units in the FD001 dataset. ... 263

Figure B-7 Degradation trajectory for nine sample units showing trend of mean RUL and
the upper and lower uncertainty bounds. ... 269

xii

List of Tables

Table 1-1 Thesis chapters and their link to the research objectives 4

Table 1-2 List of publications – journal papers .. 8

Table 1-3 List of publications – conference papers .. 9

Table 2-1 Parameters in the C-MAPSS dataset .. 20

Table 2-2 Common algorithms used in prognostics research. 36

Table 2-3. Common datasets used for prognostics research. ... 39

Table 2-4. Pros and cons of common AI algorithms used for prognostic maintenance. 41

Table 3-1 Standards for different stages in AI-based PHM. .. 69

Table 3-2 Application of the acceptability criterion ... 76

Table 4-1. Merits and demerits of AI-driven PHM performance metrics. 96

Table 5-1 RCM strategies and their associated application scenarios.......................... 106

Table 5-2 Pros, cons and application cases for the two broad classes of clustering
algorithms. ... 115

Table 5-3 C-MAPSS dataset parameters and corresponding variables assigned 124

Table 5-4 Healthy units grouping for both 3-stage and 4-stage HS division (Number of
units: 29) .. 130

Table 5-5 Good units grouping for 3-stage HS division (Number of units: 31) 131

Table 5-6 “Soon-to-fail” units grouping for 3-stage HS division (Number of units: 40).
 ... 132

Table 5-7 “Good – no action” groupings for 4-stage HS division (Number of units: 26)
 ... 134

Table 5-8 “Good – monitor” groupings for 4-stage HS division (Number of units: 16)
 ... 135

Table 5-9 “Soon-to-fail” groupings for 4-stage HS division (Number of units: 29) 136

Table 5-10. Summary of group assignments and accuracies (note that percentages are
based on number of units with true PFIF values within suitable thresholds).
 ... 137

Table 6-1. Parameters in the C-MAPSS dataset. .. 163

Table 6-2. Fitness values to determine prognostic information in selected sensor data
 ... 164

xiii

Table 6-3. Predictions for all 100 units in FD001 dataset (RUL and CI units are in number
of cycles) .. 166

Table 6-4: Comparison of algorithm prediction performance for different methods on the
FD001 dataset .. 168

Table 7-1 Different life extension strategies with their meanings and potential application
cases. .. 188

Table 7-2. Units grouped as “good – monitor” (16 units) (measurement units for lifetime,
including RUL, CI and ta are in number of cycles) 204

Table 7-3. Units grouped as “soon-to-fail” (29 units) (measurement units for lifetime,
including RUL, CI and ta are in number of cycles). 205

Table 7-4. Typical application of acceptability criterion (Ac). 206

Table 8-1 Mapping of research objective to novelty and potential impacts. 219

xiv

List of Abbreviations

AAB Average Absolute Bias

AB Average Bias

ABS American Bureau of Shipping

AE Auto Encoder

AG Advisory Generation

AGAN As Good As New

AI Artificial Intelligence

AI-ESTATE Artificial Intelligence Exchange and Service Tie to All Test
Environments

AIM Asset Integrity Management

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Networks

AR Auto Regressive

ARNN Adaptive Recurrent Neural Network

BCR Benefit-to-Cost Ratio

BNN Bayesian Neural Network

CART Classification And Regression Tree

CBM Condition-Based Maintenance

CCH Confidence Convergence Horizon

CI Credible Interval/Confidence Interval

CIC Confidence Interval Coverage

CM Condition Monitoring

C-MAPSS Commercial Modular Aero-Propulsion System Simulation

CNC Computer Numerical Control

CNN Convolutional Neural Network

CPD Conditional Probability Distribution

CPS Cyber-Physical System

CRR Correct Rejection Rate

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DCNN Deep Convolutional Neural Network

DRL Deep Reinforcement Learning

ELBO Evidence Lower Bound

ELM Extreme Learning Machine

EN Elastic Net

EoL End-of-Life

FAR False Alarm Rate

FEA Finite Element Analysis

FFNN Feed Forward Neural Network

FMEA Failure Mode and Effects Analysis

xv

FMECA Failure Mode, Effects and Criticality Analysis

FORM First Order Reliability Methods

FTA Fault Tree Analysis

GPR Gaussian Process Regression

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HAC Health-Aware Control

HMM Hidden Markov Model

HPC High-Pressure Compressor

HPT High-Pressure Turbine

ICA Independent Component Analysis

ICER Imprecise Correct Estimation Rate

IVHM Integrated Vehicle Health Management

KPI Key Performance Indicators

LAD Logical Analysis of Data

LCC Life Cycle Costs

LE Life Extension

LPC Low-Pressure Compressor

LPT Low-Pressure Turbine

LSTM Long Short-Term Memory

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MAP Maximum a posteriori

MAPE Mean Absolute Percentage Error

MC Monte Carlo

MCDA Multiple Criteria Decision Analysis

MdAD Median Absolute Deviation

MdAE Median Absolute Error

MdAPE Median Absolute Percentage Error

MIMOSA Machinery Information Management Open Systems Alliance

ML Machine Learning

MLE Maximum Likelihood Estimate

MLP Multi-Layer Perceptron

MSE Mean Squared Error

MTBF Mean Time Before Failure

MTBUR Mean Time Between Unit Replacement

NLL Negative Log Likelihood

OAB Overall Average Bias

OAV Overall Average Variability

OSA-CBM Open System Architecture for Condition-Based Maintenance

OSA-EAI Open System Architecture for Enterprise Application Integration

PCA Principal Component Analysis

xvi

PFIF Potential Failure Interval Factor

PHM Prognostics and Health Management

PHS Prognostic Hits Score

PM Preventive Maintenance

PSO Particle Swarm Optimization

PT&I Predictive Testing and Inspections

RA Relative Accuracy

RBF Radial Basis Function

RBI Risk-Based Inspection

RBM Restricted Boltzmann Machine

RCM Reliability-Centred Maintenance

RF Random Forest

RL Reinforcement Learning

RLOWESS Robust Locally Weighted Scatterplot Smoothing

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROI Return on Investment

RP Relative Precision

RUL Remaining Useful Life

RVM Relevance Vector Machine

RVR Relevance Vector Regression

SCE Safety Critical Element

SECE Safety and Environmentally Critical Element

SENN Structured Effect Neural Network

SHM Structural Health Monitoring

SIL Safety Integrity Level

SIM Structural Integrity Management

sMAPE Symmetric Mean Absolute Percentage Error

SOM Self-Organizing Map

SQP Sequential Quadratic Optimization

SSE Sum of Squared Errors

SVM Support Vector Machine

SVR Support Vector Regression

VI Variational Inference

WEB Weighted Error Bias

WPD Wavelet Packet Decomposition

WPS Weighted Prediction Spread

XAI Explainable Artificial Intelligence

XML Extensible Mark-up Language

1

Chapter 1. Introduction

1.1 Background

Recent advances in technology has led to increased deployment of new assets across

different industries. However, existing facilities are also ageing. For instance, in the oil

and gas industry and wind energy sector, a significant number of engineering assets are

fast reaching their end-of-life (EoL) (Shafiee & Animah, 2017). To provide some context,

data shows that as at 2016, roughly 3400 wind turbines had exceeded 20 years of

operational life in Germany, 1250 wind turbines in Denmark, over 500 in Spain (which

was due to increase to 4200 in 2020), with the UK having a younger fleet with only 19

having exceeded 20 years as at 2016 (Ziegler et al., 2018). In the oil and gas industry, it

is estimated that two-thirds (about 66%) of North Sea oil and gas infrastructure can be

considered to be ageing and are in their life extension (LE) phase, with the figure from

Malaysia in the Asia pacific being 48% of oil and gas platforms having exceeded 25 years

of operational life. In the Middle East, the data shows a much higher proportion of 70%

of a total of about 800 platforms already operating beyond their design life (Ferreira et

al., 2020).

From the foregoing data, it is clear that finding innovative ways to continue operating and

maintaining these assets is more important now than ever before. Although a lot of

decommissioning activities are on-going and more are due to commence soon, LE

remains the preferred option for most asset owners. Also noteworthy is the present

transition of assets into smart systems, with multiple sensors collecting vital operations

and condition monitoring data to aid engineers make important and impactful

maintenance decisions (Tuptuk & Hailes, 2018). To safely implement LE in systems

where sensor data is ubiquitous, it is exigent to develop tailor-made techniques to aid

maintenance decision-making. One of the key activities in this regard is prognostics – the

prediction of future health states of an asset based on either known degradation models

or asset performance data (Jardine et al., 2006). Specifically, predicting the remaining

useful life (RUL) of an asset is a key task in prognostics upon which maintenance

decision-making is based. For this research, the use of RUL transcends just maintenance

decision-making as it is intended for asset LE applications.

2

The methods used in this research can only be well understood when put in the context

of prognostics and health management (PHM). PHM involves three core tasks, namely,

diagnostics, prognostics, and maintenance decision-making. While diagnostics detect,

identify and isolate faults in equipment, prognostics use diagnostics information along

with past health states to predict future health states and then determine the mean time

interval between maintenance actions on equipment (An et al., 2015). With prognostics,

the time a component or system can operate from the present time until failure is

determined – this time is known as the remaining useful life (RUL) and it is critical for

making LE decisions. Figure 1-1 gives a simple illustration of the RUL for a degradable

equipment. Methods for predicting RUL are either model-based (using physics of failure),

data-driven (using sensor data) or a fusion/hybrid of both approaches (Lei et al., 2018).

Figure 1-1 Showing the RUL, an important parameter for LE decision-making.

Model-based methods require knowledge of the physics of failure – for example, the

popular Paris’ law which is used to model fatigue crack propagation. For modern systems,

the reality is that the inherent complexities cannot be completely or simplistically

modelled through physics of failure approach. This research therefore focuses on data-

driven methods of RUL prediction. Statistical methods have been used extensively in the

literature for data-driven RUL prediction (Sikorska et al., 2011). However, with the

advancement of sensor technologies, data analytics platforms and internet-of-things

devices, the use of artificial intelligence (AI) algorithms and techniques have recently

received an increased attention from both academic researchers and industry

practitioners.

Time

Equipment
Performance First point of

incipient failure

Present state, P

Point of
functional failure

 RUL

Failure
threshold

3

As stated earlier, a significant number of assets across various industries have reached or

are approaching their EoL. Most assets’ owners set up a project at the end of an asset’s

design life in order to implement LE (Stacey, 2011). The ubiquitous sensor data gathered

over the operational life of the asset is not optimised due to computing resources that were

hitherto ill-suited to analyse such large data volumes and the lack of methodologies to

use data-driven approaches within an LE framework. This research explores the practical

use of AI algorithms and techniques for prognostics and, subsequently, a life-extension

framework that factors in the entire process of using advanced analytics in a data-driven

context is developed. To close the research gap, the following propositions were explored.

i. Candidate equipment for LE should be identifiable, from amongst disparate

equipment within a fleet of assets, using mostly sensor data and AI algorithms.

ii. From amongst a plethora of AI algorithms, there should be a class that is most

suitable for achieving reliable RUL prediction results for engineering assets, which

would be practical, realistic, and useful for LE decision-making.

iii. The prediction results obtained should be measurable, using either well established

metrics, or bespoke ones adapted for prognostics and LE applications.

iv. There should be technical standards and specific government regulations to guide

the practice of using a purely advanced analytics approach to achieve LE decisions

for critical engineering assets.

1.2 Aim and objectives of the research

The aim of this research is to develop advanced data-driven methods, mostly based on

artificial intelligence techniques, for prognostics of engineering assets and thereafter, for

life extension (LE) decision-making.

The following are the objectives of the research:

Objective 1: To establish the background for the research via the conduct of a thorough

literature review, including the state-of-the-art and best industry practices in PHM, as it

relates to LE.

Objective 2: To establish the best set of prognostic performance measures, focusing on

algorithm performance and life-cycle asset maintenance improvements, specifically to

help make optimal LE decisions.

4

Objective 3: To develop a data-driven technique which exploits AI algorithms to help

identify and prioritise candidate equipment for LE.

Objective 4: To develop, train and validate a prognostic algorithm for RUL prediction.

Objective 5: To develop strategies for using estimated RUL results to make LE decisions,

within a defined standards and regulations framework, especially for safety-critical assets.

The feasibility of the concepts, as well as the algorithms and techniques developed from

this research, will all be demonstrated via case studies.

1.3 Thesis structure

The thesis is written in eight chapters, with Chapter 2 to Chapter 7 formatted as journal

papers addressing one or more specific aspects of each of the research objectives. Chapter

1 presents the introduction and covers the background of the research while Chapter 8

presents the discussion on the entire research, the findings, potential impacts of the

research and serves to synthesize the entire research outputs. Highlights regarding areas

of future research and the conclusions are also provided in Chapter 8. Table 1-1 presents

a list of the chapters, their titles and how each chapter maps to the research objectives.

Table 1-1 Thesis chapters and their link to the research objectives

Chapter # Title Link to objective

1 Introduction --

2 Literature Review: “Artificial Intelligence in Prognostic
Maintenance of Engineering Systems”

1, 2, 5

3 “Requirements for Standards and Regulations in AI-
Enabled Prognostics and Health Management”

1, 5

4 “Performance Metrics for Artificial Intelligence
Algorithms Adopted in Prognostics and Health
Management of Mechanical Systems”

1 , 2

5 “Adopting Machine Learning and Condition Monitoring
P-F Curves in Determining and Prioritising High-Value
Assets for Life Extension”

3, 5

6 “Uncertainty Quantification in Remaining Useful
Prediction Using Bayesian Neural Networks”

4, 5

7 “An Advanced Analytics Approach to Asset Life
Extension Decision-making”

5

8 “Discussion: Research Findings, Implications and

Suggestions for Future Work.

--

5

Chapter 2 presents the details of a comprehensive literature review, titled Artificial

Intelligence in Prognostic Maintenance of Engineering Systems authored by Sunday

Ochella, Mahmood Shafiee, and Fateme Dinmohammadi, and is published in the Journal

of Engineering Applications of Artificial Intelligence 102 (2022): 104552. The review

involved a total of 178 publications comprising 86 journal articles and 92 conference

papers published from 2005 to 2021. Common AI algorithms used for prognostics were

identified along with the various datasets available for data-driven prognostics research.

A few algorithm performance metrics were discussed, as well as the soft issues around

infrastructure, cyber-security, manpower, standards, and regulations which will need to

be in place to enable the full adoption of AI-enabled PHM systems.

As is the case with any emerging technology or any significant change to a field of

practice, there is need for standards and regulations to guide the technology or the

practice. AI-enabled PHM and the associated maintenance decision-making or life

extension implications, especially for safety-critical assets, must be guided by best

practices and a suitable set of government regulations. However, such standards do not

exist for AI-enabled prognostics. Chapter 3 covers some of the extant standards in use,

most of which have been adapted from diagnostics. The factors necessary for a standards

and regulations environment to ensure safety, reliability, explainability, interpretability

and accuracy of AI-enabled prognostic systems are discussed extensively in a conference

paper titled Requirements for Standards and Regulations in AI-Enabled Prognostics and

Health Management by Sunday Ochella, Mahmood Shafiee and Chris Sansom and

published in the IEEE Xplore Digital Library.

Chapter 4 of this thesis presents a review of the performance metrics used in data-driven

PHM. A succinct taxonomy of the metrics was presented, grouping them into

conventional metrics, algorithm performance metrics, cost-benefit metrics and

computational performance metrics. The pros and cons of most of the metrics were

discussed, along with user requirements, algorithm design requirements and other critical

considerations for proper performance metrics selection. This work, authored by Sunday

Ochella and Mahmood Shafiee, was presented as a conference paper titled Performance

Metrics for Artificial Intelligence Algorithms Adopted in Prognostics and Health

6

Management of Mechanical Systems and has been published in Journal of Physics:

Conference Series 1828(1) (2021): 012005.

In Chapter 5, a data-driven technique for identifying and prioritising equipment for LE

was developed and presented as a journal paper titled Adopting Machine Learning and

Condition Monitoring P-F Curves in Determining and Prioritising High Value Assets for

Life Extension. This paper, authored by Sunday Ochella, Mahmood Shafiee, and Chris

Sansom, has been published in the Journal of Expert Systems with Applications 176

(2021): 114897. The highlight of the paper is the development of an equipment health

index called the Potential Failure Interval Factor (PFIF), which is predicted for every

piece of equipment within a fleet, using machine learning algorithms implemented on

MATLAB. On the basis of the predicted PFIF, equipment were grouped as either

“healthy”, “good – no action”, “good – monitor” or “soon-to-fail”, thus helping engineers

to prioritise resources towards the most vulnerable equipment.

In Chapter 6, a deep Bayesian Neural Network (BNN) was implemented for RUL

prediction, incorporating uncertainty quantification. The BNN yields mean RUL

predictions along with credible intervals, thus giving engineers a time range to plan and

implement a suitable LE strategy. Data pre-processing was performed in a similar manner

to the pre-processing for the work in Chapter 5, while the BNN algorithm for RUL

prediction was implemented as Python codes on TensorFlow (version 2.6.0), with

probability computations performed using TensorFlow Probability (version 0.13.0). The

findings from this work have been prepared as an article titled Uncertainty Quantification

in Remaining Useful Life Prediction Using Bayesian Neural Networks, authored by

Sunday Ochella, Mahmood Shafiee and Chris Sansom and has been prepared for

submission to the Applied Soft Computing journal.

To synthesize the findings from the results obtained in the previous chapters of the thesis,

a life-extension decision-making framework was developed in Chapter 7. The result of

this work is a journal article titled An Advanced Analytics Approach to Asset Life

Extension Decision-Making by Sunday Ochella, Mahmood Shafiee and Chris Sansom.

The paper has been submitted to the Journal of Computers and Industrial Engineering.

The highlights of the work include the use of RUL results with uncertainty quantification,

(results from Chapter 6), along with a PHM metric called the alert time (from Chapter 4),

7

Figure 1-2 Mind map of the various chapters and key subsections in the thesis

Chapter 1: Introduction

Chapter 2: Literature
Review – AI in PHM

Chapter 5: Identifying and
Prioritising Equipment

Chapter 4: Prognostic
Performance Metrics

Chapter 6: RUL
Prediction Using BNN

Chapter 3: Standards
and Regulations

Chapter 7: Data-driven Life
Extension Decision-making

Thesis

2.4: Key enablers for
AI in prognostics

2.2: AI in prognostics

2.2.1: Common
datasets 2.2.2: Common

algorithms

5.4: Equipment
grouping case study

5.2.1: RCM
background

5.2: Theoretical
background

5.2.2: Data
mining concepts

5.3: Clustering
methodology

4.2: Performance metrics
for AI algorithms in PHM4.3: Considerations

and selection criteria

4.2.1: Conventional
metrics

4.2.2: PHM-
specific metrics

4.2.3: Other
metrics4.3.3: Pros and

cons of metrics

4.3.1: User
requirements

4.3.2: Algorithm
design requirements

6.3: BNN algorithm
for RUL prediction

6.2: Uncertainty
quantification in PHM

6.2.1: Uncertainties
in PHM

6.4: RUL prediction
case study

Chapter 8: Discussion -
Findings, Impact and

Future Work

6.2.2: Approaches to
uncertainty quantification

6.3.1: BNN
Background

6.3.2: BNN algorithm
for RUL prediction

3.2: Extant standards
and regulations

3.3: Regulatory
requirements

3.4: Demonstration
via a case study

7.2: Overview
of LE practices

7.4: Data-driven LE
decision-making

case study

7.3:
Methodology7.2.3: Overview of

decision-making
models in LE

7.2.2: Fundamental
requirements for LE

7.2.1: Conventional
approaches to LE

8

to determine appropriate LE strategies for equipment grouped as “good – monitor” and

“soon-to-fail” (results from the work in Chapter 5). Thus, engineers can use the

interpretable results from RUL prediction with uncertainty quantification to make real

life decisions about LE, thereby avoiding equipment failure and extending the overall life

of engineering assets.

Figure 1-2 shows a mind map of the various chapters and the key areas each chapter

covers. The mind map progresses sequentially in a clockwise manner, starting from the

introduction covered in Chapter 1, then to the review papers, presented as Chapter 2,

Chapter 3, and Chapter 4. It then transits to the technical papers, which are presented as

Chapter 5, Chapter 6, and Chapter 7, and then concludes with the discussion section

presented in Chapter 8. It is a succinct pictorial that presents, at a glance, the entire

structure of the PhD thesis.

Table 1-2 List of publications – journal papers

In terms of output, this research has led to the production of the following conference and

journal papers, all of which were written by the PhD student , Sunday Ochella, as the first

author, with contributions from the supervisors, Dr Mahmoud Shafiee in terms of

additional conceptualization, reviewing, validation and editing, Prof Chris Sansom in

terms of review and supervision, and Fateme Dinmohammadi contributing towards

Journal Papers

S/N Paper Title Journal

1 Adopting Machine Learning and Condition

Monitoring P-F Curves in Determining and

Prioritizing High-value Assets for Life

Extension.

Journal of Expert Systems with

Applications (published).

DOI: 10.1016/j.eswa.2021.114897

2 Artificial Intelligence in Prognostic

Maintenance of Engineering Systems (review

paper).

Journal of Engineering Applications of

Artificial Intelligence (published).

DOI: 10.1016/j.engappai.2021.104552

3 An Advanced Analytics Approach for Asset

Life Extension Decision-making.

Journal of Computers and Industrial

Engineering (submitted).

4 Uncertainty Quantification in Remaining

Useful Life Prediction Using Bayesian

Neural Networks.

Prepared for submission to the journal

of Applied Soft Computing.

https://dx.doi.org/10.1016/j.eswa.2021.114897
https://doi.org/10.1016/j.engappai.2021.104552

9

review and validation for one of the papers. Table 1-2 presents a list of the journal papers

while Table 1-3 presents the list of conference papers.

Table 1-3 List of publications – conference papers

A pictorial illustration of everything presented in this chapter and the interconnection

between the various aspects of the research is shown in Figure 1-3.

Conference Papers

S/N Paper Title Conference

1 Artificial Intelligence in Prognostic

Maintenance.

29th European Safety and Reliability

Conference, 2019 (published).

DOI: 10.3850/978-981-11-2724-3_0188-cd

2 Performance Metrics for Artificial

Intelligence (AI) Algorithms Adopted in

Prognostics and Health Management

(PHM) of Mechanical Systems.

International Symposium on Automation,

Information and Computing, 2020

(published).

DOI: 10.1088/1742-6596/1828/1/012005

3 Requirements for Standards and

Regulations in AI-Enabled Prognostics

and Health Management.

26th IEEE International Conference on

Automation and Computing, 2021

(published).

DOI: 10.23919/ICAC50006.2021.9594069

https://dx.doi.org/10.3850/978-981-11-2724-3_0188-cd
https://dx.doi.org/10.1088/1742-6596/1828/1/012005

10

Figure 1-3 Interconnection between the various aspects of the research and how they map
to the research objectives.

Advanced Analytics
Approach to Asset

Life Extension

Chapter 2: Literature Review
State-of-the art in data-driven asset
management and prognostics and
health management (PHM)

(Objectives 1, 2, 5)
 Engineering Applications of Artificial

Intelligence 108 (2022): 104552

Chapter 5: Identify and Prioritise Equipment for
LE

 Use reliability-centered maintenance (RCM)
practices and condition monitoring (CM) data,
along with potential failure (P-F) curves to
develop novel asset health index.

 Vulnerable equipment for life extension are then
grouped together.

 Case study used to demonstrate feasibility.
(Objectives 3, 5)

Expert Systems with Applications 176 (2021), 114897

Chapter 3: Requirements for
Standards and Regulations in PHM

 Standards and regulations guiding

PHM practice.

 Critical factors in AI-enabled PHM.

 Develop acceptability criterion, Ac.
(Objectives 1, 5)

IEEE Xplore

DOI: 10.23919/ICAC50006.2021.9594069

Chapter 1: Introduction

 General background.

 Aim and objectives of research.

 Thesis structure.

Chapter 8: Discussion

 Key findings.

 Novelty and intellectual contributions.

 Impact of findings.

 Suggestions for future work.

Chapter 6: Uncertainty Quantification in RUL
Prediction

 Development AI-algorithm for RUL prediction.
 Uncertainty quantification incorporated.
 Equipment RUL predicted as probability

distributions.
(Objectives 4, 5)

Article prepared for journal submission

Chapter 7: Advanced Analytics Approach for LE
Decision-making

 Use equipment grouping from Chapter 5.
 Use PHM metric from Chapter 4.
 Use RUL results from Chapter 6.
 Propose data-driven LE strategies.

(Objective 5)
Computers and Industrial Engineering (submitted)

Chapter 4: PHM Metrics and KPIs

 Identifying metrics for algorithm

performance measurement.

 Identifying metrics for PHM

applications.

 Apply metrics for RUL prediction

performance evaluation.

 Apply metrics for LE decision-

making

(Objectives 1, 2)
Journal of Physics: Conference Series

(2021), 1828(1)

11

1.4 References

An, D., Kim, N. H., & Choi, J. H. (2015). Practical options for selecting data-driven or physics-

based prognostics algorithms with reviews. Reliability Engineering and System Safety, 133,

223–236.

Ferreira, N. N., Martins, M. R., de Figueiredo, M. A. G. and Gagno, V. H., (2020). Guidelines for

life extension process management in oil and gas facilities. Journal of Loss Prevention in

the Process Industries, 68, 104290.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal

Processing, 20(7), 1483–1510.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Shafiee, M., & Animah, I. (2017). Life extension decision making of safety critical systems: An

overview. Journal of Loss Prevention in the Process Industries, 47, 174–188.

Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining

useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–

1836.

Stacey, A. (2011). KP4: Ageing and Life Extension Inspection Programme for Offshore

Installations. Proceedings of the ASME 2011 30th International Conference on Ocean,

Offshore and Arctic Engineering OMAE2011, June 19-24, 2011, Rotterdam, The

Netherlands, 33–48.

Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of

Manufacturing Systems, 47, 93–106.

Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., & Melero, J. J. (2018). Lifetime extension of

onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK.

Renewable and Sustainable Energy Reviews, 82, 1261–1271.

13

Chapter 2. Artificial Intelligence in Prognostic Maintenance

of Engineering Systems

Sunday Ochella
1
, Mahmood Shafiee

2

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom.

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract: Prognostics and health management (PHM) has become a crucial aspect of the

management of engineering systems, where sensor hardware and decision support

methodologies are used to detect anomalies, diagnose faults and predict system

remaining useful lifetime (RUL). Methodologies for PHM are either model-based, data-

driven or a fusion of both approaches. Data-driven approaches make extensive use of

algorithms to extract underlying system relationships from large datasets collected from

physical systems. In recent years, several data-driven models have been developed by

the PHM research community using Artificial Intelligence (AI) and Machine Learning

(ML) algorithms to identify failure signatures embedded in large amounts of condition

monitoring data that capture a rich variety of operational modes and system health states.

The field of AI is fast gaining acceptance in various industries. With advancements in

the use of AI in engineering systems, where new designs now adopt the interconnection

of components in a cyber-physical space, there is increasing awareness that current

inspection and maintenance methodologies will have to adapt to the transition into a more

predictive and proactive philosophy. In this paper, a state-of-the-art review of AI

techniques for prognostic maintenance of engineering systems is conducted.

Furthermore, given that the future of inspection and maintenance will be predominantly

AI-driven, the paper discusses the soft issues relating to manpower, cyber-security,

standards, and regulations under such a regime. The review concludes that current

systems and methodologies for maintenance will inevitably become incompatible with

future designs and systems; as such, continued research into AI-driven prognostics

systems is expedient as it offers the best promise of bridging the potential gap.

Keywords: Prognostics and Health Management (PHM), Artificial Intelligence (AI),

Machine Learning (ML), Predictive maintenance, Algorithm, Remaining useful life (RUL).

14

2.1 Introduction

The conventional maintenance practice in industries was corrective in nature, where an

equipment was repaired or replaced upon failure. However, due to the high failure cost

and downtime penalty, preventive maintenance (PM) strategies became very popular in

the early 1980s. PM includes performing various actions at predetermined time or usage

intervals, such as replacing an oil filter in a machine. This strategy is still a predominant

maintenance strategy in a lot of industries, including construction, mining, chemical and

petrochemical (Shafiee, 2015). However, since equipment utilization and maintenance

resources may not be optimized by fixed-interval PM methodologies, risked-based

methods are increasingly being adopted in industrial facilities so that resources can be

assigned to equipment according to their criticality rankings. Specific reference can be

made to the oil and gas industry, where the American Petroleum Institute (API) published

recommended practices for the implementation of risk-based inspection (RBI) in oil and

gas processing facilities; (see API (2016a) and API (2016b). The semi-quantitative

approach offered by API makes extensive use of inspection data (where such data is

available) to develop physics-based models for the equipment, incorporating expert

knowledge from the operators and process engineers into the analysis. Therefore, RBI is

effectively a hybrid of both model-driven and data-driven methods (Shafiee and Soares,

2020).

Despite being implemented in many fields, RBI is yet to be proven when used in the

context of an ecosystem where large amounts of sensor data are constantly gathered from

heterogeneous systems at a very high rate. In recent years, condition-based maintenance

(CBM) has become popular in an effort to minimize unplanned maintenance, increase

reliability and reduce operating costs. CBM recommends optimal maintenance actions

based on asset condition information (Jardine et al., 2006). CBM involves the key tasks

of diagnostics and prognostics, both of which fundamentally involve collecting sensor

data, processing the data and constructing the system health states based on the processed

data. While the diagnostics task detects, identifies and isolates faults, the prognostics task

uses diagnostics information along with past historical data to predict future health states

of the equipment as well as determine the time to perform maintenance actions (An et al.,

2015). Prognostic maintenance therefore means making maintenance decisions based on

predicted time that a component or system can operate before encountering a failure –

15

this time is known as the remaining useful life (RUL). The methods for predicting a

system’s future health state can be categorized into model-driven (where a physical model

of system degradation behaviour is developed to estimate RUL); data-driven (where

condition monitoring data is processed and used to estimate RUL); or a fusion of both

approaches.

Data-driven techniques in PHM were mostly based on statistical methods. However, with

advances in sensor technology and signal processing, artificial intelligence (AI)

techniques have become increasingly popular. AI is the ability of a machine to display

human-like intelligence, especially in response to inputs from its environment. The field

of AI has received wide attention in recent years in various applications, particularly in

cases where very large volumes of data are generated at a fast rate. In such cases, the

conventional statistical methods become less useful as analytical tools. With respect to

the area of predictive maintenance (PdM) and prognostics and health management

(PHM), various AI algorithms have been proposed in the literature on how to predict the

state of health of engineering systems. To this end, the RUL estimation at system,

subsystem or component level is a critical task upon which the entire prognostics

endeavour is based.

This paper provides a thorough state-of-the-art review of the AI techniques adopted for

PHM of mechanical engineering systems. Most reviews covering the subject tend to focus

on a specific algorithm or class of algorithms, or on specific use cases; hence, ignoring

actual issues around real-life implementation of PHM in fielded systems. This review

provides a broad perspective on the subject while delving into the soft issues that need to

be addressed to enable adoption of AI-driven PHM technologies. The applications of

various AI techniques in PHM are identified via a systematic literature review to aid

practitioners in making well-informed decisions. Our review shows that a finite collection

of PHM datasets is continuously used for the purpose of training and testing AI

algorithms. These datasets have been mostly obtained from either numerical simulations

or experimental measurements from accelerated degradation testing in research

laboratories, and there seems to be dearth of real-life data from operational systems. So,

there either is a lack of appreciable collaboration between the industry and academia or

the actual level of collaboration is not accurately captured in the literature, perhaps due

16

to confidentiality reasons. Our study also reveals that ‘deep learning’ algorithms are

becoming very popular in recent years as they deliver very good results while eliminating

the need to pre-process the data before feeding it into an algorithm or model. Of course,

there are other enablers for the proliferation of deep learning algorithms, like availability

of big data and high capability Graphics Processing Units (GPUs).

The remaining part of this paper is organized as follows: Section 2.2 outlines the

procedure for using AI in prognostic maintenance, including a brief overview on popular

algorithms used in the literature for prognostics. Section 2.3 presents a systematic

literature review to provide a broad picture of the state of AI-driven prognostic

maintenance research, identifying the various algorithms that have been used and the

associated datasets used to test the algorithms. Some metrics applied to measure the

performance of the algorithms and PHM results, in general, were also briefly discussed.

Section 2.4 discusses the soft issues around the real-time implementation of AI for

prognostic maintenance which tend to be generally ignored in the literature. Section 2.5

discusses ideas for future research while Section 2.6 summarizes the discussion and

concludes the paper.

2.2 Use of AI in prognostic maintenance

There are quite a number of comprehensive reviews on data-driven prognostics in the

published literature. Jardine et al. (2006) conducted a review of machinery diagnostics

and prognostics and discussed how the entire CBM process aids in maintenance decision-

making. Primitively, the tendency has been to concentrate on prognostics as a separate

area that is yet to be fully explored. However, intuition suggest that one must be able to

perform diagnostics (i.e., detect, isolate and identify faults) before attempting to perform

prognostics (Schwabacher and Goebel, 2007; Jardine et al., 2006; Sikorska et al., 2011;

An et al., 2015). This is inevitable in the case of developing data-driven PHM techniques

because the existence of actual failure data is fundamental to the training process of AI

algorithms. In general, most of the reviews in the literature (Jardine et al., 2006; Sikorska

et al., 2011; An et al., 2015; Lei et al., 2018) delineate the procedure of deploying AI in

PHM into three broad stages: (i) data collection and processing; (ii) development of

algorithm, training and validation; and (iii) RUL prediction and maintenance decision-

making. The broad delineation of this process is illustrated in Figure 2-1. Some important

17

aspects of the three main stages involved are discussed in subsection 2.2.1 and subsection

2.2.2.

Figure 2-1 Flow process for the use of AI for prognostics

2.2.1 The key: good quality data

Since AI approaches are purely data-driven, the results obtained will be only as good or

as accurate as the quality of the dataset used for training the algorithm. PHM typically

involves data collection, cleaning, preprocessing and features extraction, RUL prediction

and, eventually, algorithm performance measurement using suitable RUL metrics. With

the advancement of internet of things (IoT) technologies, it is now cheaper and easier to

obtain large amounts of data from engineering systems (Lei et al., 2018; Zhao et al.,

2019). However, some real challenges that are still being experienced with the availability

of good quality data are outlined below:

i. With thousands of sensors being deployed in engineering systems to measure

different physical parameters, a large amount of multi-dimensional data is generated.

Several techniques for data dimensionality reduction have been developed over the

years, including: principal component analysis (PCA), independent component

analysis (ICA), self-organizing maps (SOM) and wavelet packet decomposition

(WPD). However, the challenge in PHM research is the need to process the data as

and when they are collected (i.e., in real or close to real time). The operating

conditions of the sensors need to be monitored, their calibration issues must be

addressed, and noise in the data should be removed by pre-processing the signals.

 Sensor and inspections
data

 Event (failure) data
 Environmental data

(including noise)

 Pre-processing and
cleaning

 Separation (training
set and testing set)

 RUL estimation
 Confidence

determination

Data Acquisition

Algorithm Selection
& Application

RUL Estimation &
Maintenance

Decision-Making

feedback

18

ii. As a further point regarding data quality and preprocessing, it is important to state

that not all the data collected for prognostics purpose contain useful information for

algorithm development. PHM practitioners using AI algorithms for data-driven

prognostics need to be aware of the relevance of features engineering, especially

how to eliminate redundant features that are not informative, as well as how to craft

new features via features crosses or computing different statistics or parameters from

the collected data to serve as additional features that will typically be more

informative than the raw data. Most of the popular libraries available for use like

scikit-learn, TensorFlow with Keras, MATLAB, PyTorch, etc., include rich

packages for data preprocessing and features engineering.

iii. In industrial environments, it is neither safe and nor economically feasible to run

machines until they break down. As such, most data available for academic research

are obtained from experiments, test beds and simulations, which might not be a true

representative of real-life failure data.

iv. In real-life applications, machines are subject to varying environmental conditions.

The ability to prune the data to discount for the attendant noise while at the same

time taking credit for environmental loading is also a major challenge. All these

issues with data reliability and quality help to emphasize the importance of

uncertainty quantification when using such data for prognostics. Different categories

of algorithms addressing uncertainty quantification are briefly discussed in

subsection 2.2.2.5.

v. In a few cases where real-life data have been provided by industry, as in the study

by Carroll et al. (2019) on wind turbine gearbox failures, the details of the data were

not provided due to confidentiality reasons.

The literature search conducted for this work identified some datasets commonly used for

research on the use of AI in PHM. These datasets are briefly introduced below.

2.2.1.1 NASA C-MAPSS dataset

This dataset presents the NASA turbofan engine degradation problem and was first

introduced for the PHM 2008 data challenge. The dataset was generated with a MATLAB

Simulink tool called the Commercial Modular Aero-Propulsion System Simulation, C-

MAPSS, producing a large amount of realistic turbofan engine degradation data (Saxena

19

et al., 2008). The dataset comprises data for engine conditions under normal mode as well

as faulty modes, with the fault being introduced at a given time and persisting till the end.

Figure 2-2 provides an illustration of the engine simulated in C-MAPSS, showing the

main elements of the engine from which sensor information were collected. The engine

has five rotating components, namely: the fan, the low-pressure compressor (LPC), the

high-pressure compressor (HPC), the low-pressure turbine (LPT), and the high-pressure

turbine (HPT). These five rotating components have health parameter inputs that allow

for the simulation of deterioration, along with sensor information collected from when

the engine is put in service until the time it crosses a failure threshold. The data was

generated by varying the input parameters to conform with the response of the real aircraft

engine used, thus producing realistic engine degradation data. The training data was

obtained by running the engine under various engine modes and operational settings, and

then introducing a fault at a known time (measured in engine cycles). The fault then

persists in the engine, leading to gradual degradation until a final failure threshold is

reached. The test data was collected by running the engines and introducing a fault at a

known time (but not revealed), with the test data cut off after the fault is introduced. Table

2-1 shows the sensor information collected from the various parts of the engine, along

with information indicating the operational settings.

Figure 2-2: A simplified illustration of the engine simulated in C-MAPSS (adopted from

Sexena and Goebel, (2008)).

The challenge is to identify the present health state of the various engine units in the test

dataset and subsequently, the time-to-failure or RUL of each engine unit. The dataset is

20

useful for benchmarking, enabling the comparison between different AI algorithms. This

is possible because four datasets out of the five datasets available in C-MAPSS have a

training set, a test set and ground truth RUL values to measure performance. In the fifth

dataset, the challenge dataset, the ground truth RUL values are not provided. Ramasso et

al. (2015) provided a detailed guidance on the appropriate use of this dataset for research.

Table 2-1 Parameters in the C-MAPSS dataset

column Measured parameter Unit of measurement

1 Unit number --

2 Time cycles

3 Operational setting 1 --

4 Operational setting 2 --

5 Operational setting 3 --

6 Total temperature at fan inlet °R

7 Total temperature at LPC1 outlet °R

8 Total temperature at HPC2 outlet °R

9 Total temperature at LPT3 outlet °R

10 Pressure at fan inlet psia

11 Total pressure in bypass-duct psia

12 Total pressure at HPC outlet psia

13 Physical fan speed rpm

14 Physical core speed rpm

15 Engine pressure ratio (P50/P2) --

16 Static pressure at HPC outlet psia

17 Ratio of fuel flow to Ps30 pps/psi

18 Corrected fan speed rpm

19 Corrected core speed rpm

20 Bypass Ratio --

21 Burner fuel-air ratio --

22 Bleed Enthalpy --

23 Demanded fan speed rpm

24 Demanded corrected fan speed rpm

25 HPT4 coolant bleed lbm/s

26 LPT coolant bleed lbm/s
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure
Turbine

2.2.1.2 FEMTO-ST bearings dataset on PRONOSTIA test bed

This dataset was introduced for the PHM 2012 data challenge during the IEEE

International Conference on PHM. The data, which was provided by the

Institute Franche-Comté Electronics Mechanics Thermal Processing and Optics–

Sciences and Technologies (FEMTO-ST Institute, France), consists of 17 run-to-failure

data of rolling element bearings generated from the PRONOSTIA test bed. Six of the

21

datasets are full run-to-failure data, whereas the other 11 datasets are truncated. This

makes the training of AI algorithms challenging and the accurate prediction of RUL

difficult because the training set is from just six bearings, posing challenges for training

because AI algorithms require ample data for meaningful training to be achieved. Full

details of the dataset from the PRONOSTIA testbed are presented by Nectoux et al.

(2012).

2.2.1.3 Other datasets

The PHM 2010 data challenge presented data for high-speed Computer Numerical

Control (CNC) milling machine with cutters used until a significant wear stage. The

challenge was to accurately predict the RUL of the cutting tools. Other milling datasets

are also available and have been used in publications. Another set of data for prognostics

research is the NASA battery data, which has been used in about 8% of the publications

found in the literature. Most of the datasets discussed in this work are publicly available

for download (see NASA Prognostics Data Repository, 2017).

Although some of the datasets discussed are from real accelerated life degradation

experiments, it is remarkable that there is a paucity of research publications that have

used data from actual operational engineering assets. Nevertheless, the obvious advantage

of these common datasets is the ability for different researchers to compare the results

obtained using different algorithms on the same dataset. Also, early career researchers

that would otherwise experience difficulty accessing data or designing their own

experiments to obtain data, can make use of these publicly available datasets for research.

Figure 2-3 shows the usage of various datasets in data-driven prognostics research. The

papers in which a specific dataset was used for studies are listed in Table 2-3.

22

Figure 2-3 Datasets used in prognostics research

2.2.2 AI algorithms for prognostics

As stated earlier, one of the reasons for the recent increase in popularity of the use of AI

for prognostics is due to the increased availability of data from sensors installed on

engineering devices and systems. Other contributory factors are successes recorded in

other applications, like e-maintenance, as well as the evolution of a rather large number

of algorithms on different platforms like Python, TensorFlow with Keras (using Python),

PyTorch, Sci-kit Learn, MATLAB, R, Java, C++ and Microsoft Azure Learning Studio.

The availability of cross-platform libraries via the ability to import different libraries unto

different platforms has also helped to accelerate adoption. Some popular algorithms in

use include Deep Learning, regular Artificial Neural Networks (ANNs), nearest

neighbour algorithms (mostly k-NN), naïve Bayes, decision trees, and Support Vector

Machine (SVM). For prognostic maintenance, ANNs (and other algorithms based on

neural networks) have been used the most in the literature. Figure 2-4 illustrates the broad

categorization of common AI algorithms. The algorithms captured are in no way

exhaustive as variants of each algorithm have been used for different applications.

23

Figure 2-4 Categorization of common AI algorithms

The algorithms used in majority of the publications in the literature are discussed briefly

below.

2.2.2.1 Deep Learning

The deep learning architecture originated from ANN with the unique quality of having

multiple layers stacked on each other, between the input layer and the output layer. This

characteristic of deep learning also applies to the multi-layer perceptron (MLP), which is

a neural network with multiple hidden layers trained via backward propagation. In that

sense, the MLP can be said to be an instance of deep learning. However, what makes deep

learning attractive, as compared to traditional machine learning algorithms, is the ability

to skip the process of hand-crafting features from the input data before being fed into the

network. With deep learning, the input can be fed directly into the network and the

network learns the features on its own. Deep learning was first introduced for use in

natural language and image processing and recognition (LeCun et al., 2015). The deep

AI
ALGORITHMS

Unsupervised
Learning

Supervised
Learning

Reinforcement
Learning

Classification
 Decision trees.
 Naïve Bayes.
 Logistic regression.
 Softmax regression (a version of

logistic regression).
 k-Nearest Neighbors.
 Support Vector Machine (SVM).
 ANN (conventional as well as MLP).
 Deep Learning (most of its variants).

Regression
 Least squares linear regression.
 ANNs.
 Various variants of Deep Learning.
 Probabilistic regression models (like

Bayesian Neural Networks).

 Clustering (hierarchical and partitional
clustering, and their variants).

 Hidden Markov Models (HMMs).
 ANNs (Self-Organizing Map (SOM),

Adaptive Resonance Theory (ART)
clustering and other
implementations).

 Deep Learning.

 Q-learning.
 Policy iteration.
 Value iteration.
 Policy gradient.
 Deep Q-learning (based on neural

networks).

24

learning algorithms that have been used for prognostics and health management (PHM)

of engineering systems include autoencoders (and its variants), restricted Boltzmann

machine (RBM) with its variants being deep belief networks (DBN) and deep Boltzmann

machine (DBM), convolutional neural networks (CNN) and recurrent neural networks

RNN. Variants of RNN, the long short-term memory (LSTM) and Gated Recurrent Units

(GRU) have also been used in the literature for prognostics.

Furthermore, different deep learning algorithms have been combined to solve prognostics

problems, exploiting the advantage of each algorithm to address an aspect of the problem

that is amenable to the application of that particular algorithm. Yue et al. (2018) used

CNN-LSTM to address the issue of blade icing on wind turbines. Features extraction was

performed using the CNN algorithm while LSTM was used to make time series

predictions based on the extracted features. Chen et al. (2018) applied a somewhat similar

approach to the wind turbine blade icing prognostic problem using deep neural networks

to learn and extract features while using k-NN to classify the learned features. The CNN

architecture has an input layer, several hidden layers, and an output layer. For most

configurations, the hidden layers are the convolution layer, the pooling layer and a fully

connected layer, beyond which a regression or classification algorithm is used to generate

the output, depending on the nature of the problem being addressed. Li et al. (2019) and

Zhu et al. (2019) used a multiscale feature extraction approach, where the CNN had

several concatenated convolution and pooling layers. The aim was to gain better

representation of different features of the raw data. Good results were obtained by the

multiscale approach when applied to bearing data from the PRONOSTIA test bed and

compared to other deep learning approaches. Even though data can be fed directly to deep

learning models without handcrafted features extraction, other approaches have involved

some level of pre-processing of data before feeding to deep learning algorithms. Ren et

al. (2018a) presented the spectrum-principal-energy-vector as a feature extraction method

to obtain the eigenvector which they considered suitable for a deep CNN. Belmiloud et

al. (2018) used wavelet packet decomposition (WPD) to extract features from bearings

data and fed the extracted features to a deep CNN for training and RUL prediction.

Fundamentally, CNN is a feed-forward neural network architecture. RNN, on the other

hand, is a deep learning architecture that has memory in the sense that output from one

25

layer is fed as input to the previous layer in the form of a recurrent loop. As such, RNNs

are more amenable to time series data since the previous output is remembered, as well

as the present input. However, RNN only captures recent memory and is poor at

addressing the issue of long-term dependencies. A variant of RNN, the LSTM, addresses

this problem by the introduction of gates; the input gate, the output gate and the forget

gate. The input gate selects key information to store in the internal state, the output gate

determines output information and the forget discards redundant information – hence

keeping important information, long-term, in the internal state of the network. Zheng et

al. (2017) and Hsu and Jiang (2018) used LSTM to estimate RUL for the C-MAPSS

dataset. The results were compared with MLP, SVM and CNN and showed that LSTM

produced better results based on the root mean square error (RMSE) metric. Zhang et al.

(2018b) used a bi-directional LSTM for the same C-MAPSS problem and also obtained

better results compared to MLP, SVM, deep CNN and the conventional LSTM. Other

researchers, including Mao et al. (2018) and Zhang et al. (2019) used LSTM to predict

RUL for bearings while Zhang et al. (2017) applied LSTM to RUL estimation of lithium-

ion batteries. Overall, the key feature of addressing long-term dependencies was the major

reason why researchers have used LSTM as against the standard RNN.

Figure 2-5 Tree structure showing various deep learning algorithms

Other deep learning algorithms that have been used for prognostics include deep coupling

autoencoders, deep denoising autoencoders, restricted Boltzmann machine, deep belief

networks and, most recently, probabilistic deep learning algorithms using variational

inference or Monte Carlo dropout for approximating the posterior distributions. Most of

the papers which used deep learning have been published rather recently, from 2016

MLP

Deep
Learning

DNN

CNN

RNN

Auto-
encoders

(AE)

RBM

LSTM

GRU

Vanilla LSTM

Bi-directional
LSTM

Sparse AE

DBM

Denoising AE

DBN

Stacked
Denoising AE

Variational AE

26

onwards. This recent adoption clearly follows from the successes recorded by its use in

image processing and recognition. Khan and Yairi (2018) and Zhao et al. (2019)

presented detailed reviews on deep learning algorithms for prognostics. The deep learning

algorithms used in the literature for prognostic maintenance are shown in Figure 2-5.

2.2.2.2 Hybrid/Fusion

Hybrid techniques involve the combination of model-driven and data-driven methods (in

the context of this paper, data-driven methods are referred to as AI-based methods). Saha

and Goebel (2008) used relevance vector machine (RVM), as a Bayesian treatment of

SVM, for model identification and then provided estimates of RUL in the form of a

probability density function (PDF) based on a particle filters framework built upon the

RVM-trained model, statistical estimates of noise and projected operating conditions.

Yang et al. (2016) used a selective kernel ensemble-based RVM algorithm to obtain

relevance vectors for degradation data in lithium-ion batteries and fit the relevance vector

onto a physical model to extrapolate RUL values. When the results were compared to

feed-forward ANN and SVM, the hybrid method showed superior performance. In

another study, Zheng et al. (2018) used a very similar approach with RVM on battery

data to train a model, but instead they used Kalman Filters to make RUL projections.

Ahmad et al. (2017) implemented a hybrid PHM approach by training an adaptive

predictive model on the NASA bearing degradation data and then adopted a regression-

based approach to predict the RUL. Other researchers such as Jin et al. (2018) used a self-

organizing map (SOM) to train the degradation model for the bearings data from the

FEMTO-ST PRONOSTIA test bed and then adopted an unscented Kalman Filters to

estimate RUL using the trained model. In general, the hybrid approach combines the use

of degradation data to train an AI algorithm to learn the parameters of a physical model,

and then uses the learned model along with statistical or other approaches to make

extrapolations or predictions. It must however be noted that hybrid methods only lend

themselves to application areas where the underlying physics behind the system can be

modelled, so that the training process effectively helps to approximate the model

parameters. Hybrid models are therefore not directly applicable to complex systems

where the physics of failure cannot be somewhat explicitly modelled. Figure 2-6 presents

two alternative routes for using hybrid/fusion approach to estimate RUL of engineering

systems.

27

Figure 2-6. Two alternative routes for using hybrid/fusion approach to estimate RUL.

2.2.2.3 Support Vector Machine (SVM)

SVM is a technique used for classification and regression by creating a hyperplane to

separate data with different classes in a multi-dimensional space. Extracted features from

the data are projected into the multi-dimensional space using a kernel function and then

a hyper plane is generated such that there is maximum distance between the nearest

training data and the hyperplane, thus providing good generalization capabilities. In

relation to machine prognostics applications, failure data can therefore be separated from

healthy data. Benkedjouh et al. (2013) estimated the RUL of bearings by using an

isometric feature reduction mapping technique to extract features from the PRONOSTIA

bearings data. The errors obtained from using three kernel functions, namely Gaussian,

polynomial and Radial Basis Function (RBF), were compared by projecting the features

onto a multi-dimensional hyperplane. Eventually, the Gaussian kernel function was

shown to produce the least error compared to the other two functions. Carino et al. (2015)

estimated the RUL of the same PRONOSTIA bearings, using the features selected based

Data

RUL Estimate

Fitted or Trained Model
(known parameters)

AI/ML Algorithm

Crude Model
(unknown parameters)

AI/ML Algorithm
+

Physical Model

Statistical Methods

Fitted or Trained Model
(known parameters)

Hybrid/Fusion
Approach

Manually extract features

Train model

Regression

Train model

Regression

RUL Estimate

Collect data

Format data

28

on the assumption that monotonically decreasing features are most likely to represent

degradation patterns. A one-class SVM was then used to characterize an incremental

degradation profile in the feature space, subsequently using the RMSE to measure the

performance of the algorithm. The key implication of the two studies cited is that data

from most physical systems are Gaussian, along with Gaussian noise and that

monotonically decreasing or increasing features are most useful for RUL predictions.

Non-Gaussian data can usually be transformed to Gaussian space to make them amenable

to modelling, with the results going through an inverse transformation after predictions

using the learned model.

One challenge with all datasets available for prognostics, and indeed any dataset that may

be obtained from operational engineering systems, is the difference in lengths of the run-

to-failure data for each unit within the dataset. This difference reflects the fact that

different equipment have different lifetimes, either due to design, different environmental

factors or different operational or loading conditions. To address this challenge, Bluvband

and Porotsky (2015) used SVM to predict the RUL for turbofan engines in a context of

suspended time series, where a number of points in the data were missing. Shi et al. (2018)

used a modified RVM with a new design matrix, called RVR-NDM which includes an

additional column vector which represents the overall degradation pattern. The prognostic

performance was measured using mean absolute percentage error (MAPE) and the

RMSE. Several other studies have used SVM techniques to estimate RUL of lithium-ion

batteries, which are important components for energy storage in a wide variety of

applications including consumer electronics, transportation, and large-scale energy

production. In all the studies, the common approach involves the need to separately

extract the features and establish a degradation pattern and subsequently applying the

SVM algorithm. In general, these techniques have produced good results for use in both

classification and regression problems. A quick reference to studies using this algorithm

can be found on the listing in Table 2-2.

2.2.2.4 Ensemble

Ensemble techniques combine several different configurations of the same base learner

or algorithm to make a single prediction. Hu et al. (2012) conducted a study to

demonstrate that using an ensemble of the data-driven AI algorithms for prognostics

yields more accurate results when compared to any sole algorithm within the ensemble.

29

In the study, different weights were assigned for algorithms that are accuracy-based, those

that are diversity-based and those that are optimization-based. As shown in Figure 2-7,

ensemble methods include bagging, boosting and stacking. Bagging, also called bootstrap

aggregating, assigns equal weights to each algorithm in the ensemble, with each algorithm

trained using a random sample from the training dataset. The training data is sampled

with replacement in the process of training each base algorithm. Random Forests is an

example of bagging ensemble, with decision trees as the base learners. Wu et al. (2017b)

used random forests as a bagging ensemble method for tool wear prediction. Although

the training times achieved were slightly long, the RMSE using random forests were

much lower when compared to ANN and SVM. Cheng et al. (2021) used an ensemble of

80 different LSTMs to make RUL predictions for the C-MAPPS dataset, with each base

LSTM having the same hyperparameters. Each base LSTM was also trained on a single,

unique engine degradation data, and the results from 80 engines were aggregated to obtain

the optimal LSTM configuration as well as RUL distribution parameters derived from the

mean and variance of the 80 predictions. This approach produced a mean RUL prediction

that is superior to any single prediction from each of the 80 LSTMs, thus taking full

advantage of the bagging ensemble learning approach.

Boosting involves the process of progressively improving the results of a classifier with

subsequent algorithms in the ensemble, with the sole purpose of more accurately

predicting or classifying previously misclassified instances in the data. With boosting, the

process is initialized with a uniform distribution so that all instances in the data have equal

likelihood of being selected in the training dataset, while misclassified instances are

returned to the distribution to improve their chances of correct classification with other

algorithms in the ensemble. Zhang et al. (2017a) used a multi-objective DBN for RUL

prediction using the C-MAPSS dataset. A DBN is a deep learning algorithm comprising

RBMs stacked to form multiple layers. The ensemble method used in the study trained

DBNs as base learners with two conflicting objectives – accuracy and diversity. Accuracy

is measured in terms of the error between the predicted RUL and the ground truth RUL

while diversity checks the correlation between the output of each DBN to those of other

DBNs within the ensemble. The various DBNs are gradually evolved through appropriate

weighting to generate an optimal ensemble model that minimizes error and maximizes

diversity.

30

Figure 2-7. Bagging, boosting and stacking approaches to ensemble AI learning

Stacking involves the use of a heterogeneous mix of different base learners and then

combining their results to produce a single prediction. The results can be combined with

a classification algorithm or a regression algorithm, depending on the problem. Stacking

is different from bagging in two ways; first, with stacking, the base learners are

necessarily a heterogeneous set of algorithms or models and, second, each of the base

learners are trained on the full set of training data unlike in bagging where the training

data is sampled with replacement. Li et al. (2019) used a stacking ensemble approach for

RUL prediction and tested it on the C-MAPSS dataset. The study used as base learners:

random forests (RFs), classification and regression tree (CART), recurrent neural

networks (RNN), autoregressive (AR) model, adaptive network-based fuzzy inference

system (ANFIS), relevance vector machine (RVM), and elastic net (EN). Particle swarm

optimization (PSO) and sequential quadratic optimization (SQP) methods were then used

to assign optimal weights to each base learner. The final RUL was obtained by taking the

weighted sum of the RULs estimated by the base learners. In general, ensemble methods

help to produce better accuracy while ensuring good generalization capabilities.

2.2.2.5 Bayesian algorithms and uncertainty quantification

The algorithms discussed so far make deterministic or point estimates of RUL, which can

be misleading in real-life applications. This is because point estimates have a fundamental

flaw of not addressing the uncertainty in both the data and the model parameters. In

practical terms, what this means is that an equipment with a predicted RUL of say 30

Ensemble

Bagging

Boosting

Stacking

RUL
Estimate

Algorithm 1

Algorithm(N+1)

Algorithm 2

Algorithm 3

Algorithm N

RUL1

RUL2

RUL3

RULN

Algorithm 1 Algorithm 2 Algorithm N
RUL

Estimate

Algorithm X

Algorithm Y

Algorithm X

Algorithm X

Algorithm X

RUL1

RUL2

RUL3

RULN

(Only one base algorithm
X. Training data sampled
with replacement)

(Different base algorithms
1, 2, 3,…,N all trained on
full training data)

RUL
Estimate

31

cycles, may end up failing earlier, after say 15 cycles or indeed lasting longer and failing

after say 40 cycles. Such a scenario does not enable optimization of resources or efficient

planning for maintenance and end-of-life treatment. Incorporating uncertainty in RUL

predictions is the most effective way to address this flaw. Uncertainties in RUL prediction

are of two types, aleatoric (or data) uncertainty and epistemic (or model parameters)

uncertainty, both of which should be addressed, ideally. Attempts to incorporate

uncertainty in RUL prediction have involved different approaches. Some proposals

involve making several RUL predictions using the same algorithm and then calculating

the mean prediction and the variance as representative values for the RUL distribution.

Deutsch and He (2018) used a resampling technique by eliminating one training data for

each run of a deep learning algorithm and repeated that process until the entire training

data was covered, thereby obtaining several point estimates of RUL and the RUL

distribution parameters therefrom. Liu et al. (2010) also used a similar approach by

making 50 RUL prediction runs using an adaptive recurrent neural network (ARNN) and

obtaining the RUL distribution parameters by computing the mean and variance of the 50

RUL point estimates. While this approach may capture, to some degree, the variability in

the model parameters, it is however a heuristic approach that fails to directly account for

uncertainty in a repeatable and systematic way.

Probabilistic techniques such as particle filtering (Miao et al., 2013; Su et al., 2017;

Chang and Fang, 2019), Kalman filtering and its variants (Singleton et al., 2015a; Son et

al., 2016; Cui et al., 2020), and Hidden Markov Models (Soualhi et al., 2016; D. Zhang

et al., 2016; K. Zhu, 2018) have also been used extensively for prognostics. Although

these methods are mathematically rigorous and more systematic than running several

estimates and taking the average, they are, in real terms, health state division approaches

and do not give RUL estimates as probability distributions with uncertainty estimates. To

close this gap, Bayesian techniques like Gaussian Process Regression, GPR (Baraldi et

al., 2015; Aye and Heyns, 2017; Richardson et al., 2017) enable uncertainty

quantification in RUL prediction by providing RUL distributions as predictions, with a

mean and variance for the RUL at each time step. However, GPR models the prior and

the posterior distributions as multivariate normal functions, which does not always

conform to data from operational engineering systems as they are not all multivariate

normal. As such, a more contemporary approach is the use of Bayesian Neural Networks

32

(BNNs) for RUL prediction. BNNs can be trained using any distribution as the prior. In

addition, BNNs have gained traction recently for use in RUL prediction due to their

superior performance in terms of both higher accuracies and outputs of RUL predictions

that incorporate uncertainties in both data and model parameters. Another advantage of

BNNs, and Bayesian techniques in general, is their interpretability, mainly because of

their mathematically rigorous foundations. This helps to quell the common criticism of

deep learning approaches as black-box approaches that cannot be interpreted. A few

studies have been proposed using BNNs for RUL prediction. Reference can be made to

Kraus and Feuerriegel (2019), Peng et al. (2020), Li et al. (2020), Kim and Liu (2020),

and Vega and Todd (2020) for additional insight.

2.2.2.6 Reinforcement learning

The literature search produced only scant evidence of publications using reinforcement

learning algorithms for PHM applications. A reinforcement learning (RL) algorithm is

implemented such that the learning agent is trained to act based on a reward system,

depending on the outcome of the prediction. For that reason, it has found the most

application in gaming. PHM applications are either classification (diagnostics or health

state division), regression (RUL prediction) or, as it is in most cases, a combination of

both problems. The most likely candidate area for the application of RL is in maintenance

policy formulation and decision-support systems, where the feedback or results from

maintenance actions taken based on the result of condition monitoring and RUL

prediction are fed back to the learning agent in the form of rewards, hence aiding the

agent to subsequently make better, fully integrated decisions. Early work by Cheng et al.,

(2018) used RL strictly for health stage division by looking at highly trendable features

from sensor data as multiple health indicators, and then considering their change points

simultaneously as agents. The transition between health states was then modelled as a

Markov Decision Process, and then an RL algorithm used to determine the optimal policy

to determine optimal change point transitions and hence, optimal health state division.

Xanthopoulos et al. (2018) extended the use of RL beyond just health stage division by

using Q-learning as an RL approach to determine production-maintenance control polices

via a reward mechanism for the algorithm that looks at system health states at different

epochs and compares one state to the previous state and to a reward threshold, and, on

that basis, makes decision as to whether to continue production or to trigger an alert for

33

maintenance decision to be made. The application was strictly in the area of maintenance

policy and decision-making.

In the furtherance of the application of RL in PHM, Skordilis and Moghaddass (2020)

extended the use of RL by combining Bayesian filtering and deep reinforcement learning

(DRL) such that the Bayesian filtering algorithm observes the system’s latent degradation

or health states based on multidimensional sensor data, with continuous updating. The

DRL component of the algorithm makes real-time system control and maintenance

decisions based on a decision-making framework designed around the relationship

between the costs of replacement versus that of failure, triggering warning signs based on

computed RUL. The advantages of the proposed method include dynamic and real-time

monitoring of latent system degradation states, with uncertainty quantification due to the

Bayesian approach, which also lends itself to interpretability as it is mathematically

rigorous. Another study by Kozjek et al. (2020) used RL to continuously adjust RUL

predictions based on a reward system. RUL predictions by a primary regression algorithm

uses the trend in system health states as input to make RUL predictions, which are then

compared to the actual RUL, and the agent is then rewarded based on the delta between

the two, and the RUL is thereafter adjusted accordingly. Training is performed for

different episodes, with RUL, safety, utilization level and maintenance planning as the

respective reward objective for each episode. Another interesting development and new

direction in the use of RL for prognostics is in the area of health-aware control (HAC).

HAC designs are now formulated around the use of results from data-driven PHM such

as the system health states and RUL values as inputs into the cost functions to generate

rewards which are then used by an RL algorithm to learn optimal system control and

maintenance policy in the face of system degradation. Examples of such applications

include the studies by Jha et al. (2019). Overall, the use of RL algorithms for prognostics

is nascent and largely unexplored.

2.3 Literature review process

In this section, the results of our systematic literature review on the state-of-the-art in the

use of AI algorithms for prognostic maintenance is presented. The methodology used in

this study involves searches on indexed databases like Scopus, Web of Science, IEEE

Xplore Digital Library and the American Society of Mechanical Engineers (ASME)

34

Digital Collections because they provide the best collection of peer-reviewed journals and

conference papers. The following keywords and their combinations were used: “artificial

intelligence”; “machine learning”; “prognostics”; “remaining useful life”; “estimation”

and “prediction”. The focus of the literature study was to cover peer-reviewed

publications; as such, books, book chapters, university dissertations and non-English

publications were not in the inclusion criteria. Publications in the following professions

were also excluded: health, medicine, environmental sciences, business and management,

arts and humanities, and the social sciences. The search criteria were defined as presented

above to sufficiently capture publications in the most relevant journals and conferences.

A combination of the results from all four databases initially generated a total of 342

references, which reduced to 192 after merging duplicates and deleting references that

were not relevant to engineering assets. This number was pruned down to 178 after

reading through the abstracts and in most cases, the full text of the papers to further

establish relevance. Out of the 178 publications, 86 were journal articles while 92 were

conference papers – published predominantly by IEEE and PHM Society – spanning 2005

to 2021. A taxonomy of the results was formulated to establish the distribution of

algorithms used, the sources of data used to demonstrate the applicability of the

algorithms, and the various equipment used as case studies.

2.3.1 Framework for categorization of the literature

In order to establish trends, the identified publications were categorized based on the type

of algorithm used, the source of data used for the research, and the equipment or system

used as a case study (where applicable).

2.3.1.1 AI Algorithms used for prognostics

The review carefully looked at the various algorithms or combination of algorithms used

in the papers selected. In classifying the algorithms, the following notes should be taken

into consideration:

i. Algorithms that were similar, like support vector machine, support vector

regression, support vector classification, relevance vector machine, were all grouped

as SVM-based algorithms.

ii. The categories of algorithms or approaches under deep learning and ensemble

methods are pretty much defined and were grouped as such.

35

iii. Conventionally, hybrid/fusion approaches in condition monitoring and PHM

combine model-based and data-driven approaches for RUL prediction. However, in

the context of AI or ML, hybrid/fusion approaches are construed to be the combination

of model-based or statistical approaches with AI algorithms for a single prognostic

purpose (i.e., to make a single RUL prediction). “Single” in this context means putting

together different algorithms to produce one RUL estimate rather than each algorithm

producing its own RUL estimate and then choosing the ‘best’ estimate based on a

performance metric (for example, RMSE).

iv. We also note that with ensemble and hybrid/fusion techniques, multiple

algorithms are used together to make a single prediction of RUL. As such, for this

work, ensemble and hybrid/fusion techniques were classified differently from methods

that used several different algorithms, separately, to perform prognostics, compared

the results and then chose the individual algorithm with the best performance. We

classified such an approach as a comparison approach.

Upon classification, deep learning algorithms was ranked first as the most used type of

AI algorithm in the literature for prognostics (used in about 29% of the publications). This

is because the increased adoption of AI algorithms for data-driven prognostics coincided

with the time when deep learning was becoming the go-to algorithm for most other

applications in other industries, enabled by availability of data to train the algorithms as

well as computing resources capable of handling the training process. Hybrid/fusion

approaches were ranked second at about 14%, ensemble learning was third at about 10%

and SVM-based algorithms were fourth at about 8.5%. Although it can be argued that

deep learning and some of the ensemble techniques have their basis in neural networks,

ANN-based techniques in its conventional form accounted for 4.2% of the publications.

The publications in which these common algorithms were used for prognostics were

introduced in more detail in AI algorithms for prognostics, highlighting what each

algorithm achieved, as well as their shortcomings. Table 2-2 presents the various

algorithms along with the references in which the algorithms were used for research. The

guidance for using Table 2-2 is to mainly serve as quick pointers to publications in which

specific AI algorithms were used in the literature for prognostics so as to gain further

insight into a specific approach or to aid comparison of research results.

36

Table 2-2 Common algorithms used in prognostics research.

No. of
papers

Algorithm Publications

48 Deep Learning Heimes (2008); Liu et al. (2010); Morando et al. (2013); Liao et al. (2016); Thirukovalluru et al. (2016); Zhang and Gao

(2016); Zhang et al. (2016); Chen and Li (2017); Deng et al. (2017); Dong et al. (2017); Zhao et al. (2017); Guo et al.

(2017); Jiang et al. (2017); Wang et al. (2017a); Jiang and Kuo (2017); Wang et al. (2017); Krishnan et al. (2017); Liao

et al. (2017); Ma et al. (2017); Qi et al. (2017); Ren et al. (2017); Zhang et al. (2017); Zheng et al. (2017); Belmiloud et

al. (2018); Chen et al. (2018); Deutsch and He (2018); Ding et al. (2018); Hinchi and Tkiouat (2018); Hsu and Jiang

(2018); Zhang et al. (2018a); Zhang et al. (2018b); Mao et al. (2018); Mezzi et al. (2018); Remadna et al. (2018); Ren et

al. (2018a); Ren et al. (2018b); Li et al. (2018); Ma et al. (2018); Lin et al. (2018); Wu et al. (2018); Zhang et al. (2018);

Yan et al. (2018); Yue et al. (2018); Zhao and Wang (2018); Ren et al. (2019); Li et al. (2019); Zhang et al. (2019); Zhu

et al. (2019).

23 Hybrid/Fusion Camci and Chinnam (2005); Saha and Goebel (2008); Wan and Li (2013); Liu et al. (2013); Qiao and Xun (2015); Hu et

al. (2016); Shaban and Yacout (2016); Yang et al. (2016); Yang and Zhang, (2016); Liu et al. (2016); An et al. (2017);

Ahmad et al. (2017); Wu et al. (2017); Liu et al. (2017); Jin et al. (2018); Niu et al. (2018); Wang et al. (2018); Song et

al. (2018); Trinh and Kwon (2018); Zheng et al. (2018); Zhou et al. (2018); Liu et al. (2019); Ordóñez et al. (2019).

17 Ensemble Sun et al. (2010); Zhang and Kang (2010); Zhang and Kang (2010); Javed et al. (2013); Ben Ali et al. (2015); Frisk and

Krysander (2015); Javed et al. (2015a); Javed et al. (2015b); Wu et al. (2016); Wu et al. (2017a); Zhang et al. (2017a);

Wang et al. (2017b); Li (2017); Wu et al. (2018); Patil et al. (2019); Li et al. (2019); Cheng et al. (2021).

14 SVM-based Peysson et al. (2009); Galar (2012); Tran et al. (2012); Fan and Tang (2013); Benkedjouh et al. (2013); Zhou et al. (2013);

Bluvband and Porotsky (2015); Carino et al. (2015); Patil et al. (2015); Wang et al. (2016); Qin et al. (2017); Mathew et

al. (2018); Tang et al. (2018); Shi et al. (2018).

7 Extreme Learning

Machine (ELM)

Benkedjouh (2016); Liu et al. (2016); Liu et al. (2017); Laddada et al., (2017); Razavi-far et al. (2017); Xue et al. (2017);

Zheng et al. (2018).

37

No. of
papers

Algorithm Publications

7 Conventional ANN Javed et al. (2012); Lim et al. (2016); Babu et al. (2016); Zhao et al. (2017); Zhang et al. (2017b); Carroll et al. (2019);

Khan et al. (2018).

7 Comparison of

individual

algorithms

Mathew et al. (2018); Yang et al. (2017); Wu et al. (2017b); Mansouri et al. (2017); Costello et al. (2017); Elforjani and

Shanbr (2018); Li et al. (2012).

5 HMM Camci and Chinnam, (2010); Xia et al. (2013); Wu et al. (2018); Soualhi et al., 2016; D. Zhang et al., 2016.

5 Reinforcement

Learning

Cheng et al. (2018); Xanthopoulos et al. (2018); Jha et al. (2019); Skordilis and Moghaddass (2020); Kozjek et al. (2020).

5 Bayesian Neural

Networks

Kraus and Feuerriegel (2019); Peng et al. (2020); Li et al. (2020); Kim and Liu (2020); Vega and Todd (2020).

4 MoG-HMM Tobon-Mejia et al. (2011a); Tobon-Mejia et al. (2011b); Tobon-Mejia et al. (2012b); Medjaher et al. (2012).

2 Logical Analysis

of Data (LAD)

Ragab et al. (2016); Ragab et al. (2019).

21 Others Cross entropy optimization (Porotsky and Bluvband, 2012); Dynamic Bayesian Network (Tobon-Mejia et al., 2012a);

Gaussian Process Regression (Hong and Zhou, 2012; Baraldi et al., 2015; Aye and Heyns, 2017; Richardson et al., 2017);

Sparse Bayesian Learning (Zhou et al., 2012); Adaptive neuro-fuzzy inference system - ANFIS (Zurita et al., 2014);

Instance-based learning (Khelif et al., 2014); Kalman Filter (Singleton et al., 2015; Son et al., 2016; Cui et al., 2020); k-

NN (Xiong et al., 2016); Particle Filter (Guha et al., 2016; Miao et al., 2013; Su et al., 2017; Chang and Fang, 2019);

PCA (Yongxiang et al., 2016); Hidden semi-Markov model (Zhu and Liu, 2018); Light gradient boosting machine (Li et

al., 2018); Sparse coding (Ren & Lv, 2016).

Some of the algorithms appearing as being used in only one publication may actually have been used in multiple publications but have been grouped under fusion, hybrid or comparison

approaches. Moreover, papers based on purely analytical statistical methods were excluded from the search.

38

2.3.1.2 Datasets

Publications in the literature show that researchers mostly used experiments (∼28%),

closely followed by the NASA C-MAPSS dataset for turbofan engines (∼23%) and then

the bearings data from FEMTO-ST PRONOSTIA test bed (∼16%). Data from real life

operational assets constituted only about 7% of the publications, revealing the need for

better collaboration between industry and researchers in terms of the provision of real

operational asset data for data-driven prognostics research. Furthermore, these

percentages can serve as good pointers for those who need to benchmark their studies

with some of the datasets for which a lot of studies have already been conducted. Table

2-3 gives the various datasets and the list of publications in which they were used.

2.3.1.3 Application areas

Data from rolling element bearings (∼29%), turbofan engines (∼21%), batteries (∼20%)

and cutting tools (∼8%) were the most used in publications found in the literature. This

is because most of the experiments conducted by researchers to obtain data for

prognostics were conducted for bearings while the publicly available datasets were also

from bearings and the other equipment mentioned above, mostly under test conditions or

computer simulations. Wind turbine blades and wind turbine gearboxes were used in

about 2% of the publications – all the data used for research on wind turbines were

obtained from real life operational wind farms, but most could not be shared by the

researchers for confidentiality reasons

2.3.1.4 Epilog on algorithms

The advantages as well as the limitations of k-NN, naïve Bayes, SVM, ANN and deep

learning algorithms were presented in the work by Liu et al. (2018). Furthermore,

Sikorska et al. (2011) and Khan and Yairi (2018) both proposed a more detailed

breakdown of the advantages and disadvantages of additional techniques and provided

guidance on the suitability of any given algorithm. Table 2-4 lists some AI algorithms

along with a synthesis of the pros and cons as presented in Sikorska et al., (2011), Khan

and Yairi (2018) and Liu et al., (2018).

39

Table 2-3. Common datasets used for prognostics research.

No. of

papers
Dataset Publications

38 NASA C-MAPSS dataset

(Details presented in Section 2.1.1)

Heimes (2008); Peysson et al. (2009); Sun et al. (2010); Javed et al. (2013); Khelif et al. (2014); Bluvband

and Porotsky (2015); Javed et al. (2015a); Ragab et al. (2016); Lim et al. (2016); Babu et al. (2016); Xiong

et al. (2016); Yongxiang et al. (2016); Zhang et al. (2016); Zhang et al. (2017a); Jiang and Kuo (2017);

Zhao et al. (2017); Yang et al. (2017); Zheng et al. (2017); Zheng et al. (2018); Li et al. (2018); Hsu and

Jiang (2018); Zhang et al. (2018a); Zhang et al. (2018b); Lin et al. (2018); Shi et al. (2018); Mathew et al.

(2018); Li et al. (2018); Wu et al. (2018); Wu et al. (2018); Zhou et al. (2018); Ordóñez et al. (2019); Li et

al. (2019); Skordilis and Moghaddass (2020); Kozjek et al. (2020); Kraus and Feuerriegel (2019); Peng et

al. (2020); Kim and Liu (2020); Cheng et al. (2021).

36 Experiments

(Experiments conducted by each

researcher to generate data)

Camci and Chinnam (2005); Saha et al. (2009); Camci and Chinnam (2010); Zhang and Kang (2010); Li et

al. (2012); Ben Ali et al. (2015); Guha et al. (2016); Hu et al. (2016); Shaban and Yacout, (2016);

Thirukovalluru et al. (2016); Wu et al. (2016); Liu et al. (2016); Yang et al. (2016); Zhang and Gao (2016);

Zhang et al. (2017b); Chen and Li, (2017); Wu et al. (2017a); Wu et al. (2017b); Deng et al. (2017); Dong

et al. (2017); Wang et al. (2017a); Wang et al. (2017b); Jiang et al. (2017); Laddada et al., (2017); Liao et

al. (2017); Ma et al. (2017); Mansouri et al. (2017); Razavi-far et al. (2017); Zhang et al. (2017); Deutsch

and He (2018) Elforjani and Shanbr (2018); Ma et al. (2018); Wang et al. (2018); Zhang et al. (2018); Yan

et al. (2018); Li et al. (2020).

26 FEMTO-ST PRONOSTIA Bearing

Dataset

(See details in Section 2.1.2)

Tobon-Mejia et al. (2011b); Tobon-Mejia et al. (2012); Medjaher et al. (2012); Porotsky and Bluvband

(2012); Benkedjouh et al. (2013); Mosallam et al. (2013); Zurita et al. (2014); Carino et al. (2015); Singleton

et al. (2015); Liao et al. (2016); Ren and Lv (2016); Liu et al. (2016); Guo et al. (2017); Liu et al. (2017);

Belmiloud et al. (2018); Cheng et al. (2018); Hinchi and Tkiouat (2018); Jin et al. (2018); Mao et al. (2018);

Ren et al. (2018a); Zhao and Wang, (2018); Jin et al. (2018); Patil et al. (2019); Ren et al. (2019); Li et al.

(2019); Zhu et al. (2019).

12 NASA Battery data

(Data is publicly available online)

Zhou et al. (2012); Liu et al. (2013); Zhou et al. (2013); Liu et al. (2015); Patil et al. (2015); Wang et al.

(2016); Wu et al. (2017); Qin et al. (2017); Ding et al. (2018); Tang et al. (2018); Ren et al. (2018b); Zheng

et al. (2018).

40

No. of

papers
Dataset Publications

11 Real life data

(Data from real life operational assets –

wind turbine blades, gearbox; gas

processing equipment; compressor;

bearings; and batteries).

Tran et al. (2012); Frisk and Krysander (2015); Ragab et al., (2019); Yang and Zhang (2016); Costello et

al. (2017); Ren et al. (2017); Carroll et al. (2019); Chen et al. (2018); Niu et al. (2018); Song et al. (2018);

Yue et al. (2018).

7 NASA Bearing Dataset

(Data is publicly available on NASA

repository).

Tobon-Mejia et al. (2011a); Hong and Zhou (2012); Liu et al. (2017); Ahmad et al. (2017); Li (2017); Khan

et al. (2018); Zhang et al. (2019).

7 Simulation Wan and Li (2013); Xia et al. (2013); Krishnan et al. (2017); Zhu and Liu (2018); Xanthopoulos et al.

(2018); Jha et al. (2019); Vega and Todd (2020).

5 Research Lab Data Saha and Goebel (2008); Morando et al. (2013); Javed et al. (2015b); Benkedjouh (2016); Mezzi et al.

(2018).

4 PHM 2010 Data Challenge

(This dataset is from a CNC milling

tool)

Javed et al. (2012); Tobon-Mejia et al. (2012); Zhu and Liu (2018); Wu et al., (2016).

3 PHM 2014 Data Challenge

(Degradation data from Proton

Exchange Membrane Fuel Cell).

Qiao and Xun (2015); Xue et al. (2017); Liu et al. (2019).

2 Case Western Reserve University

Bearing Data

An et al. (2017); Qi et al. (2017).

2 Using multiple datasets to test

algorithm

Wang et al. (2017); Trinh and Kwon (2018).

2 Exact source not specified Galar (2012); Fan and Tang (2013).

Review papers (∼6% of papers) and a framework proposal (∼0.6% of papers) were not captured in the publications in Table 2-3 above

41

Table 2-4. Pros and cons of common AI algorithms used for prognostic maintenance.

Algorithm Pros Cons

k-NN a. Mature theory and easy to

implement.

b. Can be used for classification and

regression.

a. Large computation.

b. Need lots of storage space.

c. Selection of ‘k’ hugely influences

outcome.

Naïve Bayes a. Robust for missing values situation.

b. Requires little storage space.

c. Easy to explain.

a. Strong prior assumptions.

b. Computational challenges and

combinatorial explosion.

c. Requires prior probability.

SVM a. Good classification accuracy.

b. Can handle multi-dimensional

features.

a. Low efficiency for large volumes of

data.

b. Difficult to explain physical meaning.

ANN a. Good classification accuracy.

b. Good approximation of complex

non-linear functions.

a. Multiple parameters and amenable to

over-fitting.

b. ‘Black box’ approach and difficult to

explain.

Deep Learning a. Learn features and complex

structures directly from data.

b. Automatically recognizes failure

signatures in data.

a. Need large amounts of data.

b. ‘Black box’ approach and difficult to

explain.

c. Training times can be long.

d. Need huge computational resources.

 Autoencoder a. Modifiable to learn richer

representations.

b. Easy to implement.

c. Good for dimensionality reduction.

d. Easy to track loss/cost function

during training.

a. Training can require lots of data and

data processing.

b. Learns to capture much information

rather than much relevant information

– may not be able to determine

relevant information.

 Denoising

AE

a. Good for denoising (feature

extraction) because they are

deterministic.

b. Implicitly designed to form a

generative model.

a. Randomly inserts noise at input level.

 Variational

AE

a. Learns what noise distribution to

insert at code level.

b. Explicitly designed to form a

generative model.

c. Can generate data using

distributions.

a. Can be difficult to optimize.

b. Can be difficult to implement.

 RBM a. Can create patterns if there are

missing data.

b. Can learn a probability distribution

from its set of inputs.

a. Can be difficult to train.

b. Difficult to track the lost/cost function.

 DBM a. Parameters of all layers can be learnt

jointly.

b. Handles uncertainty about

ambiguous data.

a. Training can be slow, as such joint

optimization of parameters impractical

for large datasets.

42

Algorithm Pros Cons

b. Approximate inference slow, thus not

favoured for features extraction.

 DBN a. Good for one-dimensional data.

b. Can extract the global feature from

data.

c. Can consistently achieve high

performance on raw data.

a. Optimizing training is difficult, hence

training can be slow and inefficient.

 CNN a. Good for multi-dimensional data

b. Good at local feature extraction

a. Complicated and hence takes a long

time to train.

 RNN, LSTM

and GRU

a. Good for sequential data.

b. Can detect changes over time.

a. Can be difficult to train and

implement.

 BNN a. Mathematically rigorous, hence a bit

explainable.

b. Incorporates uncertainty

quantification.

c. Results tend to be more realistic for

practical purposes.

a. Can be computationally expensive.

b. Selection of appropriate priors can be

tricky.

2.3.2 RUL metrics

The key technical endeavour in the use of AI for prognostic maintenance is the prediction

of the RUL of an engineering system, sub-system, or component. RUL, simply put, is the

time from the incipient stage of degradation to the point of failure. According to Jardine

et al. (2006), RUL can be considered from two perspectives:

i. Probability that a system will operate without failure up to a given future time.

ii. Time to failure given the present health state and past operation profile.

RUL is random in nature and as such, RUL estimation may connote the determination of

RUL distribution or the expected value of RUL. Whatever approach is adopted, it is

important to have some form of measure that determines the level of confidence to have

in the predicted value. Some of the RUL metrics used in the literature are discussed below.

a) Root Mean Squared Error (RMSE)

���� = �
1

�
�(��� − ��)�

�

���

 (2-1)

b) Mean Absolute Error (MAE)

��� =
1

�
�|��� − ��|

�

���

 (2-2)

c) Mean Absolute Percentage Error (MAE)

43

���� =
�

�
�

|������|

��

�

���
 × 100%. (2-3)

For Eqs. (2-1), (2-2) and (2-3), �� and ��� are the true and predicted values of the RUL,

respectively, and n is the number of different models used or the number of different RUL

predictions made if only one model is used.

Leão et al. (2008) developed a framework proposing a set of prognostics performance

metrics for use with a wide group of algorithms. The peculiar feature of the framework is

its amenability to bespoke definition by users so as to fulfil user requirements. Some of

the metrics include prognostics hits score, false alarm rate, missed estimation rate,

prognostic effectivity, average bias, average absolute bias, alert time and coverage. The

definitions of these metrics and how to apply them were covered in the study in detail,

including a case study application. Saxena et al. (2009) pointed that the work by Leão et

al. (2008), as well as metrics proposed by other earlier researchers, were adapted from

metrics used for prediction in other application areas, like finance and will therefore have

issues with applicability in the context of engineering problems. They then proposed four

metrics to use in offline prognostics performance evaluation, particularly to help with

prognostics algorithm development. The metrics are sequential with time and should

necessarily be determined in order as follows: prognostic horizon, α-λ performance,

relative accuracy and convergence. A further addition to the discourse on prognostics

performance metrics is the review performed by Lei et al. (2018). The review catalogues

metrics for determining the level of confidence in RUL predictions when several models

are used. Some of these metrics are confidence interval, relative accuracy, convergence,

predictability, mean prediction error, overall average bias, overall average variability,

reproducibility, online RMSE, online coverage and online width. The PHM data

challenges by the PHM Society use scoring functions which are basically percentage

errors on the actual RUL values, to measure the results obtained on the datasets provided.

The key implication is that, for whatever model being deployed for RUL prediction,

suitable metrics must be devised as some form of measure for the performance of the

algorithm in determining the RUL, and hence, the confidence in the entire PHM

methodology. This is a valuable information for maintenance decision-making. An up-

to-date and comprehensive review of PHM metrics, along with the suitability of each

44

metric for use in different application scenarios is presented in the study by Ochella and

Shafiee (2021), which forms Chapter 4 of this thesis.

2.4 Key enablers for AI in prognostics

As mentioned earlier, most of the early successes recorded by AI are in the area of e-

commerce (online shopping, hotel and airline reservation, social media, financial

services, etc.). In terms of practical engineering applications, great advances have been

recorded in the automotive industry, manufacturing industry and space exploration. In

fact, an AI discussion paper by McKinsey Global Institute which surveyed senior AI

executives in 3073 companies across ten countries and 14 sectors of the economy, showed

that the automotive and assembly industry were among early leaders with high AI

adoption (Bughin et al. 2017). For the energy and utilities industry, the report posits that

the use cases for AI that potentially stand to yield the most benefits are the areas of

operation and maintenance (O&M) optimization as well as prediction of consumer

behaviour and energy utilization patterns. However, to exploit the full potentials of AI-

based systems, the right enablers must first be in place. This research identified the issues

of infrastructure, standards, security, regulations, and manpower as key requirements that

must be addressed to provide the enabling platform for the application of AI in prognostic

maintenance. In what follows, a brief overview of these issues is provided.

2.4.1 Infrastructure

For large, established engineering companies, the cost of adoption of AI technology may

actually be huge and can serve as an initial barrier. Major challenges are likely to be

compatibility of old systems with new ones, data storage, and the fact that each operating

facility within a company’s collection of assets is typically unique. Thus, there may be

need to set up unique, bespoke AI-based prognostic maintenance systems for each facility

across the company’s assets portfolio. Clearly, a way to go around this is a phased

approach to adoption and implementation. Also, the concept of digital twins can be

adopted, where actual operational assets are mimicked in a digital form and sensor

readings and inspection data are fed to the digital version to observe the system’s

behaviour and make predictions. General Electric (GE) is already implementing the

digital twin concept for wind farms (Woyke, 2017). The studies by Werner et al. (2019),

Aivaliotis et al. (2019), He et al. (2021), and Meraghni et al. (2021) all demonstrate the

45

use of digital twins for prognostics of engineering systems. The concept, in terms of PHM,

fundamentally provides a good alternative to obtain run-to-failure data and to observe the

results of PHM in a simulated environment, in advance, so that proactive actions can be

taken for the real, operational system.

2.4.2 Standards

Engineering practice is traditionally guided by standards set by professional bodies or

national institutes. Similarly, engineering assets built for operation in the offshore

environments are also typically qualified by classification bodies like Lloyds Register

(LR), American Bureau of Shipping (ABS), Det Norske Veritas Germanisher Lloyd

(DNV GL), Bureau Veritas (BV), etc. A key consideration that has come up, in the

discussion about AI and its application for engineering systems, is that of standardization.

The most common standard usually mentioned in the PHM field is the Machinery

Information Management Open Systems Alliance (MIMOSA) which proposed the Open

System Architecture for Condition-Based Maintenance (OSA-CBM). The OSA-CBM

defines the various stages involved in PHM for engineering system in terms of functional

layers, namely: data acquisition via sensors, data manipulation or pre-processing,

diagnostics (comprising health stage detection, assessment, and division), prognostics and

decision support and, finally, advisory generation (or machine-user interface). These

stages or functional layers were used in the IEEE standard for PHM of electronic systems

(IEEE, 2017), which referred to them as the elements of the PHM functional reference

model. Vogl et al. (2014) comprehensively catalogued the list of International

Organization for Standardization (ISO) and International Electrotechnical Commission

(IEC) standards in relation to PHM for manufacturing systems. Other recent studies

covering the issue of standards include the detailed work by Chang et al. (2018), Vogl et

al. (2019) and Omri et al. (2020). Furthermore, the ISO/IEC JTC 1/SC 42 is an

international standards committee that deals with the standardization of AI and have

published seven standards, one of which addresses AI use cases (ISO/IEC TR 20547-

2:2018) while another addresses the assessment of the robustness of neural networks

(ISO/IEC TR 24029-1:2021). The ISO standard related to prognostics is ISO 13381-

1:2015. It can be inferred from these recent studies and the referenced standards that there

are no standards addressing AI-based prognostics specifically. The most common

approach towards addressing the use of AI has been from the ethical perspective and the

46

need for explainability and interpretability. In 2015, the IEEE Standards Association

proposed “The IEEE Global Initiative on Ethics of Autonomous and Intelligent System”

themed Ethically Allied Design (EAD). The EAD document (IEEE, 2018) catalogues

various proposals for ethical considerations for use of AI but does not address PHM

systems. Overall, the general consensus is that such an important evolution in the way

engineering systems are designed, built, operated and maintained, surely requires

standardization. A more detailed treatise regarding the requirements for standards and

regulations for AI-enabled systems is presented as Chapter 3 of this thesis.

2.4.3 Security

In an AI ecosystem where assets are interconnected in a cyber-physical space, a wide

range of legal and cyber-security issues are likely to arise – incidents have actually been

recorded in the power and utilities, transportation, petroleum and manufacturing

industries (Repository of Industrial Security Incidents (RISI) Online Incident Database).

For designers of AI-based prognostic maintenance systems, how to distinguish between

real failures and failures due to cyber-attacks becomes an added challenge to be

considered. A study by Tuptuk and Hailes (2018) discusses in detail the security issues

around existing and future industrial cyber-physical systems. One of the vulnerabilities

mentioned in the paper, amongst several others, involves attacks on data acquisition and

storage systems which can adversely affect the accuracy of prognostics and also the

availability of the PHM module, leading to potential lack of confidence in the entire PHM

system. As such, the issue of safety, from the perspective of cybersecurity, needs to be

duly considered for full deployment in fielded systems.

2.4.4 Regulations

There is clearly a need for governments and regulatory agencies to develop new sets of

regulations that not only provide the opportunity for operators to obtain approval for the

use of AI in predictive maintenance for safety-critical equipment, but also provide the

environment where such systems are protected by law from malicious intrusion and

attacks. A study of the RISI Online Incident Database by Ogie (2017) shows that the UK

and the US appeared to have recorded the most cyber-attacks on industrial control

systems. However, the study suggests that this may be as a result of openness to reporting

on the part of both countries. Such openness to reporting may indeed be dictated by

47

regulations. Therefore, regulations to be developed to guide the use of AI for prognostics

should as a minimum spell out reporting requirements whenever incidents are recorded.

Moreover, regulations must require demonstrable evidence that safety and reliability of

operational engineering assets using AI for prognostics are not compromised, especially

when compared to conventional practice. In this regard, the issues of explainability and

interpretability also re-surface as government regulations will require clear demonstration

of responsibility on the part of asset owners regarding the safety of any system being

deployed. To address this concern, an acceptability criterion, Ac, is proposed for this study

to help regulatory authorities and certification bodies confirm that all these critical factors

have been duly considered and satisfied. A demonstration of the application of

acceptability criterion is presented in Chapter 3 and Chapter 7 of this thesis.

2.4.5 Manpower

To successfully adopt AI-based prognostics for maintenance and LE applications, there

will be a need to re-skill engineers and operators. The McKinsey Global Institute report

by Bughin et al. (2017) posits that an AI-ready culture needs to be established such that

there is collaboration between operators and AI systems. Apart from operators, mid-level

managers will also need training to become AI-aware and trust the system to deliver the

results upon which safe and efficient maintenance decision-making will be made.

2.5 Future research

There is some degree of inertia being witnessed across different industries towards the

full use of AI for prognostic maintenance. The clear gap between studies found in the

literature and actual deployment in industries is the main evidence for this. In the energy

industry for instance, this inertia may be primarily due to the economic risks of disrupting

established technological systems added to the uncertainties that are bound to exist during

a transition phase. For some wind farms that have sensors gathering condition monitoring

data via Supervisory Control and Data Acquisition (SCADA) systems, the data gathered

quickly run into terabytes in size posing storage, processing, and interpretation

challenges. With respect to infrastructure, a practical approach for upgrading existing

plants to support AI-driven systems is to progressively improve on data acquisition

capabilities by installing sensors and making robust plans for data storage and processing

requirements. Also, prior considerations must be made at the concept stage of new

48

projects to accommodate AI-based prognostic systems. Other challenges that will need

further research are highlighted as follows:

i. Although attempts have been made at developing performance metrics relevant to

the use of AI for PHM, their use in the literature is somewhat arbitrary, with

researchers principally aiming at whatever metric will give an indication of less error.

However, further research needs to be conducted to identify which particular metric

best suits any given algorithm, with the intended PHM application in mind, so that

performance measures are fairly standardized and therefore give values that are

applicable to the real-life system being modelled.

ii. For completely new engineering assets, how to deploy AI-based prognostics

systems with no operational or failure data is an area that requires further research.

Even with prior consideration at the concept stage of constructing such assets, the case

of complete unavailability of condition monitoring and failure data is one that has not

been covered much in the literature. The digital twin concept potentially holds the key

to addressing this challenge.

iii. Similar to the point raised in (ii) above, the context of managing design changes

or retrofitting a system using AI for prognostic maintenance needs to be addressed.

Given that prior to any change, the AI system must have been trained using data from

an older configuration, how to reconfigure and retrain the system for optimal

performance needs to be methodical. It will be interesting to sees how further research

tackles the issue of seamless convergence of old systems with new ones as regards

PHM modules running on AI algorithms.

iv. The soft issues around manpower needs and transitioning of skills, development

of standards to guide the professional practice of using AI in prognostic maintenance

and developing relevant regulations to help government provide the right support and

controls are all areas that are at their nascent stages of research.

v. Also of interest is the issue of explainability of the inner workings of AI

algorithms and the interpretability of results obtained from using them. For safety

critical applications, the algorithms are rather unacceptable as black-box approaches.

In the same vein, the results require correct interpretation, with the full understanding

of whatever assumptions may have been made in the training process. Mathematically

rigorous formulations of AI algorithms based on Bayesian techniques offer very

49

promising potentials for addressing these twin issues because the inner workings are

explained to some extent by the mathematical background while the uncertainty

quantification they provide helps with interpretability and correct application of results

for prognostic purposes.

vi. Deep reinforcement learning algorithms have achieved remarkable feats in

gaming applications, with the most notable one being Google DeepMind’s AlphaGo.

It will be interesting to see how the concept of learning agents and reward systems are

applied in prognostics, towards perhaps achieving very accurate, online RUL

predictions for real-life applications. Such a scenario will help engineers achieve very

high overall equipment effectiveness/efficiencies for a lot of operational engineering

systems, with potential implications for revolutionizing asset life extension models,

going forward into the era of smart systems.

2.6 Conclusion

The field of artificial intelligence (AI) is no doubt poised to be at the heart of the unfolding

technological revolution, termed industry 4.0. The area of prognostic maintenance and its

application in smart engineering systems is not being left behind, as revealed by the

plethora of research publications in the literature, particularly in the past ten years. In this

paper, we reviewed just over 200 publications, with particular focus on 178 publications

comprising 86 journal papers (~48%) and 92 conference papers (~52%), highlighting

different approaches for the use of AI in prognostic maintenance of engineering systems.

Some of the metrics used to measure prognostics performance were also presented,

emphasizing their importance in establishing confidence levels on estimated RUL values.

The key considerations for the actual deployment of AI-based prognostic maintenance in

smart engineering systems of the future were also discussed. Analyses of the research

publications in the literature reveals the need for increased collaboration between industry

and researchers, especially as regards the availability of real-life data for research.

Research must therefore progress to ensure that predictive maintenance as a practice is

fully prepared to take on the inevitability of the smart factories and systems of the future.

2.7 Acknowledgement

The first author wishes to thank the Petroleum Technology Development Fund (PTDF)

in Nigeria for sponsoring this work.

50

2.8 References

Ahmad, W., Ali Khan, S., & Kim, J.-M. (2017). A hybrid prognostics technique for rolling

element bearings using adaptive predictive models. IEEE Transactions on Industrial

Electronics, 65(2), 1577–1584.

Aivaliotis, P., Georgoulias, K., & Chryssolouris, G. (2019). The use of Digital Twin for predictive

maintenance in manufacturing. International Journal of Computer Integrated

Manufacturing, 32(11), 1067–1080.

American Petroleum Institute. (2016a). Risk-Based Inspection, API RP 580, 3rd Ed. In API

Recommended Practice 580.

American Petroleum Institute. (2016b). Risk-Based Inspection Methodology, API RP 581, 3rd

Ed. API Recommended Practice 581.

An, D., Kim, N. H., & Choi, J. H. (2015). Practical options for selecting data-driven or physics-

based prognostics algorithms with reviews. Reliability Engineering and System Safety, 133,

223–236.

An, Z., Li, S., Qian, W., & Wang, J. (2017). An intelligent fault diagnosis method in the case of

rotating speed fluctuations. 2017 Prognostics and System Health Management Conference,

PHM-Harbin 2017 - Proceedings, 1–6.

Aye, S. A., & Heyns, P. S. (2017). An integrated Gaussian process regression for prediction of

remaining useful life of slow speed bearings based on acoustic emission. Mechanical

Systems and Signal Processing, 84, 485–498.

Baraldi, P., Mangili, F., & Zio, E. (2015). A prognostics approach to nuclear component

degradation modeling based on Gaussian Process Regression. Progress in Nuclear Energy,

78, 141–154.

Belmiloud, D., Benkedjouh, T., Lachi, M., Laggoun, A., & Dron, J. P. (2018). Deep convolutional

neural networks for Bearings failure predictionand temperature correlation. Journal of

Vibroengineering, 20(8), 2878–2891.

Ben Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing

remaining useful life prediction based on Weibull distribution and artificial neural network.

Mechanical Systems and Signal Processing, 56, 150–172.

Benkedjouh, T. (2016). Intelligent prognostics based on Empirical Mode Decomposition and

Extreme Learning Machine. 2016 8th International Conference on Modelling, Identification

and Control (ICMIC), 943–947.

Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life

estimation based on nonlinear feature reduction and support vector regression. Engineering

Applications of Artificial Intelligence, 26(7), 1751–1760.

Bluvband, Z., & Porotsky, S. (2015). RUL prognostics and critical zone recognition for suspended

time-Series. 2015 IEEE Conference on Prognostics and Health Management (PHM), 1–5.

Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., & Trench,

M. (2017). How artificial intelligence can deliver real value to companies. In McKinsey

Global Institute.

51

Camci, F., & Chinnam, R. B. (2010). Health-state estimation and prognostics in machining

processes. IEEE Transactions on Automation Science and Engineering, 7(3), 581–597.

Camci, F., & Chinnam, R. B. (2005). Dynamic Bayesian Networks for machine diagnostics:

Hierarchical Hidden Markov models vs. competitive learning. Proceedings of the

International Joint Conference on Neural Networks, 3, 1752–1757.

Carino, J. A., Zurita, D., Delgado, M., Ortega, J. A., & Romero-Troncoso, R. J. (2015). Remaining

useful life estimation of ball bearings by means of monotonic score calibration. Proceedings

of the IEEE International Conference on Industrial Technology, 2015(June), 1752–1758.

Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., & McArthur, S. (2018).

Wind turbine gearbox failure and remaining useful life prediction using machine learning

techniques. Wind Energy, October, 1–16.

Chang, S., Gao, L., & Wang, Y. (2018). A review of Integrated Vehicle Health Management and

prognostics and health management standards. 2018 International Conference on Sensing,

Diagnostics, Prognostics, and Control (SDPC), 476–481.

Chang, Y., & Fang, H. (2019). A hybrid prognostic method for system degradation based on

particle filter and relevance vector machine. Reliability Engineering and System Safety, 186,

51–63.

Chen, L., Xu, G., Liang, L., Zhang, Q., & Zhang, S. (2018). Learning deep representation for

blades icing fault detection of wind turbines. 2018 IEEE International Conference on

Prognostics and Health Management (ICPHM), 1–8.

Chen, Z., & Li, Z. (2017). Research on fault diagnosis method of rotating machinery based on

deep learning. 2017 Prognostics and System Health Management Conference, PHM-Harbin

2017 - Proceedings, 1–4.

Cheng, Y., Peng, J., Gu, X., Zhang, X., Liu, W., Yang, Y., & Huang, Z. (2018). RLCP: A

reinforcement learning method for health stage division using change points. 2018 IEEE

International Conference on Prognostics and Health Management (ICPHM), 1–6.

Cheng, Y., Wu, J., Zhu, H., Or, S. W., & Shao, X. (2021). Remaining useful life prognosis based

on ensemble Long Short-Term Memory neural network. IEEE Transactions on

Instrumentation and Measurement, 70, 1–12.

Costello, J. J. A., West, G. M., & McArthur, S. D. J. (2017). Machine learning model for event-

based prognostics in gas circulator condition monitoring. IEEE Transactions on Reliability,

66(4), 1048–1057.

Cui, L., Wang, X., Wang, H., & Ma, J. (2020). Research on remaining useful life prediction of

rolling element bearings based on time-varying Kalman Filter. IEEE Transactions on

Instrumentation and Measurement, 69(6), 2858–2867.

Deng, S., Cheng, Z., Li, C., Yao, X., Chen, Z., & Sanchez, R. V. (2017). Rolling bearing fault

diagnosis based on deep boltzmann machines. Proceedings of 2016 Prognostics and System

Health Management Conference, PHM-Chengdu 2016, 1, 1–6.

Deutsch, J., & He, D. (2018). Using deep learning-based approach to predict remaining useful

life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

48, 11–20.

52

Ding, Y., Lu, C., & Ma, J. (2018). Li-ion battery health estimation based on multi-layer

characteristic fusion and deep learning. 2017 IEEE Vehicle Power and Propulsion

Conference, VPPC 2017 - Proceedings, 2018-Janua, 1–5.

Dong, S., Zhang, Z., Wen, G., Dong, S., Zhang, Z., & Wen, G. (2017). Design and application of

unsupervised Deep Belief Networks for mechanical fault. 2017 Prognostics and System

Health Management Conference (PHM-Harbin), 51365051, 1–7.

Elforjani, M., & Shanbr, S. (2018). Prognosis of bearing acoustic emission signals using

supervised machine learning. IEEE Transactions on Industrial Electronics, 65(7), 5864–

5871.

Fan, J., & Tang, Y. (2013). An EMD-SVR method for non-stationary time series prediction. 2013

International Conference on Quality, Reliability, Risk, Maintenance, and Safety

Engineering (QR2MSE), 1765–1770.

Frisk, E., & Krysander, M. (2015). Treatment of accumulative variables in data-driven

prognostics of lead-acid batteries. IFAC-PapersOnLine, 28(21), 105–112.

Galar, D. (2012). RUL prediction using moving trajectories between SVM hyper planes. 2012

Proceedings Annual Reliability and Maintainability Symposium, 1–6.

Guha, A., Vaisakh, K. V., & Patra, A. (2016). Remaining useful life estimation of lithium-ion

batteries based on a new capacity degradation model. 2016 IEEE Transportation

Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific, 555–560.

Guo, L., Lei, Y., Li, N., & Xing, S. (2017). Deep convolution feature learning for health indicator

construction of bearings. 2017 Prognostics and System Health Management Conference,

PHM-Harbin 2017 - Proceedings, 1–6.

He, B., Liu, L., & Zhang, D. (2021). Digital Twin-driven remaining useful life prediction for gear

performance degradation: a review. Journal of Computing and Information Science in

Engineering, 21(3), 030801.

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008

International Conference on Prognostics and Health Management, PHM 2008, 1–6.

Hinchi, A. Z., & Tkiouat, M. (2018). Rolling element bearing remaining useful life estimation

based on a convolutional long-short-Term memory network. Procedia Computer Science,

127, 123–132.

Hong, S., & Zhou, Z. (2012). Remaining useful life prognosis of bearing based on Gauss process

regression. 2012 5th International Conference on Biomedical Engineering and Informatics,

BMEI 2012, 1575–1579.

Hsu, C. S., & Jiang, J. R. (2018). Remaining useful life estimation using long short-term memory

deep learning. Proceedings of 4th IEEE International Conference on Applied System

Innovation 2018, ICASI 2018, 58–61.

Hu, C., Youn, B. D., Wang, P., & Taek Yoon, J. (2012). Ensemble of data-driven prognostic

algorithms for robust prediction of remaining useful life. Reliability Engineering and System

Safety, 103, 120–135.

Hu, X., Jiang, J., Cao, D., & Egardt, B. (2016). Battery health prognosis for electric vehicles using

sample entropy and sparse Bayesian predictive modeling. IEEE Transactions on Industrial

53

Electronics, 63(4), 2645–2656.

IEEE. (2017). IEEE standard framework for prognostics and health management of electronic

systems. IEEE Std 1856-2017, 1–31.

IEEE. (2018). Ethically Aligned Design - Version II overview.

ISO/IEC TR 24028:2020 Information technology — Artificial Intelligence — Overview of

trustworthiness in artificial intelligence., (2020).

ISO 13381-1:2015 Condition monitoring and diagnostics of machines — Prognostics — Part 1:

General guidelines, 1 (2015).

ISO/IEC TR 20547-2:2018 Information technology — Big data reference architecture — Part 2:

Use cases and derived requirements, 1 (2018).

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal

Processing, 20(7), 1483–1510.

Javed, K., Gouriveau, R., & Zerhouni, N. (2013). Novel failure prognostics approach with

dynamic thresholds for machine degradation. IECON 2013 - 39th Annual Conference of the

IEEE Industrial Electronics Society, 4404–4409.

Javed, K., Gouriveau, R., & Zerhouni, N. (2015). A new multivariate approach for prognostics

based on extreme learning machine and fuzzy clustering. IEEE Transactions on

Cybernetics, 45(12), 2626–2639.

Javed, K., Gouriveau, R., & Zerhouni, N. (2012). Robust , reliable and applicable tool wear

monitoring and prognostic : approach based on an Improved-Extreme Learning Machine.

2012 IEEE Conference on Prognostics and Health Management, 1–9.

Javed, K., Gouriveau, R., Zerhouni, N., & Hissel, D. (2015). Improving accuracy of long-term

prognostics of PEMFC stack to estimate remaining useful life. Proceedings of the IEEE

International Conference on Industrial Technology, 2015(June), 1047–1052.

Jha, M. S., Theilliol, D., Biswas, G., & Weber, P. (2019). Approximate Q-learning approach for

Health Aware Control Design. 2019 4th Conference on Control and Fault Tolerant Systems

(SysTol), 418–423.

Jiang, H., Shao, H., Chen, X., & Huang, J. (2017). Aircraft fault diagnosis based on deep belief

network. Proceedings - 2017 International Conference on Sensing, Diagnostics,

Prognostics, and Control, SDPC 2017, 2017-Decem, 123–127.

Jiang, J., & Kuo, C. (2017). Enhancing Convolutional Neural Network deep learning for

remaining useful life estimation in smart factory applications. 2017 International

Conference on Information, Communication and Engineering (ICICE), 120–123.

Jin, X., Que, Z., Sun, Y., Guo, Y., & Qiao, W. (2018). A data-driven approach for bearing fault

prognostics. 2018 IEEE Industry Applications Society Annual Meeting (IAS), 1–8.

Khan, S. A., & Prosvirin, A. E. (2018). Towards bearing health prognosis using Generative

Adversarial Networks : modeling bearing degradation. 2018 International Conference on

Advancements in Computational Sciences (ICACS), 1–6.

Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health

54

management. Mechanical Systems and Signal Processing, 107, 241–265.

Khelif, R., Malinowski, S., Chebel-Morello, B., & Zerhouni, N. (2014). RUL prediction based on

a new similarity-instance based approach. IEEE International Symposium on Industrial

Electronics, 2463–2468.

Kim, M., & Liu, K. (2020). A Bayesian deep learning framework for interval estimation of

remaining useful life in complex systems by incorporating general degradation

characteristics. IISE Transactions, 53(3), 326–340.

Kozjek, D., Malus, A., & Vrabič, R. (2020). Multi-objective adjustment of remaining useful life

predictions based on reinforcement learning. Procedia CIRP, 93, 425–430.

Krishnan, R., Jagannathan, S., & Samaranayake, V. A. (2017). Deep learning inspired prognostics

scheme for applications generating big data. 2017 International Joint Conference on Neural

Networks (IJCNN), 3296–3302.

Laddada, S., Benkedjouh, T., Chaib, M. O. S., & Drai, R. (2017). A data-driven prognostic

approach based on wavelet transform and extreme learning machine. 2017 5th International

Conference on Electrical Engineering - Boumerdes (ICEE-B), 1–4.

Leão, B. P., Yoneyama, T., Rocha, G. C., & Fitzgibbon, K. T. (2008). Prognostics performance

metrics and their relation to requirements, design, verification and cost-benefit. 2008

International Conference on Prognostics and Health Management, PHM 2008, 1–8.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Li, F., Zhang, L., Chen, B., Gao, D., Cheng, Y., Zhang, X., Yang, Y., Gao, K., Huang, Z., & Peng,

J. (2018). A light gradient boosting machine for remainning useful life estimation of aircraft

engines. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-

Novem, 3562–3567.

Li, G., Yang, L., Lee, C.-G., Wang, X., & Rong, M. (2020). A Bayesian deep learning RUL

framework integrating epistemic and aleatoric uncertainties. IEEE Transactions on

Industrial Electronics.

Li, X. (2017). Remaining useful life prediction of bearings using fuzzy multimodal extreme

learning regression. Proceedings - 2017 International Conference on Sensing, Diagnostics,

Prognostics, and Control, SDPC 2017, 2017-Decem, 499–503.

Li, X., Ding, Q., & Sun, J.-Q. Q. (2018). Remaining useful life estimation in prognostics using

deep convolution neural networks. Reliability Engineering and System Safety, 172, 1–11.

Li, X., Er, M. J., Ge, H., Gan, P., Huang, S., Zhai, L. Y., Linn, S., & Torabi, A. J. (2012). Adaptive

Network Fuzzy Inference System and Support Vector Machine learning for tool wear

estimation in high speed milling processes. IECON Proceedings (Industrial Electronics

Conference), 2821–2826.

Li, X., Zhang, W., & Ding, Q. (2019). Deep learning-based remaining useful life estimation of

bearings using multi-scale feature extraction. Reliability Engineering and System Safety,

182, 208–218.

55

Li, Z., Goebel, K., & Wu, D. (2019). Degradation Modeling and Remaining Useful Life

Prediction of Aircraft Engines Using Ensemble Learning. Journal of Engineering for Gas

Turbines and Power, 141(4), 1–10.

Liao, L., Jin, W., & Pavel, R. (2016). Enhanced Restricted Boltzmann Machine with

Prognosability Regularization for Prognostics and Health Assessment. IEEE Transactions

on Industrial Electronics, 63(11), 7076–7083.

Liao, Y., Zeng, X., & Li, W. (2017). Wavelet transform based convolutional neural network for

gearbox fault classification. 51475170.

Lim, P., Goh, C. K., & Tan, K. C. (2016). A Time Window Neural Network Based Framework

for Remaining Useful Life Estimation. 2016 International Joint Conference on Neural

Networks (IJCNN), 1746–1753.

Lin, Y., Li, X., & Hu, Y. (2018). Deep diagnostics and prognostics : An integrated hierarchical

learning framework in PHM applications. Applied Soft Computing Journal, 72, 555–564.

Liu, D., Luo, Y., Guo, L., & Peng, Y. (2013). Uncertainty quantification of fusion prognostics for

lithium-ion battery remaining useful life estimation. PHM 2013 - 2013 IEEE International

Conference on Prognostics and Health Management, Conference Proceedings.

Liu, D., Zhou, J., Pan, D., Peng, Y., & Peng, X. (2015). Lithium-ion battery remaining useful life

estimation with an optimized Relevance Vector Machine algorithm with incremental

learning. Measurement: Journal of the International Measurement Confederation.

Liu, F., Liu, Y., Chen, F., & He, B. (2017). Residual life prediction for ball bearings based on

joint approximate diagonalization of eigen matrices and extreme learning machine.

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, 231(9), 1699–1711.

Liu, H., Chen, J., Hissel, D., & Su, H. (2019). Remaining useful life estimation for proton

exchange membrane fuel cells using a hybrid method. Applied Energy, 237, 910–919.

Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010). An adaptive recurrent neural

network for remaining useful life prediction of lithium-ion batteries. Annual Conference of

the Prognostics and Health Management Society, PHM 2010.

Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating

machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.

Liu, X., Song, P., Yang, C., Hao, C., & Peng, W. (2017). Prognostics and health management of

bearings based on logarithmic linear recursive least-squares and recursive maximum

likelihood estimation. IEEE Transactions on Industrial Electronics, 65(2), 1549–1558.

Liu, Y., He, B., Liu, F., Lu, S., Zhao, Y., & Zhao, J. (2016). Remaining useful life prediction of

rolling bearings using PSR, JADE, and extreme learning machine. Mathematical Problems

in Engineering, 2016.

Liu, Z., Zuo, M. J., & Qin, Y. (2016). Remaining useful life prediction of rolling element bearings

based on health state assessment. Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 230(2), 314–330.

Ma, M., Member, S., Sun, C., & Chen, X. (2017). Discriminative Deep Belief Networks with Ant

Colony Optimization for health status assessment of machine. IEEE Transactions on

56

Instrumentation and Measurement, 66(12), 3115–3125.

Ma, M., Sun, C., & Chen, X. (2018). Deep coupling autoencoder for fault diagnosis with

multimodal sensory data. IEEE Transactions on Industrial Informatics, 14(3), 1137–1145.

Mansouri, S. S., Karvelis, P., Georgoulas, G., & Nikolakopoulos, G. (2017). Remaining useful

battery life prediction for UAVs based on machine learning. IFAC-PapersOnLine, 50(1),

4727–4732.

Mao, W., He, J., Tang, J., & Li, Y. (2018). Predicting remaining useful life of rolling bearings

based on deep feature representation and long short-term memory neural network. Advances

in Mechanical Engineering, 10(12), 168781401881718.

Mathew, J., Luo, M., & Pang, C. K. (2018). Regression kernel for prognostics with support vector

machines. IEEE International Conference on Emerging Technologies and Factory

Automation, ETFA, 1–5.

Mathew, V., Toby, T., Singh, V., Rao, B. M., & Kumar, M. G. (2018). Prediction of remaining

useful lifetime (RUL) of turbofan engine using machine learning. IEEE International

Conference on Circuits and Systems, ICCS 2017, 2018-Janua, 306–311.

Medjaher, K., Tobon-Mejia, D. A., & Zerhouni, N. (2012). Remaining useful life estimation of

critical components with application to bearings. IEEE Transactions on Reliability, 61(2),

292–302.

Meraghni, S., Terrissa, L. S., Yue, M., Ma, J., Jemei, S., & Zerhouni, N. (2021). A data-driven

digital-twin prognostics method for proton exchange membrane fuel cell remaining useful

life prediction. International Journal of Hydrogen Energy, 46(2), 2555–2564.

Mezzi, R. (2018). Multi-Reservoir Echo State Network for Proton Exchange Membrane Fuel Cell

remaining useful life prediction. IECON 2018 - 44th Annual Conference of the IEEE

Industrial Electronics Society, 1, 1872–1877.

Miao, Q., Xie, L., Cui, H., Liang, W., & Pecht, M. (2013). Remaining useful life prediction of

lithium-ion battery with unscented particle filter technique. Microelectronics Reliability,

53(6), 805–810.

Morando, S., Jemei, S., Gouriveau, R., Zerhouni, N., & Hissel, D. (2013). Fuel Cells prognostics

using echo state network. IECON Proceedings (Industrial Electronics Conference), 1632–

1637.

Mosallam, A., Medjaher, K., & Zerhouni, N. (2013). Nonparametric time series modelling for

industrial prognostics and health management. International Journal of Advanced

Manufacturing Technology, 69(5–8), 1685–1699.

NASA. (n.d.). NASA Data Respository. NASA Prognostics Centre of Excellence Data Sets.

Retrieved February 14, 2019, from

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N.,

Varnier, C., Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., Zerhouni,

N., & Varnier, C. (2012). PRONOSTIA : An experimental platform for bearings accelerated

degradation tests. IEEE International Conference on Prognostics and Health Management,

1–8.

57

Niu, G., Tang, S., & Zhang, B. (2018). Machine condition prediction based on Long Short Term

Memory and particle filtering. IECON 2018 - 44th Annual Conference of the IEEE

Industrial Electronics Society, 1, 5942–5947.

Ochella, S., & Shafiee, M. (2021). Performance metrics for Artificial Intelligence (AI) algorithms

adopted in prognostics and health management (PHM) of mechanical systems. Journal of

Physics: Conference Series, 1828(1), 12005.

Ogie, R. I. (2017). Cyber security incidents on critical infrastructure and industrial networks.

Proceedings of the 9th International Conference on Computer and Automation Engineering

- ICCAE ’17, 254–258.

Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S., & Zerhouni, N. (2020). Industrial data

management strategy towards an SME-oriented PHM. Journal of Manufacturing Systems,

56, 23–36.

Ordóñez, C., Sánchez Lasheras, F., Roca-Pardiñas, J., & Juez, F. J. de C. (2019). A hybrid

ARIMA–SVM model for the study of the remaining useful life of aircraft engines. Journal

of Computational and Applied Mathematics, 346, 184–191.

Patil, M. A., Tagade, P., Hariharan, K. S., Kolake, S. M., Song, T., Yeo, T., & Doo, S. (2015). A

novel multistage Support Vector Machine based approach for Li ion battery remaining

useful life estimation. Applied Energy, 159, 285–297.

Patil, S., Patil, A., Handikherkar, V., Desai, S., Phalle, V. M., & Kazi, F. S. (2019). Remaining

useful life (RUL) prediction of rolling element bearing using Random Forest and gradient

boosting technique. Proceedings of the ASME 2018 International Mechanical Engineering

Congress and Exposition, IMECE2018, 1–7.

Peng, W., Ye, Z. S., & Chen, N. (2020). Bayesian deep-learning-based health prognostics toward

prognostics uncertainty. IEEE Transactions on Industrial Electronics, 67(3), 2283–2293.

Peysson, F., Boubezoul, A., Ouladsine, M., & Outbib, R. (2009). A data driven prognostic

methodology without a priori knowledge. IFAC Proceedings Volumes (IFAC-

PapersOnline), 42(8), 1462–1467.

Porotsky, S. (2012). Remaining useful life estimation for systems with non-trendability

behaviour. 2012 IEEE Conference on Prognostics and Health Management, 1–6.

Qi, Y., You, W., Shen, C., Jiang, X., Huang, W., & Zhu, Z. (2017). Hierarchical diagnosis

network based on sparse deep neural networks and its application in bearing fault diagnosis.

2017 Prognostics and System Health Management Conference (PHM-Harbin), 51505311,

1–7.

Qin, X., Zhao, Q., Zhao, H., Feng, W., & Guan, X. (2017). Prognostics of remaining useful life

for lithium-ion batteries based on a feature vector selection and relevance vector machine

approach. 2017 IEEE International Conference on Prognostics and Health Management,

ICPHM 2017, 1–6.

Ragab, A., Yacout, S., & Ouali, M. S. M.-S. (2016). Remaining useful life prognostics using

pattern-based machine learning. 2016 Annual Reliability and Maintainability Symposium

(RAMS), 2016-April, 1–7.

Ragab, A., Yacout, S., Ouali, M. S., & Osman, H. (2016). Prognostics of multiple failure modes

58

in rotating machinery using a pattern-based classifier and cumulative incidence functions.

Journal of Intelligent Manufacturing, 30(1), 1–20.

Ramasso, E., Saxena, A., Ramasso, E., & Abhinav Saxena. (2015). Review and analysis of

algorithmic approaches developed for prognostics on C-MAPSS dataset. Annual

Conference of the Prognostics and Health Management Society 2014., 1–11.

Razavi-far, R., Chakrabarti, S., & Saif, M. (2017). Multi-step parallel-strategy for estimating the

remaining useful life of batteries. 2017 IEEE 30th Canadian Conference on Electrical and

Computer Engineering (CCECE), 1–4.

Remadna, I. (2018). An overview on the deep learning based prognostic. 2018 International

Conference on Advanced Systems and Electric Technologies (IC_ASET), 196–200.

Ren, L., Cheng, X., Wang, X., Cui, J., & Zhang, L. (2019). Multi-scale dense Gate Recurrent Unit

networks for bearing remaining useful life prediction. Future Generation Computer

Systems, 94, 601–609.

Ren, L., Cui, J., Sun, Y., & Cheng, X. (2017). Multi-bearing remaining useful life collaborative

prediction: A deep learning approach. Journal of Manufacturing Systems, 43, 248–256.

Ren, L., & Lv, W. (2016). Remaining useful life estimation of rolling bearings based on sparse

representation. Proceedings of 2016 7th International Conference on Mechanical and

Aerospace Engineering, ICMAE 2016, 209–213.

Ren, L., Sun, Y., Wang, H., & Zhang, L. (2018). Prediction of bearing remaining useful life with

deep convolution neural network. IEEE Access, 6, 13041–13049.

Ren, L., Zhao, L., Hong, S., Zhao, S., Wang, H., & Zhang, L. (2018). Remaining useful life

prediction for lithium-ion battery: a deep learning spproach. IEEE Access, 6, 50587–50598.

Richardson, R. R., Osborne, M. A., & Howey, D. A. (2017). Gaussian process regression for

forecasting battery state of health. Journal of Power Sources, 357, 209–219.

Saha, B., & Goebel, K. (2008). Uncertainty management for diagnostics and prognostics of

batteries using Bayesian techniques. 2008 IEEE Aerospace Conference, 1–8.

Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health

monitoring Using a Bayesian framework. IEEE Transactions on Instrumentation and

Measurement, 58(2), 291–296.

Sateesh Babu, G., Li, X. L., & Suresh, S. (2016). Meta-cognitive Regression Neural Network for

function approximation: application to remaining useful life estimation. Proceedings of the

International Joint Conference on Neural Networks, 2016-Octob, 4803–4810.

Saxena, A., Celaya, J. R., Saha, B., Saha, S., & Goebel, K. (2009). On applying the prognostic

performance metrics. Annual Conference of the Prognostics and Health Management

Society, 1–16.

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for

aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and

Health Management, PHM 2008, 1–9.

Schwabacher, M., & Goebel, K. (2007). A survey of Artificial Intelligence for prognostics. AAAI

Fall Symposium, 107–114.

59

Shaban, Y., & Yacout, S. (2016). Cutting tool remaining useful life during turning of metal matrix

composites. Proceedings - Annual Reliability and Maintainability Symposium, 2016-April,

1–6.

Shi, J., Li, Y., Zhang, M., & Liu, W. (2018). Remaining uUseful life prediction based on modified

Relevance Vector Regression algorithm. 2018 Prognostics and System Health Management

Conference (PHM-Chongqing), 900–907.

Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining

useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803–

1836.

Singleton, R. K., Strangas, E. G., & Aviyente, S. (2015). Extended kalman filtering for remaining-

useful-life estimation of bearings. IEEE Transactions on Industrial Electronics, 62(3),

1781–1790.

Skordilis, E., & Moghaddass, R. (2020). A deep reinforcement learning approach for real-time

sensor-driven decision making and predictive analytics. Computers and Industrial

Engineering, 147, 106600.

Son, J., Zhou, S., Sankavaram, C., Du, X., & Zhang, Y. (2016). Remaining useful life prediction

based on noisy condition monitoring signals using constrained Kalman filter. Reliability

Engineering and System Safety, 152, 38–50.

Song, Y., Liu, D., Hou, Y., Yu, J., & Peng, Y. (2018). Satellite lithium-ion battery remaining

useful life estimation with an iterative updated RVM fused with the KF algorithm. Chinese

Journal of Aeronautics, 31(1), 31–40.

Soualhi, A., Clerc, G., Razik, H., El Badaoui, M., & Guillet, F. (2016). Hidden Markov Models

for the prediction of impending faults. IEEE Transactions on Industrial Electronics, 63(5),

3271–3281.

Su, X., Wang, S., Pecht, M., Zhao, L., & Ye, Z. (2017). Interacting multiple model particle filter

for prognostics of lithium-ion batteries. Microelectronics Reliability, 70, 59–69.

Sun, J., Zuo, H., Yang, H., & Michael, P. (2010). Study of ensemble learning-based fusion

prognostics. 2010 Prognostics and System Health Management Conference, PHM ’10, 1–7.

Tang, W., Andoni, M., Robu, V., & Flynn, D. (2018). Accurately forecasting the health of energy

system assets. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5.

Thirukovalluru, R., Dixit, S., Sevakula, R. K., Verma, N. K., & Salour, A. (2016). Generating

feature sets for fault diagnosis using denoising stacked auto-encoder. 2016 IEEE

International Conference on Prognostics and Health Management, ICPHM 2016, 1–7.

Tobon-Mejia, D. A., Medjaher, K., & Zerhouni, N. (2012). CNC machine tools wear diagnostic

and prognostic by using dynamic Bayesian networks. Mechanical Systems and Signal

Processing, 28, 167–182.

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot, G. (2012). A data-driven failure

prognostics method based on mixture of gaussians hidden markov models. IEEE

Transactions on Reliability, 61(2), 491–503.

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot, G. (2011a). Estimation of the

remaining useful life by using wavelet packet decomposition and HMMs. IEEE Aerospace

60

Conference Proceedings, 1–10.

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot, G. (2011b). Hidden Markov Models

for failure diagnostic and prognostic. 2011 Prognostics and System Health Management

Conference, PHM-Shenzhen 2011, 1–8.

Tran, V. T., Thom Pham, H., Yang, B. S., & Tien Nguyen, T. (2012). Machine performance

degradation assessment and remaining useful life prediction using proportional hazard

model and support vector machine. Mechanical Systems and Signal Processing, 32, 320–

330.

Trinh, H.-C., & Kwon, Y.-K. (2018). An empirical investigation on a multiple filters-based

approach for remaining useful life prediction. Machines, 6(3), 35.

Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of

Manufacturing Systems, 47(February), 93–106.

Vega, M. A., & Todd, M. D. (2020). A variational Bayesian neural network for structural health

monitoring and cost-informed decision-making in miter gates. Structural Health

Monitoring, 1–15.

Vogl, G. W., Weiss, B. A., & Donmez, M. A. (2014). Standards related to prognostics and health

management (PHM) for manufacturing standards related to prognostics and health

management (PHM) for manufacturing. Annual Conference of the Prognostics and Health

Management Society.

Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A review of diagnostic and prognostic capabilities

and best practices for manufacturing. Journal of Intelligent Manufacturing, 30(1), 79–95.

Wan, J., & Li, Q. (2013). Prediction of Lithium battery remaining life based on fuzzy least square

support vector regression. Proceedings - International Conference on Natural Computation,

1, 55–59.

Wang, J., Jiang, X., Li, S., & Xin, Y. (2017). A novel feature representation method based on

deep neural networks for gear fault diagnosis. 2017 Prognostics and System Health

Management Conference (PHM-Harbin), 1–6.

Wang, J., Sun, C., Zhao, Z., & Chen, X. (2017). Feature ensemble learning using stacked

denoising autoencoders for induction motor fault diagnosis. In 2017 Prognostics and System

Health Management Conference, PHM-Harbin 2017 - Proceedings (pp. 1–6). IEEE.

Wang, J., Zhao, R., Wang, D., Yan, R., Mao, K., & Shen, F. (2017). Machine health monitoring

using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial

Electronics, 65(2), 1539–1548.

Wang, S., Liu, D., Zhou, J., Zhang, B., & Peng, Y. (2016). A run-time dynamic reconfigurable

computing system for lithium-ion battery prognosis. Energies, 9(8), 572.

Wang, Y., Li, H., Yang, J., & Yao, D. (2018). Sparse coding based RUL prediction and its

application on roller bearing prognostics. Journal of Intelligent & Fuzzy Systems, 34(6),

3719–3733.

Werner, A., Zimmermann, N., & Lentes, J. (2019). Approach for a holistic predictive maintenance

strategy by incorporating a digital twin. Procedia Manufacturing, 39, 1743–1751.

Woyke, E. (2017). 40. General electric. Technology Review, 120(4), 78–83.

61

Wu, D., Jennings, C., Terpenny, J., Gao, R., & Kumara, S. (2017a). Data-driven prognostics using

random forests: prediction of tool wear. Volume 3: Manufacturing Equipment and Systems,

50749, V003T04A048.

Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017b). A comparative study on

machine learning algorithms for smart manufacturing: tool wear prediction using Random

Forests. Journal of Manufacturing Science and Engineering, 139(7), 071018.

Wu, D., Jennings, C., Terpenny, J., & Kumara, S. (2016). Cloud-based machine learning for

predictive analytics: tool wear prediction in milling. 2016 IEEE International Conference

on Big Data (Big Data), 2062–2069.

Wu, D., Jennings, C., Terpenny, J., Kumara, S., & Gao, R. X. (2018). Cloud-based parallel

machine learning for tool wear prediction. Journal of Manufacturing Science and

Engineering, Transactions of the ASME, 140(4), 041005.

Wu, J., Xu, J., & Huang, X. (2017). An indirect prediction method of remaining life based on

Glowworm Swarm Optimization and Extreme Learning Machine for lithium battery. 2017

36th Chinese Control Conference (CCC), Dalian, China, 2017, 7259–7264.

Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Remaining useful life estimation of

engineered systems using vanilla LSTM neural networks. Neurocomputing, 275, 167–179.

Wu, Z., Luo, H., Yang, Y., Lv, P., Zhu, X., Ji, Y., & Wu, B. (2018). K-PdM: KPI-oriented

machinery deterioration estimation framework for predictive maintenance using cluster-

based Hidden Markov Model. IEEE Access, 6, 41676–41687.

Xanthopoulos, A. S., Kiatipis, A., Koulouriotis, D. E., & Stieger, S. (2018). Reinforcement

learning-based and parametric production-maintenance control policies for a deteriorating

manufacturing system. IEEE Access, 6, 576–588.

Xia, L., Fang, H., & Zhang, H. (2013). HMM based modeling and health condition assessment

for degradation process. 2013 25th Chinese Control and Decision Conference (CCDC),

2945–2948.

Xiong, X., Yang, H., Cheng, N., & Li, Q. (2016). Remaining useful life prognostics of aircraft

engines based on damage propagation modeling and data analysis. Proceedings - 2015 8th

International Symposium on Computational Intelligence and Design, ISCID 2015, 2, 143–

147.

Xue, X., Hu, Y., & Qi, S. (2017). Remaining useful life estimation for proton exchange membrane

fuel cell based on extreme learning machine. Proceedings - 2016 31st Youth Academic

Annual Conference of Chinese Association of Automation, YAC 2016, 43–47.

Yan, H., Wan, J., Zhang, C., Tang, S., Hua, Q., & Wang, Z. (2018). Data analytics for prediction

of remaining useful life based on deep learning. IEEE Access, 6, 17190–17197.

Yang, W. A., Xiao, M., Zhou, W., Guo, Y., & Liao, W. (2016). A hybrid prognostic approach for

remaining useful life prediction of lithium-ion batteries. Shock and Vibration, 2016,

3838765.

Yang, Z., Baraldi, P., & Zio, E. (2017). A comparison between extreme learning machine and

artificial neural network for remaining useful life prediction. Proceedings of 2016

Prognostics and System Health Management Conference, PHM-Chengdu 2016, 1–7.

62

Yang, Z. X., & Zhang, P. B. (2016). ELM meets RAE-ELM: A hybrid intelligent model for

multiple fault diagnosis and remaining useful life predication of rotating machinery.

Proceedings of the International Joint Conference on Neural Networks, 2016-Octob, 2321–

2328.

Yongxiang, L., Jianming, S., Gong, W., & Xiaodong, L. (2016). A data-driven prognostics

approach for RUL based on principle component and instance learning. 2016 IEEE

International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON,

Canada, 2016, 1–7.

Yue, G., Ping, G., & Lanxin, L. (2018). An end-to-end model based on CNN-LSTM for industrial

fault diagnosis and prognosis. 2018 International Conference on Network Infrastructure and

Digital Content (IC-NIDC), 274–278.

Zhang, B., Zhang, S., & Li, W. (2019). Bearing performance degradation assessment using long

short-term memory recurrent network. Computers in Industry, 106, 14–29.

Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2017). Multiobjective Deep Belief Networks

ensemble for remaining useful life estimation in prognostics. IEEE Transactions on Neural

Networks and Learning Systems, 28(10), 2306–2318.

Zhang, C., Member, S., Hong, G. S., Xu, H., Tan, K. C., Zhou, J. H., Chan, H. L., & Li, H. (2017).

A data-driven prognostics framework for tool remaining useful life estimation in tool

condition monitoring. 2017 22nd IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), Limassol, Cyprus, 201, 1–8.

Zhang, C., Sun, J. H., & Tan, K. C. (2016). Deep Belief Networks ensemble with multi-objective

optimization for failure diagnosis. Proceedings - 2015 IEEE International Conference on

Systems, Man, and Cybernetics, SMC 2015, 32–37.

Zhang, D., Bailey, A. D., & Djurdjanovic, D. (2016). Bayesian identification of Hidden Markov

Models and their use for condition-based monitoring. IEEE Transactions on Reliability,

65(3), 1471–1482.

Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018a). Deep learning for improved system remaining

life prediction. Procedia CIRP, 72, 1033–1038.

Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018b). Long Short-Term Memory for machine

remaining life prediction. Journal of Manufacturing Systems, 48, 78–86.

Zhang, L., & Gao, H. (2016). A deep learning-based multi-sensor data fusion method for

degradation monitoring of ball screws. 2016 Prognostics and System Health Management

Conference (PHM-Chengdu), 1–6.

Zhang, X. H., & Kang, J. S. (2010). Hidden Markov models in bearing fault diagnosis and

prognosis. 2010 2nd International Conference on Computational Intelligence and Natural

Computing, CINC 2010, 2, 364–367.

Zhang, Y., Xiong, R., He, H., & Liu, Z. (2017). A LSTM-RNN method for the lithuim-ion battery

remaining useful life prediction. 2017 Prognostics and System Health Management

Conference (PHM-Harbin), 1–4.

Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). Long short-term memory recurrent neural

network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on

63

Vehicular Technology, 67(7), 5695–5705.

Zhao, G., Zhang, G., Ge, Q., & Liu, X. (2017). Research advances in fault diagnosis and

prognostic based on deep learning. Proceedings of 2016 Prognostics and System Health

Management Conference, PHM-Chengdu 2016, 1–6.

Zhao, L., & Wang, X. (2018). A deep feature optimization fusion method for extracting bearing

degradation features. IEEE Access, 6, 19640–19653.

Zhao, L., Wang, Y., Liu, Y., & Hao, Y. (2017). GMDH-type neural network for remaining useful

life estimation of equipment. 2017 36th Chinese Control Conference, (CCC) Dalian, 2017,

10844–10847.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its

applications to machine health monitoring. Mechanical Systems and Signal Processing, 115,

213–237.

Zheng, C., Liu, W., Chen, B., Gao, D., Cheng, Y., Yang, Y., Zhang, X., Li, S., Huang, Z., & Peng,

J. (2018). A data-driven approach for remaining useful life prediction of aircraft engines.

IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-Novem,

184–189.

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017). Long Short-Term Memory network for

remaining useful life estimation. 2017 IEEE International Conference on Prognostics and

Health Management, ICPHM 2017, 88–95.

Zheng, X., Wu, H., & Chen, Y. (2018). Remaining useful life prediction of lithium-ion battery

using a hybrid model-based filtering and data-driven approach. 2017 Asian Control

Conference, ASCC 2017, 2018-Janua, 2698–2703.

Zhou, H., Huang, J., Lu, F., Thiyagalingam, J., & Kirubarajan, T. (2018). Echo state kernel

recursive least squares algorithm for machine condition prediction. Mechanical Systems and

Signal Processing, 111, 68–86.

Zhou, J., Liu, D., Peng, Y., & Peng, X. (2013). An optimized Relevance Vector Machine with

incremental learning strategy for lithium-ion battery remaining useful life estimation.

Conference Record - IEEE Instrumentation and Measurement Technology Conference,

561–565.

Zhou, J., Liu, D., Peng, Y., & Peng, X. (2012). Combined Sparse Bayesian Learning strategy for

remaining useful life forecasting of lithium-ion battery. Proceedings of the 2012 2nd

International Conference on Instrumentation and Measurement, Computer, Communication

and Control, IMCCC 2012, 457–461.

Zhu, J., Chen, N., & Peng, W. (2019). Estimation of bearing remaining useful life based on

multiscale Convolutional Neural Network. IEEE Transactions on Industrial Electronics,

66(4), 3208–3216.

Zhu, K. (2018). Online tool wear monitoring via hidden semi-markov model with sependent

durations. IEEE Transactions on Industrial Informatics, 14(1), 69–78.

Zurita, D., Carino, J. A., Delgado, M., & Ortega, J. A. (2014). Distributed neuro-fuzzy feature

forecasting approach for condition monitoring. 19th IEEE International Conference on

Emerging Technologies and Factory Automation, ETFA 2014, 1–8.

65

Chapter 3. Requirements for Standards and Regulations in

AI-Enabled Prognostics and Health Management

Sunday Ochella
1
, Mahmood Shafiee

2
, Chris Sansom

1

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom.

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract: The fundamental understanding of the core aspects of prognostics and health

management (PHM) as a field of practice is somewhat fully established. However, the

various approaches used in the field have continuously evolved. With the recent surge in

the adoption of artificial intelligence (AI) algorithms for predictive analytics, data-driven

PHM is now more prominent. Notwithstanding the popularity of AI approaches, actual

adoption and implementation in fielded systems has been minimal. One of the reasons for

this is the lag in an ancillary area, which is the development of corresponding standards

and regulations to guide the practice. This paper aims to synthesize various studies in the

literature regarding standards and regulations in data-driven PHM and then sets out the

necessary requirements for a standards and regulations regime to support the full adoption

of AI-enabled PHM. An acceptability criterion is proposed, which incorporates the

various factors that must be considered for verification, validation, and certification of

AI-enabled PHM technologies. The use of the acceptability criterion is demonstrated,

which will potentially be very useful to certification bodies and regulatory agencies in the

process of approving AI-enabled PHM for use in safety-critical assets.

Keywords: Artificial Intelligence (AI); prognostics and health management (PHM);

standards and regulations; data-driven prognostics; remaining useful life (RUL).

66

3.1 Introduction

Prognostics and health management (PHM) involves the key tasks of diagnostics,

prognostics, and decision-support, each of which can be further sub-divided, as will be

shown later in section 3.2 of this paper. Of the three key tasks, diagnostics is an area that

is well established, along with the decision support derived therefrom. Prognostics, on

the other hand, is still an evolving area due to the inherent difficulty of making

predictions. A major endeavour in prognostics is the prediction of the remaining useful

life (RUL) of an asset. Approaches used for RUL prediction include model-based

methods which use the physics of failure for the physical system as a basis, data-driven

methods which use operations, inspections and sensor data from the system, or

hybrid/fusion approaches which combine both physics-based and data-driven methods

(Ochella & Shafiee, 2020). In recent time, the increased complexity of physical systems

means that it is impossible to model them using a simple physics-of-failure approach.

Fortunately, advances in sensor technology mean that lots of data can be gathered from

such systems, and when combined with now readily available high computing power and

artificial intelligence (AI) algorithms, meaningful insights can be gained.

Since the diagnostics aspect of PHM is well established, most of the existing standards

guiding the practice of PHM have been adapted from diagnostics applications. Some of

these standards have been reviewed in detail in different papers (Bird & Shao, 2013;

Chang et al., 2019; Sheppard & Debruycker, 2018; Vogl et al., 2014; Zhou et al., 2013).

Some of the referenced papers contain quite detailed treatises on standards issued by the

International Organization for Standardization (ISO), the Society of Automotive

Engineers (SAE), the Institute of Electrical and Electronics Engineers (IEEE) and the

Machinery Information Management Open System Alliance (MIMOSA), which will not

be repeated in this paper. However, all the mentioned standards tend to be agnostic to the

approach used. In this regard, this work will highlight standards specific to the use of AI

algorithms, and to data-driven prognostics, in general. Although some of the proposals

presented in this paper may be applied directly to AI-enabled diagnostics, not much

attention is paid to diagnostics as it has been covered by existing standards.

Practically all the existing versions of AI algorithms have been used for prognostics

(Ochella & Shafiee, 2020). The algorithms are rapidly unravelling, and so are their

67

applications for prognostics. Consequently, regulating the use of AI- enabled prognostics

for fielded systems must incorporate enough flexibility to adapt to the rapidly evolving

advancements in the field. Regulations, while ensuring safety, must at the same time not

pose insurmountable bottlenecks or stifle growth. The development of standards and

regulations for a particular technology inherently lags the technology itself. However,

beyond proof of concept and actual deployment of some test facilities, standards and

regulations should typically converge with advances in the technology. The focus of the

discourse around regulating AI has been on ethical, legal and data privacy issues, and this

is reflected in the national strategies for AI which are being adopted by different countries

in Europe (NíFhaoláin et al., 2020). With regards to prognostics, this paper proposes a

semi-quantitative approach to verification and validation, that draws on practices from

safety and reliability engineering. The outcome of such an approach can then be used as

a basis for certification of the PHM technology and serve as baseline for regulatory

monitoring and compliance.

The remaining part of this paper is structured as follows. Section 3.2 provides a brief

update of extant standards and regulations that intersect with some aspects of the use of

AI algorithms. Section 3.3 presents an analysis of the various factors that feed into the

decision to ultimately adopt any AI-enabled PHM solution, culminating in the proposal

of an acceptability criterion. Section 3.4 considers the hardware and software issues that

need to be addressed to enable seamless application of AI-enabled PHM solutions to

legacy assets, from a standards and regulations perspective and with a view towards life

extension for such legacy facilities. Section 3.5 concludes the paper.

3.2 Extant standards and regulations

Engineering practice is typically guided by standards, while the products of engineering

endeavours are regulated by government statutes and regulations. Standards embody

guidelines, approaches and concepts and must not be mistaken for strict procedures (ISO

13381-1:2015). Nonetheless, using standards as guides help with the process of

verification and certification, and is therefore crucial to the process of regulatory

compliance. Some other obvious reasons for standardization include minimizing repeated

designs of similar systems, enhancing compatibility and interoperability (Sheppard et al.,

2009), harmonizing the lexicon of professional practice in a particular field (Kalgren et

68

al., 2006) and ensuring that best practices are maintained, across board, within the

profession. Furthermore, standards and regulations help to increase trustworthiness, and

hence adoption of technology. The intersections between standardization and the need for

regulations, in the context of AI-enabled PHM, are the aspects of trustworthiness, safety,

and legal liability in case of failure. These factors, amongst others, will form the bedrock

of the AI-enabled PHM acceptability criterion proposed in this paper.

3.2.1 Standards

This section briefly discusses the existing standards that overlap with AI-enabled PHM,

especially as regards data management and cross-platform compatibility in terms of

information exchange. To provide a uniform platform for design, development, and

deployment of PHM technologies, the need for uniform terminologies was identified

early. A good attempt at defining the boundaries and establishing uniformity in PHM

lexicon was put forth by Kalgren et al., (2006). Further, issues around data formats, ease

Figure 3-1 Stages of AI-enabled PHM and their mapping to the OSA-CBM
functional layers.

of interconnection, integration and other cross-platform issues were addressed in

MIMOSA OSA-CBM (MIMOSA, 2010), MIMOSA OSA-EAI (MIMOSA, 2014), the

ISO-13374 series and the IEEE Std 1232 Artificial Intelligence Exchange and Service Tie

to All Test Environments (AI-ESTATE). In general, AI-enabled PHM involves four

stages: data acquisition and processing, health stage detection and division, RUL

prediction, and maintenance decision-making (Ochella et al., 2021). Figure 3-1 shows

A
I-

E
n

a
bl

ed
 P

H
M

Data
Acquisition

Health Stage
Detection

&
Division

RUL
Prediction

Decision
Support

Data
Acquisition (DA)

Data
Manipulation (DM)

State
Detection (SD)

Health
Assessment (HA)

Advisory
Generation (AG)

Prognostic
Assessment (PA)

OSA-CBM
Functional Layers

PHM
Stages

69

how the OSA-CBM maps to each of these four stages while Table 3-1 provides a list of

some extant standards and how they map to the layers of AI-enabled PHM within the

OSA-CBM architecture.

An important observation from Table 3-1 is that the listed standards mostly apply to data

acquisition, data processing, and advisory generation or information presentation to help

with decision-support. Other existing standards are United States Military Handbooks,

which address similar areas like those addressed by the ISO (with some in collaboration

with the International Electrotechnical Commission, IEC) and the SAE (Vogl, Gregory

W., Brian A. Weiss, M. Alkan Donmes, 2014). Other standards, not cited here, but duly

discussed in (Bird & Shao, 2013; Chang et al., 2019; Sheppard & Debruycker, 2018; Vogl

et al., 2014; Y. Zhou et al., 2013), as stated earlier, dwell on the various stages of

conventional PHM process, but not particularly on AI-based methods.

Table 3-1 Standards for different stages in AI-based PHM.

Issuer Standard Name /Title Applicable Layer

ISO 13374 Series: Condition monitoring and diagnostics of machines—Data
processing, communication and presentation—

Part 1:2003 General guidelines DA, DM, & AG

Part 2:2007 Data processing DA, DM, & AG

Part 3:2012 Communication DA, DM, & AG

Part 4:2015 Presentation AG

13379-2:2015 Condition monitoring and diagnostics of machines—Data
interpretation and diagnostics techniques—Part 2: Data-driven
applications

DA, DM, SD & HA

13381-1:2015 Condition monitoring and diagnostics of machines—
Prognostics—Part 1: General guidelines.

DA, DM, PA & AG

MIMOSA OSA-EAI, OSA-CBM Defines entire
architecture

IEEE Std 1232 Artificial Intelligence Exchange and Service Tie to All Test
Environments (AIESTATE).

DA and DM

Std 1636.2-2018 Software Interface for Maintenance Information
Collection and Analysis (SIMICA): Exchanging Maintenance Action
Information via the Extensible Markup Language (XML)

DA and DM

Std 1636.99-2013 Software Interface for Maintenance Information
Collection and Analysis (SIMICA): Common Information Elements

DA and DM

Std 1856-2017 IEEE Standard Framework for Prognostics and Health
Management of Electronic Systems

DA, DM, SD, HA,
PA and AG

SAE HM-1 Committee Standards Series: Integrated Vehicle Health
Management (IVHM)

DA, DM, SD, HA,
PA and AG

E-32 Committee Standards Series: Aerospace Propulsion Systems
Health Management

DA, DM, SD, HA,
PA and AG

70

3.2.2 Regulations

Typically, for any technology to be approved for use, vital areas of concern to

governments and regulatory agencies including safety, security, benefits and costs, public

trust, and ethical concerns, must be addressed through a comprehensive risk assessment

and management plan. As such, regulatory agencies over time, vest the responsibility for

demonstrating safety of facilities on asset managers. Standard risk assessment and

management procedures can be developed to critically assess AI- enabled PHM systems,

which may be modelled in a similar fashion to the ISO/IEC/IEEE International Standard

16085-2020 for systems and software engineering life cycle processes (ISO/IEC/IEEE,

2021). Fundamentally, a regulations regime for AI-enabled PHM must address the

following areas.

a) Safety – an approach similar to safety case development can be extended to the

use of AI in PHM systems. For this to be effective, the areas of explainability and

interpretability of AI must be adequately addressed. As a minimum, AI-enabled PHM

solutions must attain or beat the level of safety and reliability achievable by conventional

systems, usually assigned as Safety Integrity Levels (SIL). As early as 2001, the UK’s

Health and Safety Executive (HSE) identified the need for safety in industrial use of

artificial neural networks (Lisboa, 2001). The HSE report highlighted that, from a safety

perspective, there is the need to minimize over-complexity of models (thus aiding

explainability), and for predictions to be interpretable. Furthermore, since data for high

consequence, low probability scenarios are scarce, it should be required that the

optimization process for AI-based algorithms heavily penalize erroneous predictions

around such regions, since they are mostly safety-critical (Eldevik et al., 2018). To be

meaningful and therefore increase confidence, predictions must also necessarily

incorporate uncertainty quantification.

b) Cyber-security – the interconnectedness achieved by cyber-physical systems

(CPS), of which AI-enabled PHM systems are a part, implicitly introduces cyber-security

challenges. So, from a safety, security and legitimacy standpoint, overall cyber-security

issues must be adequately addressed before any credit can be taken for the validity of

predictions. Data security must be foolproof, since prognostics results ultimately depend

on the legitimacy of the data used for training and updating of predictive models.

71

c) Costs and benefits – at the core of deploying new technologies in fielded systems

is the demonstration of overriding costs and benefits, when compared to existing systems.

This may appear to be a major concern for only the asset owners. However, all

government directives or regulations can indeed render innovation unviable because

compliance to such regulations can potentially raise costs disproportionately. Regulations

must therefore be drawn up to not only address safety, but also ensure that the cost-benefit

implications are duly assessed.

d) Flexibility – AI is still evolving, and regulations must be flexible enough to adapt

to rapid changes in development in the technologies deploying AI, like PHM systems.

Governments across the world have recognized the huge potentials of AI in relation to

the Industrial Internet of Things (IIoT) and smart manufacturing, and the attempt to

regulate AI must be carefully measured so that innovation is not inadvertently stifled. A

workable proposal around this is the use of regulatory sandboxes to allow for the mutual

growth of both AI-enabled technologies and the corresponding regulations.

e) Ethical perspective – due to the fact that major concerns are usually about public-

facing AI products, most of the approaches towards the regulation of AI-enabled

technologies have so far been from an ethical perspective. In relation to AI-enabled PHM,

there is an intersection as regards automated decision-making technologies, which has led

to attempts by professional societies like the IEEE to address these concerns by drafting

the Ethically Aligned Design Standard IEEE P7000 (IEEE, 2021). Again, the recurring

points about explainability and interpretability can help improve transparency and allay

any concerns regarding the ethical aspects of AI-based PHM systems.

f) Legal perspective – legal frameworks need to be set up to determine culpability

and compensation issues that may arise from accidents due to failures attributable to AI-

enabled PHM systems. The European Union (EU) has updated its Product Liability

Directive to account for IIoT and intelligent autonomous systems (European

Commission, 2020). Also, the regulatory implications for the safety of AI-based modules

in original equipment manufacturer (OEM) packages or machinery are now being

addressed. For example, the EU Machinery Directive is now updated to address IIoT

issues (Anastasi et al., 2021). There is also the need for predictions and performance

logging and recording, to help during audits and root cause analysis as parts of incident

investigations.

72

g) Trustworthiness – for an AI-enabled PHM system to be trustworthy, it must have

a clearly defined purpose; be legitimate in terms of data quality, governance and risk

management; be able to verifiably perform its intended functions; provide decision-

support capabilities that ensure increased human-machine interdependence; and have a

transparent impact on stakeholders (DNV-GL, 2019). Different approaches to achieve

trustworthiness of AI systems by demonstrating safety, security, reliability, resiliency,

and availability are specified in ISO/IEC TR 24028:2020 (ISO/IEC TR 24028:2020

Information Technology — Artificial Intelligence — Overview of Trustworthiness in

Artificial Intelligence, 2020).

All the key areas discussed in (a)-(g) above will underpin the verification, validation,

assurance, and certification that should form the core of a regulations regime for AI-

enabled PHM systems. In addition, post-deployment runtime monitoring and regulation

enforcement should be similar to subsisting requirements for reporting and compliance.

3.2.3 Best practices

Similar to the process of developing new technology and qualifying it for use, a strict

process of technology qualification needs to be followed. The technology qualification

process is well established for conventional systems, using well-known reliability

methods to ensure that all failure modes and physics of failures are addressed. Also,

software engineering practices such as audit trails, workflows, bias testing, verification

and validation testing and explainable user interfaces are well established (Shneiderman,

2020). An amalgam of both practices, streamlined for AI-based workflows, can be

adopted for AI-enabled PHM. Furthermore, safety engineering practices which help to

explore physical systems and the understanding of how they fail can be employed as an

additional layer of check to guide decision-making (Hinrichs & Buth, 2020). Such

relevant tools may include fault tree analysis (FTA), failure modes, effects and

(criticality) analysis (FME(C)A), or Event Trees (Attack Trees in cybersecurity).

Training an AI-enabled PHM model on specific training data introduces bias which must

be offset through sensitivity analysis, uncertainty quantification and testing on out-of-

sample data to ascertain true performance. This must be a minimum requirement for

assurance and eventual certification. In addition, the various plans on how to integrate

AI-based prognostics systems into asset, data and organizational management structures

73

must be vetted and assured, preferably by independent third-party to eliminate potential

familiarity bias by in-house engineers. DNVGL-RP-0510 provides a framework for

assurance of data-driven algorithms and models (DNV-GL, 2020).

From a regulatory standpoint, it must be further emphasized that independent third-party

testing, verification, and validation remains vital. For AI-based systems, verification

should probe the key concerns of repeatability, explainability and interpretability.

Methods for explaining AI-based predictions include the use of counterfactuals or post

hoc (retrospective) methods, causal methods incorporating expert knowledge, and the use

of interactive/exploratory user interfaces (Leslie, 2019; Shneiderman, 2020). On the basis

of independent third-party verification, AI-based PHM systems can then be certified in

compliance with subsisting regulatory requirements, as is typically the practice. Post-

certification, and after deployment in fielded systems, continuous monitoring and

feedback is important. Conventional ways of maintaining the overall safety culture in

organizations through personnel training, competency development, detailed failure

reporting and incident investigations must be adhered to.

3.3 Fulfilling regulatory compliance

3.3.1 Further requirements

In addition to the previously discussed areas which should be considered for an effective

regulation regime, this section sets out basic requirements for safety-critical assets,

culminating in the proposal of a flexible, robust, and user-definable acceptability criterion

for AI-enabled PHM. Safety-critical assets or systems are those whose failure can lead to

serious injury, loss of life or significant economic consequences. Some critical

infrastructure where AI-based PHM are being deployed include electric power systems,

oil and gas generation and distribution, water supply systems, road, rail and air

transportation systems (Laplante et al., 2020). Clearly, most of these systems are public-

facing and must be regulated to ensure public as well as industrial safety. To attain high

confidence in the decision support derived from AI-enabled PHM for such critical

infrastructure, the following considerations should be made.

1) Besides standards and regulations, policies are another important layer in the overall

drive towards effective PHM implementation. While standards are driven at the level of

professional or standardization organizations and regulations are driven at the level of the

74

governments, policies are driven at the level of the organization or asset operator (Goebel

& Rajamani, 2021). For each of the important factors highlighted in this paper,

organizational policies should be updated or formulated to address successful

implementation and continuous monitoring of AI-enabled PHM systems. E.g., data

governance policy, cyber-security policy, safety policy, legal and ethical policy, etc.

2) Since data for high consequence and low probability events are typically scarce, AI

algorithms should be adapted to such tail events by generating data around tail events

based on causal knowledge of the physical system, thus enabling the infusion of some

learning data points within the low-probability region (Agrell et al., 2018). For such

scenarios, moreover, constraints can be imposed on predictions from the AI algorithm so

as to lie within known limits of operations of such physical systems.

3) Fail-safe operations should be derived by exploiting ensemble learning such that,

in the scenario that there is no consensus from the multiple predictors within the ensemble,

intelligent agents may make decisions regarding the optimal prediction while also

prompting human agents for decision-making (Laplante et al., 2020).

4) There should be a clear delineation of the conditions or assumptions under which

prognostics were made and the boundaries of validity must accompany any predictions.

5) Concepts of explainable AI (XAI) should be incorporated, with the provision of

interactive and exploratory user interfaces that ensure that the user understands the

accuracy of predictions and can interpret them using the associated uncertainty bounds.

The user should also understand when the failure will occur, what the likely failure mode

will be and when to take proactive action to avert failure.

3.3.2 Acceptability criterion

In this subsection, all the critical factors for the effective implementation of a regulatory

regime are harnessed and consolidated to propose a unifying criterion for accepting and

approving an AI-enabled PHM system or module. For consideration during certification

or as part of the regulatory approval process, all the important factors mentioned should

be checked off as either satisfactory or unsatisfactory. If the results from such a process

are collated as an array, F, we propose an acceptability criterion, Ac, as given in Eq. (3-1):

75

Ac = βF, (3-1)

where β is a normalizing array of 1 × n dimension, which indicates the importance or

weight assigned to each of the factors considered, while F is an array of n × 1 dimension,

whose elements are either one or zero, representing whether each factor is satisfactory or

unsatisfactory, respectively. The values of Ac lie in the range [0,1]. The matrix product

can be expressed as a sum, given in Eq. (3-2) as:

�� = � β� × ��

�

���

 (3-2)

where i is an index representing the number of factors considered, ranging from 1 to n,

while the sum of the weights must be equal to one, as given in Eq. (3-3):

� ��

�

���

= 1 (3-3)

Figure 3-2 Overall flow of AI-enabled PHM process within the context of compliance with
standards and regulations.

Digital
Twin

Implement PHM
and Monitor

Greenfield
Asset

Life Extension or
Maintenance Action

Update
Sensors

Regulatory
Approval

Develop AI-
Enabled PHM

Third Party
Certification

Legacy or
Brownfield

Asset

RUL
Acceptable?

Existing
Inspections

Data

Compute Ac

Ac ≥ Threshold?

Requirements

Regulations

Standards

Policies

Other Factors

Yes

No

Yes

U
pd

a
te

 I
n

sp
ec

ti
on

s/
A

ss
et

 D
a

ta

Design
Data

No

76

The criterion is formulated to provide both robustness and flexibility, allowing adjustment

to the factors which are considered important, depending on the use case and context.

Figure 3-2 shows an illustration of the entire AI- enabled PHM process, from design and

algorithm development using standards all the way to the application of the acceptability

criterion and then to subsequent certification, implementation, and continuous

monitoring.

3.4 Demonstration and discussion

3.4.1 Typical application of acceptability criterion

The use of the acceptability criterion is succinctly demonstrated in this section. It requires

a list of all the factors that need to be satisfied to assure regulators that due diligence has

been carried out. As stated earlier, such a list of factors and the corresponding importance

weighting would typically be context-specific. For demonstration purposes, Table 3-2

shows a list of factors and the importance weighting assigned to each of them for a given

AI-enabled PHM solution.

From the somewhat arbitrary assignments in Table 3-2 the acceptability criterion is

computed using the formula in Eq. (3-2) to obtain Ac = 0.75. A suitable acceptance

threshold is then set by the certification body, say Ac ≥ 0.9, depending on how safety-

critical the monitored system or unit is. To achieve certification, the value of Ac must be

increased by at least satisfying any two of cyber-security, explainability, and having a

legal and ethical policy (all of which were not previously satisfied, per the illustration

provide in Table 3-2). Doing so will raise the Ac score to ≥ 0.9. This demonstration shows

how flexibly the acceptability criterion can be applied and contextualized. Furthermore,

its robustness property stems from its amenability to different levels of scrutiny, which

may be very high level, or very detailed, depending on industry-specific requirements.

Table 3-2 Application of the acceptability criterion

i Factor Satisfied? F Weight, β βF

1 Safety Yes 1 0.20 0.20

2 Reliability Yes 1 0.10 0.10

3 Cyber-security No 0 0.10 0.00

4 Explainability No 0 0.10 0.00

5 Interpreatibility Yes 1 0.05 0.05

77

i Factor Satisfied? F Weight, β βF

6 Accurate preditions Yes 1 0.20 0.20

7 Follows sector-specific standards Yes 1 0.10 0.10

8 Legal and ethical policy No 0 0.05 0.00

9 Third-party testing, verification and validation Yes 1 0.10 0.10

� βiFi = 0.75

3.4.2 Other Considerations

a) Hardware considerations: sensors selection and placement affect the quality of

data and condition monitoring capabilities. Optimal sensor placement methodologies

must be explored and developed, especially when migrating existing or legacy systems

to AI-enabled PHM. Also, interoperability across different OEM modules and data

storage equipment should follow recognized standards.

b) Software considerations: troubleshooting and debugging spurious predictions or

software faults for black-box models is potentially tricky. This relates directly to

explainability of AI. All the core tenets on XAI, some of which were discussed earlier in

subsection 3.3.1, along with software engineering best practices can help in this regard.

c) Legacy assets and convergence issues: a possible solution that promises to

provide a bridge for integration of new processes or solutions with existing ones is the

concept of digital twins. Again, new technologies or concepts automatically trigger

corresponding regulation and compliance issues. Digital twin technologies, which

implicitly incorporate AI-enabled PHM, must also be qualified and certified for use

(DNV-GL, 2016). For organization-wide deployment, the relevant change management

issues to be addressed include upgrade of sensors, data management and documentation,

personnel training and competency development, human factors, upgrade of user

interfaces, and scalability across the entire asset portfolio.

3.4.3 Potential Challenges

Cyber-physical systems raise additional security challenges, which increases cost,

complexity, and introduce additional compliance requirements, thereby raising the barrier

to adoption. Also, legal and liability issues add another layer of challenges which should

be carefully legislated to encourage innovation. Integration of legacy facilities and the

convergence of old systems with new ones, both in terms of hardware and software,

presents additional personnel and competency development requirements. Human factors

78

issues must be addressed such that user-interfaces and system troubleshooting modules

are easily comprehensible. Personnel training should incorporate the core principles of

explainability and interpretability so that operators and asset managers can draw the full

benefits of the decision support capabilities that AI-enabled PHM provides.

As a final yet important point, to avoid an overload of standards and the potential

confusion that it can trigger, professional societies should coordinate standards

development, addressing the various stages of AI-enabled PHM specific to different

fields. The SAE’s work in this regard, with different committees addressing sector-

specific PHM standards, is a good model to follow.

3.5 Conclusion

There is no doubt that the recent rapid increase in the application of AI in engineering

systems is bound to continue. Consequently, professionals as well as regulators must find

creative ways of establishing a productive nesting ground for the successful maturation of

AI-enabled technologies, one of which is data-driven prognostics. Professional

organizations like the IEEE, ISO, SAE, and other organizations like MIMOSA, have

indeed laid the foundation in terms of defining architectures and developing some

associated standards. Formulation of ancillary regulations, however, lag standards

development. This study proposed a flexible yet robust way of approaching certification

and regulation of AI-enabled PHM, by the utilization of a user-definable acceptability

criterion. The application of the acceptability criterion was demonstrated in this paper, and

if fully exploited, will help serve as a basis for establishing regulatory sandboxes, which

are necessary at this stage of technological readiness of AI-enabled PHM. Ultimately, this

should be one amongst the many small leaps that must be made towards the actualization

of a fully functional regulatory framework for AI-enabled PHM.

3.6 References

Agrell, C., Eldevik, S., Hafver, A., Pedersen, F. B., Stensrud, E., & Huseby, A. (2018). Pitfalls of

machine learning for tail events in high risk environments. Safety and Reliability - Safe

Societies in a Changing World - Proceedings of the 28th International European Safety and

Reliability Conference, ESREL 2018, 3043–3052.

Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial intelligence

- Machine learning on safety of machinery. Procedia Computer Science, 180, 338–343.

79

Bird, J., & Shao, G. (2013). A view of standards for prognostics and health management.

International Journal of Prognostics and Health Management, 4(2), 7.

Chang, S., Gao, L., & Wang, Y. (2019). A review of Integrated Vehicle Health Management and

prognostics and health management standards. Proceedings - 2018 International

Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018, 476–481.

DNV-GL. (2016). DNVGL-ST-0262 Lifetime extension of wind turbines: Vol. March.

DNV-GL. (2019). Trustworthy industrial AI systems. In DNV-GL Group Technology and

Research, Position Paper 2019 (pp. 1–40).

DNV-GL. (2020). DNVGL-RP-0510 Framework for assurance of data-driven algorithms and

models. April.

Eldevik, S., Agrell, C., Hafver, A., & Pedersen, F. B. (2018). AI + Safety: Safety implications for

artificial intelligence. DNV-GL Group Technology and Research, Position Paper 2018.

European Commission. (2020). Report on the safety and liability implications of artificial

intelligence, the internet of things and robotics.

Goebel, K., & Rajamani, R. (2021). Policy, regulations and standards in prognostics and health

management. International Journal of Prognostics and Health Management, 12(1).

Hinrichs, T., & Buth, B. (2020). Can AI-based components be part of dependable systems? 2020

IEEE Intelligent Vehicles Symposium (IV), 226–231.

IEEE. (2021). IEEE draft standard for model process for addressing ethical concerns during

system design. In IEEE P7000/D5, February 2021 (pp. 1–79). IEEE.

ISO/IEC TR 24028:2020 Information technology — Artificial Intelligence — Overview of

trustworthiness in artificial intelligence., (2020).

ISO 13381-1:2015 Condition monitoring and diagnostics of machines — Prognostics — Part 1:

General guidelines, 1 (2015).

ISO/IEC/IEEE. (2021). ISO/IEC/IEEE International Standard - Systems and software

engineering -- Life cycle processes -- Risk management. In ISO/IEC/IEEE 16085:2021(E)

(pp. 1–60).

Kalgren, P. W., Byington, C. S., Roemer, M. J., & Watson, M. J. (2006). Defining PHM, a lexical

evolution of maintenance and logistics. 2006 IEEE AUTOTESTCON, 353–358.

Laplante, P., Milojicic, D., Serebryakov, S., & Bennett, D. (2020). Artificial intelligence and

critical systems: from hype to reality. Computer, 53(11), 45–52.

Leslie, D. (2019). Understanding artificial intelligence ethics and safety: a guide for the

responsible design and implementation of AI systems in the public sector. The Alan Turing

Institute.

Lisboa, J. G. P. (2001). Industrial use of safety-related artificial neural networks. In HSE Contract

Research Report 327/2001 (pp. 1–36). HMSO.

MIMOSA. (2014). MIMOSA Open System Architecture for Enterprise Application Integration.

OSA-EAI Version 3.2.3a.

MIMOSA. (2010). MIMOSA Open System Architecture for Condition-Based Maintenance.

OSA-CBM Version 3.3.1.

80

NíFhaoláin, L., Hines, A., & Nallur, V. (2020). Assessing the appetite for trustworthiness and the

regulation of artificial intelligence in europe. CEUR Workshop Proceedings, 2771, 133–

144.

Ochella, S., & Shafiee, M. (2020). Artificial intelligence in prognostic maintenance. Proceedings

of the 29th European Safety and Reliability Conference, ESREL 2019, 3424–3431.

Ochella, S., Shafiee, M., & Sansom, C. (2021). Adopting machine learning and condition

monitoring P-F curves in determining and prioritizing high-value assets for life extension.

Expert Systems with Applications, 176, 114897.

Sheppard, J. W., & Debruycker, J. D. (2018). An investigation of current and emerging standards

to support a framework for prognostics and health management in automatic test systems.

AUTOTESTCON (Proceedings), 1–7.

Sheppard, J. W., Kaufman, M. A., & Wilmer, T. J. (2009). IEEE standards for prognostics and

health management. IEEE Aerospace and Electronic Systems Magazine, 24(9), 34–41.

Shneiderman, B. (2020). Bridging the gap between ethics and practice: guidelines for reliable,

safe, and trustworthy human-centered AI slystems. ACM Trans. Interact. Intell. Syst., 10(4),

26.

Vogl, Gregory W., Brian A. Weiss, M. Alkan Donmes. (2014). Standards related to prognostics

and health management (PHM) for manufacturing. US Department of Commerce, National

Institute of Standards and Technology.

Vogl, G. W., Weiss, B. A., & Donmez, M. A. (2014). Standards for prognostics and health

management (PHM) techniques within manufacturing operations. PHM 2014 - Proceedings

of the Annual Conference of the Prognostics and Health Management Society 2014, 576–

588.

Zhou, Y., Bo, J., & Wei, T. (2013). A review of current prognostics and health management

system related standards. Chemical Engineering Transactions, 33, 277–282.

81

Chapter 4. Performance Metrics for Artificial Intelligence

Algorithms Adopted in Prognostics and Health

Management of Mechanical Systems

Sunday Ochella
1
, Mahmood Shafiee

2

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom.

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract. Research into the use of artificial intelligence (AI) algorithms within the field

of prognostics and health management (PHM), in particular for predicting the remaining

useful life (RUL) of mechanical systems that are subject to condition monitoring, has

gained widespread attention in recent years. It is important to establish confidence levels

for RUL predictions, so as to aid operators as well as regulators in making informed

decisions regarding maintenance and asset life-cycle planning. Over the past decade,

many researchers have devised indicators or metrics for determining the performance of

AI algorithms in RUL prediction. While most of the popularly used metrics like Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), etc. were adapted from other

applications, some bespoke metrics are designed and intended specifically for use in PHM

research. This study provides a synopsis of key performance indicators (KPIs) that are

applied to AI-driven PHM technologies of mechanical systems. It presents details of the

application scenarios, suitability of using a particular metric in different scenarios, the

pros and cons of each metric, the trade-offs that may need to be made in choosing one

metric over another, and some other factors that engineers should take into account when

applying the metrics.

Keywords—Artificial intelligence (AI), prognostics and health management (PHM),

remaining useful life (RUL), key performance indicator (KPI), metrics selection,

mechanical systems.

82

4.1 Introduction

Prognostics and Health Management (PHM) involves assessing the health state of

systems, sub-systems or components throughout their lifecycle with a view towards

avoiding unexpected failures as well as possibly extending their useful life (Kim et al.,

2017). A mechanical system is considered to be under a normal or healthy state of

operation if certain parameters remain above a predetermined threshold (Shafiee &

Finkelstein, 2015). This threshold is often defined based on temperature, pressure,

vibration, noise or other measurable parameters. These measurements can be used as an

indication of the current health state of the system or to alert any deviation from normal

operating condition, which can help determine how much longer the system would run

before its condition falls below the threshold. A key activity in PHM, therefore, is the

prediction of the remaining useful life (RUL) of systems.

RUL is defined as the duration between the current time and the time when system

condition reaches the failure threshold. Up to date, many different approaches have been

proposed in the literature to predict the RUL of mechanical systems. In general, the RUL

prediction approaches can be categorized into three types according to their principles:

physic-based, data-driven, and hybrid (or fusion) techniques (Animah & Shafiee, 2018).

The data-driven RUL prediction approaches involves the use of artificial intelligence (AI)

algorithms along with sensor data from the monitored equipment (Ochella & Shafiee,

2020). Given the recent rapid advances in the field of AI, a plethora of AI algorithms have

been applied to predict the RUL of mechanical systems. These algorithms range from

conventional techniques such as artificial neural network (ANN), neuro-fuzzy systems,

support vector machine (SVM) and Gaussian process regression (GPR) (Lei et al., 2018)

to more recent techniques such as deep learning algorithms (Zhao et al., 2019).

Irrespective of the type of algorithm used, an important factor in adopting AI in PHM is

the ability to measure the performance of the algorithm.

The performance metrics serve as indicators of the level of confidence one may have in

the accuracy of an algorithm and the associated methodology. As RUL prediction is

inherently a regression problem, a performance metric is required to assess the prediction

error (as opposed to classification problems that seek to determine right or wrong

classification). These key performance indicators have mostly been adapted from metrics

83

used to measure errors in forecasting and are predominantly statistical measures of error.

While these statistical error-based metrics are popular and still widely in use, some

researchers have developed bespoke performance measures for PHM algorithms. For

instance, the readers can refer to Leão et al., 2008; Saxena et al., 2009b; and Sharp, 2013,

all of which present bespoke PHM metrics in full detail.

The current study provides a synopsis of the KPIs and metrics that are being used for AI-

driven PHM of mechanical systems and equipment. It also presents details of the

application scenarios, suitability of using a particular metric in different scenarios, the

pros and cons of each metric, and the various considerations that should be made when

choosing a metric for assessing the performance of different AI algorithms. A broad

classification scheme is presented using not only the conventional forecasting metrics but

also incorporating other metrics developed by PHM researchers. The results of this study

can serve as a useful resource to help researchers select the most suitable AI algorithm

for their PHM related research.

The remainder of this paper is organized as follows. Section 4.2 provides a classification

of metrics used to measure the performance of AI-driven PHM algorithms. Section 4.3

presents details of the key considerations which should be made in choosing one metric

over another. Section 4.4 briefly discusses some challenges that may arise when defining

suitable metrics to use for AI algorithms in PHM research. Some concluding remarks are

also provided at the end.

4.2 Performance metrics for AI algorithms in PHM

Currently, most performance metrics used for PHM have been adapted from other

disciplines such as forecasting, meteorology, finance, medicine, etc. A broad

classification of the PHM metrics is presented in the study by Saxena et al., (2009b). This

study not only uses the conventional forecasting metrics but also incorporates other

metrics developed by PHM researchers. The proposed classification framework for PHM

performance metrics is shown in Figure 4-1.

84

Figure 4-1 A classification framework for PHM performance metrics.

4.2.1 Conventional metrics

Conventional metrics constitute the building block of most PHM performance measures.

Given that the fundamental approach used to determine the performance of a PHM

algorithm relies on comparing the predicted RUL value with the true value, the statistical-

based measures are by far the most common metrics being adopted. Some studies have

shown that the mean squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE) and mean absolute percentage error (MAPE) are the most widely

used metrics for measuring the performance of AI algorithms (Botchkarev, 2019). These

“primary” metrics are typically determined by a three-step approach involving (1)

calculation of the point distance (between the estimated and true values), (2)

normalization, and (3) aggregation of point results over the entire dataset. The

conventional performance metrics are based on either accuracy or precision. In what

follows, the accuracy-based and precision-based performance measures are briefly

reviewed.

PHM Metrics

Algorithm
Performance Metrics

Computational
Performance Metrics

Cost-benefit
Metrics

Accuracy-
based

Robustness

Precision-
based

Trajectory
prediction

Complexity

Specificity

Run time

Data
processing

speed

MTBF/
MTBUR ratio

Life-cycle
costs

Return on
investment

Technical
value

Total value

Conventional
Metrics

Accuracy
-based

Error

Spread-
based

Absolute
error

Relative
error

Squared
error

Percentage
error

Deviation
from mean

Deviation
from median

85

4.2.1.1 Accuracy-based metrics

Accuracy essentially measures how close the estimated RUL value is to the actual value

(Engel et al., 2000). Most metrics aggregate the errors in point estimates over the

complete dataset, and thus they need to take the mean or median as measures of

performance evaluation. The disadvantage of these measures is that they weigh the errors

equally, irrespective of when the error occurred. Depending on end-user requirements, it

may be expedient to give more weights to the errors obtained from predictions made near

the end-of-life (EoL) of the system. Directly related to this point is the notion of

timeliness, which has also been proposed as a metric. Making accurate predictions early

enough is important in order to help with maintenance planning and logistics.

In this study, we define y��(�) as the predicted RUL value and ��(�) as the true RUL

value, both at time instant �, and for the ith prediction. Some conventional accuracy-based

metrics for PHM applications are given below:

���� �������� ����� (���) =
1

�
�|y��(�) − ��(�)|

�

���

 (4-1)

���� �������� ���������� ����� (����) =
100%

�
�

|y��(�) − ��(�)|

��

�

���

 (4-2)

��� �� ������� ������ (���) = ��y��(�) − ��(�)�
�

�

���

 (4-3)

���� ������� ����� (���) =
�

�
∑ �y��(�) − ��(�)�

��
��� . (4-4)

���� ���� ������� ����� (����) = √��� . (4-5)

��������� ���� (�����) =
100%

�
�

|y��(�) − ��(�)|

|y��(�)| + |��(�)|
2

�

���

 (4-6)

������ �������� ����� (����) = ������
���,…,�

|y��(�) − ��(�)| (4-7)

������ �������� ���������� ����� (�����) = 100% × ������
���,…,�

|y��(�) − ��(�)|

|��(�)|
 (4-8)

The merits and demerits of these metrics are discussed in subsection 4.3.4 of this paper.

86

4.2.1.2 Precision-based metrics

Precision refers to the spread or narrowness of the interval within which the estimates are

bounded. Precision-based metrics provide an indication of the spread of RUL predictions,

given the same set of inputs. An emphasis is made here on the difference between

sensitivity and precision. Sensitivity gives an indication of how the predictions from an

algorithm would change with the changes in inputs. Thus, the sensitivity is a measure of

robustness. Some conventional precision-based metrics for PHM applications are given

below:

�������� ��������� (��) = �
∑ (���(�)� ���)� �

���

���
�

�
��

 (4-9)

 where ��� is the mean of the errors.

���� �������� ��������� (���) =
1

�
�|y��(�) − ��� |

�

���

 (4-10)

������ �������� ��������� (����) = ������
���,…,�

|y��(�) − �| (4-11)

 where � is the median of the errors.

4.2.2 PHM-specific algorithms

Engel et al. (2000) proposed the use of confidence intervals, along with accuracy and

precision, to determine whether the RUL estimates are within acceptable bounds. In

addition to these metrics, Vachtsevanos et al. (2007) proposed also some other metrics

for fault diagnosis and prognosis, including: timeliness, similarity, sensitivity,

incorporation of uncertainty, as well as cost-benefit metrics such as technical value and

total value. Leão et al. (2008) extended the conventional metrics and proposed some new

metrics which are discussed in subsection 4.2.2.1. Other researchers, e.g. Saxena et al.

(2008), proposed a number of hierarchical metrics for PHM. Sharp (2013) argued that the

hierarchical metrics proposed by Saxena et al. (2008) are complicated to use. Therefore,

he proposed a set of metrics which could be used in a hierarchical manner or integrated

with other metrics.

In an attempt to develop metrics for assessing the performance of PHM algorithms, there

has been a somewhat unintended multiplicity of proposed metrics. Thus, most researchers

resort to the use of metrics such as MAE, RMSE, etc., instead of those designed for PHM.

87

The PHM metrics can be classified into three groups: (1) metrics that directly measure

the algorithm’s performance, (2) metrics that are based on a cost-benefit criterion, and (3)

metrics that can be used to measure computational performance. There three groups are

described in more detail in the subsections below.

4.2.2.1 Algorithm performance metrics

Leão et al. (2008) proposed a number of metrics to help with defining user requirements

as well as verifying algorithm performance. Some of these performance metrics include:

a. Prognostic Hits Score (PHS) – this is defined as the number of correct prognostics

estimates divided by the total number of estimates, where the alert time is greater than

or equal to actual time to failure. This metric gives an indication of number of useful

predictions (NuP).

b. Alert time, ta – this is the minimum lead time required to plan and take maintenance

action for any unit under operation. To be able to act on time before a unit’s failure,

the alert time must be equal to or greater that the RUL.

c. False Alarm Rate (FAR) – this is defined as the number of false alarms due to

prognostics estimates divided by NuP. “False alarm” in prognostics implies the

occurrence of actual failure of an equipment later than the RUL predicted by the

algorithm, i.e., the unit does not fail at the time the algorithm says it would but

continues to operate beyond the predicted EoL.

d. Correct Rejection Rate (CRR) – this is defined as the number of correct rejections

divided by total number of prognostic estimates that meet rejection criterion. Rejection

criterion is met when alert time plus confidence interval is less than the ground truth

RUL. Correct rejection implies rejecting the prediction when not enough time is

available to take an action before failure occurs.

e. Imprecise Correct Estimation Rate (ICER) – this is defined as the number of correct

predictions that do not provide enough precision in order to be useful to the user,

divided by the total number of correct prognostics estimates.

f. Prognostic effectivity – this is defined as the capacity of prognostics algorithm to avoid

unscheduled maintenance. This metric is calculated by dividing the number of avoided

unscheduled maintenance events by total number of unscheduled maintenance events

caused by the failure mode of interest. Prognostic effectivity is thus a lagging indicator

as it can only be measured after events have happened.

88

g. Average Bias (AB) – this metric is given by:

�� =
1

�
�(y��(�) − ��(�)

�

���

) (4-12)

where ��(�) is the ground truth RUL at time t and n is the total number of predictions

that helped to avoid unplanned maintenance.

h. Average Absolute Bias (AAB) – this metric is similar to AB but uses absolute

difference. This is an accuracy measure and is given by:

��� =
1

�
�|y��(�) − ��(�)|

�

���

 (4-13)

i. Coverage – this is defined as the relative frequency of occurrence of the failure mode

of interest, which is calculated by dividing the number of failures caused by the failure

mode of interest by the total number of recorded failures for a component. It does not

directly measure the algorithm performance but may be used as a weighting factor

when considering all failure modes of the component.

The following set of hierarchical metrics were proposed by Saxena et al. (2008), with

additional guidance by Saxena et al. (2009a) and Goebel et al. (2011) on how to apply

them. The metrics need to be applied in a logical manner in order to make any meaningful

deductions from them.

j. Prognostic Horizon – this metric gives the difference between the time when

prediction first meets the specified performance criteria (i.e., ±α% error on RUL) and

the EoL, i.e., the time when prediction crosses the failure threshold.

k. α-λ performance – this metric gives an indication of the prediction accuracy at specific

time instances, i.e., it checks if prediction is within acceptable bounds (±α% of RUL)

at a given time fraction λ, between first prediction and EoL (λ = 0 at time of first

prediction; λ = 1 at EoL).

l. Relative Accuracy – this is an instantaneous measure of error in RUL prediction

relative to ground truth RUL.

m. Cumulative Relative Accuracy – this is a normalised weighted sum of instantaneous

relative accuracies over the lifetime of the prediction (i.e., from first prediction to

EoL). Weights are assigned such that predictions at critical times, such as near the

EoL, are more important than earlier predictions.

89

n. Convergence – it measures the manner in which any metric improves with time, e.g.,

how quickly a prediction converges towards the actual RUL as it progresses towards

EoL.

o. Robustness – it attempts to quantify the sensitivity of an algorithm with respect to its

parameters, like the size of the training data or choice of prior distributions.

Confidence bounds of a robust algorithm are not expected to vary wildly with changes

in the input parameters.

Sharp (2013) proposed four metrics intended to measure the performance of algorithms

and possibly compare different prognostics sets, independent of the unit of RUL (e.g.,

time, number of cycles, etc.). These metrics capture fundamental aspects of accuracy,

precision and timeliness. They are briefly explained below:

1) Weighted Error Bias (WEB) – this is defined as the effective bias in all predictions as

a percentage of total equipment lifetime. The WEB is calculated using the formula,

��� =
100

�
� � ��(�) ×

�y��(�) − ��(�)�

������������������

�

���

�

���

 (4-14)

 where y��(�) is the predicted RUL for unit i at time instant t; ��(�) is the importance

weight of unit i at time t; T is the total number of times that RUL prediction is made;

and N is the number of units. The optimal value for the WEB is zero, indicating that

the average prediction is centred on the true RUL value.

2) Weighted Prediction Spread (WPS) – this metric is designed to capture prediction

uncertainties and, simultaneously, apply weights to prediction importance across

various points of the equipment lifetime. First, instantaneous percentage errors in RUL

prediction are allocated into bins, across the lifetime of an equipment, with the

percentage error computed by the following equation:

%�� = 100% ×
����(�)� ��(�)�

�������������

 (4-15)

Instantaneous percentage errors can then be placed in bins divided either equally

between 0% and 100% of total unit lifetime or by points centred

around (� ����� ��������)⁄ . The WPS can then be computed as:

90

��� = 100% ×
∑ (��� ∗ ����) �

����

∑ ���
�
����

 (4-16)

where � is the number of bins, ��� is a weighting function based on the centre value

of each reference bin. WPS values give an indication of the level of uncertainty in the

prediction, with higher values indicating larger uncertainty.

3) Confidence Interval Coverage (CIC) – this metric helps to check whether the true RUL

value lies within the confidence interval of the prediction. This is given by:

��� = 100% ×
∑ (����� ∈ ���) �

����

�
 (4-17)

CIC is therefore interpreted as the sum of the percentage of true RUL values contained

within their corresponding error bin sets divided by the number of bins. A 100% score

implies that all predictions fall within the true RUL values.

4) Confidence Convergence Horizon (CCH) – this metric identifies the predicted RUL

value that once reached, all remaining predictions would fall within no more than

±10% of the true RUL, 95% of the time (assuming a 95% confidence level). This

metric is somewhat similar to the α-λ performance metric as proposed by Saxena et al.

(2008), however it is more focused on the quality of prediction towards EoL.

Sharp (2013) further proposed a “Total Score” metric that aggregates the four metrics

mentioned above, namely, WEB, WPS, CIC and CCH. This metric is calculated as below:

���������� = ���⃗ × �

���� |���|
��� � ���

���
���

� (4-18)

where ���⃗ is a normalized vector representing the importance weight of the four metrics.

For example, ���⃗ = [0.25, 0.25, 0.25, 0.25] means equal weights.

Three metrics were proposed by Zemouri & Gouriveau (2010) for adoption in AI-

driven PHM, in a scenario where M different prediction algorithms were used to make n

different RUL predictions. The three metrics are:

a. Overall Average Bias (OAB) – this gives the average of the absolute value of the

prediction errors. It is calculated by:

91

��� =
1

�
�

1

�
�|y��(�) − ��(�)|

�

���

�

���

 (4-19)

b. Overall Average Variability (OAV) – this is computed as the mean of the standard

deviations. It is calculated by:

��� =
1

�
� �

∑ (y��(�) − ���)� �
���

� − 1
�

�
��

�

���

 (4-20)

c. Reproducibility – this represents the mean distance between RUL predictions of the M

different algorithms. It is calculated by:

��� = �
2

�(� − 1)
�(���)�

���

�

�
��

 (4-21)

where ��� is the Euclidean distance between the ith and jth prediction algorithms and is

given by:

(���)� = (�� − ��)
� + (������� − �������)� (4-22)

where � is the error (y��(�) − ���), and � and ������ both are n-dimensional.

4.2.2.2 Cost-benefit metrics

The metrics discussed so far are meant to measure the quality of RUL predictions.

However, the real benefit of making correct predictions is to record less number of

unexpected failures and minimize the hassles associated with unplanned interventions.

Cost-benefit metrics measure the anticipated benefits of adopting PHM in business, such

as life-cycle cost savings or risk reduction. Some cost-benefit metrics are:

a. Life Cycle Cost – It calculates the total cost of acquisition, operation and maintenance

under a PHM system and compares with the costs when there is no PHM decision

system. In order to justify the adoption of PHM, the costs with PHM should be lower.

b. MTBF-to-MTBUR Ratio – It is defined as the ratio of mean time between failures

(MTBF) (which is estimated by conventional reliability methods) to the mean time

between unit replacement (MTBUR) (after PHM implementation). This metric gives

92

an indication of the effectiveness of predictions. Lower MTBF-to-MTBUR ratio

indicates the efficiency of the PHM decision system.

c. Return-on-Investment (ROI) – this is defined as the average annual profit as a

percentage of the initial investment made for PHM implementation.

d. Technical Value and Total Value – technical value measures the benefits of correct

predictions for critical failure modes against the cost of wrong predictions and the

associated resource requirements. Total value, on the other hand, looks at the benefits

across all the failure modes that a PHM system can effectively cover, less all costs

associated with the PHM implementation.

Details of the formulae associated with the above cost-benefit metrics can be found in

Vachtsevanos et al. (2007) and Saxena et al. (2008). Luna (2009) analyzed the cost

implications of accurate and timely estimates of RUL on four logistics support scenarios:

(i) lead times for ordering the spare parts required for maintenance actions; (ii) mitigation

of consequences of failures; (iii) extension of useful operational lifetime; and (iv)

reduction in maintenance cost. Tang et al. (2011) proposed two metrics of ‘skill’ and

‘value’, which were adapted from meteorology literature. Skill measures how much better

a prediction model is than the reference prediction; for example, whether the prediction

of RUL using AI algorithms can help make more accurate decisions about maintenance,

compared to conventional methods that do not employ AI-enabled PHM. On the other

hand, the measure of “value” represents whether the RUL estimates actually lead to lower

maintenance expenditure, compared to the reference case.

An important note on cost-benefit metrics is the fact that the analysis is based on historical

figures about lifetimes of similar equipment or experimental run-to-failure data.

Consequently, evaluation of the actual performance of AI algorithms using these cost-

benefit metrics can only be correctly performed after PHM implementation and is thus

not immediately or directly applicable to newly introduced equipment. This further

underscores the limitation of offline PHM metrics because the actual RUL is required,

which is not available in most cases in real practice. The concept of online PHM

performance metrics is discussed in subsection 4.2.3.

93

4.2.3 Other performance metrics

Two other categories of metrics worth discussing are computational metrics and online

evaluation metrics. Computational metrics measure the performance of an algorithm in

terms of run time and processing capabilities of the hardware and software used to run

the algorithm. Another broad categorization of PHM performance metrics is to

distinguish between offline and online evaluations. Offline metrics assume a priori that

run-to-failure data is sufficient to predict the RUL and perform an evaluation. All the

metrics discussed so far make this assumption and are thus suitable for offline

evaluations. Online performance metrics, on the other hand, involve making RUL

estimates based on data available up to the present time, with regular updating as more

data becomes available in (near) real-time. Liu & Sun (2012) proposed two metrics,

namely, relative accuracy (RA) and relative precision (RP) for online PHM performance

evaluation. The metrics were based on the probability of predictions falling within a user-

defined acceptance zone, the level of confidence of the predictions, and the actual data

measured in (near) real-time during operation (as against previously collected run-to-

failure data). Other studies have proposed online, real-time parameter tuning and updating

as more operational data become available. For instance, Zhou et al. (2018) proposed a

method using long short-term memory (LSTM) algorithm for updating the RUL

prediction model parameters. However, the performance of the algorithm was evaluated

using the MSE metric, rather than some bespoke metric for online performance

evaluation.

4.3 Considerations and selection criteria

Defining user requirements and developing algorithms for PHM are processes that feed

into each other. The choice of the cost function, the optimization objective, and

performance metrics for use with AI algorithms in PHM will therefore necessarily depend

on key factors, some of which are shown in Figure 4-2. The factors have been broadly

grouped into the ones related to user requirements and those that are necessary for

algorithm design.

94

4.3.1 User requirements

 Timeliness – the time of first prediction should trigger maintenance planning and

determine the usefulness of the RUL prediction algorithm.

 Criticality – components whose failures result in severe consequences should have

stricter performance requirements. For instance, the lead time required to take

maintenance action should be longer for safety-critical equipment, along with

narrow confidence bounds at a high confidence level. Furthermore, defining the

failure threshold is a key consideration for critical equipment.

 Maintenance logistics support – the lead time required to order spare parts would

influence the choice of PHM metrics. For example, the prognostic horizon and the

alert time metrics.

 Regulation/standards – extant regulations, or lack thereof, contribute to user

requirement specifications, since standards and regulations will necessarily have to

be complied with.

 Cost-benefit – this is perhaps of utmost importance in PHM research as it

determines whether or not a PHM decision system is worth it.

Figure 4-2 Considerations for PHM metrics selection

Metrics
Selection

User
requirements

met?

Ʃ

Algorithm Design
Requirements

User Requirements

Timeliness

Safety-critical?
(Risk)

Maintenance/
Logistics Support

Regulations/
Standards

Data type and
characteristics

Algorithm
optimization type

Computing
resources Cost-benefit

Implement

Update algorithm
design requirements

Yes

No

95

4.3.2 Algorithm design requirements

 Data type and characteristics – although ground truth RUL values obtained from

run-to-failure data attempt to simulate real life scenarios, such data will always

differ from reality. Algorithm design must therefore factor in noise in sensor data

along with other uncertainties associated with health state estimation and future

loading conditions.

 Algorithm optimization type – essentially, AI algorithms perform optimization by

minimizing a loss function designed around a performance metric, e.g., MSE.

 Computing resources – these must be compatible with data type and size, as well

as choice of algorithm; thus, influencing algorithm design. E.g., deep learning

algorithms require high computing resources and GPUs.

 Algorithm computing time – closely associated with computing resources, is the

time it takes to train a specific algorithm, and to run predictions using the test

dataset. Typically, this time will vary depending on the size of the data, the type

and architecture of the algorithm and the computing resources available for training.

Most importantly, the computing time should be such that results are obtained in

good time to allow for engineers to make decisions and implement the right life

extension strategy.

4.3.3 Other considerations

An algorithm that penalizes large errors may be rejected even though it makes good

predictions towards EoL. This is because, typically, during early life, algorithms are

trained using minimal data and predictions could result in large errors. However, the

errors tend to become smaller as the system approaches its EoL because more data

becomes available. Typically, metrics that take an average over lifetime as against

breaking down the lifetime into different parts exhibit this trait (e.g., MAE). However, in

cases where the accuracy of early predictions is very important, penalizing early errors

can be a performance requirement. The prognostic effectivity metric, which measures the

prognostic system’s ability to avoid unforeseen failures, can also be a very useful input

for maintenance planning.

96

4.3.4 Pros and cons of some selected metrics

In addition to discussions in subsection 4.2 on each of the metrics, Table 4-1 gives the

strengths and weaknesses of some selected metrics. As a general note regarding the units

of the metrics discussed; accuracy-based and precision-based metrics, along with their

other derivatives, are typically measured in the same unit as the RUL – which is either

number of cycles or running hours. Weighted metrics and relative accuracy metrics are

devoid of units and are more amenable to easy comparison of results across different

simulations and algorithms.

Table 4-1. Merits and demerits of AI-driven PHM performance metrics.

Metric Pros Cons

MAE; Overall Average

Bias

a. Easy to compute and

understand.

b. Unit is same as unit of RUL.

c. Equal weighting for individual

errors.

a. Susceptible to outliers.

b. Does not reveal bias.

c. Requires ground truth RUL.

d. Unsuitable for multiple datasets

with varying scales.

SSE; MSE a. Applies weighting to magnitude

of error.

b. Good for gradient-based

algorithms (amenable to

optimization).

a. Requires ground truth RUL.

b. Sensitive to outliers.

c. Unit differs from unit of RUL (i.e.,

scale-dependent).

RMSE a. Applies weighting to magnitude

of error.

b. Unit is same as unit of RUL.

a. Requires ground truth RUL.

b. Sensitive to outliers.

c. Unsuitable for sparse data.

MAPE; sMAPE a. No unit; good for comparison

across different datasets.

b. Easy to compute and

understand.

a. Does not reveal bias.

b. Sensitive to outliers.

c. Requires true RUL.

MdAE a. Less sensitive to outliers (than

MAE).

a. May not work well with very large

datasets.

MdAPE a. Handles outliers well.

b. Not scale-dependent.

a. Not intuitive or directly

informative.

Std. Deviation;

Overall Average

Variability

a. Handles outliers well.

b. It is a good indication of spread.

a. Assumes a distribution for RUL.

b. Affected by weighting of errors.

MAD (Mean Absolute

Deviation)

a. Good for sparse data.

b. Easy to compute and

understand.

a. May not work well for a large data

set with lots of outliers.

MdAD (Median

Absolute Deviation)

a. Handles outliers well.

b. Good for sparse data.

a. May not work well with very large

data sets.

Prognostic Horizon a. Easy to compute and

understand.

b. Amenable to user definition.

a. May be confusing to use for

multiple predictions.

97

Metric Pros Cons

α-λ performance a. Flexibility to define user

requirements.

b. Provides a visual graph of

performance.

a. Requires ground truth RUL.

b. Requires prediction to remain

within α-bounds.

Relative accuracy

(RA); Cumulative RA

a. Useful for comparing multiple

algorithms.

a. Requires ground truth RUL.

Convergence a. Good indicator of EOL

predictions.

a. Requires ground truth RUL.

b. Difficult to measure for predictions

with large spread.

WEB, WPS, CIC, CCH

and Total score

a. Assigns weights as a function

of operational life.

b. Mostly scale-independent.

c. Incorporates uncertainties.

a. Not easy to compute or understand.

b. Requires true RUL.

4.4 Conclusion and future work

A significant amount of effort has been put into the attempt to develop performance

metrics for AI algorithms used in PHM research. This drive has led to a multiplicity of

metrics to measure the accuracy and precision of RUL estimates. The following are

important observations and findings:

a) There is a need to unify performance metrics for PHM applications, thereby

narrowing down the list. This is a daunting proposal as different application

scenarios, data types, algorithms, etc. pose different sets of challenges.

b) The area of online PHM performance evaluation, which indeed applies to most

real-life systems, still remains somewhat under-researched.

c) Incorporating uncertainties into PHM remains a challenge. Even though some AI

algorithms now incorporate Bayesian techniques to quantify uncertainty, the RUL

predictions are still ultimately evaluated using accuracy-based measures such as

MAE, MSE and RMSE.

d) As a consequence of the foregoing points, conventional performance metrics

remain popular. It will be of interest to see how these metrics evolve as more PHM

solutions become adopted in fielded systems, thereby serving as sources of

feedback for the suitability of the metrics.

This work provided a synopsis of a synopsis of the performance metrics used for AI-

driven PHM of mechanical systems, by the proposition of a comprehensive classification

scheme. Conventional as well as PHM-specific metrics were covered, along with

98

discussion on the key factors that should guide engineers in selecting metrics during

algorithm design. A key finding is that although efforts have been made to develop

bespoke metrics for use in PHM, with the recent resurgence in the use of AI algorithms

for RUL prediction, these bespoke algorithms have not yet found wide acceptance and

application. This work therefore serves as a good reference material to help in making a

choice between the conventional performance metrics, which remain popular, and PHM-

specific metrics, which give more insight but require a specialized understanding.

4.5 Acknowledgments

The first author would like to acknowledge the funding support provided by the Petroleum

Technology Development Fund (PTDF) in Nigeria. The second author would like to

acknowledge the funding support provided by the Industrial Strategy Challenge Fund

2020 through Kent Innovation & Enterprise.

4.6 References

Animah, I., & Shafiee, M. (2018). Condition assessment, remaining useful life prediction and life

extension decision making for offshore oil and gas assets. Journal of Loss Prevention in the

Process Industries, 53, 17–28.

Botchkarev, A. (2019). A new typology design of performance metrics to measure errors in

machine learning regression algorithms. Interdisciplinary Journal of Information,

Knowledge, and Management, 14, 45–76.

Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess, A. (2000). Prognostics, the real issues involved

with predicting life remaining. IEEE Aerospace Conference Proceedings, 6, 457–469.

Goebel, K., Saxena, A., Saha, S., Saha, B., & Celaya, J. (2011). Prognostic Performance Metrics.

In A. N. Srivastava & J. Han (Eds.), Machine Learning and Knowledge Discovery for

Engineering Systems Health Management (pp. 147–178). CRC Press.

Kim, N.-H., Choi, J.-H., & An, D. (2017). Prognostics and health management of engineering

systems: An introduction. In Prognostics and Health Management of Engineering Systems:

An Introduction. Springer International Publishing.

Leão, B. P., Yoneyama, T., Rocha, G. C., & Fitzgibbon, K. T. (2008). Prognostics performance

metrics and their relation to requirements, design, verification and cost-benefit. 2008

International Conference on Prognostics and Health Management, PHM 2008, 1–8.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Liu, S., & Sun, B. (2012). A novel method for online prognostics performance evaluation.

Proceedings of IEEE 2012 Prognostics and System Health Management Conference, PHM-

99

2012, 1–6.

Luna, J. J. (2009). Metrics, models, and scenarios for evaluating PHM effects on logistics support.

Annual Conference of the Prognostics and Health Management Society, PHM 2009.

Ochella, S., & Shafiee, M. (2020). Artificial intelligence in prognostic maintenance. Proceedings

of the 29th European Safety and Reliability Conference, ESREL 2019, 3424–3431.

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, M. (2008).

Metrics for evaluating performance of prognostic techniques. 2008 International

Conference on Prognostics and Health Management, PHM 2008.

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2009a). On applying the prognostic

performance metrics. Annual Conference of the Prognostics and Health Management

Society, PHM 2009, 1–16.

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2009b). Evaluating algorithm

performance metrics tailored for prognostics. IEEE Aerospace Conference Proceedings, 1–

13.

Shafiee, M., & Finkelstein, M. (2015). A proactive group maintenance policy for continuously

monitored deteriorating systems: Application to offshore wind turbines. Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(5), 373–

384.

Sharp, M. E. (2013). Simple metrics for evaluating and conveying prognostic model performance

to users with varied backgrounds. PHM 2013 - Proceedings of the Annual Conference of the

Prognostics and Health Management Society 2013, 556–565.

Tang, L., Orchard, M. E., Goebel, K., & Vachtsevanos, G. (2011). Novel metrics and

methodologies for the verification and validation of prognostic algorithms. IEEE Aerospace

Conference Proceedings, 1–8.

Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu, B. (2007). Fault Diagnosis and

Prognosis Performance Metrics. In Intelligent Fault Diagnosis and Prognosis for

Engineering Systems (pp. 355–399). John Wiley & Sons, Inc.

Zemouri, R., & Gouriveau, R. (2010). Towards accurate and reproducible predictions for

prognostic: An approach combining a RRBF Network and an AutoRegressive model. IFAC

Proceedings Volumes (IFAC-PapersOnline), 43(3), 140–145.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its

applications to machine health monitoring. Mechanical Systems and Signal Processing, 115,

213–237.

Zhou, F., Hu, P., & Yang, X. (2018). RUL prognostics method based on real time updating of

LSTM parameters. Proceedings of the 30th Chinese Control and Decision Conference,

CCDC 2018, 3966–3971.

100

Chapter 5. Adopting Machine Learning and Condition

Monitoring P-F Curves in Determining and

Prioritising High-Value Assets for Life Extension

Sunday Ochella
1
, Mahmood Shafiee

2
, Chris Sansom

1

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract: Many machine learning algorithms and models have been proposed in the

literature for predicting the remaining useful life (RUL) of systems and components that

are subject to condition monitoring (CM). However, in cases where data is ubiquitous,

identifying the most suitable equipment for life-extension (LE) based on CM data and

RUL predictions is a rather challenging task. This paper proposes a technique for

determining and prioritizing high-value assets for life-extension treatments when they

reach the end of their useful life. The technique exploits the use of key concepts in

machine learning (such as data mining and k-means clustering) in combination with an

important tool from reliability-centered maintenance (RCM) called the potential-failure

(P-F) curve. The RCM process identifies essential equipment within a plant which are

worth monitoring, and then derives the P-F curves for equipment using CM and

operational data. Afterwards, a new index called the potential failure interval factor

(PFIF) is calculated for each equipment or unit, serving as a health indicator.

Subsequently, the units are grouped in two ways: (i) a regression model in combination

with suitably defined PFIF window boundaries, (ii) a k-means clustering algorithm based

on equipment with similar data features. The most suitable equipment for LE are

identified in groups in order to aid in planning, decision-making and deployment of

maintenance resources. Finally, the technique is empirically tested on NASA’s

Commercial Modular Aero-Propulsion System Simulation datasets and the results are

discussed in detail.

Keywords: Machine learning; Data mining; Potential failure interval factor; k-means

clustering; Life-extension; Remaining useful life; Condition monitoring.

101

5.1 Introduction

Engineering plants and systems have evolved progressively and have become

significantly more intelligent in recent years, and so have the demands made from these

systems in terms of human dependence on their uptime and functionality. For instance,

human activity is so dependent on power such that only few hours of downtime on the

power grid will pose serious economic as well as safety risks (Shafiee, 2016). Similarly,

failure of offshore infrastructure such as oil and gas production facilities, marine

renewable energy assets and other ship vessels and structures will affect not only the

businesses but also a long trail of people along the value chain. This helps to emphasize

the utmost importance of the need to ensure the safety and reliability of these systems.

Therefore, as the evolution into the era of industry 4.0 continues, with an abundance of

data being generated from engineering plants and installations, new ways of analyzing

these data to make meaningful impacts, especially as regards asset life and integrity

management, is exigent.

In practice, not all pieces of equipment within an engineering plant will benefit from tight

inspection and maintenance regimes or life-extension (LE) treatments. As a practice,

some equipment can actually be run until they fail because the safety, environmental and

economic consequences of their failures are negligible. However, some other equipment

might be incident-critical and, therefore, it will not be efficient to run them until they fail

because of the huge safety and economic implications. For a plant with hundreds of

equipment within its assets register, identifying the most vulnerable equipment for life-

extension is a challenging task that, if carried out effectively, will help to ensure safe and

cost-effective operations in later life of the facility. This is important for asset managers

as it helps them assign resources towards LE in a more efficient and effective manner.

This study therefore directly contributes to the process of making LE decisions in a data-

driven context, given an ecosystem where lots of operational, environmental and

condition monitoring (CM) data are constantly gathered from plant operations.

An important development in the industry 4.0 era is the recent rapid advancement in

sensor technologies and an attendant increase in the amount of data being collected from

equipment on an operational facility. The resultant ease of collecting data from

engineering assets has led to an increase in new ways of exploiting these data for asset

102

monitoring purposes. One of the most popular approaches in recent time is the use of

machine learning techniques and algorithms to develop models that provide insight into

the underlying condition of equipment, based on data. This approach has proven to be

popular because modern systems are complex and their failures cannot be simply

modelled via physics-of-failure approaches.

The literature is awash with studies that use machine learning (ML) algorithms for

remaining useful life (RUL) prediction. However, most of the proposed algorithms

predict RUL with the intent of optimizing asset maintenance strategies and to aid in

logistics support planning (Lei et al., 2018). Furthermore, the existing methods have

mainly been applied to structures and static mechanical equipment and include carrying

out structural integrity assessments to determine a suitable LE strategy. Such approaches

typically implement an LE program as a stand-alone project at the end of an asset’s initial

design life. A model that relates RUL prediction directly to life-extension decision-

making was proposed by Vaidya & Rausand (2011). The model considered various

factors such as future loading, system design information and expert opinions; however,

the RUL prediction model was physics-based. Our study, instead, proposes the use of

data-driven ML techniques to determine and prioritize the equipment for LE, strictly

using sensor data gathered during operations as well as CM data, and not based on a

formal structural integrity assessment. To the best of the authors’ knowledge, and based

on findings from literature search, this is the first attempt of looking at asset LE as an

ongoing series of activities and proposing strategies from an ML perspective, along with

the use of tools from reliability-centered maintenance (RCM). In that regard, the major

contribution of this study includes a unique attempt at combining a tool from RCM called

the potential failure (P-F) curve and ML algorithms (e.g. data mining, k-means clustering)

to prioritize vulnerable equipment for LE under an era of ubiquitous data. The study

suggests a new technique of visualizing and exploiting P-F curves derived from CM data

by assessing P-F curves from multiple equipment simultaneously, and then clustering

equipment with similar degradation profiles, similar effort required during LE actions,

similar spares philosophy and similar performance requirements in terms of safety and

reliability. A novel index, called the potential failure interval factor (PFIF), is proposed

to measure the health state of equipment. This new index, which has no unit, will enable

the comparison of disparate pieces of equipment with dissimilar ranges of total lifetime,

103

thereby fully exploiting the massive sensor data available to engineers in order to optimize

LE planning and implementation.

The remaining part of this paper is organized as follows. Section 5.2 provides the

theoretical background for P-F curves in CM and data mining, culminating in the choice

of k-means clustering as the preferred algorithm. Section 5.3 provides details of the

proposed technique, including data pre-processing and features selection, algorithm for

fitting a regression model to processed data and applying a clustering algorithm to obtain

groups. A demonstration of the applicability of the technique is presented in Section 5.4.

Section 5.5 discusses the results obtained; and finally, Section 5.6 presents the conclusion

and suggestions for further work.

5.2 Theoretical background

Different strategies for implementing LE in ageing engineering assets have been deployed

by practitioners within different industry sectors as well as researchers in academia. Sharp

et al., (2011) proposed a framework that involved dividing the equipment on an offshore

oil and gas facility into different functional groups such as structural components, process

systems, marine systems, and safety equipment, and then developing performance

indicators to determine an acceptable threshold for triggering LE actions. Essentially, the

LE activities or remediation schemes proposed were under the broad category of repair,

replace or upgrade. Some other approaches were proposed by Shafiee & Animah (2017),

which include replacement/repowering, reconditioning, restoration (repair,

remanufacture or retrofitting), reclaiming, retro-filling and use-up. In light of the diversity

of the various LE strategies that have been proposed and implemented, it is important to

establish a framework for prioritizing equipment under consideration for LE that not only

fits into the operational philosophy of asset owners, but also duly takes into account the

peculiarities of the information available to asset operators about the various pieces of

equipment within the plant. Ersdal et al., (2011) recognized that end-of-life assets can be

grouped into four categories, namely: parts that cannot be inspected or maintained; parts

with missing or incomplete inspection or maintenance data; parts with widespread

deterioration; and technologically obsolete parts.

Irrespective of the approach used, the major considerations during asset LE include:

safety, economics, regulatory requirements, serviceability, practicality of the LE strategy

104

implementation and, more recently, convergence with the new era of “smart systems”.

Pérez Ramírez et al., (2013) proposed a systems engineering approach to the management

of ageing oil and gas facilities such that the end-of-life strategies are incorporated into the

maintenance philosophy of a facility with the overall aim of making equipment function

well beyond their original design life. In another study, Shafiee et al., (2016) proposed a

techno-economic feasibility assessment framework for prioritizing safety critical

elements (SCEs) within a plant for LE purposes. They showed that cost is a major driver

in choosing a suitable end-of-life strategy by most asset managers. Animah et al., (2018)

developed a life-cycle cost-benefit approach that takes into account several categories of

expenditures during the extended phase of operation of offshore assets, thus aiding asset

managers to make informed choices based on calculated costs and benefits.

Most of the approaches mentioned so far ride on conventional methods of implementing

an LE program which involves a project-like approach executed at the end of asset design

life. This work takes a unique approach by viewing LE activities as an on-going series of

activities, since different equipment within a fleet typically have varying design lives.

The proposed approach involves mining data from each unit within the fleet and based

on strictly data, grouping units with similar time-to-failure indicators together for LE

action. In the following subsections, a detailed background of the key tools used in this

work are presented. This, in addition to relevant references, will aid easy understanding

of the concepts used throughout the study.

5.2.1 Reliability-Centered Maintenance (RCM)

RCM, as a concept, was first proposed in the work by Nowlan (1972), where they studied

a fleet of aircraft at United Airlines and proposed changes to the existing maintenance

program at the time. With RCM, they put forth a program that attempts to answer critical

questions surrounding how failures occur, what the consequences of failures are, and what

type of maintenance actions can prevent failures from occurring. Although the

fundamental concepts have remained the same, the practice has evolved since then and

has been adopted by maintenance engineers and asset managers across various industries.

RCM was defined by Moubray (1997) as a set of practices which must be carried out to

ensure that any physical asset continues to perform its desired function. Failure of an

equipment to meet pre-defined performance standards, within a given operational context,

105

is therefore defined as a functional failure. The role of RCM is therefore to ensure that

maintenance practices keep the identified equipment in such a state as to ensure that

functional failure, with its attendant undesired consequences, is avoided. RCM practice

asks the following key questions (Shafiee, 2015):

Figure 5-1 RCM decision logic flowchart – adapted from Liang et al. (2012).

i. Within an operational context, what are the functions of each equipment and the

associated performance standards?

ii. In what ways does each equipment fail to perform its specified functions?

iii. What are the causes of each functional failure?

iv. What are the consequences of each failure?

v. What can be done to predict or prevent each failure?

vi. What should be done if a suitable proactive task cannot be found?

Asset Register,
Equipment Database,
Operational History,
Maintenance Records

System Division/
Boundaries

Equipment Function
Analysis

Equipment
Important or Safety-

Critical?

Failure Mode, Effects,
& Criticality Analysis

High or
Medium

Criticality?

Decision Logic

Failure-
finding

Default Actions

Routine Maintenance
or Run-to-failure

Redesign

Proactive Tasks

Scheduled
Restoration

Scheduled
Discard

On-condition
Maintenance

Identify Sub-systems
and Components

No

No

Yes

Yes

To
Clustering

Framework

106

Questions (v) and (vi) are directly related to remaining useful life (RUL) estimation and

LE considerations. This paper will therefore draw from the RCM concepts related to these

two questions to help identify equipment for LE. The logical flow of the RCM decision

process is illustrated in Figure 5-1. This flow process specifies activities that intend to

answer the key RCM questions mentioned in (i) to (vi) above. The process involves a

collection of all the assets within a plant in the form of an asset register/database, along

with accompanying operational records and maintenance history for each equipment. The

entire plant is then divided into systems, sub-systems and components, along with a

definition of their operating contexts. Functional analyses are then carried out in order to

define functional requirements and performance standards, thereby helping to establish

what functional failure entails for each equipment. Based on the functional analyses and

subsequent Failure Modes, Effects and Criticality Analyses (FMECA), the equipment are

categorised, according to their criticalities, into different maintenance strategies. Table

5-1 specifies the categorization of the maintenance strategies and the application

scenarios.

Table 5-1 RCM strategies and their associated application scenarios.

Maintenance

strategy

Application scenario

No maintenance

or run-to-failure

a. Failure of equipment/item has no safety or environmental consequences.

b. The economic consequence of failure is also negligible or tolerable.

Failure-finding a. Failure of equipment has no immediate obvious consequence.

b. Equipment typically has a backup protective safety device which can fail

without being immediately evident.

Redesign a. Equipment whose behavior may not be fully known.

b. No known maintenance action will reduce the probability of failure.

c. Cost of known maintenance action outweighs economic consequence of

failure and failure is not negligible or tolerable – redesign or redundancy

becomes the option.

Scheduled discard a. Non-repairable items, e.g., pump impellers, seals, valve seats, etc.

b. Involves replacing and discarding equipment without regard to condition

(as in conventional preventive maintenance).

Scheduled

restoration

a. Repairable equipment/items.

b. Suitable on-condition tasks cannot be devised to avert potential failure.

c. Involves overhauling or repairing items without regard to condition (as in

conventional preventive maintenance).

On-condition

maintenance

a. Degradable equipment/items.

b. Condition indicators are known and can be monitored using sensor data

or other PT&I techniques.

107

Obviously, there is no added benefit of extending the life of non-critical equipment or the

ones designated for redesign. Thus, only equipment categorized under failure finding,

scheduled restoration, scheduled discard and on-condition maintenance will typically be

the focus for LE. In this study, the data from such equipment is mined, their potential

failure curves constructed, and a clustering algorithm is then applied to obtain clusters of

equipment with similar health states. The ultimate aim of grouping equipment according

to health states is to focus on the vulnerable groups which are likely to fail first, thereby

aiding maintenance decision-making and the subsequent application of LE actions to

equipment within the vulnerable groups.

5.2.1.1 Predictive testing and inspection

Equipment condition can be monitored through non-intrusive testing, supervisory control

and data acquisition (SCADA), visual inspection and other testing methods, depending

on the failure modes for the equipment being monitored. This practice is also referred to

as condition monitoring (CM). Some important predictive testing and inspections (PT&I),

which are vital to the detection of incipient faults and performance deterioration, include

vibration monitoring, infrared thermography, ultrasonic noise (acoustics) measurements,

lubricant (oil) analyses, temperature measurements, flow characteristics, ultrasonic

thickness measurements, eddy current testing and motor current signature analysis,

amongst others. A detailed coverage of CM techniques is covered in the work by Moubray

(1997). Data from these inspections, when collected continuously or at intervals, and in

combination with the baseline data, can be plotted against time to help reveal the

performance characteristics. With enough historical data, the performance plot can be

used to detect the point of incipient failure, also known as potential failure point. This

point can only be detected when performance has started declining and potential failure

is possible, hence the name potential failure (or P-F) curve.

There are a few papers in the literature which have used the P-F curve as a tool for

evaluating performance and modelling degradation of equipment. Van Horenbeek et al.,

(2013) studied the added value of implementing an imperfectly performing CM system

for a wind turbine gearbox by using the P-F curve. The associated secondary damage,

which can be prevented with early detection of potential failures, was also factored into

the model. The methodology was tested on a wind turbine gearbox dataset selected from

108

a manufacturer with a fleet of more than 800 onshore wind turbines operating over a time

span of eight years. The approach can be extended to offshore wind energy applications

but with more stringent detectability and efficiency parameters due to the logistical

complexities of maintaining offshore assets. Lorenzoni et al., (2017) modelled the

degradation of components using Dynamic Bayesian Networks, with the P-F curve

representing the degradation pattern which was modelled as a reversed exponential

function. The characteristic of the P-F curve in the study was susceptible to maintenance

activities as well as operating conditions, thus factoring these uncertainties in to derive

the health state of equipment. Five different health states were used in their study to

characterize operating equipment, including: new or as good as new, very slight

indication of degradation, serious degradation, stage of rapid decline, and finally, stage

with very high probability of failure.

5.2.1.2 Potential failure curve (P-F curve)

Based on the information gathered from predictive testing and inspection tasks, the

condition of an equipment when plotted against time will yield the potential failure or P-

F curve. Figure 5-2 shows typical P-F curves.

The P-F curve is so named because it indicates the point at which the failure of an

equipment being monitored becomes detectable. This point is indicated as the potential

failure point, P, in Figure 5-2(a). From commencement of the service life of an equipment

up to a certain point, failure is undetectable because all the parameters of the equipment

being monitored, like temperature, vibration, lube oil analysis, etc., indicate that the

equipment is in a health state that is devoid of detectable faults. However, incipient failure

becomes detectable at a certain time when deviations start to occur. The time from the

actual point of detection of potential failure to the point of functional failure is referred

to as the P-F interval. It is desirable that the P-F interval is sufficient for both decision-

making and actual maintenance and LE activity, in order for the whole endeavour to be

worthwhile.

5.2.1.3 P-F interval determination

Figure 5-2(b) vividly illustrates how equipment performance degrades over time for a

single failure mode and also, how different CM techniques can detect the failure at

different stages. If a visual inspection is conducted at point P2, the exact size of the crack

109

Figure 5-2 (a) A typical P-F curve, (b) A P-F curve for fatigue crack propagation (adapted
from Regan (2012)).

will not be detected. If, however, an appropriate and more accurate inspection technique,

say radiography, is performed just after point P2 but before point P3, then it gives a P-F

interval within the range (t – t2) to (t – t3), during which a maintenance intervention should

be planned and implemented. Hence, for critical equipment, continuous monitoring using

the right technologies and techniques is essential, in order to ensure early detection. The

right data acquisition frequencies are also important in order for the P-F curve to serve as

an effective tool to identify equipment undergoing deterioration in health state. In simple

Time

R
es

is
ta

n
ce

 t
o

 f
ai

lu
re

(i
n

d
ic

a
ti

ve
 o

f
co

nd
it

io
n)

Point at which failure
becomes detectable

Potential failure
point, P

Point of
functional failure

P-F Interval

(a)

Unit lifetime

Time

R
es

is
ta

n
ce

 t
o

 f
ai

lu
re

(i
nd

ic
a

ti
ve

 o
f

co
n

di
ti

o
n

)

Crack detectable using ultrasonic testing

Crack detectable using radiography

Failure

Crack detectable using eddy current

Crack detectible using dye penetrant test

Crack visible to human eye

Operation
commences

t2 t3

(b)

P1
P2

P3

P4

P5

t

110

terms, it is desirable for the inspection interval to be less than the P-F interval in order for

faulty conditions to be captured before failure occurs.

In practice, it is difficult to determine the P-F interval for most equipment. For some age-

related degradations, the P-F curve could be linear from the point of occurrence of

incipient failure to the point of functional failure. For such cases, determination of the P-

F interval can be performed by a straightforward extrapolation using the slope of the

straight-line degradation curve. However, in reality, most equipment exhibit non-linear

degradation characteristics. Thus, estimating time-to-failure becomes an arduous but

critical exercise.

5.2.1.4 Relationship between P-F interval, useful life and asset life

Moubray (1997) defined useful life, ��, as the period from commencement of service to

the age at which the conditional probability of failure significantly increases. This may

or may not coincide with the point at which incipient failure is first noticed. Jardine et al.,

(2006) defined RUL as “the time left before observing a failure given current machine

age and condition, and past operation profile”. Fundamentally, an asset’s lifetime can be

subdivided into the useful life (normal operating state) and the faulty state during which

the asset operates with an existing fault. Goode et al., (2000) termed these two operating

zones as “stable zone” and “failure zone” respectively. The entire asset life, ��, is

therefore defined as the sum of the times when the asset is in a good health state and the

time when it operates in an unhealthy state until it fails. This is illustrated in Figure 5-3.

The asset life is therefore given by Eq. (5-1):

����� ���� = ������ ���� + ������ ���� (5-1)

In Figure 5-3, the faulty zone comprises the P-F interval (PFint) and ��, which represents

the time difference between when the incipient failure actually started and when it is

detected using sensor devices. So, the asset life is given in Eq. (5-2) as:

�� = �� + (�� + �����) (5-2)

The ultimate goal of LE actions is to extend the service life of an asset beyond its original

design lifetime. Upon detection of a fault, a life-extension action is carried out (labelled

as on-condition maintenance in Figure 5-3) and the condition of the equipment returns to

almost as good as new condition. This action potentially increases the lifetime of the

111

equipment from “averted failure point 1” to “averted failure point 2”. Effective

monitoring and LE can therefore potentially continue in such cycles until a cut-off point

called maximum lifetime, Lmax, is reached, beyond which the asset owner, either as a

matter of policy or for some other reasons, decommissions the equipment or plant.

Figure 5-3 Effect of a life-extension action on P-F curve.

5.2.1.5 P-F interval factor (PFIF)

In this study, we define an index, called the P-F interval factor, for degrading components.

This index is given by Eq. (5-3):

� − � �������� �������,� =
� − � ���������,�

���� ���������
 (5-3)

where � − � �������� �������,� is the P-F interval factor of the unit i at time t,

� − � ���������,� is the P-F interval of unit i at time t, and ���� ��������� is the total

time that unit i would normally operate before failure, which may or may not coincide

with the design life. This indicator, the PFIF, is important because by normalizing the P-

F interval with the lifetime of each unit, a scale-independent value is obtained, which

enables the grouping of disparate pieces of equipment with different ranges of total

lifetime or P-F intervals. This is a very useful index that will also be used for health stage

Condition after
LE2 <100%

403836 24 26

Time
(cycles/months/yrs)

R
es

is
ta

nc
e

to
 f

ai
lu

re
(i

nd
ic

at
iv

e
of

 c
on

di
ti

on
)

Point of
detectability

PT&I task
captures fault

Averted
failure
point 1

On-condition
maintenance1

Operation
commences

2 4 6 8 10 12 14 16 18 20 22 0 28 30 32 34

Projected final
failure point

On-condition
maintenance2

Averted
failure
point 2

Faulty state

Original asset life

Asset life after LE1

Useful life (Lu)

td

Life gained
due to LE1

Life gained
due to LE2

Useful life after LE1

PF interval (PFint)

Lmax

112

division, thereby serving as an indicator of the state of health of any unit under operation.

For illustration purposes, consider a hypothetical case where one equipment, A, has a

typical lifetime duration of 20 years and another, B, a lifetime duration of 6 months. In

order to group these equipment for LE action, if CM and sensor data suggest that A has

two years left (which is the P-F interval) and B has half a month left, using the P-F interval

alone produces two different timelines, which will not be useful for the purpose of

grouping them together as equipment that are soon-to-fail. However, the PFIF index in

case A is 0.1 and in case B is 0.083. Thus, depending on the clustering criteria, the ML

algorithm will cluster both equipment in the same group: soon-to-fail.

5.2.2 Data mining concepts and cluster analysis

Data mining involves the extraction of embedded, hitherto unknown but essentially

insightful and valuable information from data. Key features in data mining include the

use of computer-based tools and algorithms, and the availability of big data, such that

conventional methods of statistical analysis become unreasonable to implement. Two

practical goals of data mining are prediction and description (Kantardzic, 2011). In the

context of this study, clustering will be used as a descriptive function to help group

equipment that are in a similar state of health with the aim of subsequently performing

proactive or predictive tasks on the derived groups.

Cluster analysis generally entails using a set of methodologies to automatically group or

classify observations using linkage rules such that observations similar to each other are

in the same group while dissimilar observations come under different groups (Myatt,

2006). Cluster analyses are of two broad types, hierarchical and partitional clustering.

Other clustering types are density-based, grid-based or model-based (Han et al., 2012).

The two broad types are briefly discussed below and the rational for using k-means

clustering for this work is thereby highlighted.

5.2.2.1 Hierarchical clustering

Hierarchical clustering groups data using a cluster tree or dendrogram. It is subdivided

into agglomerative hierarchical clustering and divisive clustering, as shown in Figure 5-4.

Hierarchical agglomerative clustering is a bottom-up approach that starts with each data

point as a member of a cluster and recursively merges clusters until a final single cluster

is obtained. On the other hand, the divisive clustering process, which is a top-down

113

approach, is procedurally the direct opposite of agglomerative clustering. It begins with

the entire dataset as one cluster and progresses by dividing each cluster until a final stage

where each data point stands on its own.

Figure 5-4 Dendrogram for the two types of hierarchical clustering – adapted from Han et

al. (2012).

For both methods, similarity rules are applied to merge data points into clusters. Zhao et

al. (2018) extracted latent variables that are not directly measured by sensors and also

their correlation coefficients. An agglomerative hierarchical clustering algorithm was

then used to group the extracted variables as well as the sensor readings using similarity

measures, with the aim of identifying equipment for predictive maintenance. The method

was applied to an electrical generator and its subsystems. Abdelhadi (2019) used an

agglomerative hierarchical clustering approach to cluster repairable machines into virtual

cells for maintenance tasks. The study developed a machine failure incidence matrix from

which an eigenvector for each failure is derived. Afterwards, a similarity matrix was

generated such that the relation between failures and equipment in terms of relative

weights were captured. Machine cells were then developed and failures were assigned to

suitable cells via a complete linkage agglomerative algorithm.

5.2.2.2 Partitional clustering

The main type of partitional clustering is the k-means clustering, and its variants. The k-

means clustering groups the points in a dataset by assigning observations to a predefined

number of clusters. The step-by-step procedure for a typical k-means clustering algorithm

is given below:

abcde

de

edcba

de

cde

Start

Stage 1

Stage 2

Stage 3

Stage 4

 Stage 4

 Stage 3

 Stage 2

 Stage 1

 Start

Agglomerative

Divisive

114

i. Initialize by determining number of clusters (i.e., k) containing randomly

allocated data points or observations.

ii. Compute the centroids of each cluster in step (i) and compare all data points to

the centroids by the use of a distance metric, moving data points to the closest

centroids thereby adjusting the initial clusters.

iii. Compute the new centroids.

iv. Repeat steps (ii) and (iii) until there is no further movement of data points

between clusters.

Three important parameters in the k-means algorithm are the number of clusters, k, cluster

initialization and a distance metric (Jain, 2010). While a number of distance measures

like Euclidean distance, the Jaccard distance, the Mahalanobis distance, Manhattan

distance, cosine distance, and so on, have been used for k-means and other clustering

algorithms, the Euclidean distance is the most commonly used for the k-means algorithm.

This is because, amongst other reasons, the k-means algorithm clusters data points

represented in a multidimensional Euclidean space. So, the algorithm takes input

parameter, k, and partitions m data points so that the resulting intra-cluster similarity is

high but the inter-cluster similarity is low. This objective is achieved by minimizing the

squared error in the distance between each data point in a cluster and its centroid. Given

m samples of multidimensional data in a multidimensional space, which are to be

partitioned into k clusters, the sum of squared errors is given by:

�� = � � ���,� − ���
�

���� �

���

�

���

 (5-4)

where ���� � is the number of data points in cluster ��, where � ranges from 1 to �, ��,�

is a vector representing the ith data point within cluster �� (i.e., ��,� ∈ ��) and �� is the

mean vector representing the centroid of cluster ��, which is obtained as:

�� =
1

���� �
� ��,�

���� �

���

 (5-5)

and

115

� ���� �
�

���
= � (5-6)

As opposed to k-means clustering where each data point is assigned to a single cluster

(hard assignment), a variation where each data point can be a member of multiple clusters

with a membership value (soft assignment) is referred to as the fuzzy c-means clustering.

Other variations of k-means clustering are highlighted in the work by Jain (2010). Table

5-2 provides the pros and cons of the two broad types of clustering.

Table 5-2 Pros, cons and application cases for the two broad classes of clustering

algorithms.

Clustering type Pros Cons Application cases

Hierarchical

clustering

(agglomerative

and divisive)

a. No overlaps between

clusters.

b. Can be applied to more

variety of data than k-

means.

c. Typically yields a

unique dendrogram

(repeatable).

a. Applicable to relatively

small datasets (<10,000

observations).

b. Generating the

hierarchical tree can be

slow.

c. Can handle outliers well.

d. Does not follow a scale.

System and subsystems

predictive maintenance

(Zhao et al. 2018);

grouping maintainable

equipment (Abdelhadi

2019).

Partitional

clustering (k-

means and its

variants)

a. Computationally faster.

b. Can handle a larger

number of observations

than hierarchical

clustering.

c. Clusters are clearly

defined without

overlaps.

d. Scalable as it is based

on actual numerical

data.

a. Difficulty in predefining

optimal number of

clusters.

b. Can be distorted by

outliers.

c. Works only with

numerical data.

d. Not repeatable. Random

initialization potentially

results in varying

clusters.

Grouping maintenance

activities (Gholami &

Hafezalkotob 2018);

Fault type clustering

(Lahrache et al.,

(2017); Maintenance

planning optimization

(Jain, 2010; Gholami &

Hafezalkotob, 2018).

RUL estimation for

heterogeneous fleet

(Al-Dahidi et al., 2016)

Regarding research in the area of maintenance scheduling, Gholami & Hafezalkotob

(2018) used k-means clustering to group equipment based on similarity of maintenance

activities and then the rules were extracted to characterize the derived clusters. The

method was applied to data from ten pumps under functional failure conditions. The data

comprised pump factor values for the ten pumps for 250 different failures recorded.

Lahrache et al., (2017) used both k-means and hierarchical clustering to group faulty and

unfaulty knives in a cutting tool machine. Also, Abdelhadi (2017) proposed a method to

use k-means clustering to group repairable machines into virtual groups based on their

116

need for maintenance according to the time to failure and according to the location of the

machines. Wakiru et al. (2018) used a fuzzy cluster analysis to group multiple engines

exhibiting similar lubricant performance characteristics based on the data collected from

lubricant oil analysis for 17 medium speed engines of a thermal power plant.

5.3 Methodology

The proposed technique is intended to group equipment within a fleet into clusters with

similar health states, enabling life-extension engineers to prioritize equipment

approaching their end-of-life. A fleet may consist of a collection of several units of whole

systems, or a collection of several units of subsystems or components. Units within a fleet

may be identical, similar or heterogeneous (Medina-Oliva et al., 2014). Identical units

imply the same system with identical technical features and under the same usage and

operational conditions; similar units share almost identical technical features and

operational conditions but may have slightly varying usage; while heterogeneous units

have varying technical features, usages, and operational conditions albeit they share some

similarity in data traits that can be exploited for decision-making. This section describes

the steps involved in the technique which was developed for a homogenous fleet (i.e.,

identical and similar units under the same operational conditions). The steps are broken

down into two broad parts, phase 1 and phase 2.

5.3.1 Phase 1 – data preparation and sensor selection

Given a dataset of run-to-failure data for � units or pieces of equipment within a

homogeneous fleet, let �� represent the run-to-failure data for the ith unit, where � =

1, … . �. Since each unit will have a distinct lifetime, ��, the data �� is an array of the

order �� by �, where � represents the number of variables or sensor measurements from

each unit. The following are the steps involved in phase 1 of the methodology:

i. For ease of application of the algorithm, the data is prepared as an ensemble,

containing the data for each unit vertically concatenated on each other, to give an overall

dataset array, �. The combined dataset � will be an � by � array where � is given by:

� = � ��

�

���

 (5-7)

117

ii. The raw run-to-failure data, �, which is taken in bulk as the training data, is then

cleaned, pre-processed and useful features are extracted. Data pre-processing and

feature engineering techniques depend on the nature of the data and the use for which

the data is intended (Ramírez-Gallego et al., 2017). Features can be extracted in the time

domain, the frequency domain or the time-frequency domain, depending on the nature

of the signals and the specific application. For simple time-domain degradation data, the

mean and standard deviation or variance of a signal may change progressively as the

equipment degrades. For rotating machinery such as gears, bearings and shafts, common

features extracted for health state construction include root-mean-square value, kurtosis,

peak-to-peak, crest factor, skewness, etc. (Zhu et al., 2014). Features extraction does

not only help to determine which signals are useful indicators of degradation, but also

help in dimensionality reduction for the multivariate data. Other techniques of

dimensionality reduction like principal component analysis (PCA) can also be used to

reduce the dimension of the data from the fleet (Liu et al. 2019). Signals with constant

values (i.e., no variance) are not useful indicators and are as such eliminated, resulting

in a reduced dataset, ��������.

iii. Next, the reduced data is normalized, unit-wise, so as to make the attributes from

the different sensors comparable to one another. One approach is standardization. For

that purpose, let � be the index representing the sensor number, with � ranging from 1

to �; and, let ℓ be the index corresponding to the number of data points for unit �, with

ℓ ranging from 1 to ��. If the ��� sensor for data ��������� for unit � has a mean value

��,� and standard deviation ��,�, then each value �ℓ,� of each data point of ��������� is

transformed to:

�ℓ,� =
�ℓ,� − ��,�

��,�
 (5-8)

Another approach is the min-max scaling, which maps the attributes to the range [0,1]

using the transformation given in Eq. (5-9):

�ℓ,� →
�ℓ,� − min (��,�)

max(��,�) − min (��,�)
 (5-9)

where min (��,�) and max (��,�) are the minimum and maximum values, respectively,

of the ��� sensor or feature for unit �. Standardization is used for this work as it is more

robust and not susceptible to outliers or extreme values (Aggarwal, 2015).

118

iv. The normalized data is smoothed using a suitable algorithm, depending on the

characteristics of the data such as noise level, presence of outliers, etc. For this work,

we adopt a local regression smoothing algorithm, called the robust locally weighted

scatterplot smoothing (RLOWESS) (Cleveland, 1979; Cleveland et al., 1988), due to its

effectiveness in handling outliers.

v. To gain further insight into the data ��������, monotonicity, trendability and

prognosability metrics are computed as presented in the work of Coble and Hines (Coble

& Hines, 2009a; Coble & Hines, 2009b). The fundamental concept is that features of

data important for degradation prediction must be monotonically increasing or

decreasing and, in addition, be trendable. This assumption of continuous degradation is

mostly true for systems with a combination of electronic and mechanical components

and may not be entirely correct for systems that exhibit some level of self-restoration

when left temporarily without use, e.g. batteries (Guo, Li, et al., 2017). Monotonicity,

which characterizes the underlying positive or negative trend of a feature, is obtained as

the average difference of the fraction of positive and negative derivatives for each run-

to-failure data or trajectory. This is given by Eq. (5-10):

������������ = ���� ��
��. �� �

��� > 0

�� − 1
−

��. �� �
��� < 0

�� − 1
�� (5-10)

In more precise mathematical terms, it can be expressed as follows:

������������ =
1

�
� � �

��� ���,� (ℓ + 1) − ��,� (ℓ)�

�� − 1

����

ℓ��

�

�

���

 (5-11)

All symbols are as previously defined while ��,� (ℓ) represents the value of the ���

sensor or feature for unit � corresponding to the index ℓ. The trendability metric is

calculated as:

������������ = ���
�,�

��������,�, ��,���, �, ℎ = 1, … , � (5-12)

where ��,�, ��,� represents any pair of vectors for the data from the ��� sensor or feature

for units � and ℎ respectively.

The prognosability metric gives a measure of the variance of the features towards end-

of-life. This is an intuitive metric since a wide variance towards end-of-life can make it

119

difficult to extrapolate a feature to the failure point. Prognosability is calculated by Eq.

(5-13):

�������������� = exp �−
���(�������������)

mean(|���������� − ������������|)
� (5-13)

where ������������� imply the population of the values of all the features at failure

and |���������� – ������������| stand for the difference between the start and end

values of each individual feature. This is given in precise mathematical terms as:

�������������� = exp �−
�������(��)�

�����|��(��) − ��(1)|
� (5-14)

where ��(��) is a vector of the last data values from each sensor for unit � (i.e., just

before unit � fails) and ��(1) is a vector of the first data values from corresponding

sensors for the same unit (i.e., at the beginning of operations).

To select the optimal set of features, the three metrics are combined to obtain a fitness

value defined by Coble & Hines, (2009a) and Coble & Hines, (2009b) as:

������� = �������������� + �������������� + ���������������� (5-15)

The weights ��, �� and �� indicate the importance of each metric and should sum up to

one. For this work, each metric is weighted equally. The exclusion criterion for each

feature is then defined as fitness > τ, where τ is a carefully selected threshold based on

the values of the three metrics. Values for monotonicity, trendability and prognosability

all lie in the range [0, 1], with 0 representing non-trendable features and 1 representing

perfectly trendable features. The individual algorithms are implemented as MATLAB in-

built functions and subsequently combined, thus selecting the most trendable sensors and

obtaining a further reduced dataset, ������������, which is ready for use in phase 2 of this

methodology.

5.3.2 Phase 2, route 1 – fit linear model, construct health indicator and

implement health stage division

To obtain a single health indicator, the selected features are fused together to produce a

single degradation trend that represents the instantaneous health states of each unit. There

are various studies that propose different methods of doing this (Atamuradov et al., 2020;

Wang et al., 2017). Other methods are presented in a review by (Lei et al., 2018).

120

Fundamentally, the process involves two stages: health indicator (HI) construction and

health stage (HS) division. HI construction can be further categorized into two: physics

HI, which is related to the physics of failure and virtual HI, which involves fusing multiple

sensor signals together to give a virtual description of the degradation trends of complex

systems based on data. Having established a suitable HI, the HI profile is then subdivided

into different health stages. Again, there are two broad ways of achieving this: a two-

stage division into healthy and faulty states and a multi-stage division which assigns

different health states as the unit progressively degrades from a healthy towards a failed

state. Figure 5-5 shows the overall classification described in this subsection.

Figure 5-5 Broad classification of health indicator construction and health stage division
approaches.

Although it is useful to extract features from the data in order to gain insight into

underlying trends, some original data can be used as features if they exhibit good

trendability and monotonicity traits (Wang et al., 2008). Bektas et al. (2017) established

a single health indicator trajectory by fitting a linear model using multiple linear

regression directly on multi-regime degradation data, thereby performing features

selection, dimensionality reduction and sensor fusion in one step. For this work, a linear

model is fit onto the data output from phase 1, described in subsection 5.3.1. To achieve

this, we will calculate the PFIF, which essentially provides information regarding the state

of health of each unit at any time instance, �. For this purpose, � corresponds to ℓ, the

index of any given data point as operation progresses from ℓ = 1 until failure at ℓ = ��.

Health Indicator
(HI)

Physics HIVirtual HI

Two-stage
division

Multi-stage
division

Healthy Faulty
Healthy

Good

Faulty

Failed

121

For any run-to-failure data, the PFIF for unit � at any time index, ℓ, is therefore given by

Eq. (5-16):

�����,ℓ =
�� − ℓ

��
 (5-16)

Using the values of the vector ����� as a response variable and also the variables in the

data ������������,�, a simple linear model, which is given by Eq. (5-17), is fit to the data:

����� = �� + ����,� + ����,� + ����,� + … + ����,� (5-17)

where �� is the bias term, ��, … , �� are the model coefficients and ��,� are vectors

representing the columns of ������������,�. In a vectorized form, we have:

����� = �� + ������������,��, (5-18)

� = [�� ; �� ; … ; ��] , ������������,� is an � �� � array of data

The test data represents data from presently running units similar to those whose run-to-

failure data were used to train a linear model and construct health indicators. Preparing

the test data in a similar way as described in subsection 5.3.1 yields the data,

����������������,�. Applying the trained linear model on this data produces the health

states at every time instance up till the present time index, ℓ�, for each individual unit in

the fleet. The health states at the present time can then be extracted and units with similar

health states grouped together. For this study, four health states are defined based on the

PFIF values, which mostly lie in the range [0, 1], with one being perfectly healthy units

and 0 being failed equipment. A multi-scale health stage (HS) division was adopted using

the following criteria: PFIF above 0.75 – “healthy”; PFIF above 0.50 up to 0.75 – “good

- no action”; PFIF above 0.30 up to 0.50 – “good – monitor”; and 0.30 and below – “soon-

to-fail”. A three-stage HS division was also implemented with the following window

boundaries: PFIF above 0.75 – “healthy”; PFIF above 0.45 up to 0.75 – “good”; and 0.45

and below – “soon-to-fail”. Life-extension engineers may use expert judgment, and based

on the peculiarity of the fleet, to assign different HS divisions. Equipment grouped

together based on similar HS assignments can then be prioritized together for LE action

and other associated logistics purposes.

122

5.3.3 Phase 2, route 2: k-means clustering using fleet data

As an alternative to fitting a linear model to the data, a clustering algorithm can be used

to group the units. Clustering is implemented after feature engineering and

dimensionality reduction on the training data, thus identifying the trendable variables

that are important condition indicators. The data that provides information regarding the

Figure 5-6 Methodological approach for determining the most vulnerable equipment for
life-extension.

current health state for each equipment is the last entry in the time-series for each unit.

As such, the last row for each unit, �, corresponding to the operational stage or time

index, max (ℓ�), is extracted, producing a reduced data, �����������������, which is

Equipment mEquipment 1 Equipment 2 Equipment 3

Clean, pre-process
data and identify
trendable features

Run k-means algorithm
for k = number of

distinct health states

Candidate Equipment
for Life Extension

Construct health state
indicators

Asset Register

PT&I Data, Operations Data
Maintenance History

Time

P1

Time

P2

Time

P3

Time

Pm
Health indicator/

condition

Time

P4

Time

P1

Time

P2

Time

Pm

Time

P3

Time

P5

Train and validate
regression model

Predict health states
for equipment using

trained model

Obtain clusters of
equipment

Group equipment with
the same health states

Expert Judgement

Failed

Soon-to-fail

Equipment Clusters

Good - Monitor

Healthy

Good – No Action

123

an � by � array, where � is the number of units in the fleet and � is the number of

selected trendable sensors. A k-means algorithm is then applied on the data

�����������������, specifying the number of clusters to be equal to the desired number

of health stages. The overall flow of the proposed technique, covering phase 1, phase 2

route 1 and phase 2 route 2, is illustrated in Figure 5-6. It is important to note that route

2 of phase 2 in this technique is not as amenable to user specification as route 1, where

users can make choices regarding the type of algorithm to use for fitting the regression

model and the level of accuracy to aim for, including the use of non-linear models to

obtain model parameters that yield better predictions. Using route 2, only the number of

clusters (and their respective centroids) can be specified, which corresponds to the

number of divisions in the multi-stage HS division.

5.4 Case studies

To demonstrate the feasibility and applicability of the proposed technique, it is tested on

the NASA C-MAPSS dataset (Saxena & Goebel, 2008), which was briefly introduced in

subsection 2.2.1.1.

5.4.1 Data description

C-MAPSS, which stands for Commercial Modular Aero-Propulsion System Simulation,

is a dataset which comprises four different run-to-failure datasets under varying

combinations of fault modes and operational conditions. The training sets all start from a

point where the unit is in a healthy state and terminate at the failure point of each unit.

The test set starts from a healthy state and is terminated at some unknown point during

each unit’s lifetime. For more details about the dataset, the readers can refer to Saxena et

al. (2008). One of the datasets, FD001, is for a homogeneous fleet comprising run-to-

failure data from 100 identical turbofan engines, with one failure mode and under one set

of operating conditions. Each of the 100 engine units has a distinct lifetime, ��, three

columns representing operating conditions settings and another 21 columns representing

sensor data. The dataset, which comes as a numerical array organized as described in

subsection 5.3.1, is ordered as presented in Table 5-3.

124

Table 5-3 C-MAPSS dataset parameters and corresponding variables assigned

column Measured parameter
Unit of

measurement

Variable assigned

(for this study)

1 Unit number -- unit_num

2 Time cycles Time

3 Operational setting 1 -- ops_set1

4 Operational setting 2 -- ops_set2

5 Operational setting 3 -- ops_set3

6 Total temperature at fan inlet °R sensor1

7 Total temperature at LPC1 outlet °R sensor2

8 Total temperature at HPC2 outlet °R sensor3

9 Total temperature at LPT3 outlet °R sensor4

10 Pressure at fan inlet psia sensor5

11 Total pressure in bypass-duct psia sensor6

12 Total pressure at HPC outlet psia sensor7

13 Physical fan speed rpm sensor8

14 Physical core speed rpm sensor9

15 Engine pressure ratio (P50/P2) -- sensor10

16 Static pressure at HPC outlet psia sensor11

17 Ratio of fuel flow to Ps30 pps/psi sensor12

18 Corrected fan speed rpm sensor13

19 Corrected core speed rpm sensor14

20 Bypass Ratio -- sensor15

21 Burner fuel-air ratio -- sensor16

22 Bleed Enthalpy -- sensor17

23 Demanded fan speed rpm sensor18

24 Demanded corrected fan speed rpm sensor19

25 HPT4 coolant bleed lbm/s sensor20

26 LPT coolant bleed lbm/s sensor21
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure
Turbine

5.4.2 Application of the proposed technique

This section describes the application of the proposed technique on the C-MAPSS FD001

dataset.

5.4.2.1 Phase 1 – data preparation and sensor selection

Data from some sensors are directly eliminated by observing some features of the data,

such as the mean and the variance. Constant value data with near zero variances are

eliminated as they do not provide any useful information regarding the condition of the

units under observation. This step reduces the data, �, from 21 sensors to the data

��������, comprising 14 sensors. The sensors that exhibit some variance, which are

contained in ��������, are sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21. The

data, ��������, is then organized unit-by-unit as an ensemble of data for each unit, after

125

which they are normalized using the standardization approach to obtain ��������� and

then smoothed using the RLOWESS algorithm.

To achieve further dimensionality reduction while ensuring that the most trendable

sensors are retained for the construction of health indicators for each unit, the trendability,

monotonicity and prognosability metrics are computed using the formulae in Eq. (5-11),

Eq (5-12) and Eq. (5-15) respectively. Figure 5-7 shows respectively three plots of

trendability, monotonicity and prognosability metrics values obtained for 16 sensors as

well as the combined values (or fitness), which are obtained as the sum of trendability,

monotonicity and prognosability values.

Figure 5-7 The values for (a) trendability (b) monotonicity (c) prognosability and the
combined metrics for 14 sensors.

To arrive at the final set of sensors to be fused to obtain the health indicators, the values

of the three metrics are combined to obtain the plot showed in Figure 5-7(d). The

individual plots, as well as the combined plot, show that sensors 8, 9, 13, and 14

(a) (b)

(c) (d)

126

consistently exhibit the lowest trendability traits. Consequently, based on the exclusion

criterion defined in Eq. (5-15), these sensors were discarded using the exclusion criterion

fitness > 2.0, yielding the data ������������, comprising the 10 selected sensors of 2, 3, 4,

7, 11, 12, 15, 17, 20 and 21. Figure 5-8 shows the degradation trend of the 10 selected

sensors for the first three units. Note that the full MATLAB code for the implementation

of this proposed technique is included in this thesis as Appendix A.

Figure 5-8 Degradation trend for 10 selected sensors on units 1, 2 and 3.

5.4.2.2 Phase 2, route 1 – construct health indicator and implement HS division

In order to fit a regression model to the pre-processed training data, ������������, the PFIF

is computed using the formula provided in Eq. (5-16) The degradation trajectory for each

unit, �, runs from ℓ = 1 cycle to ℓ = �� cycles, where �� corresponds to the time index at

which the trajectory is terminated (i.e. upon failure of the unit). These values are used to

calculate the P-F interval and then the PFIF index, which is added as a column to the data

������������ and used as the response variable for fitting the regression model to the data.

A least squares regression model is fit to the data using MATLAB, to obtain the bias term,

�� and the model coefficients, ��. Values were averaged from two runs of the MATLAB

code that produced good fits of the model, to give θo = 0.5019 and θ = [-0.0300; -0.0199;

-0.0471; 0.0466; -0.0622; 0.0573; -0.0365; -0.0188; 0.0314; 0.0369]. Using the model,

127

the ten selected sensors are fused together to construct a single health indicator. The health

indicators, some of which were predominantly monotonically increasing while others

were predominantly monotonically decreasing, were all offset to start from one and then

decrease progressively until failure. A visualization of the constructed HIs for all 100

units within the fleet is shown in Figure 5-9.

Figure 5-9 Constructed HIs using trained data for all 100 units within the fleet.

Following the procedure outlined in subsection 5.3.3, the test data, which comprises data

for the 100 units up to an undefined time, are imported into MATLAB and pre-processed

to obtain ����������������,�. The trained linear regression model is then used on

����������������,� to predict the HIs for each of the 100 units in the test dataset. A plot of

the HIs for the first 20 units in the test data is shown in Figure 5-10. It can be observed

from Figure 5-10 that the trajectories for most of the units end abruptly. Extracting the

HIs at the end of each trajectory gives the current health state of each unit. Equipment

with the same health state can then be grouped together for the purpose of life-extension

decision-making.

128

Figure 5-10 Constructed HIs for the 20 units using the test dataset.

5.4.2.3 Phase 2, route 2 – Group units using k-means clustering

The fundamental goal of the proposed technique is to achieve grouping of equipment with

similar health states so as to prioritize the most vulnerable equipment for LE actions. An

alternative way to achieve this grouping is to apply a clustering algorithm, after pre-

processing the data and selecting the most trendable features or sensors. From Figure

5-10, it was established that the important indicator of the current health state for each

unit is the last point in the data for each unit, corresponding to the point where each

degradation trajectory ends. So, by extracting the last data point for each unit from the

pre-processed test data, ����������������,� we obtain the data �����������������. A k-

means algorithm is then run using random initialization for ten replicates with 100

iterations in each replicate and square Euclidian distance as the distance measure. The

number of clusters is set to four and then to three, for four-stage HS division and three-

stage HS division respectively. This will produce groups of units that should have similar

health states and thus help to prioritize LE decision-making. Section 5.5 presents the

results obtained and discusses the findings.

5.5 Results and discussion

This section presents the results obtained for algorithms implemented to perform three-

stage and four-stage HS divisions. The results obtained using phase 2, route 1 of the

129

technique (i.e., using a linear regression model) are compared with those obtained using

phase 2, route 2 (i.e., using k-means clustering). Since the dataset comes with ground

truth RUL values, the predicted PFIF results, which were mostly in the range [0, 1], were

easily compared to the scaled values of the true PFIF values which were calculated as

follows.

���� �����,ℓ =
 ���� ����

 ���� ���� + ℓ
 (5-19)

������ ���� �����,ℓ =
���� �����,ℓ − min����� �����,ℓ�

�������� �����,ℓ� − min����� �����,ℓ�
 (5-20)

Figure 5-11 is a plot of the predicted PFIF using the regression model, against the scaled

true PFIF for each unit, and it shows a very good match between the predicted values and

the ground truth values.

Figure 5-11 Comparison of predicted and true health indices.

5.5.1 Three-stage HS division

The grouping of equipment was implemented by setting window boundaries based on the

predicted PFIF values in order to establish health states. The subsections below present

the results for the different health states.

5.5.1.1 Healthy units

The results obtained using both the regression model and k-means clustering are presented

side by side in Table 5-4 for healthy units, for both the 3-stage and 4-stage HS divisions.

130

For the three-stage HS division, it can be observed from the results that both the linear

model and the k-means clustering algorithm grouped 27 out of 29 units as healthy. The

other two units were grouped by the k-means algorithm as “good”. Also, the predicted as

well as the scaled true PFIF values show that 83% of the healthy units have true PFIF

values above 0.65; this corresponds to the units having spent only 35% of their lifetimes,

with 65% of their lifetimes left. Given that the application of this work is for life-

extension, and that healthy units are grouped as mostly “healthy”, with a few as “good”,

this translates to 100% acceptable grouping.

Table 5-4 Healthy units grouping for both 3-stage and 4-stage HS division (Number of units:
29)

Unit

Predicted

PFIF

Scaled

True PFIF

True

RUL

Model

HS

k-means HS

(3-stage)

k-means HS

(4-stage)

1 0.9225 0.9867 112 Healthy Group 2 Group 2

2 0.9039 0.8334 98 Healthy Group 2 Group 2

6 0.7707 0.5742 93 Healthy Group 2 Group 2

9 1.0169 0.8360 111 Healthy Group 2 Group 2

11 0.8313 0.6652 97 Healthy Group 1 Group 4

14 0.9155 0.8764 107 Healthy Group 2 Group 2

15 0.7795 0.6430 83 Healthy Group 2 Group 2

22 1.0152 0.9299 111 Healthy Group 2 Group 2

25 0.9653 0.9447 145 Healthy Group 2 Group 4

26 0.8915 0.7591 119 Healthy Group 2 Group 2

33 0.9367 0.8502 106 Healthy Group 2 Group 2

39 1.0229 1.0000 142 Healthy Group 2 Group 2

44 0.9086 0.8361 109 Healthy Group 2 Group 2

47 0.9703 0.8102 135 Healthy Group 2 Group 2

48 0.7833 0.6682 92 Healthy Group 2 Group 4

50 0.7721 0.6356 79 Healthy Group 1 Group 4

55 0.8107 0.6772 137 Healthy Group 2 Group 4

65 0.8385 0.8025 128 Healthy Group 2 Group 4

67 0.8464 0.6407 77 Healthy Group 2 Group 2

69 0.9089 0.8660 121 Healthy Group 2 Group 4

71 0.7906 0.7909 118 Healthy Group 2 Group 4

78 0.8961 0.7427 107 Healthy Group 2 Group 4

83 0.8785 0.8146 137 Healthy Group 2 Group 4

85 1.0173 0.9777 118 Healthy Group 2 Group 2

86 0.7517 0.5446 89 Healthy Group 2 Group 4

87 0.9169 0.8436 116 Healthy Group 2 Group 4

88 0.8135 0.7830 115 Healthy Group 2 Group 2

96 0.7888 0.7265 137 Healthy Group 2 Group 2

99 0.7825 0.6756 117 Healthy Group 2 Group 2

For both the three-stage and four-stage HS divisions, it can be observed from Table 5-4

that group 2 of the k-means clustering corresponds to the “healthy” units. For the four-

131

stage HS division, it was observed that the match between the group assignments when

using the regression model as compared to when using the k-means clustering approach

was not consistent. This is because many of those units grouped as “good” and “healthy”

were assigned to one of the groups when using the regression model and to other groups

when k-means clustering was used. This is completely okay since the intent of this

grouping in particular, and of prognostics in general, is to identify equipment that are

about to fail before they actually fail. In that regard, equipment in a good state of health

identified as such is not a cause for concern.

5.5.1.2 Good units

Table 5-5 presents the results for “good” units’ assignments for the three-stage HS

division. In this case, group 1 of the k-means clustering corresponds to “good” units from

the regression model. 17 out of 31 units were clustered as “good” by both approaches,

while the k-means algorithm grouped another 13 as “healthy.” Only one unit was grouped

by the k-means algorithm as “soon-to-fail.” Again, in the context of life-extension, if an

equipment in a “good” state is wrongly categorised as “soon-to-fail,” there are no serious

safety implications, even though there may be some associated logistics or cost

implications. In terms of PFIF accuracy, 5 out of 31 units grouped as “good” have true

PFIF values below 0.4 (i.e., less than 40% of their lifetime is left). This gives a grouping

“accuracy” of about 84%.

Table 5-5 Good units grouping for 3-stage HS division (Number of units: 31)

Unit

Predicted

PFIF

Scaled

True PFIF

True

RUL

Model

HS

k-means

HS

3 0.4564 0.4217 69 Good Group 1

4 0.6494 0.5301 82 Good Group 1

5 0.6767 0.5897 91 Good Group 2

7 0.5153 0.4332 91 Good Group 1

8 0.4969 0.4351 95 Good Group 1

16 0.6635 0.5172 84 Good Group 2

19 0.5808 0.4718 87 Good Group 1

21 0.5798 0.3220 57 Good Group 1

23 0.6426 0.5680 113 Good Group 1

28 0.6954 0.4567 97 Good Group 2

29 0.5316 0.4099 90 Good Group 2

30 0.6292 0.5427 115 Good Group 1

38 0.6067 0.3321 50 Good Group 2

45 0.5936 0.5201 114 Good Group 1

51 0.5792 0.5376 114 Good Group 2

132

Unit

Predicted

PFIF

Scaled

True PFIF

True

RUL

Model

HS

k-means

HS

54 0.5838 0.5416 97 Good Group 2

57 0.5224 0.4715 103 Good Group 1

59 0.7438 0.6773 114 Good Group 2

60 0.5648 0.4889 100 Good Group 2

63 0.4536 0.3735 72 Good Group 1

70 0.5967 0.4589 94 Good Group 1

73 0.6591 0.6655 131 Good Group 2

74 0.6635 0.5865 126 Good Group 1

75 0.7094 0.6959 113 Good Group 2

79 0.5214 0.4616 63 Good Group 1

80 0.5907 0.4872 90 Good Group 1

89 0.6639 0.5279 136 Good Group 2

94 0.4627 0.3411 55 Good Group 1

95 0.6753 0.7323 128 Good Group 2

97 0.5991 0.4557 82 Good Group 3

98 0.4534 0.3874 59 Good Group 1

5.5.1.3 Soon-to-fail

There is a good match between units grouped as “soon-to-fail” by using both approaches.

The results presented in Table 5-6 for “soon-to-fail” units show that of the 40 units

assigned to this group by the regression model, 31 were also assigned to the same group

by the k-means clustering approach. The k-means approach assigned the other 9 units to

group 1, which corresponds to “good” units. This is the main area of concern in terms of

safety, reliability, and availability; when “soon-to-fail” units are grouped as “good” units.

However, the true PFIF values show that 39 out of the 40 units have values below 0.4

(i.e., all units have less than 40% of their lifetimes left). As such, the regression model

has 97.5% “accuracy” in grouping. Looking at assignments using only the k-means

approach, 35 units were actually grouped as “soon-to-fail,” with only two of them having

true PFIF values above 0.4. This gives an “accuracy” of about 94% in grouping.

Table 5-6 “Soon-to-fail” units grouping for 3-stage HS division (Number of units:
40).

Unit

Predicted

PFIF

Scaled

True PFIF

True

RUL

Model

HS

k-means

HS

10 0.3764 0.3948 96 Soon-to-fail Group 1

12 0.4358 0.4346 124 Soon-to-fail Group 3

13 0.3651 0.3872 95 Soon-to-fail Group 3

17 0.2602 0.2622 50 Soon-to-fail Group 3

18 0.2058 0.1850 28 Soon-to-fail Group 3

20 0.0324 0.0614 16 Soon-to-fail Group 3

24 0.0678 0.0839 20 Soon-to-fail Group 3

133

Unit

Predicted

PFIF

Scaled

True PFIF

True

RUL

Model

HS

k-means

HS

27 0.4133 0.3777 66 Soon-to-fail Group 1

31 -0.0859 0.0077 8 Soon-to-fail Group 3

32 0.3381 0.2834 48 Soon-to-fail Group 1

34 -0.1119 0.0000 7 Soon-to-fail Group 3

35 0.0754 0.0254 11 Soon-to-fail Group 3

36 0.2490 0.1286 19 Soon-to-fail Group 1

37 0.1405 0.1507 21 Soon-to-fail Group 3

40 0.3335 0.1850 28 Soon-to-fail Group 3

41 0.1418 0.1241 18 Soon-to-fail Group 3

42 0.0032 0.0354 10 Soon-to-fail Group 3

43 0.3733 0.2922 59 Soon-to-fail Group 3

46 0.3231 0.2766 47 Soon-to-fail Group 1

49 -0.0802 0.0414 21 Soon-to-fail Group 3

52 0.0819 0.1312 29 Soon-to-fail Group 3

53 0.1987 0.1362 26 Soon-to-fail Group 3

56 0.2212 0.0869 15 Soon-to-fail Group 1

58 0.1746 0.1847 37 Soon-to-fail Group 3

61 0.0945 0.1097 21 Soon-to-fail Group 3

62 0.1633 0.2046 54 Soon-to-fail Group 3

64 0.1404 0.1441 28 Soon-to-fail Group 3

66 0.2531 0.0706 14 Soon-to-fail Group 3

68 -0.0256 0.0101 8 Soon-to-fail Group 3

72 0.3421 0.3196 50 Soon-to-fail Group 1

76 -0.0740 0.0173 10 Soon-to-fail Group 3

77 0.1484 0.1844 34 Soon-to-fail Group 3

81 -0.0803 0.0038 8 Soon-to-fail Group 3

82 -0.0128 0.0254 9 Soon-to-fail Group 3

84 0.3014 0.2880 58 Soon-to-fail Group 3

90 0.2574 0.1679 28 Soon-to-fail Group 3

91 0.2184 0.1400 38 Soon-to-fail Group 1

92 0.1977 0.1109 20 Soon-to-fail Group 3

93 0.3072 0.2961 85 Soon-to-fail Group 1

100 0.1791 0.0769 20 Soon-to-fail Group 3

5.5.2 Four-stage HS division

For the four-stage HS divisions, a different set of window boundaries, defined in

subsection 5.3.2, was set for the regression model while the parameter, k, was assigned a

value of 4 for the k-means clustering approach. The results obtained are presented in the

following subsections.

5.5.2.1 Healthy units

Given that the cut-off threshold for healthy units was set at values of predicted PFIF >

0.75 for both the three-stage and the four-stage HS divisions, the results obtained for

“healthy” units for the regression model were the same. However, since the k-means

134

clustering approach now has k = 4, the expectation was that a slightly different unit

assignments will be obtained. As such, while the regression algorithm grouped 29 units

as “healthy,” the k-means approach grouped 22 units as “healthy”. Details of the results

have been presented and discussed in Healthy units.

5.5.2.2 Good units – no action

One of the intents behind the four-stage HS division is to distinguish between units that

have recorded very minimal degradation and those that have significant degradation but

are still okay to be operated. Units with minimal degradation are grouped as “good – no

action.” Using the specified window boundaries, 26 out of the 100 units were extracted

and grouped as “good – no action.” Out of these, the k-means approach grouped 10 in the

same category, nine as “good – monitor,” four as “healthy” and one as “soon-to-fail.

However, an analysis of the true PFIF values for the units show that 2 units have PFIF

values below 0.4, giving an “accuracy” of about 92% in grouping. Considering only the

results for the k-means approach, there was no clear distinction between the groups “good

– no action” and “healthy” as equipment having true PFIF values within the appropriate

ranges were almost equally grouped into both health stages.

Table 5-7 “Good – no action” groupings for 4-stage HS division (Number of units:
26)

Unit

Predicted

PFIF

Normalized

True PFIF

True

RUL

Model

HS

k-means

HS

4 0.6494 0.5301 82 Good - no action Group 3

5 0.6767 0.5897 91 Good - no action Group 2

7 0.5153 0.4332 91 Good - no action Group 3

16 0.6635 0.5172 84 Good - no action Group 2

19 0.5808 0.4718 87 Good - no action Group 3

21 0.5798 0.3220 57 Good - no action Group 3

23 0.6426 0.5680 113 Good - no action Group 4

28 0.6954 0.4567 97 Good - no action Group 4

29 0.5316 0.4099 90 Good - no action Group 4

30 0.6292 0.5427 115 Good - no action Group 3

38 0.6067 0.3321 50 Good - no action Group 4

45 0.5936 0.5201 114 Good - no action Group 3

51 0.5792 0.5376 114 Good - no action Group 4

54 0.5838 0.5416 97 Good - no action Group 2

57 0.5224 0.4715 103 Good - no action Group 4

59 0.7438 0.6773 114 Good - no action Group 2

60 0.5648 0.4889 100 Good - no action Group 4

135

Unit

Predicted

PFIF

Normalized

True PFIF

True

RUL

Model

HS

k-means

HS

70 0.5967 0.4589 94 Good - no action Group 4

73 0.6591 0.6655 131 Good - no action Group 4

74 0.6635 0.5865 126 Good - no action Group 3

75 0.7094 0.6959 113 Good - no action Group 2

79 0.5214 0.4616 63 Good - no action Group 3

80 0.5907 0.4872 90 Good - no action Group 3

89 0.6639 0.5279 136 Good - no action Group 4

95 0.6753 0.7323 128 Good - no action Group 4

97 0.5991 0.4557 82 Good - no action Group 1

5.5.2.3 Good units – monitor

Table 5-8 presents the results obtained from using the regression model to group

equipment as “good – monitor” along with the assignments using k-means for the same

set of units. One of the units has a very low true PFIF value of 0.1850, implying that it

was wrongly grouped and should have been grouped as “soon-to-fail.” The k-means

clustering approach assigned 11 out of the 16 units to the same group, four units were

assigned as “soon-to-fail” while one was grouped as “good – no action”. Assignment

accuracies based on true PFIF values are presented in summary in Table 5-8.

Table 5-8 “Good – monitor” groupings for 4-stage HS division (Number of units: 16)

Unit

Predicted

PFIF

Normalized

True PFIF

True

RUL

Model

HS

k-means

HS

3 0.4564 0.4217 69 Good - monitor Group 4

8 0.4969 0.4351 95 Good - monitor Group 3

10 0.3764 0.3948 96 Good - monitor Group 3

12 0.4358 0.4346 124 Good - monitor Group 3

13 0.3651 0.3872 95 Good - monitor Group 1

27 0.4133 0.3777 66 Good - monitor Group 3

32 0.3381 0.2834 48 Good - monitor Group 3

40 0.3335 0.1850 28 Good - monitor Group 1

43 0.3733 0.2922 59 Good - monitor Group 1

46 0.3231 0.2766 47 Good - monitor Group 3

63 0.4536 0.3735 72 Good - monitor Group 3

72 0.3421 0.3196 50 Good - monitor Group 3

84 0.3014 0.2880 58 Good - monitor Group 1

93 0.3072 0.2961 85 Good - monitor Group 3

94 0.4627 0.3411 55 Good - monitor Group 3

98 0.4534 0.3874 59 Good - monitor Group 3

136

5.5.2.4 Soon-to-fail

Similar to the three-stage HS division, there is a good match between both approaches in

grouping units as “soon-to-fail.” The results in Table 5-9 show that 26 out of 29 units

were assigned to this group by both approaches, while the k-means algorithm assigned 3

equipment to the group “good – monitor.” This is an undesirable result given that all units

due to fail soon should be identified. Considering only the k-means assignments, 32 units

were assigned as “soon-to-fail,” out of which only one unit had a true PFIF value above

0.4. This translates to about 97% “accuracy” in grouping.

Table 5-9 “Soon-to-fail” groupings for 4-stage HS division (Number of units: 29)

Unit

Predicted

PFIF

Normalized

True PFIF

True

RUL

Model

HS

k -means

HS

17 0.2602 0.2622 50 Soon-to-fail Group 1

18 0.2058 0.1850 28 Soon-to-fail Group 1

20 0.0324 0.0614 16 Soon-to-fail Group 1

24 0.0678 0.0839 20 Soon-to-fail Group 1

31 -0.0859 0.0077 8 Soon-to-fail Group 1

34 -0.1119 0.0000 7 Soon-to-fail Group 1

35 0.0754 0.0254 11 Soon-to-fail Group 1

36 0.2490 0.1286 19 Soon-to-fail Group 3

37 0.1405 0.1507 21 Soon-to-fail Group 1

41 0.1418 0.1241 18 Soon-to-fail Group 1

42 0.0032 0.0354 10 Soon-to-fail Group 1

49 -0.0802 0.0414 21 Soon-to-fail Group 1

52 0.0819 0.1312 29 Soon-to-fail Group 1

53 0.1987 0.1362 26 Soon-to-fail Group 1

56 0.2212 0.0869 15 Soon-to-fail Group 3

58 0.1746 0.1847 37 Soon-to-fail Group 1

61 0.0945 0.1097 21 Soon-to-fail Group 1

62 0.1633 0.2046 54 Soon-to-fail Group 1

64 0.1404 0.1441 28 Soon-to-fail Group 1

66 0.2531 0.0706 14 Soon-to-fail Group 1

68 -0.0256 0.0101 8 Soon-to-fail Group 1

76 -0.0740 0.0173 10 Soon-to-fail Group 1

77 0.1484 0.1844 34 Soon-to-fail Group 1

81 -0.0803 0.0038 8 Soon-to-fail Group 1

82 -0.0128 0.0254 9 Soon-to-fail Group 1

90 0.2574 0.1679 28 Soon-to-fail Group 1

91 0.2184 0.1400 38 Soon-to-fail Group 3

92 0.1977 0.1109 20 Soon-to-fail Group 1

100 0.1791 0.0769 20 Soon-to-fail Group 1

As mentioned earlier, it is very important that no unit close to failure is grouped as either

“healthy” or “good” as it will lead to unexpected failures. The results for both the three-

137

stage and the four-stage HS division using both the regression model and the k-means

algorithm show reasonably high classification accuracies based on the true PFIF values.

5.5.3 Summary of results

The summary of the entire groupings using both approaches and for the different multi-

stage HS divisions is presented in Table 5-10.

Table 5-10. Summary of group assignments and accuracies (note that percentages
are based on number of units with true PFIF values within suitable thresholds).

Three-stage HS division Four-stage HS division

Category
Number of units and percentage accuracy Category Number of units and percentage accuracy

Model Accuracy k-means Accuracy Model Accuracy k-means Accuracy

Healthy 29 83% 40 75% Healthy 29 83% 22 95%

Good 31 84% 28 97%
Good – no action 26 100% 23 96%
Good - monitor 16 94% 24 67%*

Soon-to-
fail

40 97% 32 100% Soon-to-fail 29 100% 31 84%

*Low because k-means algorithm could not clearly distinguish this group; some were assigned to the group above it

and others to the group below.

In general, the k-means algorithm performed better for three-stage HS divisions. The k-

means approach could not clearly distinguish between the division of “good units” into

“no action” and “monitor” categories. However, to attain a better-defined grouping

accuracy, the regression model is the proffered approach, since the window boundaries

are user-defined. What must be noted is the importance of defining the window

boundaries for different health states based on sound understanding on the technical

details of the units.

5.5.4 Importance of experts’ judgements and other considerations

While the proposed technique has been demonstrated to produce consistent results, it is

important to note a few salient points. Machine learning approaches to solving

engineering problems have been generally considered as black-box approaches due to the

fact that it is difficult to explain the models used in clear and specific mathematical terms.

However, the reality of complex systems and the ubiquitous availability of data make

their use inevitable. Therefore, experts’ judgements must be used to gauge the results

before implementation. Figure 5-6, which gives the overall flow of the proposed

approach, factors in the important role of experts’ judgments. For instance, an equipment

from a particular manufacturer which is known to have certain maintenance requirements,

in spite of available data, must be considered irrespective of its grouping. Additionally,

138

in order to cluster the equipment for LE actions (repair, upgrade or replacement), some

other operational realities such as minimum downtime required to execute actions, safety

implications, economic implications, etc. also need to be considered. Moreover,

operational and environmental uncertainties like terrain (whether onshore or offshore),

lead times for ordering of spares parts and logistics requirements for repairs all need to

be factored into the decision-making framework.

5.6 Conclusion and future work

The fundamental theory behind data mining concepts have been around for a while now.

Also, the practice of RCM and the use of P-F curves by maintenance and reliability

engineers and specialists are well established. This work developed and implemented a

technique that harnessed concepts from both fields, factoring in the recent rapid advances

in sensor technologies and data collection capabilities, to help group and prioritize

equipment within a homogeneous fleet for LE actions. This is a novel combination of

both concepts and the results presented a remarkable consistency. For asset managers and

decision makers, this is potentially an important tool that will help with better-informed

and data-driven logistics planning and spare parts management. Much better grouping

results can be achieved by using more accurate models which may include adding

regularization to the regression model or formulating a more rigorous approach for

establishing the window boundaries for use with the potential failure interval factor

(PFIF).

The methodology for assessing the accuracy or suitability of unit assignments into groups

can be formulated via a mathematically rigorous approach rather than just mere counts

and comparison to the true PFIF as used in this work. Such a mathematical formulation,

which is an area for future research, may in fact include the modelling of uncertainties

into the accuracy of unit assignments. Furthermore, this work only considered identical

units under the same operational settings for a single failure mode. It can be further

extended and applied to a heterogeneous fleet with dissimilar units under varying loading

conditions, different operational settings and multiple failure modes. Another important

area of work will be a look at how LE actions carried out for any unit or group of units

influence the continuous and ongoing use of the model. If, for instance, a life-extension

action involves an upgrade and a replacement, it will be interesting to know how it affects

139

the model in terms of base data availability for the affected unit and availability of specific

sensors for additional or continuous data acquisition.

In terms of application, this work is essential for identifying and prioritizing vulnerable

equipment for LE. It adds to the repertoire of models, tools and decision support systems

available to asset managers and reliability engineers. Feedback from the proposed process

can potentially serve as useful input for plant and equipment design for longevity and also

influence original equipment manufacturer (OEM) sensor placement philosophies.

5.7 References

Abdelhadi, A. (2017). Heuristic approach to schedule preventive maintenance operations using

k-means methodology. International Journal of Mechanical Engineering and Technology,

8(10), 300–307.

Abdelhadi, A. (2019). Preventive Maintenance Operations Scheduling Based on Eigenvalue and

Clustering Methods. 2019 IEEE 6th International Conference on Industrial Engineering

and Applications, ICIEA 2019, 183–186.

Aggarwal, C. C. (2015). Data mining: the textbook. Springer.

Al-Dahidi, S., Di Maio, F., Baraldi, P., & Zio, E. (2016). Remaining useful life estimation in

heterogeneous fleets working under variable operating conditions. Reliability Engineering

and System Safety, 156, 109–124.

Animah, I., Shafiee, M., Simms, N., Erkoyuncu, J. A., & Maiti, J. (2018). Selection of the most

suitable life extension strategy for ageing offshore assets using a life-cycle cost-benefit

analysis approach. Journal of Quality in Maintenance Engineering, 24(3), 311–330.

Atamuradov, V., Medjaher, K., Camci, F., Zerhouni, N., Dersin, P., & Lamoureux, B. (2020).

Machine Health Indicator Construction Framework for Failure Diagnostics and Prognostics.

Journal of Signal Processing Systems, 92(6), 591–609.

Bektas, O., Alfudail, A., & Jones, J. A. (2017). Reducing Dimensionality of Multi-regime Data

for Failure Prognostics. Journal of Failure Analysis and Prevention, 17(6), 1268-1275.

Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots.

Journal of the American Statistical Association, 74(368), 829–836.

Cleveland, W. S., Devlin, S. J., & Grosse, E. (1988). Regression by local fitting: Methods,

properties, and computational algorithms. Journal of Econometrics, 37(1), 87–114.

Coble, J., & Hines, J. W. (2009a). Fusing Data Sources for Optimal Prognostic Parameter

Selection. Transactions, 100(1), 211–212.

Coble, J., & Hines, J. W. (2009b). Identifying optimal prognostic parameters from data: A genetic

algorithms approach. Annual Conference of the Prognostics and Health Management

Society, PHM 2009.

Ersdal, G., Hörnlund, E., & Spilde, H. (2011). Experience From Norwegian Programme on

140

Ageing and Life Extension. In International Conference on Offshore Mechanics and Arctic

Engineering 44359, 517–522.

Gholami, P., & Hafezalkotob, A. (2018). Maintenance scheduling using data mining techniques

and time series models. International Journal of Management Science and Engineering

Management, 13(2), 100–107.

Goode, K. B., Moore, J., & Roylance, B. J. (2000). Plant machinery working life prediction

method utilizing reliability and condition-monitoring data. Proceedings of the Institution of

Mechanical Engineers, Part E: Journal of Process Mechanical, 214(2), 109–122.

Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health indicator

for remaining useful life prediction of bearings. Neurocomputing, 240, 98–109.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In Data Mining:

Concepts and Techniques (Third Edit). Elsevier.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8),

651–666.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. Mechanical Systems and Signal

Processing, 20(7), 1483–1510.

Kantardzic, M. (2011). Data Mining: Concepts, Models, Methods, and Algorithms. In Data

Mining: Concepts, Models, Methods, and Algorithms: Second Edition. John Wiley & Sons.

Lahrache, A., Cocconcelli, M., & Rubini, R. (2017). Anomaly detection in a cutting tool by k-

means clustering and Support Vector Machines. Diagnostyka, 18(3), 21–29.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Liang, W., Pang, L., Zhang, L., & Hu, J. (2012). Reliability-centered maintenance study on key

parts of reciprocating compressor. Proceedings of 2012 International Conference on

Quality, Reliability, Risk, Maintenance, and Safety Engineering, ICQR2MSE 2012, 414–

418.

Liu, Y., Hu, X., & Zhang, W. (2019). Remaining useful life prediction based on health index

similarity. Reliability Engineering and System Safety, 185, 502–510.

Lorenzoni, A., Kempf, M., & Mannuß, O. (2017). Degradation model constructed with the aid of

dynamic Bayesian networks. Cogent Engineering, 4(1), 1–12.

Medina-Oliva, G., Voisin, A., Monnin, M., & Leger, J. B. (2014). Predictive diagnosis based on

a fleet-wide ontology approach. Knowledge-Based Systems, 68, 40–57.

Moubray, J. (1997). Reliability-centered maintenance. In Reliability-centered maintenance

(Second Edi). Butterworth-Heinemann.

Myatt, G. J. (2006). Making Sense of Data: A Practical Guide to Exploratory Data Analysis and

Data Mining. In Making Sense of Data: A Practical Guide to Exploratory Data Analysis

and Data Mining. John Wiley and Sons.

Nowlan, S. F. (1972). Planning and operational aspects of “on condition” philosophies. In Aircraft

141

Engineering and Aerospace Technology 44(3), 26–28).

Pérez Ramírez, P. A., Bouwer Utne, I., & Haskins, C. (2013). Application of systems engineering

to integrate ageing management into maintenance management of oil and gas facilities.

Systems Engineering, 16(3), 329–345.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey on

data pre-processing for data stream mining: Current status and future directions.

Neurocomputing, 239, 39–57.

Regan, N. (2012). The RCM Solution : A Practical Guide to Starting and Maintaining a

Successful RCM Program. Industrial Press, Inc.

Saxena A. & Goebel K. (2008). Turbofan engine degradation simulation data set. NASA Ames

Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-

repository/

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for

aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and

Health Management, PHM 2008, 1–9.

Shafiee, M. (2015). Maintenance strategy selection problem: An MCDM overview. Journal of

Quality in Maintenance Engineering, 21(4) 378-402.

Shafiee, M. (2016). Modelling and analysis of availability for critical interdependent

infrastructures. International Journal of Risk Assessment and Management, 19(4), 299–314.

Shafiee, M., & Animah, I. (2017). Life extension decision making of safety critical systems: An

overview. In Journal of Loss Prevention in the Process Industries 47, 174–188).

Shafiee, M., Animah, I., & Simms, N. (2016). Development of a techno-economic framework for

life extension decision making of safety critical installations. Journal of Loss Prevention in

the Process Industries, 44, 299–310.

Sharp, J. V., Terry, E. G., & Wintle, J. (2011). A Framework for the Management of Ageing of

Safety Critical Elements Offshore, In International Conference on Offshore Mechanics and

Arctic Engineering, 44359, 141–153.

Vaidya, P., & Rausand, M. (2011). Remaining useful life, technical health, and life extension.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 225(2), 219–231.

Van Horenbeek, A., Van Ostaeyen, J., Duflou, J. R., & Pintelon, L. (2013). Quantifying the added

value of an imperfectly performing condition monitoring system - Application to a wind

turbine gearbox. Reliability Engineering and System Safety, 111, 45–57.

Wakiru, J. M., Pintelon, L., Karanović, V. V., Jocanović, M. T., & Orošnjak, M. D. (2018).

Analysis of lubrication oil towards maintenance grouping for multiple equipment using

fuzzy cluster analysis. IOP Conference Series: Materials Science and Engineering, 393,

012011.

Wang, D., Tsui, K. L., & Miao, Q. (2017). Prognostics and Health Management: A Review of

Vibration Based Bearing and Gear Health Indicators. IEEE Access, 6, 665–676.

Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-based prognostics approach for

142

remaining useful life estimation of engineered systems. 2008 International Conference on

Prognostics and Health Management, PHM 2008, 1-6.

Zhao, P., Kurihara, M., Noda, T., Kashiwa, H., Hiyama, M., & Suzuki, T. (2018). Equipment

Sub-system Extraction and its Application in Predictive Maintenance. 2018 IEEE

International Conference on Prognostics and Health Management (ICPHM), 1–5.

Zhu, J., Nostrand, T., Spiegel, C., & Morton, B. (2014). Survey of condition indicators for

condition monitoring systems. PHM 2014 - Proceedings of the Annual Conference of the

Prognostics and Health Management Society 2014, 635–647.

143

Chapter 6. Uncertainty Quantification in Remaining Useful

Life Prediction Using Bayesian Neural Networks

Sunday Ochella
1
, Mahmood Shafiee

2
, Chris Sansom

1

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract: Many Artificial Intelligence (AI) algorithms have been developed in the

literature for various prognostics and health management (PHM) applications. However,

the majority of these algorithms tend to make point estimates of model parameters, thus

producing deterministic predictions of the remaining useful life (RUL) of industrial

assets. These point estimates ignore the uncertainty inherent in the predictive models’

parameters and the uncertainty in the data used for prediction. The use of Bayesian Neural

Networks (BNNs) shows a lot of promise in providing credible intervals for model

predictions, thus accounting for some of the uncertainties inherent in both the model and

the data. In this study, we propose a deep BNN algorithm using the Monte Carlo dropout

(MC dropout) approach for predicting the RUL of engineering assets, incorporating

uncertainty quantification. The presentation of this work avoids the overly complicated

analytical rigors of the background of BNNs, dwelling only briefly on the fundamentals,

so that practitioners can easily comprehend the algorithm and apply it. The model is

empirically tested on the NASA turbofan engine degradation dataset. The findings show

that the model yields results with RUL distribution parameters well within the RULs of

most of the units, particularly the critical units that are at risk of failure.

Keywords — Bayesian Neural Networks, Remaining Useful Life (RUL), Uncertainty

Quantification, Prognostics and Health Management (PHM), Monte Carlo Dropout, Deep

Learning.

144

6.1 Introduction

Prognostics and health management (PHM), which is a field of study centered around

managing the state of health of equipment or systems across diverse fields, involves the

process of data acquisition, diagnostics, health state division, prognostics, and

maintenance decision-making (Lei et al., 2018). The penultimate activity in this process,

i.e., prognostics, primarily involves predicting the remaining useful life (RUL) of systems

or components. RUL as defined by Jardine et al., (2006) is the time left before observing

failure, given present machine age and/or condition and its past operation profile.

Essentially, RUL is the time from the detection of incipient failure to the time when the

system or equipment performance crosses a failure threshold. An important point to note

is that time in this context could be in hours/minutes/seconds, in number of operational

cycles, or even in terms of usage, examples of which include flight hours for aircraft

engines, runtime for machines or mileage for automobiles. Knowledge of RUL

information provides time to plan in advance and to take an action before failure occurs.

Over the last two decades, many researchers have had to contend with different challenges

in the process of RUL estimation. A paper by Engel et al., (2000) aptly titled Prognostics,

the real issues involved with predicting life remaining, captured key challenges

encountered in the process of predicting RUL by critically analyzing the interrelation

between accuracy of prediction, precision and uncertainty in RUL. The paper explored

some of the necessary conditions to achieve the desired convergence of accuracy and

uncertainty as systems continue to degrade. RUL predictions obtained in the study were

given as probability distributions to capture uncertainty in features (i.e., data) as well as

in the prognostic process (i.e., the model). In spite of all the additional efforts in terms of

PHM research since that study, and even with a myriad of new approaches now being

adopted in this era of big data, the core challenges with uncertainty quantification in

prognostics remain.

Prognostics approaches are broadly grouped as model-based, data-driven or a hybrid of

both approaches. Even though the model-based and hybrid approaches require data to

estimate the model parameters and thus, the RUL, both approaches fundamentally require

the understanding and modelling of the physics of failure of the system or component.

The reality is that such understanding and accurate analytical modelling of the physics of

145

failure is impractical for complex systems. As such, artificial intelligence (AI) techniques,

which are almost entirely data-dependent, have increasingly become the approach of

resort for prognostics in complex systems. Given the present proliferation of advanced

sensor technologies, data storage capabilities and increased computing resources, the

prospects of using AI algorithms to decipher the underlying failure signatures in large

amounts of asset data for the purpose of predicting RUL is indeed now realistic, more

than ever before. Most of the AI-based methods proposed so far involve making point

estimates of RUL (Li et al., 2020; Li et al., 2018; Ruiz-Tagle Palazuelos et al., 2020),

with accuracies measured in terms of the error between the point estimate and the true

RUL, which, in reality, is unknown. In addition to the fact that the true RUL is typically

unknown is also the fact that sensor data is inherently noisy, injecting another layer of

uncertainty known as aleatoric uncertainty. Moreover, the use of AI algorithms involves

the tuning of different hyperparameters like the number of layers of a neural network, the

regularization parameter, the number of neurons in each layer or even the type of AI

algorithm used; all these are variabilities that introduce uncertainty in the prognostic

process itself and this class of uncertainty is termed as ‘epistemic’ uncertainty.

Different approaches have been used in an attempt to address some of these uncertainties,

most common of which are Bayesian approaches. Particle filter-based algorithms (Chang

& Fang, 2019; Miao et al., 2013; Su et al., 2017) and Kalman filter-based algorithms (Cui

et al., 2020; Singleton et al., 2015; Son et al., 2016), which are both based on Bayesian

techniques, have been adopted for RUL prediction. However, in strict technical terms,

these methods are essentially approaches for health stage division as they make use of

past data to predict the present health state of a system and then based on the present

health state and additional data, predict future health states (Sankararaman, 2015). The

RUL is thereby obtained by deduction, inferring RUL from the time it will take for a

system to get into a failed state. Other researchers have used Dynamic Bayesian Networks

and Hidden Markov Models to address uncertainty in prognostics (Bartram &

Mahadevan, 2015; Medjaher et al., 2012; Zhang et al., 2018). Gaussian Process

Regression (GPR) is also a Bayesian technique that provides uncertainty quantification

in terms of variance for RUL predictions and has been used extensively by researchers

because it is also particularly well suited to scenarios with sparse data (Aye & Heyns,

2017; Baraldi et al., 2015; Richardson et al., 2017). Studies by some researchers like

146

Deutsch & He, (2018) tried to address the fact that RUL is not deterministic by employing

a resampling technique, using deep learning algorithms to make several repeated RUL

predictions by removing one instance of the training data during each prediction and

updating the RUL progressively, thereby obtaining the RUL distribution parameters. Liu

et al., (2010) also used a similar approach, using an adaptive recurrent neural network

(ARNN) to predict RUL by making 50 prediction runs and obtaining the RUL distribution

parameters from the 50 RUL values. This approach has the limitation that the uncertainty

in the model and data is not implicitly addressed. As regards AI algorithms, a key step in

the process involves pre-processing of data, which often involves smoothing the data to

remove some noise, discarding outliers, and even generating entirely new features via

feature crosses that involves some mathematical transformation of the original sensor

data. Feature crosses produce additional features that are meant to be more informative

for prognostics purposes. While these approaches are aimed at handling some aspects of

aleatoric uncertainty (i.e., uncertainty in sensor data), data pre-processing itself is

somewhat subjective and injects its own layer of uncertainty.

More contemporary approaches at applying Bayesian techniques within the sphere of AI

algorithms used for prognostics employ the use of Bayesian Neural Networks (BNNs).

As expounded in the work of Gal, (2016), following foundational works in BNN (Denker

& LeCun, 1991; Hinton & van Camp, 1993; MacKay, 1992; Neal, 1995; Tishby et al.,

1989), additional efforts in solving the problem of approximating the posterior

distribution of model weights (which is the fundamental problem in BNN) can be found

in the works of (Barber & Bishop, 1998; Graves, 2011; Minka, 2001). However, most of

those early approaches suffered from the drawbacks of scalability to larger data,

adaptability to complex models, and ease of use by non-core practitioners (Gal, 2016).

Recent advances as presented in other studies (Blundell et al., 2015; Gal & Ghahramani,

2016a, 2016c; Hernández-Lobato & Adams, 2015) have helped to address some of these

challenges. As such, non-core computer science or AI practitioners such as PHM

researchers have very recently started adopting these solutions and using BNNs for

prognostics, particularly to address the issue of uncertainty quantification. Peng et al.

(2020) used a Bayesian deep learning method to address the issue of model (or epistemic)

uncertainty, while Kim & Liu, (2020) and Li et al., (2020) implemented a Bayesian deep

learning algorithm for RUL prediction incorporating both epistemic and aleatoric

147

uncertainties. However, all attempts in the literature using BNNs are analytically

cumbersome and overly theoretical, which may be a turn-off for the core engineers for

which these methodologies should be useful in a practical way.

Apart from the theoretically rigorous presentation, most of the approaches assume that

the prior distribution of the predicted RUL is a normal distribution. However, in reality,

the true distribution of the RUL is unknown and may not be necessarily normal. This

work addresses this gap that by proposing a deep BNN for RUL prediction using the

Monte Carlo dropout (MC dropout) approach, outputting the mean RUL and a credible

interval without making any explicit assumptions about the true RUL distributions. Thus,

an approximation is made of the RUL distribution that is as close as possible to the true

RUL distribution, using an approach that is devoid of too much theoretical formulations,

which is therefore easy to comprehend and use for decision-making. Another specific

contribution of this study is that the proposed algorithm, by design, incorporates both

aleatoric and epistemic uncertainty. This is unlike earlier heuristic approaches that only

attempt to achieve uncertainty quantification by making several, repeated point estimates

of the RUL, thereby not accounting for aleatoric uncertainty, and only indirectly

accounting for epistemic uncertainty.

The remaining part of this paper is organized as follows. Section 6.2 provides a more

detailed perspective of uncertainty quantification in PHM, clearly delineating the various

types of uncertainties and the attempts that have been made to address them. Section 6.3

provides a brief but succinct exposition on BNNs and then goes on to present the Monte

Carlo dropout BNN algorithm used for RUL prediction in this study. In Section 6.4, the

algorithm and the methodology proposed are then applied on the publicly available

NASA turbofan engine degradation dataset and the results are presented and discussed.

Section 6.5 presents the conclusion and highlights areas of future work.

6.2 Uncertainty quantification in PHM

Methods of quantifying uncertainty or incorporating uncertainty quantification in RUL

prediction are testing-based (offline, using data such as those obtained from accelerated

life-cycle testing) and condition-based (online, using sensor data from the equipment or

data obtained from condition monitoring devices) (Sankararaman, 2015; Sankararaman

& Goebel, 2015). Testing-based methods typically apply to small components, several of

148

which can be run to failure to obtain lifetime data and failure probability distributions

while condition-based methods apply to more complex systems. Conventionally,

uncertainties have been categorized as aleatoric (in relation to data) and epistemic (in

relation to model parameters). However, Sankararaman (2015) argues that a more tailored

categorization is necessary for prognostics and RUL prediction, proposing four categories

instead, namely: present, future, modelling and prediction method uncertainties. The

reasons for this PHM-specific categorization are cogent and are presented below.

6.2.1 Types of uncertainties

For each type of uncertainty in prognostics, Sankararaman & Goebel, (2015) identified

the sources as follows:

 Present uncertainty: This is the uncertainty inherent in the estimation of the

present health state, which, in PHM, is a necessary step before RUL prediction.

The sources include sensor noise, gain and bias, data pre-processing tools and

techniques, and filtering and estimation techniques. This uncertainty is analogous

to aleatoric uncertainty in conventional categorizations.

 Future uncertainty: This has to do with the inherent uncertainty in predicting

future conditions. Sources of this uncertainty include future loading,

environmental and operating conditions.

 Modelling uncertainty: This uncertainty is due to the fundamental difference

between the true system output and the output represented by the chosen or

derived model. The uncertainties manifest in the model itself (whether linear,

polynomial or a more complicated relationship captured via a neural network), the

model parameters and in the determination or choice of a failure threshold or end-

of-life (EoL).

 Prediction method uncertainty: This refers to the way the present, future, and

modelling uncertainties combine to influence the actual RUL prediction, with its

associated uncertainty. Given the same dataset and the same operating conditions,

different prognostic methods generally yield different RUL predictions. In fact,

the same method will typically yield a different RUL result for repeated runs of

the algorithm due to variabilities in initial sampling (leading to sampling errors)

and different approaches used in approximating the model parameters. This

149

underscores the fact that although the true RUL value may be deterministic, RUL

results from data-based prediction algorithms are random variables. Both

modelling and prediction method uncertainties are analogous to epistemic

uncertainty.

6.2.2 Approaches to uncertainty quantification

In the subsections below, the different approaches used by PHM researchers for

uncertainty quantification are discussed briefly.

6.2.2.1 “Classical” methods

Traditionally, failure probability data for components are obtained by running several of

such components to failure, thereby obtaining a sample from which failure probability

distribution parameters can be estimated. Out-of-sample or population failure probability

distribution parameters are then inferred from the sample parameters using statistical

techniques. The main, and obvious, limitation of this approach is that it is impractical for

complex systems.

6.2.2.2 Data pre-processing

Sensor data come with noise, signal gain and bias; this has earlier been identified as a

major source of uncertainty. In AI practice, an attempt to address this issue employs some

data pre-processing techniques such as smoothing, filtering and outlier removal or

replacement, amongst others (Ramírez-Gallego et al., 2017; Zhu et al., 2014). Although

these approaches generally tend to make the resulting data or features more informative,

their impact on reducing the inherent uncertainty due to noise is not well established, in

quantitative terms.

6.2.2.3 Several runs of point estimates

One way some researchers have attempted to quantify uncertainty in RUL is by making

several repeated point estimates of RUL using their model or algorithm, thereby

generating a sample of RUL values with enough statistical significance. The population

parameters are then estimated using the sample of RUL values. Deutsch & He, (2018)

used a resampling technique by eliminating one training data for each run of their deep

150

learning-based algorithm and iterating this until the entire training data is covered,

obtaining several point estimates of RUL and thus, RUL distribution parameters. Liu et

al., 2010) also used a similar approach by making 50 RUL prediction runs using an

adaptive recurrent neural network (ARNN) and obtaining the RUL distribution

parameters based on the RUL point estimates. This heuristic approach, of course, fails to

directly account for the uncertainty in the data as well as the model.

6.2.2.4 Bayesian techniques

Conventionally, methods employing Bayesian techniques for health state estimation and

RUL prediction include particle filtering (Chang & Fang, 2019; Miao et al., 2013; Su et

al., 2017), Kalman filtering and its variants (Cui et al., 2020; Singleton et al., 2015; Son

et al., 2016), hidden Markov models (Soualhi et al., 2016; Zhang et al., 2016; Zhu, 2018)

and Dynamic Bayesian Networks (Bartram & Mahadevan, 2015; Zhang et al., 2018).

These methods basically predict system health states based on available data and then

employ the use of recursive techniques or sequential updating to update the health states

as additional data become available, using the time steps up till the time when the system

health state reaches a failure threshold. The time steps or slices are then used as basis for

calculating the RUL. Even though these are fundamental approaches being used to

estimate system health states (Sankararaman, 2015), they provide probability

distributions for the RUL, thus accounting for uncertainty. Some of these techniques have

also been combined with classical reliability methods to achieve uncertainty

quantification in RUL prediction. Bressel et al., (2016) used an extended Kalman filter to

estimate the state of health and the dynamics of the degradation and associated uncertainty

for Proton Exchange Membrane Fuel Cell (PEMFC) under variable loading. An inverse

First Order Reliability Method (iFORM) using formulated limit state functions was then

used to predict the RUL by extrapolating the state of health until a failure threshold is

reached, giving the RUL along with a 90% confidence interval.

Another common approach involves the use of a model to predict RUL and the

subsequent use of Bayesian inference to update the RUL and its distribution parameters

as more data become available. Zhao et al., (2013) integrated condition monitoring data

to update the parameters of their model-based RUL prediction methodology using

Bayesian inference, thereby updating the RUL and the associated uncertainty as more

151

data became available. An et al., (2015) also used Bayesian inference as a statistical

method to address uncertainty in terms of noise in data (aleatory) and model weights

(epistemic). Their method was compared to the method of using repeated predictions of

RUL to obtain RUL distribution as used by Liu et al., (2010) and it outperformed the

repetition method for large levels of noise and for complex underlying system

degradation. Gao et al., (2021) proposed a joint prognostic model that uses a Maximum

Likelihood Estimate (MLE) at an offline stage to determine the prior distribution for each

input signal, after which the distribution parameters obtained using MLE are fed, as

inputs, into a three layer neural network to obtain the linear model for degradation. During

a subsequent online stage, Bayesian updating is then used, along with real-life sensor data

from the unit whose RUL is to be predicted, to obtain the posterior distribution of the

parameters of the linear model earlier derived, thus obtaining an updated RUL

distribution. Liu et al., (2018) proposed an RUL prediction method based on an

exponential stochastic degradation model that considers multiple uncertainty sources

simultaneously, while using a Bayesian-Extreme Learning Machine to further quantify

the uncertainties and predict the RUL for a degradation dataset for crystal oscillators.

The advantage of BNN models over the approaches mentioned so far is that uncertainty

quantification is implicitly modelled in the design of the network such that, rather than

generating repeated point estimates of the RUL in order to get a sample, BNN models

directly generate RUL values as probability distributions. Peng et al., (2020) incorporated

uncertainty into prognostics by using Bayesian deep-learning-based models. A Bayesian

multi-scale convolutional neural network was used to predict RUL with confidence

interval bounds for data from bearings while a Bayesian bidirectional long short-term

memory (LSTM) algorithm was used to predict RUL for industrial systems using the

turbofan engine dataset. For both models, variational inference (VI) was used to

approximate the posterior distribution of the model parameters, given the training data

and the training RUL values. A limitation of the study by Peng et al., (2020) was that

only the uncertainty in model parameters was addressed by their work. An attempt to

close this gap was made in the study by Li et al., (2020), who developed a Bayesian deep

learning framework for RUL estimation incorporating the quantification of epistemic and

aleatoric uncertainties within the same algorithm. The framework, which was

demonstrated using data from experiments on high voltage circuit breakers, was

152

implemented using a gated recurrent unit (GRU), which is one form of the LSTM. While

addressing the uncertainty in the data as well as in the model parameters, a sequential

Bayesian boosting framework was incorporated within the algorithm to help sequentially

shrink the predicted credible interval. This final step, fundamentally, is similar to the

study by Deutsch & He, (2018) where several RUL predictions were made and then fit

into a distribution to account for uncertainties.

The approach of using BNN and breaking down the prognostic process into two or more

steps has also been studied by other researchers. Kim & Liu, (2020) proposed a Bayesian

deep neural network for the prediction of RUL and quantification of uncertainties, which

they grouped into two; weight uncertainty which accounts for the uncertainty in model

weights, and degradation uncertainty which accounts the combined effects of

signal/sensor measurement errors (i.e., uncertainty in data) and variability from one

system to another. The model was formulated in two parts: one part was a Bayesian

LSTM, which was used to predict the RUL while accounting for uncertainty in model

weights, and the second part is a feed forward neural network (FFNN), which takes the

RUL values as input and establishes the monotonic relationship between the RUL values

and the degradation uncertainty in terms of the variance of the data. The weights of the

FFNN were implicitly modelled within the Bayesian LSTM framework. Kraus &

Feuerriegel, (2019) proposed a structured-effect neural network (SENN) model to

quantify uncertainty and address the issue of interpretability of machine learning (ML)

approaches to data-driven RUL prediction. The SENN algorithm included three

components; the first was a non-parametric part with probabilistic lifetime models fitted

with Weibull or lognormal distributions; the second part was a linear regression

component using current condition data, while the third part uses an LSTM to model non-

linearities in the data using variational Bayesian inference to estimate the model

parameters. Aside the goal of quantifying uncertainties, other researchers have also used

BNN as an important algorithm in the scenario of small and noisy data because BNNs

tend to be more robust to overfitting. Vega & Todd, (2020) used BNN to estimate RUL

for miter gates in structural health monitoring (SHM) applications where minimal data

was obtained from a finite element analysis (FEA) model which mimicked real-life

inspection data obtained from the miter gates. The cost implication of using prognostics

153

as compared to conventional inspection methods was also evaluated using the probability

confidence bounds estimated using the BNN.

Guo et al., (2020) estimated RUL for an external gear pump using a Radial Basis Function

with Bayesian regularization, which is a Bayesian approach towards minimizing

overfitting during the training process. Li & He, (2020) also used a Bayesian optimization

algorithm along with adaptive batch normalization (AdaBN) on a deep convolutional

neural network for RUL prediction. Their method yielded a self-optimized network

structure and hyperparameters selection (such as number of neural network layers,

learning rate, batch size, etc.) as against random search and grid search. However, the

algorithms in both the studies by Guo et al., (2020) and Li & He, (2020) generate point

estimates for the predictions, rather than probability distributions. Gaussian Process

Regression (GPR) is also a Bayesian technique that provides uncertainty quantification

in terms of variance for RUL predictions and has been used extensively by researchers

because it is also particularly well suited to scenarios with sparse data (Aye & Heyns,

2017; Baraldi et al., 2015; Richardson et al., 2017). Other Bayesian techniques that have

been used for uncertainty quantification in RUL prediction include: Dempster-Shafer

theory and Bayesian Monte Carlo methods (He et al., 2011) and the Relevance Vector

Machine (Liu et al., 2015; Zhou et al., 2013). The multifarious collection of Bayesian

methods used for uncertainty quantification in prognostics demonstrates the fact that it is

a challenge of huge significance in the context of using RUL predictions as a basis for

maintenance decision-making.

6.3 BNN algorithm for RUL prediction

In this section, a concise background of BNNs is presented, along with our BNN

algorithm for RUL prediction under uncertainty.

6.3.1 BNN Background

To get the full picture of the RUL prediction algorithm proposed in this work, it is

expedient to give a brief background of the underlying theorems, as a detailed exposition

will be out of the scope of this work. As stated earlier, the original intention of this work

is to actually tone down on the cumbersome analytical coverage which is usual with BNN

research.

154

6.3.1.1 Bayes’ theorem

Let �(�) denote the marginal or unconditional probability of observing a dataset, �,

irrespective of all other occurrences. Also, let �(�) denote the marginal or unconditional

probability of observing a set of neural network weights, �, irrespective of the data or

other parameters. The joint probability of these two observations is denoted by �(�, �)

while the conditional probability of one observation, given another observation, is

denoted by �(�|�), which, in this case, stands for the probability of observing the

network weights, �, given the dataset, �. Bayes’ theorem connects all these probabilities

as given in Eq.(6-1) :

�(�|�) =
�(�,�)

�(�)
, (6-1)

where �(�, �), represents the joint probability between the model weights and the

observed data, given in Eq. (6-2) as:

�(�, �) = �(�|�)�(�). (6-2)

The joint probability, �(�, �) is symmetrical, i.e., �(�, �) = �(�, �).

So, in general, the application of Bayes’ theorem to neural networks involves having a

prior belief about the model weights, which corresponds to weight initialization in

traditional deep learning. This prior belief is denoted by �(�). The marginal probability

of observing the data, �(�), is referred to as the evidence (i.e., referring to the observed

data). The probability of observing the model weights given that the data (or evidence)

has been observed (typically obtainable after training the model) represents the posterior

probability denoted by �(�|�). The inverse of the posterior, �(�|�), represents the

likelihood that the data or evidence, �, will be observed, given a set of weights, �. Bayes’

theorem can therefore be expressed as given in Eq. (6-3):

��������� =
������ℎ��� × �����

��������
 (6-3)

6.3.1.2 Probabilistic models

RUL prediction problems are inherently regression tasks. The core task of a neural

network developed for a regression task is to make predictions given a training dataset,

155

�, which contains � input-output pairs of the form � = {��, ��; ��, ��; … ; ��, ��}. A

neural network can be formulated as a probabilistic model as �(�|�, �). The joint

distribution between the model weights and the data, �(�, �), even before training, can

be defined using the prior belief, �(�), and the choice of the model (or likelihood),

�(�|�), using Eq. (6-2). The likelihood is determined by the model architecture and the

choice of the loss function used to achieve the optimization objective. For a conventional

regression problem with a known variance and the loss measured as the mean squared

error (MSE), the mean of a Gaussian likelihood can be specified by the network output

as given in Eq. (6-4) (Goan & Fookes, 2020):

�(�|�) = �(�|�, �) (6-4)

Typically, all the samples in the dataset, �, are assumed to be independent and identically

distributed (i.i.d.), and the likelihood can be written as a product of the contribution from

all the � individual samples in the dataset, given in Eq. (6-5) as:

�(�|�) = � �(��|��, �)

�

���

 (6-5)

It can be shown that maximizing the likelihood given in Eq. (6-5) yields the Maximum

Likelihood Estimate (MLE) of the model weights, �, with the negative log likelihood

(NLL) as the optimization objective during training. However, the MLE gives point

estimates and is prone to overfitting as the regularization terms are all discarded (Jospin

et al., 2020). Further, the full form of Eq. (6-1) can be written as given in Eq. (6-6):

�(�|�) =
�(�|�)�(�)

�(�)
. (6-6)

In practice, during training, the training data or evidence is constant, so the term �(�) in

Eq. (6-6) normalizes the likelihood, making it a proper probability distribution. So, Eq.

(6-6) is reducible to:

�(�|�) ∝ �(�|�)�(�) (6-7)

or, in other words, Posterior ∝ Likelihood × Prior.

From Eq. (6-7), therefore, it is clear that maximizing �(�|�)p(�) corresponds to the

maximum a posteriori (MAP) estimate, with the same optimization objective as with the

156

MLE, i.e., the negative log likelihood. The MAP, however, includes a regularization term

but still yields a point estimate similar to the MLE (Jospin et al., 2020). So, the MLE and

the MAP, though being probabilistic models for the neural network outputs, only yield

point estimates and do not account for uncertainty.

6.3.1.3 Variational Inference

Suppose that we have full probability distributions over the parameters of the neural

network, then uncertainties can be taken into account. To model this, the output, �, will

be a continuous variable and not a fixed value or point estimate, with its distribution

conditional upon an input, �, for which prediction is to be made, and the training data, �.

The output or posterior predictive distribution, �(�|�, �), is usually calculated by

combining (i.e., integrating) the individual predictive contributions from a given, finite

set of distributions of model weights (i.e., �(�|�, �)), and weighing each prediction with

its posterior probability, �(�|�). As presented in the work by Duerr et al., (2020) and

Gal & Ghahramani, (2016b), this integral is given as in Eq. (6-8) below:

�(�|�, �) = � �(�|�, �) �(�|�)�� (6-8)

It is a known problem that the analytical solution to the posterior predictive distribution,

�(�|�), in Eq. (6-8) is intractable. Common approaches used to overcome this problem

in BNNs is via variational inference (VI) and MC dropout. The VI approach is not used

in this work but is only discussed briefly, without going into overly complicated analytical

details, to help contrast it with the MC dropout approach. With VI, the analytically

intractable posterior, �(�|�), is approximated using a posterior, ��(�), whose analytical

form is known, with a set of parameters, �. The usual assumption for ��(�), which is

called the variational distribution, is a standard normal distribution. As shown by Barber

and Bishop (Barber & Bishop, 1998), the variational distribution, ��(�), can be used to

approximate the true posterior distribution, �(�|�), by minimizing the Kullback-Leibler

(KL) divergence between ��(�) and �(�|�). The KL divergence between both

distributions is defined by Eq. (6-9) as:

�����(�) ∥ �(�|�)� = ∫ ��(�) ���
��(�)

�(�|�)
��. (6-9)

157

The KL divergence can be shown, as in the work by Barber & Bishop, (1998); Duerr et

al., (2020) and Goan & Fookes, (2020), to be reducible to Eq. (6-10) as:

�����(�) ∥ �(�|�)� = �� ����
��(�)

�(�)
− ��� �(�|�)� + lo g �(�) (6-10)

With Eq. (6-10) further reducible to Eq. (6-11) as:

�����(�) ∥ �(�|�)� = −ℱ(��)+ lo g �(�) (6-11)

where ℱ(��) is the eventual optimization objective, taken from Goan & Fookes, (2020),

and given in Eq. (6-12) as:

ℱ(��) = ��[��� �(�|�)] − �����(�) ∥ �(�)�. (6-12)

Figure 6-1: Minimizing the KL divergence between the approximate and true posterior is

equivalent to maximizing the evidence lower bound (ELBO) – adapted from Barber & Bishop,

(1998) and Goan & Fookes, (2020).

The first term in Eq. (6-12) is the expected value of the log likelihood with respect to the

variational distribution parameters and the second term is the KL divergence between the

variational and the prior distribution. The relationship described in Eq. (6-11) can be

visualized as given in Figure 6-1.

It can be seen from Figure 6-1 that by minimizing the KL divergence, ℱ(��) is maximized

and approaches the log of the marginal likelihood (i.e., log of the evidence). Hence, ℱ(��)

is commonly referred to as the Evidence Lower Bound (ELBO). So, minimizing KL

divergence is equivalent to maximizing the ELBO. During optimization using

backpropagation, only the terms containing the variational parameters remain, as all other

terms reduce to zero. Eq. (6-12) can be expanded, as shown by Blundell et al., (2015), to

obtain Eq. (6-13) given as:

158

ℱ(��) = ��[��� �(�|�)] − ��[��� ��(�)] + ��[��� �(�)]. (6-13)

Blundell et al., (2015) showed that ℱ(��) can therefore be approximated by drawing �

Monte Carlo samples of the weights, ��, from the variational distribution, ��(�), as:

ℱ(��) ≈
1

�
 ����� ���|��� − ��� ������� + ��� ����� �

�

���

 (6-14)

where �� represents the ��� Monte Carlo sample drawn from the variational posterior

������. This implementation of VI is the commonly known as the Bayes by backprop

algorithm proposed by Blundell et al., (2015).

As regards uncertainty quantification, epistemic uncertainty is captured in the variational

posterior distribution, given in terms of the set of parameters, �, (which are the mean, μ,

and variance, σ2, in the case of a normal distribution). Given more data, epistemic

uncertainty can be reduced as the model better approximates the posterior distribution.

However, aleatoric uncertainty, which is captured in the probability distribution used to

model the likelihood function, is not reduced with the use of additional data as it only

attempts to quantify the inherent noise in the data. The VI approach discussed so far,

models the neural network weights as a probability distribution with means and variances.

Thus, there are twice as many trainable parameters for the neural network, as illustrated

in Figure 6-2(a).

6.3.1.4 MC Dropout

MC dropout technique works by randomly dropping nodes during the training process of

a deep neural network, thus setting the weights of the neurons connected to the output of

the dropped nodes to zero. The final model weights are then obtained as an average of the

neuron weights during each epoch. Dropout is most popular for use in preventing

overfitting (Srivastava et al., 2014). However, Gal & Ghahramani, (2016c) showed that

dropout can also be used as a computationally cheaper algorithm to achieve the VI

approximation in BNNs. Unlike the VI approach, the MC dropout algorithm achieves a

similar approximation by quantifying uncertainty in BNNs without doubling the number

of trainable parameters on the neural network. A deep BNN implementing MC dropout

is illustrated in Figure 6-2(b).

159

Figure 6-2 BNNs implementing (a) VI, with network weights modelled as distributions, and (b) MC dropout (adapted from (Duerr et al., 2020)).

μ1

σ1

Input
data

x

Output
layer

t = 2

≃y

μ1

σ1

Input
data

x

Output
layer

t = T

μ1

σ1

≃ y

RUL ≃

. . .

. . .Input
data

x

Output
layer

t = 1

≃y

(a)

VI

μ1

σ1

Input
data

x

Output
layer

t = 2

≃
μ1

σ1

Input
data

x

Output
layer

t = T

μ1

σ1

≃

. . .

. . .Input
data
x*

Output
layer

t = 1

≃

(b)

X

X

X

X

X

X

MC
dropout

160

The MC dropout algorithm is simply rendered as follows: given a new input �∗, the output

of the neural network, �∗ can be computed by performing � stochastic forward passes

through the network, obtaining an output ��∗
�
 during each of the forward passes, with a

dropout probability, �, which determines the fraction of units to be dropped during each

forward pass. Therefore, for the � stochastic forward passes, the outputs obtained are

���∗
�

, �� ∗
�

, ��∗
�

, … , ��∗
�

� and the mean output, �∗, corresponding to the input, �∗, is

obtained by taking the average using Eq. (6-15) as:

�∗ =
1

�
 � ��∗

�

�

���

 (6-15)

The uncertainty is computed from the sample ���∗
�

, �� ∗
�

, ��∗
�

, … , ��∗
�

� by choosing � to be

large enough to attain statistical significance. It is obvious that this is a very simplistic

and computationally cheaper approximation of the posterior distribution, as compared to

the VI method discussed earlier. This method also lends itself to a better possibility of

quantifying the parameters of the true posterior distributions, without making too many

explicit assumptions about the prior and as such, will be used for our uncertainty

quantification in RUL prediction.

6.3.2 BNN model for RUL prediction

The MC dropout algorithm is implemented using TensorFlow (version 2.6.0) with Keras

(www.tensorflow.org) and TensorFlow Probability (version 0.13.0). Other libraries and

dependencies will also need to be imported and used as required. The step-by-step

procedure is as follows.

a. The training and test data is pre-processed on MATLAB and features are selected

based on trendability, prognosability and monotonicity values, as used in one of

our earlier work (Ochella et al., 2021) as presented in Chapter 5 of this thesis.

b. Pre-processed training and test data containing selected features are then imported

to TensorFlow, and the training data is further split into training data (85%) and

validation data (15%) using scikit-learn’s GroupShuffleSplit function.

c. The distribution of the training labels (i.e., training RULs) in the split version of

the training and validation data are then plotted to ensure that both sets contain

RULs of similar distribution and are indeed comparable.

http://www.tensorflow.org/

161

d. The RUL, instead of being modelled as a variable that linearly reduces from

commencement of operation until the failure of each unit (see Figure 6-3a), is

modelled to reflect the true degradation trend of a unit under degradation, known

as the potential-failure (or P-F) curve (see Figure 6-3b). To achieve this, the RUL

from commencement of operations is capped at a specified value, RULcapped, until

the time when the unit’s RUL decreases below the capped RUL value, which

corresponds to when a fault must have been detected. This is in line with the study

by Heimes, (2008). The degradation curve for the capped RUL is shown in Figure

6-3c.

Figure 6-3 (a) Linearly degrading RUL (b) Typical degradation of components (P-F curve)
(c) Modelling of the RUL for the training data.

e. The model is then built, with an input layer, 6 inner layers, dropout between each

layer, the rectified linear unit (ReLU) as the activation function, and an output

layer with two nodes. The two nodes on the output layer produce the mean RUL

and the variance information, capturing both aleatoric and epistemic uncertainties.

The loss function is also built as the negative log likelihood, using the log_prob

function available on TensorFlow Probability.

f. The network hyperparameters are tuned using the Hyperband class in Keras tuner

(O’Malley et al., 2019). The hyperparameters tuned include: the dropout rate, p,

in the range [0.1,0.5] in steps of 0.1; the number of units or nodes in the input

layer and in each inner layer, in the range [64,1024] in steps of 16; and the learning

rate for the Adam optimizer, for the choice of values from the set {0.1, 0.01, 0.001,

0.0001}. The tuning process yields a set of “best hyperparameters”.

time

H
e
a
lt

h
 c

o
n

d
it

io
n

Point of incipient failure

Point of
functional failure

(b)

Unit lifetime

R
U

L

(a)

R
U

L

(c)

time

Point of
failure

Point of
incipient failure

Initial stable
(healthy) phase

time

Point of
failure

RULcapped

162

g. Using the “best hyperparameters”, the optimal number of epochs for which the

model should be trained is then tuned to obtain the “best epoch”. For both the

hyperparameter tuning and the determination of the best epoch, the tuning

objective was the achievement of minimum validation loss.

h. With the MC dropout BNN now fully built, the model is then fitted using the

training data while the optimization during training is achieved using the

validation data.

i. As in the MC dropout algorithm described in subsection 6.3.1.4, predictions are

made to obtain the mean RUL for the test data and the credible interval (CI). This

is done by obtaining the conditional probability distributions (CPD) for each of

the engine units in the dataset using the test data, �����. The CPD, given as

�(��|�����, ω�) is obtained by running T stochastic forward passes, thus sampling

T times from the true RUL distribution, obtaining T values of the predicted RUL

for each unit. The mean RUL is then obtained in a manner similar to that given in

Eq. (6-15), but this time using the test data and the formula in Eq. (6-16) as:

���� =
1

�
 � �(��|�����, ��)

�

���

 (6-16)

The mean RUL, ����, is equivalent to the Bayesian predictive distribution,

�(�|�����, �). Regarding the uncertainty, since T was chosen in order to obtain

statistical significance, the credible interval, CI, is obtained to be equivalent to the

95% confidence interval if the distribution were normal (i.e., ±1.96σ). However,

in the case of the MC dropout algorithm, the CI corresponds to the quantiles at

0.025 and 0.975, which can also be obtained by calculating the percentiles, with

the upper bound being the value in the predicted distribution which is greater than

97.5% of all outcomes while the lower bound is the value less than 2.5% of all

outcomes.

6.4 Case Studies

In this section, the proposed MC dropout BNN model is applied for uncertainty

quantification in RUL predictions for the NASA C-MAPSS dataset FD001 (Saxena &

Goebel, 2008). The same dataset was used for the demonstration in Chapter 5 to identify

and prioritise equipment within an asset for LE, and will be used throughout this thesis

163

(the results from RUL prediction in this chapter will be used once again, later in Chapter

7, for LE decision-making). However, for ease of cross-referencing, the dataset is briefly

described below.

6.4.1 Dataset description

C-MAPSS stands for Commercial Modular Aero-Propulsion System Simulation and the

dataset consists of four different run-to-failure datasets under varying fault modes and

operational conditions. The training sets commence at a point where all units are in a

healthy state and end at the point of failure for each unit. For the test sets, the data for all

units commence when each unit is in a healthy state and are terminated at an unknown

point during each unit’s lifetime. For more details about the dataset, the readers can refer

to Saxena et al., (2008). For this study, the dataset FD001 is used. This dataset contains

run-to-failure data for 100 identical turbofan engines subjected to similar failure modes

and same operating conditions. Each of the 100 engine units has a distinct lifetime, with

three columns representing operational condition settings and another 21 columns

representing sensor data. These parameters, taken as the condition monitoring variables

that give an indication of the engines’ level of degradation, are presented in Table 6-1.

Table 6-1. Parameters in the C-MAPSS dataset.

S/N Measured parameter Unit of measurement Variable assigned

1 Unit number -- unit_num

2 Time cycles time_cycles

3 Operational setting 1 -- ops_set1

4 Operational setting 2 -- ops_set2

5 Operational setting 3 -- ops_set3

6 Total temperature at fan inlet °R s_1

7 Total temperature at LPC1 outlet °R s_2

8 Total temperature at HPC2 outlet °R s_3

9 Total temperature at LPT3 outlet °R s_4

10 Pressure at fan inlet psia s_5

11 Total pressure in bypass-duct psia s_6

12 Total pressure at HPC outlet psia s_7

13 Physical fan speed rpm s_8

14 Physical core speed rpm s_9

15 Engine pressure ratio (P50/P2) -- s_10

16 Static pressure at HPC outlet psia s_11

17 Ratio of fuel flow to Ps30 pps/psi s_12

18 Corrected fan speed rpm s_13

19 Corrected core speed rpm s_14

20 Bypass Ratio -- s_15

164

S/N Measured parameter Unit of measurement Variable assigned

21 Burner fuel-air ratio -- s_16

22 Bleed Enthalpy -- s_17

23 Demanded fan speed rpm s_18

24 Demanded corrected fan speed rpm s_19

25 HPT4 coolant bleed lbm/s s_20

26 LPT coolant bleed lbm/s s_21
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure
Turbine

6.4.2 Data pre-processing

This section briefly describes the pre-processing of the data, which formed the basis for

features selection. First, the statistics (mean, median, variance, standard deviation) for

each of the sensor readings were calculated to gain quick but useful insights into the data.

Sensor readings with zero variance information are not useful for predictions and were

immediately eliminated. As such, seven sensors, s_1, s_5, s_6, s_10, s_16, s_18, and

s_19, all of which have zero variances, were eliminated, leaving 14 sensors. The

remaining sensor data are then scaled using Min-Max scaling, in the range [0,1], after

which the scaled data is smoothed using the robust locally weighted scatterplot smoothing

(RLOWESS) algorithm as in the work of Cleveland, (1979) but implemented as an in-

built function on MATLAB. The 14 remaining sensors are further subjected to checks in

order to select the most informative sensors for prognostic purposes. To achieve this, the

prognosability, trendability and monotonicity metrics were computed on MATLAB, in

accordance with the work of Coble & Hines, (2009a; 2009b), where they defined the

fitness value, which combines the values of all three metrics. The fitness values calculated

using Eq. (6-17), which was taken from Coble & Hines, (2009a; 2009b), are shown in

Table 6-2.

������� = �������������� + ������������ + ������������ (6-17)

Table 6-2. Fitness values to determine prognostic information in selected sensor data

Sensor s_2 s_3 s_4 s_7 s_8 s_9 s_11 s_12 s_13 s_14 s_15 s_17 s_20 s_21

Fitness
value

2.81 2.78 2.83 2.84 2.04 0.97 2.87 2.89 2.09 0.96 2.82 2.80 2.87 2.79

Given that prognosability, trendability and monotonicity metrics have values in the range

[0,1], the range of the fitness value is 0.0 ≥ fitness ≥ 3.0. A selection criterion was then

165

defined such that the fitness value for each selected sensor is above half of the maximum

fitness value (i.e., above 1.5), in order to ensure that the sensors with the best predictive

information are selected. Using the selection criterion: fitness ≥ 2.0, the most informative

sensors where then selected, resulting in the preprocessed data for 12 sensors, s_2, s_3,

s_4, s_7, s_8, s_11, s_12, s_13, s_15, s_17, s_20 and s_21, which were exported for use

in training the BNN model. A plot of the smoothed data for the 10 selected sensors for

sample engine units (units 5 and 12) is shown Figure 6-4, revealing that most sensor

trends are either predominantly monotonically increasing or monotonically reducing.

Figure 6-4 Scaled and smoothed sensor data for units 5 and 12 showing monotonically
increasing or decreasing signals

6.4.3 Hyperparameter tuning and BNN training

With the pre-processed data imported on TensorFlow, the negative log likelihood was

defined as the loss function using the log_prob function available on TensorFlow

Probability while the softplus function was used to constrain the trainable scale (or

variance parameter) to a positive value. To model the RUL, the RUL values were capped

at 125 cycles, (as explained in subsection 6.3.2(d)), which proved to yield the most

optimal results after several iterations. Afterwards, the deep BNN was tuned using the

Hyperband class in Keras tuner, with the first and penultimate layers of the network fixed

166

at 256 units. This was done to control the width of the network while optimizing the

network’s depth. This led to the selection of the “best hyperparameter” values of 992 units

in each of the 5 tunable hidden layers, a dropout rate of 0.1, and a learning rate of 0.001

for the Adam optimizer. With the network fully configured using these values, the Keras

tuner was then used, along with the training data, which has been split into 85% training

data and 15% validation data, to iterate and obtain the optimal number of epochs (or “best

epoch”) as 83, which may vary slightly depending on training, especially with the

stochasticity introduced by dropout. The fully defined deep BNN is then used to train the

network.

6.4.4 Prediction and results

In accordance with the MC dropout algorithm, RUL predictions with uncertainty

quantification were made by making T = 1000 passes of the test data through the trained

BNN. The mean RULs, ����, were obtained using Eq. (6-15) while the upper and lower

bounds of the credible intervals, CI, were obtained as the quantiles at 0.975 and 0.05

respectively (corresponding to percentiles at 97.5% and 5% respectively). The RUL

prediction results obtained for the 100 units are given in Table 6-3.

Table 6-3. Predictions for all 100 units in FD001 dataset (RUL and CI units are in
number of cycles)

Unit # RULt σRULp (σRULp + CI) (σRULp - CI) Unit # RULt σRULp (σRULp + CI) (σRULp - CI)

1 112 113 131 90 51 114 54 66 42

2 98 46 59 33 52 29 94 116 79

3* 69 20 43 6 53 26 57 70 45

4 82 54 73 40 54 97 125 132 118

5 91 55 69 39 55 137 123 133 109

6 93 125 131 117 56 15 3 11 0

7 91 122 136 101 57 103 37 60 19

8 95 81 107 63 58 37 45 58 31

9 111 24 35 14 59 114 112 127 91

10 96 104 138 60 60 100 120 132 104

11 97 19 36 6 61 21 30 43 18

12 124 136 148 121 62 54 117 128 97

13 95 122 131 112 63 72 32 47 20

14 107 67 86 51 64 28 39 51 27

15 83 109 131 86 65 128 96 124 68

16 84 127 135 119 66 14 35 47 24

17 50 53 65 41 67 77 125 134 115

18 28 38 50 27 68 8 7 18 0

19 87 125 132 118 69 121 87 119 63

167

Unit # RULt σRULp (σRULp + CI) (σRULp - CI) Unit # RULt σRULp (σRULp + CI) (σRULp - CI)

20 16 41 54 29 70 94 61 84 47

21 57 111 154 72 71 118 115 133 72

22 111 128 136 120 72 50 92 115 71

23 113 126 134 119 73 131 126 134 115

24 20 63 74 51 74 126 42 58 32

25 145 124 131 116 75 113 125 133 118

26 119 134 145 122 76 10 19 31 8

27 66 121 129 112 77 34 53 67 39

28 97 55 67 45 78 107 121 136 104

29 90 111 138 85 79 63 55 69 43

30 115 38 53 25 80 90 82 105 66

31 8 7 16 0 81 8 11 21 1

32 48 122 133 98 82 9 5 13 0

33 106 54 73 38 83 137 55 76 41

34 7 8 18 0 84 58 85 109 65

35 11 7 16 0 85 118 107 124 91

36 19 14 24 4 86 89 99 116 81

37 21 66 94 45 87 116 133 143 122

38 50 56 70 40 88 115 100 122 63

39 142 124 132 114 89 136 53 69 41

40 28 47 70 29 90 28 30 46 17

41 18 25 38 13 91 38 38 50 27

42 10 24 35 14 92 20 3 11 0

43 59 53 68 37 93 85 24 35 15

44 109 83 105 62 94 55 69 87 55

45 114 32 45 21 95 128 106 125 83

46 47 44 61 29 96 137 123 129 116

47 135 41 62 25 97 82 70 90 55

48 92 69 84 56 98 59 60 83 40

49 21 53 65 40 99 117 125 133 118

50 79 129 141 116 100 20 54 65 42

RULt = ground truth RUL; σRULp = predicted mean RUL, CI = credible interval

Blue bold text (total of 4 units): equipment that are still “healthy” but predictions indicate that they will
soon fail. Leads to wasted resources or wasted life for the affected units. Focus was on units with predictions
of less than 60 cycles.

Red bold text (total of 12 units): equipment that will soon fail but prediction fails to capture this and give
them a longer time to failure. This is undesirable as it may lead to unforeseen failure. Focus was on units
with predictions of less than 60 cycles.

The fundamental goal in prognostics is to ensure that faults in critical equipment being

monitored are identified and their future failure times estimated so that an appropriate

maintenance strategy can be planned and implemented in advance, before failure occurs.

As such, the focus here will be on the units with ground truth RUL of 60 cycles or less

(the range of the ground truth RUL is from 7 to 142). In Table 6-3, all the units with RULt

≤ 60 cycles are in bold text. Out of the 39 engine units with RULt ≤ 60, the ground truth

168

RUL for 24 of them fall completely within the range of the RUL prediction along with

the uncertainty bounds, the true RUL for 2 units fall just a few cycles outside the

prediction boundary while the remaining 13 engines have predictions outside the

uncertainty bounds. This is a good result at 95% confidence level. Most importantly, the

predictions do not make assumptions of certainty as it is with point estimates.

To provide further insight into the prediction results, Table 6-4 shows a comparison of

RMSE values for the proposed method, against other methods, most of which, however,

provide only point estimates of predictions on the FD001 dataset.

Table 6-4: Comparison of algorithm prediction performance for different methods on the

FD001 dataset

Method Reference
RMSE

(# of cycles)

Proposed (BNN via MC dropout) -- 38.94

Convolutional Neural Network (CNN) Babu et al. (2016) 18.45

Long Short-Term Memory (LSTM) Zheng et al. (2017) 16.14

Multi-Objective Deep Belief Networks Ensemble (MODBNE) Zhang et al. (2017) 15.14

Bi-directional LSTM Zhang et al. (2018) 14.26

Bayesian LSTM Kim & Liu (2020) 12.19

Deep CNN with Bayesian Optimization and Adaptive Batch

Normalization
Li & He (2020) 11.94

From Table 6-4, direct comparison of the performance of the proposed method with the

other methods suggests that the proposed method needs to be improved upon, when

looking at just the mean RUL values (in a manner similar to point estimates). Noteworthy,

though, is the fact that the other methods on Table 6-4 are from methods that provide

point estimates, with the algorithms’ optimization objective being the minimization of the

RMSE, hence the lower RMSEs recorded – obtained from algorithms which do not

account for any uncertainty. In contrast, BNNs are designed to minimise the negative log

likelihood, with the algorithm accounting for both epistemic and aleatoric uncertainties,

hence the rather high RMSE obtained when using the just the mean RUL as the basis for

performance measure. Making such comparisons, however, does not account for the

advantage that uncertainties have been incorporated into the BNN prediction model and

that the results obtained would be more beneficial to engineers in terms of planning for

LE action.

169

As an additional part of the discussion regarding the prediction results, a crucial note is

again made here that conventional algorithms that make point estimates use metrics like

the root mean square error (RMSE), the mean absolute error (MAE) or a scoring function

developed for use with the CMAPSS dataset. Most studies published in the literature also

use the RMSE metric for measuring the performance of BNN algorithms used for RUL

prediction. However, since the optimization objective for BNNs is the negative log

likelihood, using RMSE as a performance measure is somewhat inappropriate. The fact

is that bespoke metrics for use in measuring BNN performance do not exist at the

moment. Since BNNs quantify uncertainty, some attempts have been made to use the

average variance or average standard deviation (i.e., the average confidence interval or

average uncertainty) as a performance measure. This is comparable to the Overall

Average Variability (OAV) metric presented in subsection 4.2.2.1. The average CI

obtained for the prediction results from this study was 38.78 cycles. Such a measure will

only work in terms of benchmarking or comparison with other methods if the dataset is

exactly the same, and the number of passes through the algorithm during prediction is the

same or at least normalized, so that aleatoric uncertainty is constant, and the performance

of epistemic uncertainty quantification can then be assessed and compared.

Another metric that may be suitable for measuring the predictive performance of BNNs

used for RUL predictions is the Confidence Interval Coverage (CIC), also presented in

subsection 4.2.2.1. The CIC measures the number of predictions for which the RUL fall

completely within the confidence bounds, as a percentage of the total number of

predictions, and achieving a CIC of 100% would mean that all the predictions fall

completely within the confidence bounds. The CIC value will increase when the

confidence level is dropped from 95% to 90% and would increase further as the

confidence level drops further. Using this metric, which is rather simplistic, would give

an average CIC value of around 60% for our study, over several runs of the algorithm at

95% confidence level. Again, this is an evolving area, and a clear gap exists for additional

research towards measuring performance of BNNs, so as to achieve easy benchmarking

of prediction results against results from other studies. Consequently, the focus of this

study is on the practicality of using prediction results by engineers and the interpretability

the results offer, when compared to point estimates.

170

6.4.5 Engine degradation trajectories

The modelling of the training RUL was presented in subsection 6.3.2(d), which conforms

to the well-known degradation trajectory in condition monitoring, known as the potential

failure curve. In this subsection, a plot of the RUL prediction trajectories will show that

our modelling was indeed correct. Figure 6-5 shows the RUL prediction trajectory plots

for nine random engine units, with main selection criterion being that each unit has

reasonably degraded and is approaching its EoL.

Figure 6-5: Predicted degradation trajectory for some sample units, showing the credible
intervals.

As can be observed from all nine plots, the RUL remains fairly steady at the

commencement of each unit’s operation. However, a clearly noticeable point is reached

along the trajectory where the rate of decline increases; this point corresponds to the point

171

during operation of the engine when a fault is detected by sensors. In fact, even when the

RUL was modelled linearly and the network was trained using the linear RUL, the RUL

trajectory for some engines showed this characteristic. This shows that the deep BNN is

able to decipher, from the sensor data, when a fault has occurred in any of the engines.

Regarding uncertainty quantification, by sampling the mean RUL T times, where T =

1000 in our study, 1000 possible combinations of the network model weights were

accounted for. T, which represents the number of prediction runs of the algorithm for each

set of input, was chosen to achieve statistical significance and to obtain a distribution

spread that captures most prediction outcomes. In other machine learning applications

that adopt the MC dropout algorithm, typical values for T lie in the range of 200 – 500,

which equally produce a number of runs of the algorithm that achieves statistical

significance. For this study, T was chosen as 1000 to ensure diversity in the results

obtained, thus ensuring that the true RUL distribution is better captured. As such, the

Monte Carlo sampling implemented by the BNN inherently accounts for the epistemic

uncertainty as the variability of the predictions already accounts for the different model

weights. Regarding the aleatoric uncertainty, the negative log likelihood, NLL, which was

minimized as the optimization objective, involves the variance information in the data.

Otherwise, the MSE, which is used for conventional regression analysis would have been

used. Thus, the NLL accounts for heteroscedasticity in the RUL prediction, and the

combined effect of both uncertainties can be observed in the RUL trajectories in Figure

6-5, with varying prediction uncertainty as the degradation trajectory progresses. Another

important observation from Figure 6-5 is that the uncertainty bounds taper inwards and

narrows as each unit’s EoL approaches. The reason for this is that, since the model makes

RUL predictions via Bayesian inference, the confidence of predictions increases as more

data becomes available, hence the typically narrower confidence bounds much later in

the unit’s operational life at which time enough operational data is available to make more

confident predictions.

6.5 Conclusion

Uncertainty quantification in prognostics and health management (PHM) of industrial

assets remains an on-going challenge because future predictions are inherently difficult

to make, especially for complex systems. The practice of PHM has continuously evolved

172

with time and the application of contemporary technologies has consistently been

successfully applied towards the solution of PHM challenges. In this era of big data, using

sensor technologies to optimize future asset maintenance decisions has been extensively

explored, leading to several methodologies for predicting RUL for equipment under

condition monitoring. This study has tried to bridge the gap in such predictions, since

most methodologies provide point estimates, which tend to be ignorant of the inherent

challenges with making RUL predictions. The main issue with point estimates is that they

are confident and can be misleading, thus making planning difficult for engineers.

Bayesian approaches attempt to address this issue by stating where and when the

prediction model is not very confident, based on the data available and the model used

for prediction. Particularly, the uncertainty is quantified in numerical terms, rather than

qualitatively, thus providing interpretable information for use in maintenance planning

and optimization.

Even in the area of uncertainty quantification, additional assumptions about the true

posterior distribution are made, one of which is that the true RUL distribution is Gaussian.

Even though the MC dropout approach seems not to explicitly make the same analytical

assumptions of the posterior distribution, as with the VI approximation, the negative log

likelihood, which is the optimization objective in both cases, implicitly assumes that the

posterior is a Gaussian. As such, a possible improvement area as regards uncertainty

quantification in RUL prediction is an algorithm that is completely agnostic to the true

posterior distribution, since the true RUL posterior distribution is not always Gaussian.

Also, regarding this study in particular, true ways of measuring the algorithm’s

performance will be useful, even though performance measurement for BNNs is an

ongoing research problem, given that the algorithms yield uncertainty bounds which

characteristically have different spreads and their accuracies are not easy to measure using

conventional metrics used for regression problems, like the RMSE. Developing such

metrics will aid the easy comparison of different prognostic results for similar datasets or

even across disparate datasets. In spite of these challenges, providing uncertainty

quantification in prognostics, as has been expounded in this study, remains the most

desirable approach and this study provides results that are more interpretable for

engineers and are thus a lot more useful in practical terms. The ideal goal will be to

173

develop models that provide very narrow uncertainty bounds at high confidence levels

and then measure their performance using bespoke metrics.

6.6 References

An, D., Kim, N. H., & Choi, J. H. (2015). Statistical aspects in neural network for the purpose of

prognostics. Journal of Mechanical Science and Technology, 29(4), 1369–1375.

Aye, S. A., & Heyns, P. S. (2017). An integrated Gaussian process regression for prediction of

remaining useful life of slow speed bearings based on acoustic emission. Mechanical

Systems and Signal Processing, 84, 485–498.

Babu, G. S., Zhao, P. and Li, X. L. (2016). Deep convolutional neural network based regression

approach for estimation of remaining useful life. In Database Systems for Advanced

Applications pp. 214-228.

Baraldi, P., Mangili, F., & Zio, E. (2015). A prognostics approach to nuclear component

degradation modeling based on Gaussian Process Regression. Progress in Nuclear Energy,

78, 141–154.

Barber, D., & Bishop, C. (1998). Ensemble learning in Bayesian neural networks. Nato ASI Series

F Computer and Systems Sciences, 168, 215–238.

Bartram, G., & Mahadevan, S. (2015). Probabilistic prognosis with dynamic bayesian networks.

International Journal of Prognostics and Health Management, 6 (SP4)(SP4).

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural

networks. 32nd International Conference on Machine Learning, ICML 2015, 2, 1613–1622.

Bressel, M., Hilairet, M., Hissel, D., & Ould Bouamama, B. (2016). Remaining useful life

prediction and uncertainty quantification of proton exchange membrane fuel cell under

variable load. IEEE Transactions on Industrial Electronics, 64(4), 2569–2577.

Chang, Y., & Fang, H. (2019). A hybrid prognostic method for system degradation based on

particle filter and relevance vector machine. Reliability Engineering and System Safety, 186,

51–63.

Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots.

Journal of the American Statistical Association, 74(368), 829–836.

Coble, J., & Hines, J. W. (2009a). Fusing Data Sources for Optimal Prognostic Parameter

Selection. Transactions, 100(1), 211–212.

Coble, J., & Hines, J. W. (2009b). Identifying optimal prognostic parameters from data: A genetic

algorithms approach. Annual Conference of the Prognostics and Health Management

Society, PHM 2009.

Cui, L., Wang, X., Wang, H., & Ma, J. (2020). Research on remaining useful life prediction of

rolling element bearings based on time-varying Kalman Filter. IEEE Transactions on

Instrumentation and Measurement, 69(6), 2858–2867.

Denker, J. S., & LeCun, Y. (1991). Transforming Neural-Net Output Levels to Probability

Distributions. Advances in Neural Information Processing Systems 3, 3, 853–859.

174

Deutsch, J., & He, D. (2018). Using deep learning-based approach to predict remaining useful

life of rotating components. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

48, 11–20.

Duerr, O., Sick, B., & Murina, E. (2020). Probabilistic Deep Learning: With Python, Keras and

TensorFlow Probability. Manning Publications.

Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess, A. (2000). Prognostics, the real issues involved

with predicting life remaining. IEEE Aerospace Conference Proceedings, 6, 457–470.

Gal, Y. (2016). Uncertainty in Deep Learning. In PhD Thesis. PhD Thesis, University of

Cambridge.

Gal, Y., & Ghahramani, Z. (2016a). A theoretically grounded application of dropout in recurrent

neural networks. Advances in Neural Information Processing Systems, 1027–1035.

Gal, Y., & Ghahramani, Z. (2016b). Dropout as a Bayesian Approximation: Appendix. 33rd

International Conference on Machine Learning, ICML 2016, 3, 1661–1680.

Gal, Y., & Ghahramani, Z. (2016c). Dropout as a Bayesian approximation: Representing model

uncertainty in deep learning. 33rd International Conference on Machine Learning, ICML

2016, 3, 1651–1660.

Gao, Y., Wen, Y., & Wu, J. (2021). A Neural Network-Based Joint Prognostic Model for Data

Fusion and Remaining Useful Life Prediction. IEEE Transactions on Neural Networks and

Learning Systems, 32(1), 117–127.

Goan, E., & Fookes, C. (2020). Bayesian Neural Networks: An Introduction and Survey. In

Lecture Notes in Mathematics (Vol. 2259, pp. 45–87). Springer.

Graves, A. (2011). Practical variational inference for neural networks. Advances in Neural

Information Processing Systems 24: 25th Annual Conference on Neural Information

Processing Systems 2011, NIPS 2011, 2348–2356.

Guo, R., Li, Y., Zhao, L., Zhao, J., & Gao, D. (2020). Remaining Useful Life Prediction Based

on the Bayesian Regularized Radial Basis Function Neural Network for an External Gear

Pump. IEEE Access, 8, 107498–107509.

He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries

based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power

Sources, 196(23), 10314–10321.

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008

International Conference on Prognostics and Health Management, PHM 2008, 1–6.

Hernández-Lobato, J. M., & Adams, R. P. (2015). Probabilistic backpropagation for scalable

learning of Bayesian neural networks. 32nd International Conference on Machine Learning,

ICML 2015, 3, 1861–1869.

Hinton, G. E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the

description length of the weights. COLT ’93: Proceedings of the Sixth Annual Conference

on Computational Learning Theory, 5–13.

Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and

prognostics implementing condition-based maintenance. In Mechanical Systems and Signal

Processing (Vol. 20, Issue 7, pp. 1483–1510).

175

Jospin, L. V., Buntine, W. L., Boussaid, F., Laga, H., & Bennamoun, M. (2020). Hands-on

Bayesian Neural Networks - a Tutorial for Deep Learning Users. ACM Computing Surveys,

1, 1.

Kim, M., & Liu, K. (2020). A Bayesian deep learning framework for interval estimation of

remaining useful life in complex systems by incorporating general degradation

characteristics. IISE Transactions, 53(3), 326–340.

Kraus, M., & Feuerriegel, S. (2019). Forecasting remaining useful life: Interpretable deep learning

approach via variational Bayesian inferences. Decision Support Systems, 125, 113100.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Li, G., Yang, L., Lee, C.-G., Wang, X., & Rong, M. (2020). A Bayesian deep learning RUL

framework integrating epistemic and aleatoric uncertainties. IEEE Transactions on

Industrial Electronics.

Li, H., Zhao, W., Zhang, Y., & Zio, E. (2020). Remaining useful life prediction using multi-scale

deep convolutional neural network. Applied Soft Computing Journal, 89, 106113.

Li, J., & He, D. (2020). A Bayesian Optimization AdaBN-DCNN Method with Self-Optimized

Structure and Hyperparameters for Domain Adaptation Remaining Useful Life Prediction.

IEEE Access, 8, 41482–41501.

Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep

convolution neural networks. Reliability Engineering and System Safety, 172, 1–11.

Liu, D., Zhou, J., Pan, D., Peng, Y., & Peng, X. (2015). Lithium-ion battery remaining useful life

estimation with an optimized Relevance Vector Machine algorithm with incremental

learning. Measurement: Journal of the International Measurement Confederation, 63, 143–

151.

Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010). An adaptive recurrent neural

network for remaining useful life prediction of lithium-ion batteries. Annual Conference of

the Prognostics and Health Management Society, PHM 2010.

Liu, Z., Cheng, Y., Wang, P., Yu, Y., & Long, Y. (2018). A method for remaining useful life

prediction of crystal oscillators using the Bayesian approach and extreme learning machine

under uncertainty. Neurocomputing, 305, 27–38.

MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks.

Neural Computation, 4(3), 448–472.

Medjaher, K., Tobon-Mejia, D. A., & Zerhouni, N. (2012). Remaining useful life estimation of

critical components with application to bearings. IEEE Transactions on Reliability, 61(2),

292–302.

Miao, Q., Xie, L., Cui, H., Liang, W., & Pecht, M. (2013). Remaining useful life prediction of

lithium-ion battery with unscented particle filter technique. Microelectronics Reliability,

53(6), 805–810.

Minka, T. P. (2001). A family of algorithms for approximate bayesian inference. In PhD Thesis.

PhD Thesis, Massachusetts Institute of Technology.

176

Neal, R. M. (1995). Bayesian learning for neural networks. PhD Thesis. PhD Thesis, University

of Toronto.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & others. (2019). Keras

Tuner.

Ochella, S., Shafiee, M., & Sansom, C. (2021). Adopting machine learning and condition

monitoring P-F curves in determining and prioritizing high-value assets for life extension.

Expert Systems with Applications, 176, 114897.

Peng, W., Ye, Z. S., & Chen, N. (2020). Bayesian deep-learning-based health prognostics toward

prognostics uncertainty. IEEE Transactions on Industrial Electronics, 67(3), 2283–2293.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey on

data pre-processing for data stream mining: Current status and future directions.

Neurocomputing, 239, 39–57.

Richardson, R. R., Osborne, M. A., & Howey, D. A. (2017). Gaussian process regression for

forecasting battery state of health. Journal of Power Sources, 357, 209–219.

Ruiz-Tagle Palazuelos, A., Droguett, E. L., & Pascual, R. (2020). A novel deep capsule neural

network for remaining useful life estimation. Proceedings of the Institution of Mechanical

Engineers, Part O: Journal of Risk and Reliability, 234(1), 151–167.

Sankararaman, S. (2015). Significance, interpretation, and quantification of uncertainty in

prognostics and remaining useful life prediction. Mechanical Systems and Signal

Processing, 52–53, 228–247.

Sankararaman, S., & Goebel, K. (2015). Uncertainty in prognostics and systems health

management. International Journal of Prognostics and Health Management.

Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data set. NASA Ames

Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-

repository/

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for

aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and

Health Management, PHM 2008, 1–9.

Singleton, R. K., Strangas, E. G., & Aviyente, S. (2015). Extended kalman filtering for remaining-

useful-life estimation of bearings. IEEE Transactions on Industrial Electronics, 62(3),

1781–1790.

Son, J., Zhou, S., Sankavaram, C., Du, X., & Zhang, Y. (2016). Remaining useful life prediction

based on noisy condition monitoring signals using constrained Kalman filter. Reliability

Engineering and System Safety, 152, 38–50.

Soualhi, A., Clerc, G., Razik, H., El Badaoui, M., & Guillet, F. (2016). Hidden Markov Models

for the prediction of impending faults. IEEE Transactions on Industrial Electronics, 63(5),

3271–3281.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15, 1929–1958.

Su, X., Wang, S., Pecht, M., Zhao, L., & Ye, Z. (2017). Interacting multiple model particle filter

177

for prognostics of lithium-ion batteries. Microelectronics Reliability, 70, 59–69.

Tishby, N., Levin, E., & Solla, S. A. (1989). Consistent inference of probabilities in layered

networks: predictions and generalizations. International 1989 Joint Conference on Neural

Networks, 2, 403–409.

Vega, M. A., & Todd, M. D. (2020). A variational Bayesian neural network for structural health

monitoring and cost-informed decision-making in miter gates. Structural Health

Monitoring, 1–15.

Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G. and Hu, J., (2018). Transfer learning with

deep recurrent neural networks for remaining useful life estimation. Applied

Sciences, 8(12), 2416.

Zhang, C., Lim, P., Qin, A. K. and Tan, K. C. (2017). Multiobjective deep belief networks

ensemble for remaining useful life estimation in prognostics. IEEE Transactions on Neural

Networks and Learning Systems, 28(10), 2306-2318.

Zhang, D., Bailey, A. D., & Djurdjanovic, D. (2016). Bayesian identification of Hidden Markov

Models and their use for condition-based monitoring. IEEE Transactions on Reliability,

65(3), 1471–1482.

Zhang, Z., Dong, F., & Xie, L. (2018). Data-Driven Fault Prognosis Based on Incomplete Time

Slice Dynamic Bayesian Network. IFAC-PapersOnLine, 51(18), 239–244.

Zhao, F., Tian, Z., & Zeng, Y. (2013). Uncertainty quantification in gear remaining useful life

prediction through an integrated prognostics method. IEEE Transactions on Reliability,

62(1), 146–159.

Zheng, S., Ristovski, K., Farahat, A. and Gupta, C. (2017). Long short-term memory network for

remaining useful life estimation. In Proc. IEEE International Conference on Prognostics

Health Management (ICPHM), Dallas, TX, USA, Jun. 2017, pp. 88-95.

Zhou, J., Liu, D., Peng, Y., & Peng, X. (2013). An optimized Relevance Vector Machine with

incremental learning strategy for lithium-ion battery remaining useful life estimation.

Conference Record - IEEE Instrumentation and Measurement Technology Conference,

561–565.

Zhu, J., Nostrand, T., Spiegel, C., & Morton, B. (2014). Survey of condition indicators for

condition monitoring systems. PHM 2014 - Proceedings of the Annual Conference of the

Prognostics and Health Management Society 2014, 635–647.

Zhu, K. (2018). Online tool wear monitoring via hidden semi-markov model with sependent

durations. IEEE Transactions on Industrial Informatics, 14(1), 69–78.

179

Chapter 7. An Advanced Analytics Approach to Asset Life

Extension Decision-Making.

Sunday Ochella
1
, Mahmood Shafiee

2
, Chris Sansom

1

1
Department of Energy and Power, Cranfield University, Bedfordshire MK43 0AL,

United Kingdom.

2Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury,

CT2 7NT, United Kingdom.

Abstract: The conventional approach for life-extension (LE) of complex assets involves

carrying out a project at the end of an asset’s design life. However, the components of an

asset such as systems, subsystems and vendor modules typically have different design

lifetimes and considering LE only when the asset reaches its end-of-life is somewhat

anachronistic. In recent times, many advanced analytics techniques are being adopted to

estimate an asset’s remaining useful life (RUL) using sensor data. This paper proposes a

novel model for data-driven LE decision-making using RUL values predicted on a

continuous basis during an asset’s operational life. Our proposed LE model is

conceptually targeted at the component, unit, or subsystem level, and is eventually built

up for the entire asset. Consequently, LE is viewed and assessed as a series of ongoing

activities, albeit carefully orchestrated in a manner similar to operation and maintenance

(O&M). The application of the model is demonstrated using the publicly available NASA

C-MAPSS dataset for large commercial turbofan engines. This approach will be very

beneficial to asset owners and maintenance engineers as it seamlessly weaves LE

strategies into O&M activities, thus optimizing resources.

Keywords: Remaining useful life (RUL); life extension (LE); prognostics and health

management (PHM); advanced analytics; reliability-centered maintenance (RCM);

decision-making.

7.1 Introduction

There is an ever-increasing number of industrial engineering assets approaching the end

of their design life, and quite a larger number are even operating beyond their typical

180

design life. Most industrial engineering assets have a design life of about 20 to 25 years.

For instance, offshore oil and gas assets are typically designed to last for 20 to 25 years

(Ersdal et al., 2018; Nezamian et al., 2012), wind turbines also have a design life of about

20 to 25 years (DNV-GL, 2016; Luengo & Kolios, 2015; Nielsen et al., 2019), and, in the

aviation industry, an aircraft’s life can vary, depending on the flight cycles or flight hours,

but is typically between 20 to 25 years (Jiang, 2013; Wang et al., 2018). In each of the

above industrial sectors, most of the operational assets were built in the ’70s and ’80s and

are now running beyond their design lives. Even those built in the ’90s are now

approaching the end of their design life, hence, there is an overwhelming need for

development and adoption of appropriate asset end-of-life (EoL) strategies.

At a high level, the EoL strategies of industrial assets can be divided into three major

categories: in-situ abandonment, use-up and decommissioning, and life extension (LE)

(Shafiee & Animah, 2017). In-situ abandonment entails leaving as asset in place at the

site of operation upon attaining EoL, with the site prepared, made safe and all previously

powered components de-energized. Use-up and decommissioning entails using the asset

until failure or until the end of its design life, decommissioning it by removing the asset

from the site and then restoring the site to its pristine condition. The third EoL strategy,

LE, involves extending the operational life of an asset beyond the original design life and

extracting more value from the asset. When opting for LE, the decision for either in-situ

abandonment or decommissioning is effectively deferred to a later date, depending on

regulatory requirements. Each of these EoL options have their own merits as well as

potential downsides. For instance, LE avoids the need for huge capital investment while

still extracting value from the existing asset but can increase the ongoing cost of operation

and maintenance due to more frequent monitoring and inspections during the LE period.

Decommissioning, on the other hand, is argued to be environmentally preferable, as

compared to in-situ abandonment, since it restores the environment to pristine conditions,

but it can be disproportionately expensive to implement.

In recent years, extensive research has been carried out to assess the economic and

environmental impacts of different EoL scenarios. Amongst these scenarios, LE has

received the most favourable consideration because a lot of assets continue to remain

functional and deliver value even after the expiration of their design lives. For the

181

majority of industrial assets, LE is the most favourable EoL strategy from both the

technical and economic aspects because not only are most of the engineering designs

typically conservative, the understanding of how to operate and maintain them has

improved over time and, as such, additional value can usually be derived beyond the

original design life.

The conventional approach of LE for complex assets involves performing a series of

activities by a project team on different components of an asset at the end of its design

life. During the LE process, data is gathered through inspections and condition

assessments and then some plans for Asset Integrity Management (AIM) and Structural

Integrity Management (SIM) are prepared for LE implementation, subject to regulatory

approval (Hua et al., 2017; Shafiee et al., 2016; Stacey, 2011). A comprehensive review

by Shafiee & Animah, (2017) revealed some other issues that must be considered during

LE decision-making, including lack of good quality data, workforce ageing, obsolescence

management, and robust RUL prediction methods. Overall, the project-like approach to

LE, which will be discussed in more detail in Section 7.2, leans overly towards SIM,

which is understandable, given that it is the structure that supports all other components

of most assets. However, we will show that such a project-like approach is anachronistic

when put side-by-side the methods proposed in this paper, which are drawn on practices

from reliability-centered maintenance (RCM) and data-driven prognostics and health

management (PHM).

As has been highlighted throughout this thesis, PHM involves four core areas, namely:

data acquisition and management; diagnostics; prognostics, which involves predicting the

remaining useful life (RUL) of an asset; and decision-making (Lei et al., 2018). There are

three approaches to PHM, namely, model-based, data-driven, and fusion approaches, the

details of which can be found in the work by Ochella & Shafiee, (2020). Data-driven

PHM, the approach used in this paper, involves using sensor data from various monitored

equipment on an asset, along with machine learning (ML) algorithms, to determine the

state of health of the associated equipment and then predicting its RUL to make accurate

maintenance decisions. Uninterrupted condition monitoring (CM) of equipment within

an asset via sensor-based devices can potentially become overwhelming, particularly in

terms of cost of data storage as well as installation and maintenance of sensors and other

182

ancillary devices. However, the alternative, which involves capturing CM data via

periodic inspections, can be subjective since such periodic inspections are conducted by

human inspectors whose judgement may differ from time to time. Moreover, periodic

inspections may lead to missing out on capturing critical failure events since such

inspections are not real-time and are characterized by a range of human factors that can

impact on data quality (Lukens & Markham, 2018). A way around this, of course, is

proper sensor design and placement to achieve optimal sampling frequencies, which is

one of the main features of PHM systems. Again, it can be argued that sensors do not

necessarily provide detailed information regarding failure modes of the monitored

equipment since such information is typically obtained by a detailed Failure Mode,

Effects and Criticality Analysis (FMECA). To overcome this challenge, Ochella et al.,

(2021) proposed a data-driven method which combined ML methods and RCM concepts

to prioritize assets for LE consideration, as presented in Chapter 5 of this thesis. The

approach involved continuous monitoring of equipment via sensors, determination of

their states of health using a condition indicator called the potential failure interval factor

(PFIF) and subsequently grouping different equipment with similar condition indicators

together for the purpose of LE. These results form part of the first phase of the LE

decision-making model proposed in this study.

The focus of LE decision-making approach proposed in this work will be on critical

equipment whose condition indicators reveal that they are close to their EoLs. In specific

terms, we use a PHM metric called the alert time, in combination with RUL prediction

results into which uncertainties have already been incorporated, to establish actionable

decisions with implications for logistics support and LE. A novel criterion, called the

acceptability criterion, which was proposed in Chapter 3, is also adopted to address the

aspects of LE decision-making that involve regulatory approvals and certification by

third-party bodies or classification societies. Furthermore, the decision-making approach

proposed in this study considers the impact of AI-enabled PHM solutions and the

associated regulatory environment on LE decisions. To the best of our knowledge, this is

the first attempt at bringing these disparate research endeavours together as an integrated,

end-to-end data-driven LE decision-making model. Our model has the capability to be

adopted in different industries, as it relies heavily on data gathered from the operational

assets, rather than the technicalities of a specific sector, industry, or class of assets.

183

The remaining part of this paper is organized as follows. Section 7.2 provides an overview

of LE practices, culminating in the need for data-informed LE decision-making models.

The details of the proposed decision-making model are presented in Section 7.3. A

demonstration of the applicability of the entire approach is presented in Section 7.4, along

with its limitations and suggestions for future work. Section 7.5 concludes the paper.

7.2 Overview of LE practices

The justifications that typically need to be made for LE are in two broad categories,

technical and economic. The technical aspect includes safety, reliability, and availability

of the asset, while the economic aspect looks at return on investment (ROI), overall asset

life cycle cost (LCC) and benefit-to-cost ratio (BCR). At the core of this is the realization

that an asset undergoing degradation requires a slightly different approach towards

operation and maintenance (O&M). An overall asset can be grouped into different

systems, subsystems, components and parts, so that the impact of degradation at any of

these levels on the overall asset can be assessed.

Figure 7-1 The impact of single and multiple life extension actions on an asset (adapted from
Ochella et al., (2021)]).

Assets are considered to have reached their EoL when a performance or degradation

threshold is reached, as illustrated in Figure 7-1. Such thresholds are usually determined

through classical statistical approaches like accelerated life cycle tests, or in more recent

Condition after
LE1 <100%

“Healthy” or
“Good”

403836 24 26 time
(cycles/months/yrs)

R
es

is
ta

nc
e

to
 f

ai
lu

re
(i

nd
ic

a
ti

ve
 o

f c
on

d
it

io
n

)

Point of
Detectability
of fault

Inspection task
captures fault

Operation
commences

2 4 6 8 10 12 14 16 18 20 22 0 28 30 32 34

Faulty state1

Original asset life

Asset life after two LE actions

td

Life gained
due to LE1

Life gained due to LE1 and LE2

P-F interval1

Lifetimemax

Failure
threshold

Averted
failure
point 2

Projected
EoL

Condition after LE2
≤ Condition after LE1

“Good”

Original
condition:
“Healthy”

LE action1

Averted
failure
point 1

LE action2

P-F interval2

Note: td = time delay between occurrence of fault and actual detection

“Soon-to-fail”
points

184

times, using run-to-failure data and ML algorithms. Another way for an asset to reach

EoL is through obsolescence, when the asset becomes unserviceable and thus

economically and functionally impractical to operate and maintain (Macchi et al., 2018).

Our study focuses on assets that have reached or are approaching EoL via degradation

and are thus repairable, replaceable, or serviceable. Figure 7-1 shows the impact of single

and multiple LE actions on an asset. From a data-driven PHM context, LE essentially

restores the condition indicator for an asset from a state of “soon-to-fail” to a “healthy”

or “good” state. Condition indicator charts will form a part of the decision-making model

proposed in this paper. The following subsections, however, provide a review of

conventional approaches to LE, and map a trend leading to the need for data-driven

approaches, especially in the present era of big data and smart systems.

7.2.1 Approaches to LE

As stated earlier, conventional LE practice involves setting up a project team, which then

embarks on and drives the LE process. Typically, an overall asset or fleet of assets, say

an offshore platform for instance, will first be broken down into systems, subsystems, and

components. The subdivisions are then further grouped into different categories,

depending on failure modes and criticality. Afterwards, the condition of the critical

equipment and structures are assessed for the eventual application of suitable LE

strategies. The detailed review of LE research by Shafiee & Animah, (2017) showed that

the LE process can be broadly grouped into five, viz: defining the premise and scope of

the LE program, asset condition assessment, RUL prediction, evaluation and selection of

LE strategies, and implementation. Obtaining regulatory approval, which is core to the

entire spectrum of activities, straddles the five processes because all activities must

comply with standards and government regulations. A high-level breakdown of the

typical LE workflow is illustrated in Figure 7-2.

185

Figure 7-2 The general workflow for technical assessment during LE process.

Two key technical aspects that inform decision-making are the condition

assessment (which indicates the health state of the asset via a Health Index (HI)), and

RUL prediction (which represents how much longer the equipment can operate before

failure). To arrive at a health index that gives an indication of the technical condition for

an equipment, techniques must be developed to appropriately weigh health factors (like

testing/inspection frequency, degradation checks, maintenance, etc.) and history factors

(like age, failure history, location/terrain, operating environment, etc.) (Animah &

Shafiee, 2016). The condition indicator used in this work, known as the potential failure

interval factor (PFIF), was developed in our earlier paper (Ochella et al., 2021). Other

similar health indices in the literature include the grey health index proposed by Kalgren

et al., (2006), the Asset Health Index proposed by De la Fuente et al., (2018) and the

condition health and system refurbishment index proposed by Wang et al., (2015).

7.2.1.1 Structural components of assets

Although this study does not cover structures, conventional approaches to LE tend to be

more focused on structures, as they are considered to be the foundation or framework

upon which the operation of other assets and equipment are built. The development of a

Structural Integrity Management (SIM) plan for use during the LE phase involves data

collection, evaluation, remaining fatigue life prediction, inspection planning, obtaining

regulatory approval and the implementation of the approved LE and inspection program

186

(Boutrot & Legregeois, 2015; Galbraith et al., 2005; Gibbs & Graf, 2014; Rashad, 2017).

A common approach is to use probabilistic methods to model fatigue damage

accumulation by trending stress versus number of cycles (i.e., S-N curves) (Liu &

Frangopol, 2019). As such, the structural degradation or damage mechanisms typically

considered include fatigue due to repeated cyclic loading over the asset’s lifetime, various

forms of corrosion, direct physical damage due to impacts like dropped objects or

collisions, creep, and accumulated plastic deformation, amongst others (Aeran et al.,

2016). When assessing a structure for LE, the variation of loads on the structures over the

lifetime is analyzed and modelled, including dead load, live load, wave load, current load,

and wind load, as may be applicable to the asset under consideration (Aeran et al., 2017).

These various loads are typically modelled to obtain a time-dependent damage index,

which serves as an indicator for the condition of the structure and can then be used as the

basis for making LE decisions.

In recent times, practices similar to those used in the field of data-driven PHM have been

extensively applied to Structural Health Monitoring (SHM) to estimate the condition of

structures and predict remaining fatigue life (Bull et al., 2021; Entezami et al., 2019;

Entezami et al., 2021). Again, the data used for data-driven SHM and health condition

assessment for asset structures are from sensors which typically log vibration and

environmental condition data (Bhowmik, 2020). With such data, knowledge about the

health state of the asset’s structure at any time instant is available, hence enabling the

determination of LE actions which are triggered only as necessary, based on predictions

from ML models (Basso & Copello, 2019).

7.2.1.2 Impact of uncertainties on LE decision-making

RUL prediction is a core technical aspect of the LE process. However, there are always

uncertainties involved in the prediction process. It is therefore important to be able to

quantify the uncertainties in RUL prediction, and subsequently exploit such

quantification in the process of LE decision-making. Most studies in the literature propose

point estimates of RUL; however, the predicted RUL values are often affected by

uncertainties in the data, the model used, the environmental conditions and future loading

conditions, amongst other factors. There are a few approaches for quantifying the

uncertainty in RUL prediction, which yield RUL values as probability distributions rather

187

than point estimates. The study by Elwany & Gebraeel, (2008) used sensor data to predict

RUL distributions for obtaining the parameters of an exponential degradation model as

inputs to a spare parts replacement and inventory management decision-making model.

Sensor-data was collected from accelerated degradation tests for rolling element bearings

and used to compute the RUL distributions analytically. The performance of the sensor-

based prognostic model in terms of number of failures and total maintenance costs was

compared to that of a fixed-time-interval maintenance policy. However, the model was

tested on a single-unit replacement and inventory model and did not consider the overall

life-cycle costs. Moreover, only the mean values were used in the RUL calculations and

the variance information which addresses additional uncertainty was not fully exploited.

A similar study was conducted by Wang et al., (2015) to formulate a prognostics-based

spare parts ordering and system replacement policy for deteriorating systems. In their

research, the lead time to order spare parts was modelled as a stochastic process with a

probability density function rather than as a fixed value. The sensitivity of predictive

replacement costs with respect to variations in lead time was derived, however it was only

applied to non-reparable degrading systems and hence, the opportunities for LE were not

fully explored.

With regards uncertainty management in LE, Ramírez & Utne, (2015) used Dynamic

Bayesian Networks (DBN) as a tool to support LE decision-making for ageing repairable

systems. Several parametric models were proposed to describe the deterioration process,

imperfect maintenance, safety and risk variables as well as evaluate costs during the LE

period. The EoL options considered were use-up and replacement. In terms of the

potential for failure during the LE phase, the study revealed that the use-up option had a

higher level of uncertainty than the replacement option. However, the replacement option

involved a higher capital cost which made the overall assessment to favour use-up, from

a cost perspective. Spare parts inventory and lead times to order parts were not modelled

in the study.

7.2.1.3 LE strategies

There are several LE strategies adopted by different industries to sustain acceptable levels

of reliability and reliability during the LE phase. A detailed review by Shafiee & Animah,

188

(2017) lists and explains various LE strategies. Table 7-1 provides a definition of each

strategy, along with their potential application cases.

Table 7-1 Different life extension strategies with their meanings and potential
application cases.

LE strategy Meaning and application scenario

Replacement

/repowering

Mostly applicable to power generation units. Involves replacing an existing

equipment with a new one or upgrading the system to a higher nameplate capacity.

Typically returns equipment to “as good as new (AGAN)” condition.

Reconditioning Involves actions such as cleaning, restoration of material properties, assembling, and

fastening. Returns equipment to a better state than before but not up to AGAN.

Repair Involves restoring a system to a functional condition, upon failure or on a planned

maintenance. Applicable to components or subsystems of a more complex asset and

typically carried out using new or existing parts.

Remanufacturing Attempts to restore a system to original equipment manufacturer (OEM) functional

specification with warranty. Integrates reconditioning, replacement, and repair.

Retrofitting Involves replacing old components or equipment with modern equivalents, thus

improving functionality, availability, and safety. This is a good strategy to combat

early onset of obsolescence.

Use-up Involves using a component or an equipment until the end of its economic life. This

strategy is driven by economics; as such, it may be inappropriate for application to

safety-critical assets.

Refurbishment Applicable to components, equipment, or systems to return them to a higher level of

functionality. Integrates partial replacement, reconditioning, and some elements of

redesign.

Reclaiming Applicable to systems requiring regular lubrication over their lifetime. Involves

cleaning the oil through filtration and other means to eliminate contaminants and

particles, and then reusing the same oil.

Retrofilling Applicable to systems requiring regular lubrication over their lifetime. Involves

changing out of the lubricant, for example, changing out of a transformer’s oil.

Condition monitoring (CM) has gained increasing popularity as one of the methods of

gathering data about the health of an equipment to help arrive at the right decision

regarding when to implement LE actions. Aside conventional CM methods which rely on

asset data stored in databases, a concept that is rapidly evolving is the digital twin.

Proposals have been made on how to deploy a digital twin as a decision-making tool for

LE of ageing assets. To build a digital twin of an asset’s structural components, a high-

resolution modelling of the asset is conducted. Then, the model is updated using the data

obtained by sensors and the remaining fatigue life is estimated on a continuous basis. This

approach is currently being implemented on one of Shell’s oil and gas production

platforms in the Southern North Sea (Knezevic et al., 2019). As regards the integration

of PHM with asset LE strategies, Varde et al., (2014) proposed a framework that evaluates

189

refurbishment as a strategy for LE of electronic systems subjected to different failure

modes. They derived the cost-to-benefit ratio and performed a detailed risk analysis to

aid LE decision-making. Other studies exploring the full integration of PHM with asset

LE strategies include Lukens & Markham, (2018) and Tiddens et al., (2015), who looked

at issues around data quality, data analysis, integration of legacy assets with modern ones

and engineers’ understanding of how to transition from conventional RCM practices to

full PHM practices.

7.2.2 Fundamental requirements for LE

There are two broad requirements that drive asset LE decision-making; technical and

economic requirements (Picard et al., 2007). On the technical side, the asset must

maintain the required level of functionality, safety, reliability, availability, efficiency,

compliance with changes in regulations and amenability to obsolescence management.

On the economic side, the fundamental philosophy is that the overall asset LCC and the

long-term cost of ownership and operation must be kept to a minimum, while continuing

to extract value from the asset. These two broad categories of drivers should ideally be

satisfied to achieve optimal outcomes. In the following subsections, some of the

requirements are discussed further.

7.2.2.1 Performance requirements

One of the basic criteria for LE is that the asset must maintain an acceptable level of safety

and reliability. In addition, the device must continue to meet or surpass a minimum

threshold of functionality; otherwise, LE may become an unviable option. Although these

basic criteria appear simplistic, it is challenging to achieve them for a degrading asset

under constantly evolving environmental and process conditions, changing standards and

regulatory requirements, and emerging trends in relevant technology. This is why LE

decisions must factor in the degradation process or changing health condition of the asset,

future operating conditions, environmental loads, and several other parameters (Vaidya

& Rausand, 2011). It is clear that since these critical factors which influence LE decisions

are constantly evolving, collecting asset CM data to reflect this evolution and thereafter

trending the future path is a potentially robust approach towards decision support. In order

to help demonstrate whether or not the performance requirements for the LE process have

been satisfied, the data collected during the early operation as well as during the

190

degradation process are harnessed to develop a condition indicator, which serves as a

basis for determining safety thresholds, reliability thresholds, functionality thresholds,

and other performance thresholds.

Another key factor that influences an asset’s ability to continue to meet minimum

performance requirements, and thus support LE, is obsolescence management. The stages

of any technology’s evolution include introduction, growth, maturity, saturation, decline

and phase-out (Jennings et al., 2016). Once phased-out, the ability for an asset owner to

continue to get the right support for operation and maintenance of the asset is greatly

diminished. Thus, it is important to duly consider obsolescence forecasting and

management as a critical factor that influences LE decision-making.

7.2.2.2 Regulatory requirements

The regulatory agencies in most countries have stringent requirements for granting

approvals for LE programs. Most government regulations are targeted towards the oil and

gas industry, the wind energy sector (Ziegler et al., 2018), the nuclear energy sector, the

aviation industry, and the transportation industry, particularly the rail transport sector.

The philosophy behind government regulations places the onus on asset owners to

demonstrate that continued operation of their assets will ensure safety, reliability, and

environmental protection. Government regulatory agencies also rely on certification of

assets by class societies like Det Norske Veritas Germanischer Lloyds (DNV-GL),

American Bureau of Shipping (ABS), Lloyd’s Register (LR), and so on, for the approval

of assets for LE, particularly offshore structures (Liu et al., 2016). With such certifications

obtained, regulatory agencies are more inclined to approve LE programs. However, in

this present era of big data and industry 4.0, there are only a few standards and regulations

to guide LE decision-making for systems implementing data-driven and AI-enabled

PHM. In this paper, an acceptability criterion (Ac), which considers all the important

factors and performance requirements in the context of data-driven LE decision-making

and explores if all factors or requirements are satisfactorily met, is used to help determine

suitability of an LE plan for regulatory approval. The acceptability criterion had been

presented and its application hypothetically demonstrated in Chapter 3 of this thesis.

191

7.2.2.3 Other requirements

The ultimate goal of applying PHM technologies is asset health management (Kalgren et

al., 2006). Consequently, the final form of the output from a data-driven PHM system

should be an actionable plan for LE implementation. The RUL prediction results, along

with the confidence intervals to account for uncertainties, should be easily interpretable

into meaningful, real-life course of actions for asset managers regarding when to trigger

an LE strategy and what the most suitable LE strategy should be. Lifetime prediction can

also help with inventory and stock management optimization so that parts for equipment

are not kept in storage in excess of required levels, thus taking up space, tying down the

resources used to buy the excess spares, and potentially undergoing deterioration in

storage. For instance, as revealed in the study by Andreacchio et al., (2019), in the

aviation industry, the actual cost of aircraft maintenance, at any given time, is typically

equivalent to the cost of spares maintained in the stock inventory, which usually translates

into a huge stock level to keep and amounts to poor use of resources. LE plans based on

advanced analytics methods should be well implemented to help optimize the entire

process.

7.2.3 Overview of decision-making models in asset LE

Decision-making under the scenario of various competing strategies, multiple criteria or

optimization objectives and inherent uncertainties is a complex process (Niknam et al.,

2015). Maintenance decision-making and asset life-cycle management are examples of

such a complex process because of the need to continuously ensure safety and reliability,

eliminate or minimize unexpected failures while deriving the best possible ROI from the

asset. When LE processes are added to the mix, the decision-making problem even

becomes more complex. A typical approach by most researchers and asset managers is to

focus on the optimization of cost, from an economics perspective, using one or more of

the following tools: benefit-to-cost analysis, life-cycle cost optimization or ROI analysis

(Jones & Zsidisin, 2008; Hermann et al., 2011; Gu et al., 2012; Woodhouse, 2012;

Animah et al., 2018). Other approaches focus on technical aspects that mostly deal with

SIM and AIM, with the core components being safety, reliability, and availability

(Boutrot et al., 2017; Animah & Shafiee, 2018; Trampus, 2019; Nielsen & Sørensen,

2021). A few approaches combine both technical and economic aspects in the form of a

192

techno-economic analysis, such as the work by Shafiee et al., (2016) and by other authors

(Trampus, 2019; Golmakani & Pouresmaeeli, 2014). Obviously, considering just one or

two of the various criteria leads to a multiplicity of approaches. Consequently, some

researchers have attempted approaches that aim at analyzing the various criteria and their

interdependencies to obtain optimization models for LE decision-making, with the most

common being multiple criteria decision analysis (MCDA) (Kabir et al., 2014; Niknam

et al., 2015; Shafiee, 2015; Shafiee et al., 2019; Shafiee & Animah, 2020). Of course,

most MCDA approaches try to balance the inherently competing objectives of

minimizing overall LCC (i.e., maximizing ROI) while ensuring high levels of safety,

reliability, and availability during the extended period of operation.

From a PHM perspective, the concept of LE is not new. Reinertsen, (1996) conducted an

extensive review about diagnosis, RUL prediction and LE of technical systems. The

review, which looked at methodologies for both repairable and non-repairable systems,

revealed the inadequacy of the statistical methods in use and highlighted the need for

further research in the area. Finkelstein et al., (2020) proposed a model for LE of

degradable equipment by using the data gathered during preventive maintenance (PM).

In their model, the failure threshold for the system was first considered to be

deterministic, but then it was adapted as a random parameter. Although the information

gathered during PM was used to trend the monotonically increasing degradation, the

overall method used was analytical in nature, with the degradation process modelled as a

Poisson process and then as a Gamma process. Overall, the idea of using data gathered

during inspection and maintenance activities for the purpose of LE has been explored in

the past (Labeau & Segovia, 2011; Ratnayake, 2015). However, in this present era of

smart systems and big data, using advanced analytics methods to process sensor data on

a near real-time basis is expedient. This work focuses on the impact of using prognostic

information as the basis for the technical analysis to drive LE decisions, particularly using

a condition indicator derived by ML algorithms, RUL predictions with uncertainty

quantification, and the impact of emerging AI-enabled PHM regulations; all of which are

the results of this PhD research from the previous chapters of this thesis. This chapter

thus synthesizes the results from this research and apply them to the LE decision-making

problem.

193

7.3 Methodology

Optimization objectives for LE include maximization of operational lifetime and

minimization of asset LCC while ensuring that reliability, availability and safety are not

compromised (Cha & Finkelstein, 2020). This work puts forth a wide range of

considerations that can be made in the process of conducting technical assessment for LE.

At the core of our methodology is the use of a tool from RCM and CM known as the

potential failure (P-F) curve, which essentially is a chart of the degradation of an asset

versus time. Most of the other information required by the decision-making model are

mapped onto the P-F curve. Some of the required information for the LE decision-making

model include the potential failure interval factor (PFIF) which represents the health

index (HI), the RUL with uncertainty quantification expressed in terms of confidence

intervals (CI) (as obtained from Chapter 6) and the alert time (ta), which is a PHM metric

that represents the minimum time needed for planning and executing the appropriate LE

action (derived from Chapter 4). To set the stage for a clear understanding of the

methodology, all the assumptions and prior preparations regarding the asset are laid out

as follows.

7.3.1 Assumptions, initial conditions, and background assessments

As was stated earlier, this work assumes that a separate economic justification for LE has

been conducted and thus focuses strictly on the technical aspects of LE decision-making.

7.3.1.1 Integration of RCM and CM practices with PHM practices

This methodology proposes and implicitly assumes the integration of RCM and CM

practices with PHM technologies for the asset under consideration (which has been duly

demonstrated in Chapter 5 of this thesis and published as a journal paper). Therefore, the

asset is assumed to have undergone a formal technical assessment process (typically

FMECA or other similar analysis) which would have broken down the asset into systems,

subsystems, and components, all of which have sensors or other data acquisition devices

installed on the equipment.

7.3.1.2 Component-level and unit-level HIs

Another implicit assumption is that run-to-failure data is available for the various

components and units or systems that make up the asset. With such data, the P-F curve

194

can be plotted for each unit as shown in Figure 7-3. The instantaneous PFIF for each unit

is calculated using Eq. (7-1) as defined by Ochella et al., (2021):

�����,� =
������������,�

�������������

, (7-1)

where �����,� is the PFIF of unit i at time t, � − ����������,�
 is the P-F interval of unit i at

time t, and �������������
 is the design life of unit i. The P-F interval is the time from the

detection of a fault to the point of functional failure (see Figure 7-3). The PFIF is a useful

indicator as it is a scale-independent quantity, which helps to ease grouping of equipment

with different ranges of total lifetime, thereby serving as an indicator of the state of health

of any unit under operation.

Figure 7-3. Annotated P-F curve showing the important points during the degradation of a
system (adapted from Kalgren et al., (2006)).

To ensure that there is appropriate comparison of the predicted PFIF values with the true

PFIF values, the true PFIF values should be scaled to achieve the same range [0,1] as the

predicted PFIF values using the formula in Eq. (7-2), given as:

�������������� =
�������� ��� �(��������)

���(��������) ��� �(��������)
. (7-2)

HI Meter
(PFIF)

“Healthy”

“Good”

“Monitor”

“Soon-to-fail”

time

Asset Condition or HI

Failure
threshold

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

First point of
incipient failure

Point of
functional failure

Potential failure
Point (fault detected)

 Unit Lifetime

Trigger LE
Strategy

Last point for
LE Action

P-F
Interval

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Operation
commences

195

7.3.1.3 System-level HI

The various component-level HIs can be aggregated based on a weighting scheme as used

in a paper by Wang et al., (2015) to obtain a system-level HI. This is given by Eq. (7-3):

�������� = � ����

�

���

 (7-3)

where N is the number of components in the system, j represents the jth component, wj is

the weight of the jth component and Xj is the HI of the jth component. The value of HIsystem

is in the range [0,1] and ∑ �� = 1�
��� . The system-level HI, when plotted in real-time,

yields a curve as shown in Figure 7-4. Thus, an asset manager who chooses to use HI

information as a preliminary basis or the sole basis for LE decision-making can find the

optimal window to take LE action based on the acceptable HI threshold for the system.

Figure 7-4 The system-level HI versus time, showing the critical intervention
window to prevent failure.

7.3.2 Implication for logistics planning and LE action

The HIs do not only serve as useful indicators for the health condition of the units or asset

but also have intrinsic implications for logistics planning and the associated LE actions.

Even though more rigorous tools will be used later to aid LE decision-making, at the HI

assessment stage the asset managers are expected to have an idea of relevant actionable

information that can be extracted from the HI values. Figure 7-5 shows a typical HI chart

and the implications as it relates to logistics planning and LE.

time

HIsystem

tcriticaltearly

Optimal window
for LE action

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

HIsystem_monitor

HIsystem_soon-to-fail

196

Figure 7-5. HI values and the associated actionable decision support implications (adapted
from Kalgren et al., (2006)).

7.3.3 RUL prediction with uncertainty quantification

After calculating the HIs of various systems, subsystems and components and grouping

the equipment based on their HI values, the LE strategy can then focus on the most

vulnerable groups, i.e., those with the lowest HIs. The RUL for the units in the most

vulnerable groups can then be predicted using the CM data from the commencement of

operation up to the present time (i.e., the time at which the ML algorithm is used to make

predictions). To account for the inherent uncertainties in the data, prediction model and

environmental loading conditions, it is important to use methodologies that yield RUL

predictions as probability distributions having mean RUL values along with uncertainty

bounds or confidence intervals (CI). One of such algorithms is Bayesian Neural Networks

(BNNs), and the results used for the demonstration of this study were obtained using RUL

values predicted by BNNs from Chapter 6. Figure 7-6 shows how the failure probability

increases with time for any given unit. Note that RUL is continuously predicted as CM

data becomes available, thus predicting the EoL at any given time, along with confidence

bounds.

For the purpose of this study, we use a PHM metric known as alert time (ta) which was

first proposed by Leão et al., (2008) and is annotated in Figure 7-6. The value of ta

specifies the minimum time required to schedule LE tasks, order required parts, and

execute LE. Since the predicted EoL does not always coincide with the true EoL, the

Fully
functional

Functional
with degraded
performance

Reduced
functionality

From severely
impaired to
not functional

Functional
Status

No action required

Initiate logistics sparing
based on lead time to
order required parts

On-demand or emergency
logistics sparing and parts
requirements

Emergency logistics
sparing and parts
requirements. Unit should
reflect as “out of service”

Implication for Logistics

No action required

Trigger LE strategy in
preparation for LE action

Take scheduled LE action
now or use opportunistic
windows for LE action

Take LE action now

Implication for LE

HI Values
(PFIF)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
“Healthy”

“Good”

“Monitor”

“Soon-to-fail”

197

importance of the CI is that it provides a buffer to help maintain ta within tolerable

margins. It should be noted here that wasted life is also likely to occur if LE action is

taken too early, while the unit or component still has reasonable lifetime left. Wasted life,

as defined by Leão et al., (2008), as the additional time that a unit would have served if

it is not taken out too early.

Figure 7-6 Plot showing increasing failure probability as asset degrades with time. RUL at
each point obtained as distributions.

So, in order to find the sweet spot and ensure that LE action is taken before a failure

occurs, while at the same time minimizing wasted life, the mean RUL is continuously

monitored to comply with Eq. (7-4):

�� ≥ ���� − ��. (7-4)

The LE action is initiated immediately upon observing the first point where the

requirement in Eq. (7-4) is satisfied. The overall flow of the LE decision-making model,

comprising both the RCM and CM modules as well as the AI-enabled online monitoring

and RUL prediction module, is illustrated in detail in Figure 7-7.

time

Failure
probability

 μRUL

Failure
threshold

Fully
functional

Predicted point of
functional failure

EoL

(EoL + CI)(EoL – CI)

True point of
functional failure
(without LE action)

Point of
incipient fault

Point fault
detected

 Alert time

Last point for
proactive LE action

198

Figure 7-7 The overall flow of the LE decision-making model.

Asset Register &
Operational History

System Division/
Boundaries

Failure Mode, Effects,
& Criticality Analysis

Decision Logic

Failure-
finding

Routine Maintenance
or Run-to-failure

Redesign
Condition-Based

Monitoring
Scheduled

Restoration
Scheduled

Discard

Identify Sub-systems
and Components

No

No

Yes

Yes

Equipment
Important or Safety-

Critical?

High or
Medium

Criticality?

Proactive TasksDefault Actions

Update online
monitoring data

Train
algorithm(s)

Extracted
features

Validate
algorithm(s)

Predict RUL

Trigger LE Strategy

Design data,
Sensors data,

Other inspections data

Identify candidate
equipment

Training set Testing set

Clustering
algorithm

�

No

Alert time ≥ (μRUL- CIRUL)
Yes

Validation set+

Calculate
Condition Index

Pre-processing

RCM and Condition
Monitoring Module

AI-Enabled Online Monitoring
and LE Decision-making Module

199

7.3.4 Acceptability criterion for regulatory approval

Reference was earlier made to the need to obtain regulatory approval for LE, which is

indeed the case for most industries. Typically, regulatory authorities need the conviction

that due diligence was made in establishing the technical justification for LE and that

minimum acceptable standards for safety and reliability must be maintained for all safety

and environmentally critical elements (SECE) during the LE period. In this section, all

the critical factors for the effective implementation of LE from a data-driven perspective

are consolidated, thus proposing a unifying criterion for regulatory approval of the LE

plan. A complete treatise on this was covered in Chapter 3. The parts relevant to LE

decision-making will be recapped briefly in this subsection.

The critical factors to be satisfied for AI-enabled PHM systems include safety and

reliability, explainability, interpretability, accuracy of predictions, compliance with

industry standards, actionability of AIM and SIM inspection plans, and third-party testing

and verification of results. As part of the regulatory approval process, all the important

factors mentioned should be checked off as either satisfactory or unsatisfactory. If the

results from such a process are collated as an array, F, the acceptability criterion, Ac,

proposed in Chapter 3, subsection 3.3.2, is used to determine the acceptability of the

results from the proposed advanced analytics approach for LE. Details of the formulation

of Ac, are again presented here for ease of referencing. Ac is given in Eq. (7-5) as:

Ac = βF, (7-5)

where β is a normalizing array of 1 × n dimension which indicates the importance or

weight assigned to each of the factors considered, while F is an array of n × 1 dimension

whose elements are either 1 or 0, representing whether each factor is satisfactory or

unsatisfactory, respectively. The value of Ac lies in the range [0,1]. The matrix product,

βF, can be expressed as a sum, given in Eq. (7-6) as:

�� = � �� × ��,

�

���

 (7-6)

where i is an index representing the number of factors considered, ranging from 1 to n; βi

is the importance weight for the ith factor; and Fi represents whether the requirement for

200

the ith factor is satisfied or not. The sum of the weights must be equal to 1, as given in

Eq.(7-7):

� ��

�

���

 = 1 (7-7)

The acceptability criterion is formulated to provide both robustness and flexibility,

allowing for adjustments to the factors which are considered important, depending on the

peculiarities of the asset and the subsisting regulatory environment or context. With all

the critical factors satisfied, LE approval can then be issued by regulatory agencies,

especially for safety-critical assets.

7.4 Case studies

In this section, the proposed model is tested on NASA’s publicly available C-MAPSS

dataset (Saxena and Goebel, 2008) and the results will be reported. Full details of the

FD001 dataset, which will again be used here, have been presented in subsection 5.4.1 of

Chapter 5 and subsection 6.4.1 of Chapter 6. As a result, the description of the dataset

will be skipped here. The important thing to note is that the dataset is similar to the

scenario on a real multi-component or multi-system asset, with subsystems and

subcomponents, or the scenario for a fleet of similar systems being managed under the

same portfolio by the same asset manager. The intent here is to apply an LE strategy for

a group of units that have been identified as vulnerable or at risk of failure.

7.4.1 Data-driven condition assessment

As presented in Chapter 5 and in our published work (Ochella et al., 2021), a machine

learning algorithm was developed on MATLAB to fit a linear model to the data, thus

obtaining a condition indicator for each of the 100 units. Figure 7-8 shows the condition

indicators obtained for all 100 units, which are, in essence, the P-F curves for each unit.

201

Figure 7-8 P-F curves for 100 turbofan engines within the asset portfolio.

7.4.1.1 Unit-level HIs and unit groupings

Having trained an ML algorithm and fit a linear model to the training data, the

instantaneous PFIF for all the units were subsequently predicted based on their sensor

values at the present time, as captured in the test data. The units were then grouped using

a four-stage HI division, as illustrated in the HI chart in Figure 7-5. The HI division was

achieved as follows; “Healthy”: 0.75<PFIF≤1.00; “Good”: 0.5<PFIF≤0.75; “Good –

monitor”: 0.3<PFIF≤0.5; “Soon-to-fail”: 0.0≤PFIF≤0.3. These boundaries were defined

for the purpose of this work, and may be made more stringent or less stringent, depending

on the safety, reliability and functional requirements of the specific unit or asset. For

brevity, only a list of the units categorized as “healthy” and “good” are provided in this

paper. Given that the focus is on candidate equipment for LE, results for all units

categorized and “good – monitor” and “soon-to-fail” will be fully presented and

discussed.

7.4.1.2 True and predicted RUL

The C-MAPSS dataset FD001 provides the ground truth RUL values for all 100 units

under monitoring. However, the key task is to use the test data to arrive at predicted RUL

202

values using advanced analytics techniques, and then use the true RUL values as bases

for comparison. The predicted RUL values from the deep BNN in Chapter 6, which

modelled the uncertainties in model parameters and the stochastic nature of the

degradation process. RUL predictions were therefore obtained as probability

distributions, with a mean RUL value, μRUL, along with credible interval (CI) estimates,

which are useful for the purpose of applying constraints around the alert time (ta) in our

decision-making model. The predicted μRUL and CI values for units grouped as “good –

monitor” and “soon-to-fail” are presented in Table 7-2 and Table 7-3 respectively, under

subsection 7.4.2.1 of this chapter. These units are the candidate units for LE.

7.4.2 Results and discussion

The application of the steps in the decision-making model, so far, leads to the

identification, at every time instant, of the group of equipment that may be approaching

failure based on the predicted HIs. Using the four-stage HI division boundaries stated in

subsection 7.4.1.1, a total of 29 units were predicted as “healthy” and they are: 1, 2, 6, 9,

11, 14, 15, 22, 25, 26, 33, 39, 44, 47, 48, 50, 55, 65, 67, 69, 71, 78, 83, 85, 86, 87, 88, 96,

and 99. A total of 26 units were predicted as “good – no action”, namely: 4, 5, 7, 16, 19,

21, 23, 28, 29, 30, 38, 45, 51, 54, 57, 59, 60, 70, 73, 74, 75, 79, 80, 89, 95, and 97. These

groupings were in agreement with the ground truth RUL values, when used to calculate

the scaled true PFIF values. It is important to note here that categorizing faulty units as

“healthy” or “good” has dire implications for the avoidance of unplanned or unforeseen

failures, and each healthy or good prediction must be thoroughly scrutinized so that

impending failures are not missed due to false negative predictions.

7.4.2.1 Candidate units for LE

Ultimately, the goal of the proposed decision-making model is to identify equipment that

are close to their EoLs by using CM data and ML algorithms, so as to trigger an LE

strategy in good time to extend their useful lives and avoid failure. The predicted PFIF

values, the units’ lifetimes, as well as other lifetime parameters for the units grouped as

“good - monitor” and “good – no action” are presented in Table 7-2 and Table 7-3

respectively.

203

In the case of units grouped together for LE consideration due to low HIs, false positive

results, which involve wrongfully grouping healthy units as “soon-to-fail”, do not have

any safety implications because a healthy unit wrongly thought to be about failing will

not fail. However, false positive categorizations have economic implications since

otherwise healthy units may be taken out of service, thereby leading to either wasted life

in terms of the unit or wasted resources in terms of the time and personnel that would

have been allocated for work on a healthy unit wrongfully classified as faulty. So, overall,

the accuracy of predictions remains an important factor that should be satisfied in order

to end up with a viable LE plan.

7.4.2.2 Lead time for LE scheduling

From the ground truth values for the 100 units in the FD001 dataset, the overall lifetime

for the units range from a minimum of 141 cycles for unit #41 to a maximum of 341

cycles for unit #12, with an average operational lifetime of about 206 cycles before

failure. Given that these lifetime values were obtained from accelerated degradation tests,

let us assume broadly, for the purpose of this work, that the minimum time needed to

schedule for LE, order spare parts and implement the appropriate LE strategy is 20 cycles.

This is the value of ta, which will be similar for all units since the units within the asset

or fleet of assets are identical or homogeneous. From Eq. (7-2), to take LE actions before

any failure occurs, the condition ta ≥ (μRUL – CI) must be satisfied. The governing

constraint to ensure timely LE action is therefore (ta + CI) ≥ μRUL. So, the values for (ta +

CI) greater than μRUL in Table 7-2 and Table 7-3 indicate units for which there is enough

window to schedule for LE. For such units, an opportunistic window can also be used to

trigger and implement LE strategy, since an LE plan will already exist. However, for units

which the governing constraint has been satisfied and the values of (ta + CI) are less than

μRUL, there is no longer enough window to plan in advance since even the tolerance built

into the RUL values through uncertainty quantification in terms of the confidence

intervals has been used up. From Figure 7-5, the logistics and LE implications for such

units are “emergency logistics sparing and parts requirements” and “take LE action now”

respectively. These are also shown on Table 7-2 and Table 7-3.

204

Table 7-2. Units grouped as “good – monitor” (16 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles)

Unit #
Predicted

HI (PFIF)

Unit

Lifetime

True

μRUL

Predicted

μRUL

CI Upper

bound

CI lower

bound CI (ta + CI) Implication for LE

3 0.46 195 69 20 43 6 23 43 Take LE action now

8 0.50 261 95 81 107 63 26 46 Schedule LE or opportunistic action

10 0.38 288 96 104 138 60 34 54 Schedule LE or opportunistic action

12 0.44 341 124 136 148 121 12 32 Schedule LE or opportunistic action

13 0.37 290 95 122 131 112 9 29 Schedule LE or opportunistic action

27 0.41 206 66 121 129 112 8 28 Schedule LE or opportunistic action

32 0.34 193 48 122 133 98 11 31 Schedule LE or opportunistic action

40* 0.33 181 28* 47 70 29 23 43* Schedule LE or opportunistic action

43 0.37 231 59 53 68 37 15 35 Schedule LE or opportunistic action

46 0.32 193 47 44 61 29 17 37 Schedule LE or opportunistic action

63 0.45 227 72 32 47 20 15 35 Take LE action now

72 0.34 181 50 92 115 71 23 43 Schedule LE or opportunistic action

84 0.30 230 58 85 109 65 24 44 Schedule LE or opportunistic action

93 0.31 329 85 24 35 15 11 31 Take LE action now

94 0.46 188 55 69 87 55 18 38 Schedule LE or opportunistic action

98 0.45 180 59 60 83 40 23 43 Schedule LE or opportunistic action

*Predicted RUL along with confidence bounds, when combined with the alert time requirement, missed this unit as a unit that will soon fail.

205

Table 7-3. Units grouped as “soon-to-fail” (29 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles).

Unit

Predicted HI
(PFIF)

Unit
Lifetime

True
μRUL

Predicted
μRUL

CI Upper
bound

CI lower
bound

CI (ta + CI) Implication for LE

17 0.26 215 50 53 65 41 12 32 Schedule LE or opportunistic action

18* 0.21 161 28* 38 50 27 12 32 Schedule LE or opportunistic action

20* 0.03 200 16* 41 54 29 13 33 Schedule LE or opportunistic action

24* 0.07 206 20* 63 74 51 11 31 Schedule LE or opportunistic action

31 -0.09 204 8 7 16 0 9 29 Take LE action now

34 -0.11 210 7 8 18 0 10 30 Take LE action now

35 0.08 209 11 7 16 9 9 29 Take LE action now

36 0.25 145 19 14 24 4 10 30 Take LE action now

37* 0.14 142 21* 66 94 45 28 48 Schedule LE or opportunistic action

41 0.14 141 18 25 38 13 13 33 Take LE action now

42 0.00 166 10 24 35 14 11 31 Take LE action now

49* -0.08 324 21* 53 65 40 12 32 Schedule LE or opportunistic action

52* 0.08 218 29* 94 116 79 22 42 Schedule LE or opportunistic action

53* 0.20 190 26* 57 70 45 13 33 Schedule LE or opportunistic action

56 0.22 151 15 3 11 0 8 28 Take LE action now

58 0.17 213 37 45 58 31 13 33 Schedule LE or opportunistic action

61 0.09 180 21 30 43 18 13 33 Take LE action now

62 0.16 286 54 54 117 128 63 83 Take LE action now

64* 0.14 196 28* 39 51 27 12 32* Schedule LE or opportunistic action

66 0.25 161 14 35 47 24 12 32 Schedule LE or opportunistic action

68 -0.03 195 8 7 18 0 11 31 Take LE action now

76 -0.07 215 10 19 31 8 12 32 Take LE action now

77 0.14 196 34 53 67 39 14 34 Schedule LE or opportunistic action

81 -0.08 221 8 11 21 1 10 30 Take LE action now

82 -0.01 171 9 5 13 9 8 28 Take LE action now

90 0.26 174 28 30 46 17 16 36 Take LE action now

91 0.22 272 38 38 50 27 12 32 Schedule LE or opportunistic action

92 0.20 170 20 3 11 0 8 28 Take LE action now

100* 0.18 218 20* 54 65 42 11 31* Schedule LE or opportunistic action

*Predicted RUL along with confidence bounds, when combined with the alert time requirement, missed these units as units that will soon fail.

206

Note that the initial grouping of equipment into “good – monitor” and “soon-to-fail” was

done using only the predicted HIs. From the predicted mean RUL values, the credible

intervals and the application of the alert time metric, it can be observed that most of the

recommended decisions are in agreement with the initial group assignments based on

only the HIs. This demonstrates that using the HIs is indeed a good basis for prioritizing

the equipment for closer monitoring, before eventually calculating the RULs and CIs for

the vulnerable set of equipment or units.

7.4.2.3 Acceptability criterion for regulatory approval

Regulatory approvals need to be sought for the implementation of LE programs. To grant

approvals, most regulatory agencies will not only actively participate in the process of

drawing out an LE plan, but also rely on compliance with known standards or on

certification by classification societies. To determine whether all the critical factors have

been duly considered, importance or weight assignments are given to each factor, based

on the peculiarity of the industry and the operating environment. For this case study, the

weights of the critical factors have been ranked, in descending order and shown in Table

7-4. Out of the seven factors considered, safety and reliability were considered the most

important and assigned a weight of 0.3, while explainability was ranked least important

with a weight of 0.05. These weights, of course, do not undermine the actual need for any

AI-enabled PHM system to have all these critical factors addressed. The weights assigned

in Table 7-4 were arrived at based on the judgement of the authors about the importance

of each factor in asset operating under an AI-enabled PHM system. Furthermore, the

factors were assessed in a manner similar to the guidance in the International Organization

for Standardization (ISO) standard, ISO 13381-1:2015 (ISO 13381-1:2015 Condition

Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines,

2015). For real-life applications, a team of engineers would typically arrive at these

weights based on more detailed analysis and their expert judgement and experience.

Table 7-4. Typical application of acceptability criterion (Ac).

i Factor Satisfied? F Weight, β βF

1 Safety and reliability Yes 1 0.30 0.30

2 Algorithm produces accurate predictions Yes 1 0.20 0.20

3 Workable of AIM and SIM inspection plan Yes 1 0.20 0.20

4 Interpretable results and outputs Yes 1 0.15 0.15

207

i Factor Satisfied? F Weight, β βF

5 Compliance with industry standards Yes 1 0.10 0.10

6 Third party testing and verification of results No 0 0.05 0.00

7 Explainable AI methods used No 0 0.05 0.00

 Ac (i.e., ΣβF) = 0.85

Given the weight assignments in Table 7-4, the acceptability criterion is calculated using

the formula in Eq. (7-6) to obtain Ac = 0.85. An appropriate acceptance threshold can then

be determined by the regulatory agency or certification body, for instance Ac ≥ 0.9 may

be the requirement for accepting the LE plan, depending on how safety-critical the

industrial sector is (oil and gas or nuclear, for example). To achieve certification,

therefore, the critical factors which have not been satisfied, namely explainability and

third-party testing and verification in this case, must be revised and improved to a

satisfactory level, such that the value of Ac meets or exceeds the minimum threshold. For

instance, further improvements in the LE plan by subjecting it to a successful third-party

verification, for the illustration given, will raise the Ac score to 0.95, which is greater than

0.9, thus meeting acceptance and approval requirements. This demonstration, albeit

simplistic, shows how flexibly the acceptability criterion can be applied and

contextualized. Furthermore, its robustness property stems from its amenability to

different levels of scrutiny, which may be at a high level, or very detailed.

7.4.3 Additional comments and future work.

The model proposed in this paper addresses LE decision-making, end-to-end, from a

strictly data-driven perspective. Moreover, the dataset used to demonstrate the use of this

model, which comprises run-to-failure data for a multi-unit system, similar to real-life

assets, has not been used in the literature beyond just making RUL predictions. As such,

there is no work in the literature to which direct comparison can be made to see how well

the proposed model performs. Moreover, most decision-making models are unique, and,

in the demonstration provided in this work, ground truth RUL values were available for

the dataset used, which served as a guide to judge the timeliness for initiating LE plans

for the units within the asset portfolio.

For real-life assets, it will be interesting to see how the component-level HIs can be

aggregated to subsystem or system-level HIs using Eq. (7-3), before eventually grouping

units, and applying the model to determine suitable LE strategies. System level HIs were

208

not calculated in the case study because CM data for sub-components were not available

and the units were considered to be independent homogeneous units. For a scenario where

an equipment has different degradable sub-components and the data for each component

is collected via sensors, and where each component has different lifetimes and required

reliability levels, system-level HIs may be calculated based on the individual HIs for the

sub-components. An LE scenario for such an equipment may involve applying the

appropriate strategy, such as replacement or repair, to just one sub-component of the

equipment, in order to improve the HI for the equipment and extend its overall useful life.

Another area that will need to be assessed more critically is the determination of the

various factors that can affect the alert time ta. A deterministic value of 20 cycles was

used to demonstrate the application of the model, however, ta is stochastic in nature and

its value can be influenced by factors such as whether the unit has redundancies, the

specific part needed to implement the LE strategy, the availability of the part either as a

warehouse item, as an off-the-shelf purchase or as a special-order part. Other factors that

can influence the alert time include the specific LE strategy to be implemented, given that

repair, replacement, or refurbishment times can vary. A deterministic alert time, like the

one used in this work, will only work when the LE strategy is the same and all other

conditions which may affect parts ordering and availability of engineers are assumed to

be the same, which is hardly the case. Another inherent challenge with advanced analytics

approaches to PHM is the availability of real-life run-to-failure data for the equipment.

For real-life operational assets, a practical advanced analytics approach will involve using

design data, a digital twin of the asset, and continuous online monitoring and PHM model

updating.

Knowledge retention and ageing workforce are well known challenges with conventional

LE and later life operation of old assets. Data storage capabilities necessary for the use of

advanced analytics approaches, along with the continuous monitoring and trending

associated with it, provides a potential path towards solving the loss-of-knowledge

conundrum. Such systems will have long usage histories, trends, and accompanying

baseline and operations data for each monitored system, subsystem, or component, which

can easily be recalled and analysed as required. The important aspect, from a staffing

perspective, is that the advanced analytics-based PHM systems should be easily

209

interpretable by new staff with minimal training, and should have direct correlation to

decision-making, as was demonstrated in this work.

7.5 Conclusion

This paper proposed a novel advanced analytics approach for asset life extension

decision-making. At its core, the approach involved the integration of practices from

reliability-centered maintenance (RCM) and data-driven prognostics and health

management (PHM). This approach to LE decision-making, which considered LE as an

ongoing activity during an asset’s operational lifetime, is more relevant to the present era

of smart industrial systems and big data, as against conventional LE approaches that

involve setting up a project team at the end of an asset’s overall design life. The proposed

advanced analytics approach is more intuitive, as different equipment or units within an

overall asset often have varying design lives and will thus benefit from a philosophy

which views LE as an ongoing strategy, similar to operations and maintenance.

The proposed approach focuses on the technical assessments that need to be made to

justify LE. The process involved the prediction of health indices for each unit, grouping

the units according to their health indices, focusing on units with low health indices,

predicting their remaining useful life (RUL), and then making LE decisions based on

uncertainty quantification and a key PHM metric known as alert time. A sample

application case using a publicly available asset degradation dataset for multiple units

showed that the integrated approach led to interpretable results and actionable outcomes,

which would help ensure that the useful life of each unit on an asset was extended before

it was due to fail – this will inevitably lead to the extension of the overall asset’s lifetime.

An acceptability criterion, which was developed to aid regulatory agencies and

certification bodies in approving LE plans, was also presented and its application was

demonstrated. The acceptability criterion was designed to ensure that the critical aspects

of an AI-enabled or advanced analytics-based PHM system are duly considered and

satisfied. Satisfying such factors, which include safety, reliability, compliance with

standards and regulations, ensuring interpretability, and so on, helps the asset owner

demonstrate that the asset is able to meet the minimum safety and system health condition

requirements during the LE phase, while continuing to deliver value to the owner, which

is the ultimate aim of LE.

210

7.6 References

Aeran, A., Siriwardane, S. C., & Mikkelsen, O. (2016). Life extension of ageing offshore

structures: Time dependent corrosion degradation and health monitoring. Proceedings of the

International Offshore and Polar Engineering Conference, Rhodes, Greece, June 26-July 1,

2016, 638–645.

Aeran, A., Siriwardane, S. C., Mikkelsen, O., & Langen, I. (2017). A framework to assess

structural integrity of ageing offshore jacket structures for life extension. Marine Structures,

56, 237–259.

Andreacchio, M., Bekrar, A., Benmansour, R., & Trentesaux, D. (2019). Assessing cyber-

physical systems to balance maintenance replacement policies and optimise long-run

average costs for aircraft assets. IET Cyber-Physical Systems: Theory and Applications,

4(2), 148–155.

Animah, I., & Shafiee, M. (2018). Condition assessment, remaining useful life prediction and life

extension decision making for offshore oil and gas assets. Journal of Loss Prevention in the

Process Industries, 53, 17–28.

Animah, I., & Shafiee, M. (2016). Development of a condition index matrix to support technical

feasibility of life extension in the offshore oil and gas industry. Proceedings of the 2016

International Conference on Industrial Engineering and Operations Management, Kaula

Lumpur, Malaysia, March 8-10, 150–158.

Animah, I., Shafiee, M., Simms, N., Erkoyuncu, J. A., & Maiti, J. (2018). Selection of the most

suitable life extension strategy for ageing offshore assets using a life-cycle cost-benefit

analysis approach. Journal of Quality in Maintenance Engineering, 24(3), 311–330.

Basso, A., & Copello, S. (2019). Machine learning application in jacket life extension. Offshore

Mediterranean Conference and Exhibition 2019, OMC 2019.

Bhowmik, S. (2020). Life extension of offshore structure using machine learning. Offshore

Technology Conference Brasil 2019, OTCB 2019, 29759-MS.

Boutrot, J., Giorgiutti, Y., Rezende, F., & Barras, S. (2017). Reliable and accurate determination

of life extension for offshore units. 22nd Offshore Symposium 2017 - Redefining Offshore

Development: Technologies and Solutions, Houston, Texas, USA, 1-4 May 2017, 27547-

MS.

Boutrot, J., & Legregeois, N. (2015). Integrity management of ageing offshore assets: An

integrated approach towards life extension and operational efficiency. 20th Offshore

Symposium 2015: Future Offshore Technology and Sustained Reliability, 476–489.

Bull, L. A., Gardner, P., Rogers, T. J., Cross, E. J., Dervilis, N., & Worden, K. (2021).

Probabilistic Inference for Structural Health Monitoring: New Modes of Learning from

Data. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil

Engineering, 7(1), 03120003.

Cha, J. H., & Finkelstein, M. (2020). On optimal life extension for degrading systems.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 234(3), 487–495.

De la Fuente, A., Guillén, A., Crespo, A., Sola, A., Gómez, J., Moreu, P., & Gonzalez-Prida, V.

211

(2018). Strategic view of an assets health index for making long-term decisions in different

industries. Safety and Reliability - Safe Societies in a Changing World - Proceedings of the

28th International European Safety and Reliability Conference, ESREL 2018, 1151–1156.

DNV-GL. (2016). DNVGL-ST-0262 Lifetime extension of wind turbines: Vol. March.

Elwany, A. H., & Gebraeel, N. Z. (2008). Sensor-driven prognostic models for equipment

replacement and spare parts inventory. IIE Transactions (Institute of Industrial Engineers),

40(7), 629–639.

Entezami, A., Sarmadi, H., Salar, M., Michele, C. De, & Arslan, A. N. (2021). A novel data-

driven method for structural health monitoring under ambient vibration and high-

dimensional features by robust multidimensional scaling. Structural Health Monitoring,

1475921720973953. doi: 10.1177/1475921720973953.

Entezami, A., Shariatmadar, H., & Mariani, S. (2019). Fast unsupervised learning methods for

structural health monitoring with large vibration data from dense sensor networks.

Structural Health Monitoring, 19(6), 1685–1710.

Ersdal, G., Sharp, J. V., & Stacey, A. (2018). Assessment of Ageing and Life Extension. In Ageing

and Life Extension of Offshore Structures (pp. 95–142). John Wiley & Sons, Ltd.

Finkelstein, M., Cha, J. H., & Ghosh, S. (2020). On dynamic information-based life extension.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 235(4), 690–699.

Galbraith, D. N., Sharp, J. V., & Terry, E. (2005). Managing life extension in aging offshore

installations. Offshore Europe Conference - Proceedings, 453–461.

Gibbs, B., & Graf, T. (2014). Managing life extension programs for ageing floating offshore

facilities. Proceedings of the Annual Offshore Technology Conference, 1, 564–570.

Golmakani, H. R., & Pouresmaeeli, M. (2014). Optimal replacement policy for condition-based

maintenance with non-decreasing failure cost and costly inspection. Journal of Quality in

Maintenance Engineering, 20(1), 51–64.

Gu, K., Guo, J., Fan, M., Zhang, K., & Shi, L. (2012). Research on life cycle management of

nuclear power plant equipment based on economic analysis. 2012 IEEE International

Conference on Industrial Engineering and Engineering Management, 418–422.

Herrmann, C., Kara, S., & Thiede, S. (2011). Dynamic life cycle costing based on lifetime

prediction. International Journal of Sustainable Engineering, 4(3), 224–235.

Hua, D., Paradkar, M., Garcia, S., Young, S., Hogelin, P., Webb, T., & Farmakakis, K. (2017).

Neptune spar life extension assessments. Proceedings of the Annual Offshore Technology

Conference, Houston, Texas, USA, 1-4 May 2017, 6, 4446–4460.

ISO 13381-1:2015 Condition monitoring and diagnostics of machines — Prognostics — Part 1:

General guidelines, 1 (2015).

Jennings, C., Wu, D., & Terpenny, J. (2016). Forecasting obsolescence risk and product life cycle

with machine learning. IEEE Transactions on Components, Packaging and Manufacturing

Technology, 6(9), 1428–1439.

Jiang, H. (2013). Key findings on airplane economic life. Boeing.

https://dx.doi.org/10.1177/1475921720973953

212

Jones, S. R., & Zsidisin, G. A. (2008). Performance implications of product life cycle extension:

The case of the A-10 aircraft. Journal of Business Logistics, 29(2), 189–214.

Kabir, G., Sadiq, R., & Tesfamariam, S. (2014). A review of multi-criteria decision-making

methods for infrastructure management. Structure and Infrastructure Engineering, 10(9),

1176–1210.

Kalgren, P. W., Byington, C. S., Roemer, M. J., & Watson, M. J. (2006). Defining PHM, a lexical

evolution of maintenance and logistics. 2006 IEEE AUTOTESTCON, 353–358.

Kim, M., & Liu, K. (2021). A Bayesian deep learning framework for interval estimation of

remaining useful life in complex systems by incorporating general degradation

characteristics. IISE Transactions, 53(3), 326–340.

Knezevic, D., Fakas, E., & Riber, H. J. (2019). Predictive digital twins for structural integrity

management and asset life extension – JIP concept and results. Society of Petroleum

Engineers - SPE Offshore Europe Conference and Exhibition 2019, OE 2019.

Labeau, P. E., & Segovia, M. C. (2011). Effective age models for imperfect maintenance.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 225(2), 117–130.

Leão, B. P., Yoneyama, T., Rocha, G. C., & Fitzgibbon, K. T. (2008). Prognostics performance

metrics and their relation to requirements, design, verification and cost-benefit. 2008

International Conference on Prognostics and Health Management, PHM 2008, 4711429.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A

systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal

Processing, 104, 799–834.

Liu, S., Hua, D., Machado, C., & Wu, J.-F. (2016, February 16). Class Approach For Life

Extension Process Of Floating Production Installations. Society of Naval Architects and

Marine Engineers (SNAME) 21st Offshore Symposium, Houston, Texas, February 2016.

Liu, Y., & Frangopol, D. M. (2019). Optimal maintenance of naval vessels considering service

life uncertainty. Conference Proceedings of the Society for Experimental Mechanics Series,

3, 301–307.

Luengo, M. M., & Kolios, A. (2015). Failure mode identification and end of life scenarios of

offshore wind turbines: A review. Energies, 8(8), 8339–8354.

Lukens, S., & Markham, M. (2018, August 24). Data-driven application of PHM to asset

strategies. Proceedings of the Annual Conference of the Prognostics and Health

Management Society, PHM.

Macchi, M., Roda, I., & Toffoli, L. (2018). Remaining useful life estimation for informed end of

life management of industrial assets: A conceptual model. IFIP Advances in Information

and Communication Technology, 536, 335–342.

Nezamian, A., Nicolson, R. J., & Iosif, D. (2012). State of art in life extension of existing offshore

structures. Proceedings of the International Conference on Offshore Mechanics and Arctic

Engineering - OMAE, 2, 165–174.

Nielsen, J. S., Dimitrov, N. K., & Sørensen, J. D. (2019). Optimal decision making for life

extension for wind turbines. 13th International Conference on Applications of Statistics and

213

Probability in Civil Engineering, ICASP13, Seoul, South Korea, May 26-30, 2019, 83.

Nielsen, J. S., & Sørensen, J. D. (2021). Risk-based derivation of target reliability levels for life

extension of wind turbine structural components. Wind Energy, 2610, 1–18.

Niknam, S. A., Kobza, J. E., & Hines, J. W. (2015). Operation and maintenance decision-making

using prognostic information. Proceedings - Annual Reliability and Maintainability

Symposium (RAMS), 26-29 Jan 2015, 1–7.

Ochella, S., & Shafiee, M. (2020). Artificial intelligence in prognostic maintenance. Proceedings

of the 29th European Safety and Reliability Conference, ESREL 2019, 3424–3431.

Ochella, S., Shafiee, M., & Sansom, C. (2021). Adopting machine learning and condition

monitoring P-F curves in determining and prioritizing high-value assets for life extension.

Expert Systems with Applications, 176, 114897.

Picard, H., Verstraten, J., Hakkens, M., & Vervaet, R. (2007). Decision model for End of Life

management of switchgears. 2007 4th European Conference on Electrical and

Instrumentation Applications in the Petroleum & Chemical Industry, 1–10.

Ramírez, P. A. P., & Utne, I. B. (2015). Use of dynamic Bayesian networks for life extension

assessment of ageing systems. Reliability Engineering and System Safety, 133, 119–136.

Rashad, H. (2017). Managing of aging assets and ways for its remnant life extension. Society of

Petroleum Engineers - SPE Abu Dhabi International Petroleum Exhibition and Conference

2017, 2017-Janua.

Ratnayake, R. M. C. (2015). Mechanization of static mechanical systems inspection planning

process the state of the art. Journal of Quality in Maintenance Engineering, 21(2), 227–248.

Reinertsen, R. (1996). Residual life of technical systems; diagnosis, prediction and life extension.

Reliability Engineering & System Safety, 54(1), 23–34.

Saxena A. & Goebel K. (2008). Turbofan engine degradation simulation data set. NASA Ames

Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-

repository/

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for

aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and

Health Management, PHM 2008, 1–9.

Shafiee, M. (2015). Maintenance strategy selection problem: An MCDM overview. Journal of

Quality in Maintenance Engineering, 21(4), 378–402.

Shafiee, M., & Animah, I. (2017). Life extension decision making of safety critical systems: An

overview. In Journal of Loss Prevention in the Process Industries, 47, 174–188.

Shafiee, M., & Animah, I. (2020). An integrated FMEA and MCDA based risk management

approach to support life extension of subsea facilities in high-pressure–high-temperature

(HPHT) conditions. Journal of Marine Engineering & Technology, 1–16.

Shafiee, M., Animah, I., & Simms, N. (2016). Development of a techno-economic framework for

life extension decision making of safety critical installations. Journal of Loss Prevention in

the Process Industries, 44, 299–310.

Shafiee, M., Labib, A., Maiti, J., & Starr, A. (2019). Maintenance strategy selection for multi-

214

component systems using a combined analytic network process and cost-risk criticality

model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 233(2), 89–104.

Stacey, A. (2011). KP4: Ageing and Life Extension Inspection Programme for Offshore

Installations. Proceedings of the ASME 2011 30th International Conference on Ocean,

Offshore and Arctic Engineering OMAE2011, June 19-24, 2011, Rotterdam, The

Netherlands, 33–48.

Tiddens, W. W., Braaksma, A. J. J., & Tinga, T. (2015). The Adoption of Prognostic Technologies

in Maintenance Decision Making: A Multiple Case Study. Procedia CIRP, 38, 171–176.

Trampus, P. (2019). Role and importance of NDE in nuclear power plant life extension. Procedia

Structural Integrity, 16, 161–168.

Vaidya, P., & Rausand, M. (2011). Remaining useful life, technical health, and life extension.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 225(2), 219–231.

Varde, P. V, Tian, J., & Pecht, M. G. (2014). Prognostics and health management based

refurbishment for life extension of electronic systems. 2014 IEEE International Conference

on Information and Automation (ICIA), 1260–1267.

Wang, K., Tian, J., Pecht, M., & Xu, A. (2015). A prognostics and health management based

method for refurbishment decision making for electromechanical systems. IFAC-

PapersOnLine, 48(3), 454–459.

Wang, Y., Gao, D., & Si, J. (2018). The design service life of wide-body commercial aircraft

research based on airlines data. MATEC Web of Conferences, 179, 03004.

Wang, Z., Hu, C., Wang, W., Kong, X., & Zhang, W. (2015). A prognostics-based spare part

ordering and system replacement policy for a deteriorating system subjected to a random

lead time. International Journal of Production Research, 53(15), 4511–4527.

Woodhouse, J. (2012). Making the business case for asset life extension. IET Conference

Publications, 609 CP.

Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., & Melero, J. J. (2018). Lifetime extension of

onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK.

Renewable and Sustainable Energy Reviews, 82, 1261–1271.

215

Chapter 8. Discussion: Research Findings, Implications and

Suggestions for Future Work.

8.1 Introduction

A significant number of operational engineering assets are operating beyond their original

design lives, while quite a large number are also fast approaching the end of their original

design lives (Galbraith et al., 2005; Stacey, 2011; Shafiee & Animah, 2017). This is the

case across many industrial sectors, such as oil and gas, wind energy, nuclear power

generation, chemical industries, and some manufacturing plants. The typical design life

of such assets is between 20 to 25 years (Nezamian et al., 2012; Luengo & Kolios, 2015;

DNV-GL, 2016; Ersdal et al., 2018; Nielsen et al., 2019). While it is true that existing

plants are ageing and reaching the ends of their design lives, an interesting evolution is

also going on, where assets within an industrial plant are now interconnected in a cyber-

physical space, leading to the present era of Industry 4.0. As such, conventional ways of

progressing engineering assets beyond their original design lives would need to change.

This is the fundamental research gap that this PhD thesis sets out to address. In Chapter

1, pertinent propositions were made on how to achieve this overall aim and close the

research gap, leading to the formulation of five core research objectives, three of which

involved demonstrating the feasibility of the methods and techniques proposed.

The interconnectedness of engineering systems in a cyber-physical space, coupled with

the advancement of sensor technologies, means that abundant data can now be collected

from operational assets (Lee et al., 2013; Lee et al., 2018). Since these assets are complex,

modelling how they can fail cannot be simplistically or analytically achieved as was the

case with older assets. Determining how to extend the life of an asset necessarily involves

making economic as well as technical justifications. This research dwells on some aspects

of the technical justifications that need to be made, in the context of contemporary

practice. The future direction of asset management and maintenance optimization

involves making sense of the abundant data collected through monitoring devices. This

research is a completely novel attempt at using advanced analytics techniques, primary

involving artificial intelligence (AI) algorithms, to address the core aspects of asset life

extension (LE). The overall findings show that conventional ways of implementing LE is

216

anachronistic, and an approach more relevant to modern day, as well as future assets, is

proposed.

8.2 Overview of key findings and intellectual contributions

8.2.1 Research objectives and related novelties achieved

In Chapter 2, a detailed review of the state-of-the-art was conducted. This review revealed

some important areas that require novelty, including:

i. A much-needed transition from just research on remaining useful life (RUL)

predictions to actual usage and application of results on real-life assets.

ii. Development of algorithms and techniques that incorporate uncertainty

quantification in predictions and thus render RUL prediction results interpretable

and more meaningful for use.

iii. Proposal of a standards and regulations framework to govern the practice of asset

optimisation and LE strategies that are based mostly on AI-enabled prognostic

and health management (PHM) systems.

iv. Identification of all the other soft issues that will enable actual implementation of

the research findings, thus helping to make the leap from just research to actual

implementation in fielded systems.

The above areas requiring novelty were presented in a conference paper at the 2019 29th

European Safety and Reliability Conference and the points resonated with the research

community. The remaining part of the research was therefore dedicated to achieving all

the additional objectives in order to close these gaps.

The obvious challenge in a system with several pieces of disparate equipment under

condition monitoring is how to identify those that need attention and prioritise them. In

Chapter 5, this research gap was addressed through the development of a novel technique

which combined machine learning algorithms (implemented on MATLAB) and practices

from reliability-centered maintenance. This endeavour led to the development of a new

health condition index called the potential failure interval factor (PFIF), which was shown

to be a good indicator of the health states of assets. Using the PFIF and the machine

learning algorithm developed, units or equipment on an assert were labelled as “healthy”,

“good – no action”, “good – monitor” or “soon-to-fail”. As such, LE strategies were

217

devoted to the group labelled “good – monitor” and “soon-to-fail”. This part of the

research directly addressed Objective 3 of the research, and a case study was used to

demonstrate feasibility of the proposed technique. When the clustering results were

benchmarked against the ground truth RUL for the units in the case study, it showed that

the technique achieved upwards of 94% clustering “accuracy” (clustering accuracy, in

this context, refers to placement of units with low RULs or low true PFIFs in the group

“soon-to-fail” or “good – monitor”).

Following the determination of the health states of each equipment on an asset, AI

algorithms in the class of Bayesian Neural Networks (BNNs) were used to address RUL

prediction under uncertainty (Chapter 6). The use of BNNs for uncertainty quantification

in RUL prediction is at the frontier of the RUL prediction research space, and publications

using similar algorithms for RUL predictions only started appearing in larger numbers in

the literature from the year 2020. Using Python version 3.7, in TensorFlow with Keras

(version 2.6.0) and TensorFlow Probability (version 0.13.0), a novel BNN algorithm was

built, the basis of which were established theoretical foundations of BNNs (Barber &

Bishop, 1998; Blundell et al., 2015; Gal & Ghahramani, 2016a, 2016b, 2016c). The

novelty of the study was the implicit modelling of aleatoric and epistemic uncertainty,

which contrasted with other approaches that use heuristics in an attempt to incorporate

uncertainty quantification in RUL prediction. Moreover, the predictions were directly

applicable to the LE decision-making technique developed in Chapter 7 of this thesis,

which has real-life implications for operational assets.

Prior to closing the gap of achieving interpretable RUL predictions with uncertainty

quantification, Chapter 4 had addressed the issues around how to evaluate performance

(Objective 2) at the various stages of implementing an advanced analytics technique for

LE. Key performance indicators (KPIs) for AI algorithm performance, PHM

implementation, software system performance and hardware computational performance

were identified. Most importantly, methods for defining user requirements were proposed

and juxtaposed with the pros and cons of each metric or KPI. Not only did this help to

determine a set of metrics used for this research (namely, alert time and Confidence

Interval Coverage), it also gives a guide on how metric selection should be conducted.

This research output directly addressed Objective 2 of the PhD research.

218

The meeting point of the entire research endeavour was in Chapter 7, where an advanced-

analytics approach for LE was proposed. This directly collated all the results from the

previous chapters and put them together to address the overall aim of the research. As

against conventional methods where an LE project team is set up at the end of an asset’s

design life (Boutrot & Legregeois, 2015; Gibbs & Graf, 2014; Rashad, 2017), the

proposed advanced analytics approach brings in the novelty of implementing LE as an

on-going series of activities, similar to operation and maintenance (O&M). LE strategies

are therefore implemented on a continuous basis, at the system, sub-system or component

level and meshes seamlessly with O&M and maintenance optimization, albeit with the

clear goal of extending the useful life of the overall asset. Of course, as is the practice for

safety-critical assets, regulatory approval must be sought to extend operations beyond the

original design life of an asset. Since this is a novel approach, the accompanying

framework regarding the requirements for standards and regulations was developed and

presented in Chapter 3.

The important factors necessary for the adoption, approval, and implementation of an AI-

enabled LE framework were identified and discussed in detail. These factors include:

safety; cyber-security; cost and benefits; flexibility; ethical considerations;

trustworthiness; accuracy; interpretability; explainability; legal considerations; third-

party verification, validation and certification; compliance with sector-specific standards;

and other best practices and additional requirements. To satisfy these requirements, a

novel acceptability criterion for regulatory purposes was proposed at a conceptual level

and its potential application was demonstrated in Chapter 3, thus addressing parts of

Objective 5 of the PhD research.

8.2.2 Summary of specific novelties and the potential impacts of research

findings

Table 8-1 presents a summary of the novelty of the research as it relates to each individual

objective and the overall aim of the PhD research. Also presented in Table 8-1 are the

potential real-life impacts of the research findings in terms of how they will influence

some core practices in asset integrity and maintenance management, and ultimately, life

extension.

219

Table 8-1 Mapping of research objective to novelty and potential impacts.

Objective # Novelty Impact

2. To establish the best set of

prognostic performance

measures, focusing on

algorithm performance and life-

cycle asset maintenance

improvements, specifically to

help make optimal LE

decisions.

 Taxonomy developed for metrics used for performance

evaluation in PHM.

 Requirements and considerations for metric selection

developed and proposed.

 Identified relevant metrics for application in

uncertainty quantification and for LE purposes, along

with the limitation of each metric.

 There is now a ready-made repertoire of metrics

and KPIs for researchers and PHM practitioners

to reference.

 The metrics selection considerations are useful

for new researchers or even experienced

practitioners, thus ensuring that they can

concentrate on the core tasks of RUL prediction

and LE decision-making.

3. To develop a data-driven

technique which exploits AI

algorithms to help identify and

prioritise candidate equipment

for LE.

 Development of a novel health index called the

potential failure interval factor (PFIF).

 Technique for grouping assets based on health states

using strictly condition monitoring data.

 Identification of most vulnerable group of equipment

on an asset or within a fleet at any given time instance.

 Features engineering helps in identifying the

most useful sensors. Thus, this research will help

guide sensor placement prioritization to obtain

optimal data for RUL prediction purposes.

 Grouping of equipment according to their states

of health will lead to optimisation of resources,

as focus will be on the most vulnerable group.

4. To develop, train and

validate a prognostic

algorithm/model for RUL

prediction.

 RUL prediction algorithm is developed which

implicitly models aleatoric and epistemic uncertainties.

 RUL predictions obtained as probability distributions

rather than point estimates, hence provides a time

range within which LE can be planned.

 No explicit prior assumption about the distribution of

RUL probability distribution (most other studies

assume Normal distribution). Hence output estimates

true posterior distribution as closely as possible.

 The RUL results obtained provide room for a

margin of error, rather than the overly confident

point estimates that most methodologies

produce.

 With uncertainty quantification and Bayesian

techniques, predictions become more confident

with time and thus converge towards the true

value, which is therefore helpful for end-of-life

scenarios and LE applications.

220

Objective # Novelty Impact

5. To develop strategies for

using estimated RUL results to

make LE decisions, within a

defined standards and

regulations framework,

especially for safety-critical

assets.

 Novel advanced analytics approach for asset LE, rather

than the conventional end-of-life project-based

approach. Proposed approach uses data-driven

methods, end-to-end, to achieve asset health

management and LE decision-making.

 Novel framework for regulations regime in AI-enabled

PHM. Most efforts have been towards standards while

attempts at regulations have mostly been from an

ethical perspective, rather than technical.

 Developed the Acceptability Criterion, Ac, which

aggregates all the key factors important for regulatory

approval and ensures that a minimum satisfactory

threshold is met.

 Capital outlays associated with LE projects will

be minimised or fully eliminated.

 Exploiting RUL predictions for LE decision-

making ensures that results from RUL

predictions are continuously adapted to make

them practically useful.

 Clarity regarding regulatory requirements helps

to accelerate adoption of new approaches and

new technologies. The additional implication of

this is that there will be much faster

advancements in the field, provided that the

regulations are flexible enough not to stifle

additional research and development.

Note: Objective 1, which addressed review of the state-of-the-art, was not captured in this table, hence the numbering from 2 to 5.

221

8.2.3 Major limitations and challenges.

The major challenge during this research was lack of access to data from real-life

operational assets. The data used for the demonstration of the feasibility of the models

and approaches proposed in this research was from simulations and experiments. During

the course of the project, data was sought from the industry over a one-year period. The

data that was eventually collected was four-years’ worth of vibration data from a

compressor on an offshore gas compression platform. However, the data was not useful

for this research because it did not contain enough failure history as most failures recorded

were from instrumentation or electronics and had negligible relevance to real degradation

of mechanical or degradable components of the compressor. Consequently, after

preliminary data exploration, the conclusion was reached that the data was insufficient to

train an AI algorithm for RUL prediction. This experience underscored the finding from

the review conducted in Chapter 2 about lack of availability or access to real-life

operational data for AI algorithm development in PHM research. Future work should

ensure that access to real-life data is explored.

Furthermore, even if data from a real-life operational asset was available, data for high-

consequence low-probability events are scarce. As such, algorithms trained on only

available data will not adapt to making good predictions around tail events that are not

reflected or captured in the training data. Finding creative and realistic ways to get

representative training data for such scenarios (which are typically critical incidents) is

therefore essential and is an important area for additional research.

8.3 Conclusion

This research set out to investigate the possibility of developing techniques for

prognostics and LE of operational engineering assets under condition monitoring. As

opposed to the conventional way of implementing LE as an end-of-life project, one major

conclusion of this research is that using advanced analytics techniques, LE can be

implemented at the system, sub-system, and component level on an on-going basis, in a

manner similar to O&M. The following are the key conclusions:

i. There is a gap between the plethora of techniques available in the literature and

the actual deployment of technologies for prognostics in the field. For this transition

222

to happen, our survey, which was conducted as part of this research, concludes that the

critical areas of infrastructure integration (i.e., between old and new systems), cyber-

security, upskilling of existing manpower and the development of standards and

regulations to guide the practice, must all be addressed.

ii. Based on asset condition monitoring data, equipment within a fleet or subsystems

within a larger system can be grouped together for LE using health indices constructed

from the sensor data collected from the individual equipment or subsystems. Such a

data-driven approach is the most practical way of managing a large asset with disparate

pieces of equipment, systems, or subsystems, in a cyber-physical space.

iii. In the present era of smart systems and big data, and going into the future, life

extension for engineering assets should be implemented as an on-going activity similar

to O&M, rather than as a project at the end of an asset’s design life. The feasibility of

the approach has been demonstrated by this PhD research.

iv. The quantification of uncertainty in RUL prediction is important as it makes the

results from prognostics more interpretable and useful to practitioners. Predicted RUL

values along with uncertainty bounds or credible intervals give engineers a time frame

within which a suitable LE strategy can be triggered before failure occurs.

Deterministic RUL estimates do not provide uncertainty bounds and can thus be overly

confident and error-prone in practical terms.

v. Part of the technical requirements for LE involves obtaining regulatory approvals,

especially for safety-critical systems. For engineering assets implementing AI-enabled

PHM, the regulatory framework in most countries or regions is at a nascent stage. This

research concluded that regulations must be flexible so as to develop and evolve with

the practice of AI-based prognostics. Moreover, for regulatory agencies to grant

approvals for adoption and implementation in fielded systems, a strict acceptability

criterion should be followed, taking into consideration all the important factors in AI-

enabled prognostics such as safety, accuracy, cyber-security, interpretability,

explainability, third-party verification and validation, and compliance with standards.

vi. To ensure that prognostics results are practically useful, information about the

alert time for each equipment, system or subsystem must also be available in addition

to the data collected from operational assets for prognostics. The alert time, which is

223

unique for each equipment, specifies the minimum time needed to plan and take LE

action to avoid failure for each equipment, system, or subsystem.

8.4 Suggestions for future work

In the course of the research and while collating the findings, the following challenges

remain unaddressed and offer potentials for additional research.

i. A more unified, standardised way of measuring performance of algorithms to

ensure that prediction results lead to the selection of the right LE strategy. Unifying

the varied array of metrics is a challenge for the PHM community. In specific terms,

metrics for benchmarking the performance of BNNs, which account for uncertainty

quantification, need to be researched further. This will enable the adoption of

systematic approaches to performance measurement and benchmarking, especially

with respect to the impact on the use of prediction results for LE decision-making.

ii. Developing prognostics systems for new assets with no operational data

remains a challenge, since operational data is fundamental to training algorithms and

making RUL predictions. Attempts to surmount this challenge involve using design

data and a digital twin of the asset to generate data and carry out continuous updates

as the asset goes live into operations. This solution is still at its nascent stage and is an

area for additional research.

iii. A few proposals exist regarding how to aggregate component level health

indices (HIs) to obtained system-level HI. In reality, such proposals are theoretical. It

will be of interest to independently subject an entire system to system-level

degradation or deterioration in performance, and, based on sensor readings and other

condition monitoring data, compute system-level HI. The system-level HI can then be

compared to the HI obtained by aggregating subsystem or component-level HIs. This

is similar to calculating system-level reliability from component level reliability and

will help verify if the formula proposed in the literature and given in this research as

Eq. (7-3), is valid. Such a validation will be useful because by using the formula,

system-level HI can be improved to a target level by focusing on improving the HIs

for specific components is a systematic manner.

iv. How to implement changes to a trained predictive algorithm after a significant

asset upgrade or retrofitting is a challenge, since the algorithm would have been trained

224

using data from the old system configuration. Developing techniques to ensure that

predictions continue to remain accurate under a scenario of an asset retrofit is an area

that can be explored further.

v. Reinforcement learning (RL) algorithms have not received that much attention

in prognostics research. It will be interesting to see how learning agents and a reward

system as applied in RL can be useful in ensuring that the system learns to make better

predictions or LE strategy recommendations, based on the outcome of previous

predictions or LE actions.

vi. For this research, the grouping of equipment using the PFIF index was

empirically tested on a homogenous fleet. It will be interesting to see how the

methodology works for a heterogenous fleet, with several units under multiple, and

varying, operational conditions in a more complex system.

vii. The alert time for any given equipment can be affected by diverse factors, such

as location of the asset, stock availability or even the LE strategy chosen for

implementation. Rather than the fixed values used in this research to demonstrate the

application of the alert time, further research can investigate how the stochasticity of

the alert time affects LE decision-making.

viii. Knowledge retention and ageing workforce were identified as known issues in

conventional LE and later-life operation of ageing assets. Going forward into the era

of smart systems and big data, it will be interesting to see how the advanced analytics

approach presented in this research helps to address this problem. The potential

solution lies in the data storage capabilities that come with an advanced analytics

approach, since it requires historical operational data which are archived and trended

for equipment condition assessment and RUL prediction. With such details of usage

history and stored data, new employees with data analytics capabilities can easily call

up such data, and with minimal training, and use the data to make predictions that

should be interpretable for decision-making purposes.

8.5 References

Barber, D., & Bishop, C. (1998). Ensemble learning in Bayesian neural networks. Nato ASI Series

F Computer and Systems Sciences, 168, 215–238.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural

networks. 32nd International Conference on Machine Learning, ICML 2015, 2, 1613–1622.

225

Boutrot, J., & Legregeois, N. (2015). Integrity management of ageing offshore assets: An

integrated approach towards life extension and operational efficiency. 20th Offshore

Symposium 2015: Future Offshore Technology and Sustained Reliability, 476–489.

DNV-GL. (2016). DNVGL-ST-0262 Lifetime extension of wind turbines: Vol. March.

Ersdal, G., Sharp, J. V., & Stacey, A. (2018). Assessment of Ageing and Life Extension. In Ageing

and Life Extension of Offshore Structures (pp. 95–142). John Wiley & Sons, Ltd.

Gal, Y., & Ghahramani, Z. (2016a). A theoretically grounded application of dropout in recurrent

neural networks. Advances in Neural Information Processing Systems, 1027–1035.

Gal, Y., & Ghahramani, Z. (2016b). Dropout as a Bayesian Approximation: Appendix. 33rd

International Conference on Machine Learning, ICML 2016, 3, 1661–1680.

Gal, Y., & Ghahramani, Z. (2016c). Dropout as a Bayesian approximation: Representing model

uncertainty in deep learning. 33rd International Conference on Machine Learning, ICML

2016, 3, 1651–1660.

Galbraith, D. N., Sharp, J. V., & Terry, E. (2005). Managing life extension in aging offshore

installations. Offshore Europe Conference - Proceedings, 453–461.

Gibbs, B., & Graf, T. (2014). Managing life extension programs for ageing floating offshore

facilities. Proceedings of the Annual Offshore Technology Conference, 1, 564–570.

Lee, G. Y., Kim, M., Quan, Y. J., Kim, M. S., Kim, T. J. Y., Yoon, H. S., Min, S., Kim, D. H.,

Mun, J. W., Oh, J. W., Choi, I. G., Kim, C. S., Chu, W. S., Yang, J., Bhandari, B., Lee, C.

M., Ihn, J. B., & Ahn, S. H. (2018). Machine health management in smart factory: A review.

In Journal of Mechanical Science and Technology, 32(3), 987–1009.

Lee, J., Lapira, E., Bagheri, B., & Kao, H. an. (2013). Recent advances and trends in predictive

manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41.

Luengo, M. M., & Kolios, A. (2015). Failure mode identification and end of life scenarios of

offshore wind turbines: A review. Energies, 8(8), 8339–8354.

Nezamian, A., Nicolson, R. J., & Iosif, D. (2012). State of art in life extension of existing offshore

structures. Proceedings of the International Conference on Offshore Mechanics and Arctic

Engineering - OMAE, 2, 165–174.

Nielsen, J. S., Dimitrov, N. K., & Sørensen, J. D. (2019). Optimal decision making for life

extension for wind turbines. 13th International Conference on Applications of Statistics and

Probability in Civil Engineering, ICASP13, Seoul, South Korea, May 26-30, 2019, 83.

Rashad, H. (2017). Managing of aging assets and ways for its remnant life extension. Society of

Petroleum Engineers - SPE Abu Dhabi International Petroleum Exhibition and Conference

2017, 2017-Janua.

Shafiee, M., & Animah, I. (2017). Life extension decision making of safety critical systems: An

overview. In Journal of Loss Prevention in the Process Industries 47, 174–188).

Stacey, A. (2011). KP4: Ageing and Life Extension Inspection Programme for Offshore

Installations. Proceedings of the ASME 2011 30th International Conference on Ocean,

Offshore and Arctic Engineering OMAE2011, June 19-24, 2011, Rotterdam, The

Netherlands, 33–48.

227

APPENDICES

Appendix A MATLAB Codes for Chapter 5

A.1 Code for MATLAB function for importing train data

function TrainFD001 = ImportTrainData(filename, dataLines)

% IMPORTFILE Import data from a text file

% TRAINFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME for the % default

selection. Returns the data as a table.

% TRAINFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row

% interval(s)of text file FILENAME. Specify DATALINES as a positive scalar

% integer or a N-by-2 array of positive scalar integers for dis-contiguous row % intervals.

% Example:

% TrainFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield

% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\train_FD001.txt", [1, % Inf]);

Input handling

% If dataLines is not specified, define defaults

if nargin < 2

 dataLines = [1, Inf];

end

Setup the Import Options and import the data

opts = delimitedTextImportOptions("NumVariables", 26);

% Specify range and delimiter

opts.DataLines = dataLines;

opts.Delimiter = " ";

% Specify column names and types

opts.VariableNames = ["unit_num", "time", "ops_set1", "ops_set2", "ops_set3", "sensor1",

"sensor2", "sensor3", "sensor4", "sensor5", "sensor6", "sensor7", "sensor8", "sensor9",

"sensor10", "sensor11", "sensor12", "sensor13", "sensor14", "sensor15", "sensor16",

"sensor17", "sensor18", "sensor19", "sensor20", "sensor21"];

opts.VariableTypes = ["double", "double", "double", "double", "double", "double",

"double", "double", "double", "double", "double", "double", "double", "double", "double",

"double", "double", "double", "double", "double", "double", "double", "double", "double",

"double", "double"];

% Specify file level properties

opts.ExtraColumnsRule = "ignore";

opts.EmptyLineRule = "read";

opts.ConsecutiveDelimitersRule = "join";

opts.LeadingDelimitersRule = "ignore";

% Import the data

TrainFD001 = readtable(filename, opts);

end

228

A.2 Code for MATLAB function for importing test data

function TestFD001 = ImportTestData(filename, dataLines)

% IMPORTFILE Import data from a text file
% TestFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME for the
% default selection. Returns the data as a table.
% TestFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row
% interval(s)of text file FILENAME. Specify DATALINES as a positive scalar
% integer or a N-by-2 array of positive scalar integers for dis-contiguous row % intervals.

% Example:
% TestFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield
% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\test_FD001.txt", [1,
% Inf]);

Input handling

% If dataLines is not specified, define defaults
if nargin < 2
 dataLines = [1, Inf];
end

Setup the Import Options and import the data

opts = delimitedTextImportOptions("NumVariables", 26);

% Specify range and delimiter
opts.DataLines = dataLines;
opts.Delimiter = " ";

% Specify column names and types
opts.VariableNames = ["unit_num", "time", "ops_set1", "ops_set2", "ops_set3", "sensor1",
"sensor2", "sensor3", "sensor4", "sensor5", "sensor6", "sensor7", "sensor8", "sensor9",
"sensor10", "sensor11", "sensor12", "sensor13", "sensor14", "sensor15", "sensor16",
"sensor17", "sensor18", "sensor19", "sensor20", "sensor21"];

opts.VariableTypes = ["double", "double", "double", "double", "double", "double",
"double", "double", "double", "double", "double", "double", "double", "double", "double",
"double", "double", "double", "double", "double", "double", "double", "double", "double",
"double", "double"];

% Specify file level properties
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";
opts.ConsecutiveDelimitersRule = "join";
opts.LeadingDelimitersRule = "ignore";

% Import the data
TestFD001 = readtable(filename, opts);
end

229

A.3 Code for MATLAB function for importing ground truth RUL data

function RULFD001 = importfile(filename, dataLines)

% IMPORTFILE Import data from a text file

% RULFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME

% for the default selection. Returns the data as a table.

%

% RULFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row

% interval(s) of text file FILENAME. Specify DATALINES as a positive scalar

% integer or a N-by-2 array of positive scalar integers for dis-contiguous row

% intervals.

%

% Example:

% RULFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield

% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\RUL_FD001.txt", [1,

% Inf]);

Input handling

% If dataLines is not specified, define defaults

if nargin < 2

 dataLines = [1, Inf];

end

Setup the Import Options and import the data

opts = delimitedTextImportOptions("NumVariables", 1);

% Specify range and delimiter

opts.DataLines = dataLines;

opts.Delimiter = " ";

% Specify column names and types

opts.VariableNames = ["RULFD001","unit_num"];

opts.VariableTypes = ["double", "double"];

% Specify file level properties

opts.ExtraColumnsRule = "ignore";

opts.EmptyLineRule = "read";

opts.ConsecutiveDelimitersRule = "join";

opts.LeadingDelimitersRule = "ignore";

% Import the data

RULFD001 = readtable(filename, opts);

RULFD001.unit_num = [1:100]';

end

230

A.4 Code for MATLAB function for equipment prioritisation and

grouping

Data-based grouping of equipment within a fleet for life-extension.

Load Data

X = ImportTrainData("train_FD001.txt");

Calculate group statistics according to unit numbers
Here, the “groupsummary” function is used to compute some features for the data (variance,
standard deviation, mean and median).

data4grpstats = X(:,:);

data4grpstats.unit_num = categorical(data4grpstats.unit_num);

groupstats = groupsummary(data4grpstats,"unit_num",["var","std","mean","median"])

groupstats = 100×102 table

The group statistics show that the sensor readings across different unit numbers (i.e., pieces of
equipment) are within similar ranges, some with the same mean, others with variance of 0.

View variance for each unit number

idxVar = strncmp([groupstats.Properties.VariableNames],'var_',4);

unitVariances = groupstats(:,idxVar)

unitVariances = 100×25 table

Excluding var_time, which represents the number of cycles, statistics for the training data X, show
that some of the variables have variances of 0. A careful look at the raw data shows that indeed,
the values of some of these variables are constant while some show negligible variation. From a
features engineering point of view, these variables will offer no useful insight into our data and
will thus be discarded.

Eliminate variables with negligible variances
The dataset is reduced by eliminating variables with zero or near zero variances.

tempUnitVar = table2array(unitVariances);

idxZeroVar = tempUnitVar(:,2:end)>=0.0001; % 1st column is left out as it represents

% time (number of cycles)

idxZeroVar indexes the variables with variance below 0.0001, across all units. The variables to
be included in the reduced data are extracted below.

idxContinuousVariables = [1 1 idxZeroVar(1,:)]; % the columns representing unit number and

% time are to be included in the extracted data

idxContinuousVariables = logical(idxContinuousVariables);

continuousVariables = (X.Properties.VariableNames(idxContinuousVariables))

continuousVariables = 1×16 cell

'unit_num' 'time' 'sensor2' 'sensor3' 'sensor4'

'sensor7' ⋯

231

The following variables have zero variances: "ops_set1", "ops_set2", "ops_set3", "sensor1",
"sensor5", "sensor6", "sensor10", "sensor16", "sensor18", and "sensor19." Eliminating these
variables using the code below leaves a reduced data set, Xreduced.

X_reduced = X(:,continuousVariables);

Prepare data as an ensemble of data from each unit

The code below extracts the data from each unit within the fleet and generates an ensemble of
data, with each member of the ensemble being the reduced run-to-failure degradation data,
Xi_reduced, for individual equipment.

units = X_reduced{:,1};

ntunits = unique(units);

Xi_reduced = cell(numel(ntunits),1);

for i=1:numel(ntunits)

 idxUnitNum = units == ntunits(i);

 Xi_reduced{i} = X_reduced(idxUnitNum,:);

end

Normalize data for each unit

The code below normalizes the reduced run-to-failure data for each unit via the standard z-score
normalization: .

X_reducedNorm = cell(length(Xi_reduced),1);

for irow = 1:length(Xi_reduced)

 forNorm = Xi_reduced{irow};

 forNorm = table2array(forNorm);

 X = forNorm(:,3:end);

 forNorm(:,3:end) = (X - mean(X))./std(X);

 forNorm = array2table(forNorm,"VariableNames",continuousVariables);

 X_reducedNorm{irow} = forNorm;

end

Visualize some of the data against time (i.e., number of cycles)

% convert all the tables in X_clusterdata to arrays

arrayX_reducedNorm = cell(length(X_reducedNorm),1);

for unit = 1:length(arrayX_reducedNorm)

 arrayX_reducedNorm{unit} = table2array(X_reducedNorm{unit});

 arrayX_reducedNorm{unit} =

smoothdata(arrayX_reducedNorm{unit},1,"rlowess","SmoothingFactor",0.5);

end

%plot sensor data against time for selected units

for unit = 1:2 %for the first 2 units

 plot(arrayX_reducedNorm{unit}(:,2), arrayX_reducedNorm{unit}(:,3:end));

 hold on;

 legend(continuousVariables(:,3:end),"Location","northeastoutside","FontSize",9);

 xlabel("Time (in cycles)", "FontWeight","bold");

 ylabel("Normalised data (units 1 and 2)","FontWeight","bold");

 title("Normalised data against time");

end

hold off

232

 Figure A-1 Plot of normalised sensor data for units 1 and 2

The plot shows all 14 variables for 2 units. Two distinct patterns are observable, predominantly
monotonically increasing and monotonically decreasing. Since the data is noisy, it is smoothed
using the robust locally weighted scatterplot smoothing (RLOWESS) algorithm built into
MATLAB. RLOWESS handles outliers well.

Checking for trendability, monotonicity and prognosability of sensor variables.

An important characteristic for features that indicates their usefulness for prognostics is
trendability. Trendability values range from 0 to 1, with 0 being non-trendable and 1 being
perfectly trendable. Fundamentally, trendability uses the feature engineering principle of
eliminating strongly correlated features.

% prepare data for use with trendability function

data4trend = cell(length(arrayX_reducedNorm),1);

for unit = 1:length(arrayX_reducedNorm)

 data4trend{unit} =

array2table(arrayX_reducedNorm{unit}(:,2:end),"VariableNames",continuousVariables(2:end));

end

trend_values = trendability(data4trend,"time")

trend_values = 1×14 table

monot_values = monotonicity(data4trend,"time","method","sign")

monot_values = 1×14 table

prognos_values = prognosability(data4trend,"time")

prognos_values = 1×14 table

233

Sort out and select the most trendable sensors.

trendability(data4trend,"time")

monotonicity(data4trend,"time","method","sign")

prognosability(data4trend,"time")

The plots clearly show four sensors with very low trendability values. The same four sensors
(sensors 8, 9,13, and 14) have the lowest monotonicity and prognosability values. The values of
the metrics can then be combined and the variables with the highest values extracted as the sensors
with the best trendabilities.

%add the values of the three metrics

combined_values = table2array(trend_values) + table2array(monot_values) +

table2array(trend_values);

combined_values = array2table(combined_values, "VariableNames",

trend_values.Properties.VariableNames)

combined_values = 1×14 table

 sensor2 sensor3 sensor4 sensor7 sensor8 sensor9 ⋯

1 2.3765 2.2736 2.5450 2.5141 1.5130 0.7695

% visualise the combined values

bar(table2array(combined_values), 0.6)

xticks(1:14);

xticklabels(combined_values.Properties.VariableNames);

xtickangle(60);

title("Combined values = Monotonicity + Trendability + Prognosability","FontSize",10)

xlabel("Features");

ylabel("Combined values (or fitness)")

Figure A-2 Plot of fitness values for 14 sensors

234

% Define criterion for exclusion, here selected sensors have combined values greater than 2.0

% (out of a maximum of 3.0). Users may define their own criterion. For this work, all sensors

% with combined values of 2.0 out of 3.0 actually have combined values above 2.5 out of 3.0.

idxSelect = table2array(combined_values) > 2.0;

select_sensors = combined_values.Properties.VariableNames(:,idxSelect)

select_sensors = 1×10 cell

'sensor2' 'sensor3' 'sensor4' 'sensor7' 'sensor11'

'sensor12' ⋯

Given the specified criterion, a total of 10 sensors (labelled 2, 3, 4, 7, 11, 12, 15, 17, 20 and 21)
will be retained and fused to construct the health indices for the units.

Visualize the data for the most trendable sensors selected

Below is a code to plot the selected sensors for a selected number of units.

%plot selected sensor data against time for some selected units

idxSelect1 = [0 0 idxSelect]; %columns for 'unit number' and 'time' to

% be left out of the columns of the normalized, reduced training data.

idxSelect1 = logical(idxSelect1);

for unit = 1:3 %for the first 3 units

 plot(arrayX_reducedNorm{unit}(:,2),

 arrayX_reducedNorm{unit}(:,idxSelect1));

 hold on;

legend(continuousVariables(:,idxSelect1),"Location",…

"northeastoutside","FontSize",9);

 xlabel("Time (in cycles)");

 ylabel("Normalised sensor data");

 title("Normalised data against time (units 1, 2 and 3)");

end

hold off

Figure A-3 Plot of normalised data for 10 selected sensors for units 1, 2 and 3.

235

The plot shows that the selected sensors are trendable, showing continuous degradation, from an
initial value.

Reduce data to contain only selected features

The code below extracts that data for the selected sensors and makes it ready for fusing, in order
to construct the unified health indicator.

idxSelect2 = [1 1 idxSelect1(:,3:end)]; %include the column for unit number and time in the

% data

idxSelect2 = logical(idxSelect2);

X_clusterdata = cell(length(X_reducedNorm),1);

for i = 1:length(X_clusterdata)

 X_clusterdata{i} = X_reducedNorm{i}(:,idxSelect2);

end

Construct health indicator for the units - 3 stage division

This section of the code will implement the fusing of the selected sensors to obtain a single
degradation trend. Thereafter, the lifetime of each unit will be categorized into "healthy", "good
" or "soon-to-fail." These health indices, which will be translated to timelines, normalized by the
unit life (using an index called Potential Failure Interval Factor, PFIF) will then form the basis
for clustering equipment for life-extension.

The units will all be assumed as starting healthy and then progressively degrading until failure.
As such, the health condition index will be assigned a value of 1 at the beginning and 0 at failure.
Since the health condition index assignment is for the purpose of clustering the units into groups,
a simplistic linear division of the health states is implemented below.

Xi_clusterdata = cell(length(X_clusterdata),1);

for i=1:length(X_clusterdata)

 Xi_clusterdata{i} = X_clusterdata{i};

 PF_interval = max(Xi_clusterdata{i}.time) - Xi_clusterdata{i}.time; % compute

% instantaneous P-F interval for each unit

 PFIF = PF_interval/max(Xi_clusterdata{i}.time); %compute P-F interval factor by

% normalising the P-F interval with the lifetime of each unit

 Xi_clusterdata{i}.PFIF = PFIF;

end

The PF interval factor, PFIF, will then be used to categorize each unit at different stages of
operation as either "healthy", "good" or "soon-to-fail" using the code below:

for i = 1:length(Xi_clusterdata)

 Xi_clusterdata{i}.health_condition = categorical(Xi_clusterdata{i}.PFIF);

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF > 0.75,:) = "healthy";

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.75 & Xi_clusterdata{i}.PFIF

> 0.45,:) = "good";

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.45 ,:) = "soon-to-fail";

end

Construct health indicators for the units: 4-stage HS division.

This section of the code will implement the fusing of the selected sensors to obtain a single
degradation trend. Thereafter, the lifetime of each unit will be categorized into "healthy", "good
- no action", "good - monitor" and "soon-to-fail." These health indices, which will be translated
into timelines, normalized by the unit life (using the PFIF index), will then form the basis for
clustering equipment for life-extension.

236

The units will all be assumed as starting healthy and then progressively degrading until failure.
As such, the health condition index will be assigned a value of 1 at the beginning and 0 at failure.
Since the health condition index assignment is for the purpose of clustering the unit into the four
broad groups mentioned earlier, a simplistic linear division of the health states is implemented
below.

Xi_clusterdata = cell(length(X_clusterdata),1);

for i=1:length(X_clusterdata)

 Xi_clusterdata{i} = X_clusterdata{i};

 PF_interval = max(Xi_clusterdata{i}.time) - Xi_clusterdata{i}.time; % compute

% instantaneous P-F interval for each unit

 PFIF = PF_interval/max(Xi_clusterdata{i}.time); %compute P-F interval factor by

% normalising the P-F interval with the lifetime of each unit

 Xi_clusterdata{i}.PFIF = PFIF;

end

The PF interval factor, PF_intFactor, will then be used to categorize each unit at different stages
of operation as either "healthy", "good - no action", "good - monitor" or "soon-to-fail" using the
code below:

for i = 1:length(Xi_clusterdata)

 Xi_clusterdata{i}.health_condition = categorical(Xi_clusterdata{i}.PFIF);

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF > 0.75,:) = "healthy";

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.75 & Xi_clusterdata{i}.PFIF

> 0.5,:) = "good - no action";

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.5 & Xi_clusterdata{i}.PFIF

> 0.30,:) = "good - monitor";

 Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.30 ,:) = "soon-to-fail";

end

Fit a regression model to data and fuse all selected sensors

X_TrainUnwrap = vertcat(Xi_clusterdata{:});

mdlvars = continuousVariables(:,idxSelect1);

X_mdl = X_TrainUnwrap{:,mdlvars};

y = X_TrainUnwrap.PFIF;

mdl = fitrlinear(X_mdl,y,"Learner","leastsquares","Regularization","ridge","Solver","sgd");

bias = mdl.Bias %model bias

bias = 0.5122

weights = mdl.Beta %model coefficients

weights = 10×1

 -0.0324
 -0.0081
 -0.0467
 0.0182
 -0.0496
 0.0268
 -0.0012
 -0.0212
 0.0159
 0.0284

bias_optimal = (0.5052 + 0.4986)/2 %average of two good performing models

bias_optimal = 0.5019

237

weights_optimal = ([-0.0466;-0.0248;-0.0546;0.0483;-0.0661;0.0548;-0.0428;-0.0114;0.0282;

0.0384] + [-0.0133;-0.0150;-0.0397;0.0449;-0.0584;0.0599;-0.0302;-0.0262;0.0347;0.0354])/2

%average of two good performing models

weights_optimal = 10×1

 -0.0300
 -0.0199
 -0.0471
 0.0466
 -0.0622
 0.0573
 -0.0365
 -0.0188
 0.0314
 0.0369

Fuse selected sensors into a single health indicator

Using the fitted linear regression model, the selected sensors are all fused into a single degradation
trajectory, serving as a single health state indicator, using the code below:

% Fuse the data using model bias and weights

Yi = cell(numel(Xi_clusterdata),1);

for i = 1:length(Xi_clusterdata)

 data_fuse = Xi_clusterdata{i}{:, mdlvars};

 YiRaw = bias_optimal + data_fuse*weights_optimal;

 % Smooth the fused data with RLOWESS algorithm

 Yi{i} = smoothdata(YiRaw,1,"rlowess","SmoothingFactor",0.5);

 % Scale fused data to the range [0,1]

 Yi{i} = (Yi{i} - min(Yi{1}))/(max(Yi{i})-min(Yi{i}));

 % Offset the data to all start at 1

 Yi{i} = Yi{i} + 1 - Yi{i}(1);

end

Visualize fused health indicator

%plot the degradation trajectories for the units within the fleet

for unit = 1:length(Yi) %for all the units within the fleet

 plot(Xi_clusterdata{unit}{:,2}, Yi{unit}(:,1));

 ylabel("Condition indicator");

 xlabel("Time (in cycles)");

 title("Fused data (condition indicator) against time");

 hold on;

end

hold off

238

Figure A-4 Plot of condition indicators for all 100 units in the FD001 dataset.

Import and prepare test data "test_FD001.txt"

XTest = ImportTestData("test_FD001.txt"); %import test data for 100 units

XTestReduced = XTest(:,continuousVariables); %reduce test data to only sensors with non-zero

% variances convert reduced test data to an ensemble of data for each unit

test_Units = XTestReduced{:,1};

ntest_Units = unique(test_Units);

XTestReduced_i = cell(numel(ntest_Units),1);

for i = 1:numel(ntest_Units)

 idxtUnitNum = test_Units == ntest_Units(i);

 XTestReduced_i{i} = XTestReduced(idxtUnitNum,:);

end

% normalize test data

XTestclusterdata_i = cell(length(XTestReduced_i),1);

for irowtest = 1:length(XTestReduced_i)

 forNormtest = XTestReduced_i{irowtest};

 forNormtest = table2array(forNormtest);

 Xt = forNormtest(:,3:end);

 forNormtest(:,3:end) = (Xt - mean(Xt))./std(Xt);

 forNormtest(:,3:end) = smoothdata(forNormtest(:,3:end),1,"rlowess","SmoothingFactor",0.5);

%smooth normalized test data as done with normalised train data

 forNormtest = array2table(forNormtest,"VariableNames",continuousVariables);

 XTestclusterdata_i{irowtest} = forNormtest;

end

Train test data using developed model to obtain health indices.

% make prediction of health indices for test data using trained linear model

X_TestUnwrap = vertcat(XTestclusterdata_i{:});

X_Test = X_TestUnwrap{:,mdlvars};

239

yPredRaw = bias_optimal + X_Test*weights_optimal; % predict output add predicted indices as a

% column to test data (as PFIF)

X_TestUpdated = X_Test;

X_TestUpdated = array2table(X_TestUpdated,"VariableNames",mdlvars);

X_TestUpdated.predPFIF = yPredRaw;

% add unit number and time variables to updated test data with health indices

X_TestUpdated.unit_num = XTest.unit_num;

X_TestUpdated.time = XTest.time;

% reorder columns

X_TestUpdated = movevars(X_TestUpdated, 'unit_num', 'Before', 'sensor2');

X_TestUpdated = movevars(X_TestUpdated, 'time', 'Before', 'sensor2');

Extract the "present" condition for each unit using the maximum time value.

% convert test data updated with condition indicator into an ensemble of data for each unit.

final_units = X_TestUpdated{:,1};

nfinal_units = unique(final_units);

data4groups = cell(numel(nfinal_units),1);

for i = 1:numel(nfinal_units)

 idxunits4goups = final_units == i;

 data4groups{i} = X_TestUpdated(idxunits4goups,:);

end

%offset predicted health index to match health indicator earlier contructed. Also smooth the

% fused data

for i = 1:length(data4groups)

 data4groups{i}.predPFIF = movmean(data4groups{i}.predPFIF, [15 15]);

 data4groups{i}.predPFIF =

smoothdata(data4groups{i}.predPFIF,1,"rlowess","SmoothingFactor",0.5);

 % Offset the data to 1

 data4groups{i}.predPFIF = data4groups{i}.predPFIF + 1 - data4groups{i}.predPFIF(1);

end

% view the predicted health indicator trajectories

for unit = 1:20 % length(data4groups) %for the first 20 units

 plot(data4groups{unit}.time, data4groups{unit}.predPFIF, "-");

 hold on

end

xlim([0,350])

ylabel("Condition indicator");

xlabel("Time (in cycles)");

title("Predicted degradation trajectory/health indicator");

hold off

240

Figure A-5 Predicted health index degradation trajectory for units 1 to 20.

%extract PF interval factor at present time for each unit

Yi_groups = cell(numel(nfinal_units),1);

for i = 1:numel(nfinal_units)

 [t_max,idxT_cluster] = max(data4groups{i}.time);

 Yi_groups{i}.VariableNames = ["unit_num", "predPFIF"];

 Yi_groups{i} = data4groups{i}(idxT_cluster,Yi_groups{i}.VariableNames);

end

Visualize predicted condition indicator for test data alongside true RUL values

unit_health = vertcat(Yi_groups{:});

plot(unit_health.unit_num, unit_health.predPFIF,"--","Color","r")

xlim([0.0 110.0]);

ylim([-0.2 1.2]);

trueRUL = ImportRULFD001("RUL_FD001.txt");

% extract the values of time at which the test data terminates for each unit

t_i = cell(length(XTestclusterdata_i),1);

for i = 1:length(XTestclusterdata_i)

 t_i{i} = max(XTestclusterdata_i{i}.time);

end

t_i = vertcat(t_i{:});

%calculate actual PFIF using the true RUL values

truePF_interval = trueRUL.RULFD001;

truePFIF = truePF_interval./(trueRUL.RULFD001 + t_i);

% normalize true PFIF values to the range [0, 1] for scale-independent comparison with the

% predicted PFIF values

trueRUL.truePFIFn = (truePFIF - min(truePFIF))./(max(truePFIF) - min(truePFIF));

hold on

plot(trueRUL.unit_num,trueRUL.truePFIFn,"-","Color","g")

xlabel("Unit Number");

241

ylabel("Condition Indicator / Normalized True PFIF");

legend("Predicted PFIF","Normalized True PFIF", "Location","best")

hold off

Figure A-6 Plot comparing scaled true PFIF to predicted PFIF for all 100 units.

Both plots on the same chart show that the predicted condition indicator (i.e., PFIF) very closely
matches the normalized ground truth RUL values. This shows that the proposed index, the PFIF,
is indeed a good indicator of the health state of the units.

A.4.1 Assign health state to each unit based on extracted present health

indicator – 3 stage division

Each unit is assigned a health condition as either "healthy", "good", or "soon-to-fail" based on the
predicted PF interval factor, which is essentially the health indicator. The assignment is performed
in a linear manner since the PF interval factor is not scale-dependent and already factors in the
variability in the total lifetimes for each unit. The assignment for the purpose of this work (for
PFIF ranging from 0 to around 1) is:

above 0.75: "healthy";

above 0.45 up to 0.75: "good";

0.45 and below: "soon-to-fail."

unit_health.health_condition = categorical(unit_health.predPFIF);

idx_healthy = unit_health.predPFIF > 0.75;

unit_health.health_condition(idx_healthy,:) = "healthy";

idx_good = unit_health.predPFIF <= 0.75 & unit_health.predPFIF > 0.45;

unit_health.health_condition(idx_good,:) = "good";

idx_soontf = unit_health.predPFIF <= 0.45;

unit_health.health_condition(idx_soontf,:) = "soon-to-fail";

242

%add trueRUL values for easy comparison of health state assignment

unit_health.trueRUL = trueRUL.RULFD001;

unit_health.truePFIFn = trueRUL.truePFIFn;

Healthy = unit_health(idx_healthy,:)

Healthy = 29×5 table

Good = unit_health(idx_good,:)

Good = 31×5 table

Soon_to_fail = unit_health(idx_soontf,:)

Soon_to_fail = 40×5 table

Run k-means clustering to obtain clusters of units – 3 stage division

% extract present values of normalised test data for possible clustering

XTestdata4kmeans = cell(length(XTestclusterdata_i),1);

for i = 1:length(XTestclusterdata_i)

 XTestdata4kmeans{i} = XTestclusterdata_i{i}(end,:);

end

XTestdata4kmeans = vertcat(XTestdata4kmeans{:});

[idxKmeansUnits, Cs] = kmeans(table2array(XTestdata4kmeans(:,mdlvars)),3,"display","final",

"distance","sqeuclidean","MaxIter", 100,"Replicates",10);

%check the intra-cluster similarity levels for each cluster using the silhouette function

silhouette(table2array(XTestdata4kmeans(:,mdlvars)),idxKmeansUnits)

Figure A-7 Silhouette plot showing similarity between the sensor data for the 100 units
clustered into 3 groups using k-means clustering.

Compare k-means clustering results to result from linear model – 3 stage division

243

% extract cluster members

Group1 = unit_health(idxKmeansUnits==1,:)

Group1 = 41×5 table

Group2 = unit_health(idxKmeansUnits==2,:)

Group2 = 32×5 table

Group3 = unit_health(idxKmeansUnits==3,:)

Group3 = 27×5 table

A.4.2 Assign health state to each unit based on extracted present health

indicator – 4 stage division

Each unit is assigned a health condition as either "healthy", "good - no action", "good - monitor",
"soon-to-fail" based on the predicted PF interval factor, which is essentially the health indicator.
The assignment is performed in a linear manner since the PF interval factor is not scale-dependent
and already factors in the variability in the total lifetimes for each unit. The assignment for the
purpose of this work (for PFIF ranging from 0 to around 1) is:

above 0.75: "healthy";

above 0.50 up to 0.75: "good - no action";

above 0.30 up to 0.50: "good - monitor";

0.30 and below: "soon-to-fail".

unit_health.health_condition = categorical(unit_health.predPFIF);

idx_healthy = unit_health.predPFIF > 0.75;

unit_health.health_condition(idx_healthy,:) = "healthy";

idx_goodna = unit_health.predPFIF <= 0.75 & unit_health.predPFIF > 0.5;

unit_health.health_condition(idx_goodna,:) = "good - no action";

idx_goodmo = unit_health.predPFIF <= 0.5 & unit_health.predPFIF > 0.30;

unit_health.health_condition(idx_goodmo,:) = "good - monitor";

idx_soontf = unit_health.predPFIF <= 0.30;

unit_health.health_condition(idx_soontf,:) = "soon-to-fail";

%add trueRUL values for easy comparison of health state assignment

unit_health.trueRUL = trueRUL.RULFD001;

unit_health.truePFIFn = trueRUL.truePFIFn;

Healthy = unit_health(idx_healthy,:)

Healthy = 31×6 table

Good_no_action = unit_health(idx_goodna,:)

Good_no_action = 31×6 table

Good_monitor = unit_health(idx_goodmo,:)

Good_monitor = 19×6 table

Soon_to_fail = unit_health(idx_soontf,:)

Soon_to_fail = 19×6 table

Run k-means clustering to obtain clusters of units – 4 stage division

% extract present values of normalised test data for possible clustering

XTestdata4kmeans = cell(length(XTestclusterdata_i),1);

244

for i = 1:length(XTestclusterdata_i)

 XTestdata4kmeans{i} = XTestclusterdata_i{i}(end,:);

end

XTestdata4kmeans = vertcat(XTestdata4kmeans{:});

[idxKmeansUnits, Cs] = kmeans(table2array(XTestdata4kmeans(:,mdlvars)),4,"display","final",

"distance","sqeuclidean","MaxIter", 100,"Replicates",10);

%check intra-cluster similarity of cluster members using the silhouette function

silhouette(table2array(XTestdata4kmeans(:,mdlvars)),idxKmeansUnits)

Figure A-8 Silhouette plot showing similarity between the sensor data for the 100 units
clustered into 4 groups using k-means clustering.

Compare k-means clustering results to result from linear model

% extract cluster members

Group1 = unit_health(idxKmeansUnits==1,:)

Group1 = 25×6 table

Group2 = unit_health(idxKmeansUnits==2,:)

Group2 = 32×6 table

Group3 = unit_health(idxKmeansUnits==3,:)

Group3 = 23×6 table

Group4 = unit_health(idxKmeansUnits==4,:)

Group4 = 20×6 table

245

Appendix B Codes for Chapter 6 - RUL prediction using BNN

B.1 MATLAB code for data pre-processing

Processing FD001 data for use in RUL prediction using BNN

Load Data
The MATLAB functions for importing the train and test data, which were defined in Appendix
A.1 and Appendix A.2 respectively, will be used here (with some slight variations) to import the
FD001 train and test data for subsequent pre-processing.

X = ImportTrainData("train_FD001.txt");

Group statistics according to unit numbers
Here, the “groupsummary” function is used to compute some features for the data (variance,
standard deviation, mean and median).

data4grpstats = X(:,:);

data4grpstats.unit_num = categorical(data4grpstats.unit_num);

groupstats = groupsummary(data4grpstats,"unit_num",["var","std","mean","median"])

The group stats show that the sensor readings across different unit numbers (i.e., pieces of
equipment) are within similar ranges, some with the same mean, others with variance of 0.

View variance for each unit number

idxVar = strncmp([groupstats.Properties.VariableNames],'var_',4);

unitVariances = groupstats(:,idxVar)

Excluding var_time which represents the number of cycles, statistics for the training data X, show
that some of the variables have variances of 0. A careful look at the raw data shows that indeed,
the values of some these variables are constant while some show negligible variation. From a
features engineering point of view, these variables will offer no useful insight into our data and
will thus be discarded.

Eliminate variables with negligible variances
The data set is reduced by eliminating variables with zero or near zero variances.

tempUnitVar = table2array(unitVariances);

idxZeroVar = tempUnitVar(:,2:end)>=0.0001; % 1st column is left out as it represents

% time (number of cycles)

idxZeroVar indexes the variables with variance below 0.0001, across all units. The variables to
be included in the reduced data are extracted below.

idxContinuousVariables = [1 1 idxZeroVar(1,:)]; % the columns representing unit number

% and time are to be included in the extracted data

idxContinuousVariables = logical(idxContinuousVariables);

continuousVariables = (X.Properties.VariableNames(idxContinuousVariables))

continuousVariables = 1×16 cell

'unit_num' 'time' 's_2' 's_3' 's_4'

's_7' ⋯

246

The following variables have zero variances: "ops_set1", "ops_set2", "ops_set3", "sensor1",
"sensor5", "sensor6", "sensor10", "sensor16", "sensor18", and "sensor19." Eliminating these
variables using the code below leaves a reduced data set, Xreduced.

X_reduced = X(:,continuousVariables);

Prepare train data as an ensemble of data from each unit
The code below extracts the data from each unit within the fleet and generates an ensemble of
data, with each member of the ensemble being the reduced run-to-failure degradation data,
Xi,reduced, for individual equipment.

units = X_reduced{:,1};
ntunits = unique(units);
Xi_reduced = cell(numel(ntunits),1);
for i=1:numel(ntunits)
 idxUnitNum = units == ntunits(i);
 Xi_reduced{i} = X_reduced(idxUnitNum,:);
end

Import and prepare test data "test_FD001.txt"

XTest = ImportTestData("test_FD001.txt"); % import test data for 100 units

XTestReduced = XTest(:,continuousVariables); % reduce test data to only sensors with non-zero

% variances

% convert reduced test data to an ensemble of data for each unit

test_Units = XTestReduced{:,1};

ntest_Units = unique(test_Units);

XTestReduced_i = cell(numel(ntest_Units),1);

for i = 1:numel(ntest_Units)

 idxtUnitNum = test_Units == ntest_Units(i);

 XTestReduced_i{i} = XTestReduced(idxtUnitNum,:);

end

Scale train and test data for each unit using min-max scaler

The code below scales the reduced run-to-failure data for each unit using:

X_std = (X - min(X_train))/(max(X_train) - min(X_train))

X_scaled = X_std * (max - min) + min, where max=1 and min=0 for scaling in the range [0,1].

For the test data, the stored min(X_train) and max(X_train) values are used to scale the
corresponding column (or sensor) values in the test data.

Xtrain_reduced_scaled = cell(length(Xi_reduced),1);

Xtest_reduced_scaled = cell(length(XTestReduced_i),1);

for irow = 1:length(Xi_reduced)

 train_for_scaling = Xi_reduced{irow};

 X_train = table2array(train_for_scaling(:,3:end));

 X_train_min = min(X_train);

 X_train_max = max(X_train);

 max_for_scaling = 1;

 min_for_scaling = 0;

 X_train = ((X_train - X_train_min)./(X_train_max - X_train_min))*(max_for_scaling-

min_for_scaling)+min_for_scaling;

 X_train = array2table(X_train,"VariableNames",continuousVariables(:,3:end));

 train_for_scaling(:,3:end) = X_train;

 Xtrain_reduced_scaled{irow} = train_for_scaling;

247

 % scale test data

 test_for_scaling = XTestReduced_i{irow};

 X_test = table2array(test_for_scaling(:,3:end));

 X_test = ((X_test - X_train_min)./(X_train_max - X_train_min))*(max_for_scaling-

min_for_scaling)+min_for_scaling; % stored values of min(X_train) and max(X_train) are used

 X_test = array2table(X_test,"VariableNames",continuousVariables(:,3:end));

 test_for_scaling(:,3:end) = X_test;

 Xtest_reduced_scaled{irow} = test_for_scaling;

end

Visualize some of the train data against time (i.e., number of cycles)

% convert all the tables in train data to arrays, smooth data using RLOWESS algorithm, and

% visualise

Xtrain_reduced_scaled_smoothed = cell(length(Xtrain_reduced_scaled),1);

for unit = 1:length(Xtrain_reduced_scaled)

 Xtrain_reduced_scaled_smoothed{unit} = Xtrain_reduced_scaled{unit};

 train_for_smoothing = table2array(Xtrain_reduced_scaled{unit}(:,3:end));

 train_for_smoothing = smoothdata(train_for_smoothing,1,"rlowess","SmoothingFactor",0.8);

 Xtrain_reduced_scaled_smoothed{unit}(:,3:end) =

array2table(train_for_smoothing,"VariableNames",continuousVariables(:,3:end));

end

%plot sensor data against time for units 5 and 12 for the first 2 units

plot(Xtrain_reduced_scaled_smoothed{5}.time,

table2array(Xtrain_reduced_scaled_smoothed{5}(:,3:end)));

hold on;

plot(Xtrain_reduced_scaled_smoothed{12}.time,

table2array(Xtrain_reduced_scaled_smoothed{12}(:,3:end)));

legend(continuousVariables(:,3:end),"Location","northeastoutside","FontSize",9,

"Interpreter","none");

xlabel("Time (in cycles)", "FontWeight","bold");

ylabel("Smoothed scaled data (units 5 and 12)","FontWeight","bold");

title("Plot of smoothed scaled data against time");

grid on

hold off

Figure B-1 Plot of scaled and smoother data for 14 sensors for sample units (units 5 and 12)

248

Plot shows all 14 variables for 2 units. Two distinct patterns are observable, predominantly
monotonically increasing and monotonically decreasing. To reduce noise in the data, it was
smoothed using the robust locally weighted scatterplot smoothing (RLOWESS) algorithm built
into MATLAB. RLOWESS handles outliers well.

Note that here, the “smoothing factor” is set to 0.8, as against 0.5 used in the previous data pre-
processing conducted for the study in Chapter 5. A higher “smoothing factor” produces better
trends, which helps with yielding better predictive performance on models trained with the
smoother data.

Smooth the test data using the same algorithm

% convert all the tables in test data to arrays and smooth data using RLOWESS algorithm

Xtest_reduced_scaled_smoothed = cell(length(Xtest_reduced_scaled),1);

for unit = 1:length(Xtest_reduced_scaled)

 Xtest_reduced_scaled_smoothed{unit} = Xtest_reduced_scaled{unit};

 test_for_smoothing = table2array(Xtest_reduced_scaled{unit}(:,3:end));

 test_for_smoothing = smoothdata(test_for_smoothing,1,"rlowess","SmoothingFactor",0.8);

 Xtest_reduced_scaled_smoothed{unit}(:,3:end) =

array2table(test_for_smoothing,"VariableNames",continuousVariables(:,3:end));

end

Checking for trendability, monotonicity and prognosability of sensor variables.
An important characteristic for features that indicates their usefulness for prognostics is
trendability. Trendability values range from 0 to 1, with 0 being non-trendable and 1 being
perfectly trendable. Fundamentally, trendability uses the feature engineering principle of
eliminating strongly correlated features.

% prepare data for use with trendability function

data4trend = cell(length(Xtrain_reduced_scaled_smoothed),1);

for unit = 1:length(Xtrain_reduced_scaled_smoothed)

 data4trend{unit} = Xtrain_reduced_scaled_smoothed{unit}(:,2:end);

end

trendability_values = trendability(data4trend,"time")

monotonicity_values = monotonicity(data4trend,"time","method","sign")

prognosability_values = prognosability(data4trend,"time")

Sort out and select the most trendable sensors.

trendability(data4trend,"time")

monotonicity(data4trend,"time","method","sign")

prognosability(data4trend,"time")

The values of the metrics can then be combined and the variables with the highest values extracted
as the sensors containing the most prognostic information.

%add the values of the three metrics

fitness = table2array(trendability_values) + table2array(monotonicity_values) +

table2array(trendability_values);

fitness = array2table(fitness, "VariableNames", trendability_values.Properties.VariableNames)

fitness = 1×14 table

s_2 s_3 s_4 s_7 s_8 s_9 s_11 s_12 s_13 s_14 s_15 s_17 s_20 s_21

2.8052 2.7805 2.8290 2.8386 2.0424 0.9675 2.8735 2.8852 2.0906 0.9558 2.8153 2.7973 2.8724 2.7854

249

% visualise the combined values

bar(table2array(fitness), 0.6);

xticks(1:14);

xticklabels(fitness.Properties.VariableNames);

xtickangle(60);

title("Fitness = Monotonicity + Trendability + Prognosability","FontSize",10,

"Interpreter","none");

xlabel("Features");

ylabel("Fitness");

Figure B-2 Plot of fitness values for 14 sensors

%Define criterion for exclusion, here selected sensors have combined values greater than 2.5

% (out of a maximum of 3.0). Users may define their own criterion.

idx_select = table2array(fitness) > 2.0;

selected_sensors = fitness.Properties.VariableNames(:,idx_select)

selected_sensors = 1×12 cell

's_2' 's_3' 's_4' 's_7' 's_8' 's_11' 's_12' 's_13' 's_15' 's_17' 's_20'

Given the specified criterion, a total of 12 sensors (labelled 2, 3, 4, 7, 8, 11, 12, 13, 15, 17, 20 and
21) will be retained and used for further model development.

Visualize the data for the most trendable sensors selected

Below is a code to plot the selected sensors for a selected number of units.

% plot selected sensor data against time for some selected units

idx_select1 = [0 0 idx_select]; %columns for 'unit number' and 'time' to be left out of the

% columns of the normalized, reduced training data.

idx_select1 = logical(idx_select1);

%for the first 2 units

plot(Xtrain_reduced_scaled_smoothed{5}.time,

table2array(Xtrain_reduced_scaled_smoothed{5}(:,idx_select1)));

hold on;

plot(Xtrain_reduced_scaled_smoothed{12}.time,

table2array(Xtrain_reduced_scaled_smoothed{12}(:,idx_select1)));

250

hold on;

legend(continuousVariables(:,idx_select1),"Location","northeastoutside","FontSize",9,

"Interpreter","none");

xlabel("Time (in cycles)");

ylabel("Smoothed scaled sensor data");

title("Plot of smoothed scaled training data (units 5 and 12)", "FontSize",9);

grid on

hold off

Figure B-3 Plot of scaled and smoothed data for 12 selected sensors for sample units (units
5 and 12)

The plot shows that the selected sensors are trendable, showing continuous degradation, from an
initial value. For this study, 12 sensors were selected with fitness values greater than or equal to
2, as against 10 sensors selected for the study in Chapter 5. This was due to the adjustment in the
smoothing factor from 0.5 to 0.8.

Reduce data to now contain only values for selected features

The code below extracts that data for the selected sensors and makes it ready for use fusing, in
order to construct the unified health indicator.

idx_select2 = [1 1 idx_select1(:,3:end)]; %include the column for unit number and time in the

data

idx_select2 = logical(idx_select2);

train_FD001_scaled_smoothed = cell(length(Xtrain_reduced_scaled_smoothed),1);

test_FD001_scaled_smoothed = cell(length(Xtest_reduced_scaled_smoothed),1);

for i = 1:length(Xtrain_reduced_scaled_smoothed)

 train_FD001_scaled_smoothed{i} = Xtrain_reduced_scaled_smoothed{i}(:,idx_select2);

 test_FD001_scaled_smoothed{i} = Xtest_reduced_scaled_smoothed{i}(:,idx_select2);

end

Unwrap and save processed data for use in further model development

% Unwrap processed data

251

train_FD001_processed = vertcat(train_FD001_scaled_smoothed{:});

test_FD001_processed = vertcat(test_FD001_scaled_smoothed{:});

% Save files for usage

writematrix(table2array(train_FD001_processed),'train_FD001_pre-

processed.txt','Delimiter','tab');

writematrix(table2array(test_FD001_processed),'test_FD001_pre-

processed.txt','Delimiter','tab');

252

B.2 Code for RUL prediction on TensorFlow

Uncertainty Quantification in RUL Prediction Using Bayesian Neural
Networks

B.2.1 Introduction

A deep Bayesian Neural Network (deep BNN) is implemented using the Monte Carlo dropout

approach, applied on the NASA C-MAPSS dataset FD001.

Dataset FD001 comprises run-to failure data or trajectories for 100 engine units, operating under

similar operational conditions. There are 26 columns in the dataset, column 1 represents the unit

number, column 2 represents the time in cycles, columns 3, 4 and 5 represent operational settings,

while columns 6 to 26 represent sensor readings for 21 different sensors. The sensor readings will

be explored to predict the RUL for each engine unit.

Import libraries

Here, some of the required libraries are imported and the random seed is set for reproducibility of

results. This code was run on subscription version of Google Colab, in order to access the

computing resources the platform provides, particularly the GPUs for faster running of the

algorithms.

In [1]:
try: #If running in colab
 import google.colab
 IN_COLAB = True
 %tensorflow_version 2.x
except:
 IN_COLAB = False

import tensorflow as tf
if (not tf.__version__.startswith('2')): #Checking if tf 2.0 is installed
 print('Please install tensorflow 2.0 to run this notebook')
 print('Tensorflow version: ',tf.__version__, ' running in colab?: ', IN_COLAB
)

Tensorflow version: 2.6.0 running in colab?: True

In [2]:
%%capture
%%capture suppresses installation output
!pip install tensorflow_probability

In [3]:
import matplotlib.pyplot as plt
import numpy as np
from tqdm.notebook import tqdm
import urllib.request
import tensorflow_probability as tfp

%matplotlib inline
plt.style.use('default')

tfd = tfp.distributions
tfb = tfp.bijectors
print("TFP Version", tfp.__version__)
print("TF Version", tf.__version__)
TFP Version 0.13.0
TF Version 2.6.0

In [4]:
Use seaborn for pairplot
!pip install -q seaborn

%matplotlib inline

253

import os
seed_value = 42
os.environ['PYTHONHASHSEED']=str(seed_value)

Import more libraries and dependencies
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

sns.set_palette(palette='deep')
sns_c = sns.color_palette(palette='deep')

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential
from tensorflow.keras.layers import Dense, Dropout, Masking, TimeDistributed
from sklearn.model_selection import GroupShuffleSplit

Make numpy printouts easier to read.
np.set_printoptions(precision=4, suppress=True)
random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)

In [5]:

Note that all file paths need to be edited to a valid path for the code to run.
The codes and associated files for this study were run from a Google drive location and outputs
were written to the same Google drive location.

mount google drive to access location of data

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

B.2.2 Load data

In the following code, the FD001 data, which had been pre-processed on MATLAB and the

informative features selected, is uploaded from its location and variable names were assigned to

the various columns of the data, indicating the unit numbers and the sensor readings for the

selected sensors.

In [6]:
data_path = '/content/drive/My Drive/C-MAPSS_Data/'
train_name = 'train_FD001_pre-processed12.txt'
test_name = 'test_FD001_pre-processed12.txt'
index_names = ['unit_num', 'time_cycles']
sensor_names = ['s_2','s_3','s_4','s_7', 's_8', 's_11', 's_12', 's_13', 's_15','s_17',
's_20','s_21'] #12 sensors
column_names = index_names + sensor_names
train_data = pd.read_csv((data_path+train_name), sep='\s+', header=None,
 names=column_names)
test_data = pd.read_csv((data_path+test_name), sep='\s+', header=None,
 names=column_names)
y_test = pd.read_csv((data_path+'RUL_FD001.txt'), sep='\s+', header=None,
 names=['true_RUL']) #output y will be used to represent RUL. y_test
represents groundtruth RUL

print('train_data.shape:', train_data.shape)
print('y_test.shape:', y_test.shape)
train_data.head()

train_data.shape: (20631, 14)

y_test.shape: (100, 1)

254

Compute instantaneous RUL and add to data

Now, the RUL at each time instant (in cycles), from beginning of operations until each unit fails,

is calculated, and added as a column to the training data.

In [7]:
Add RUL to train data
def add_remainining_useful_life(df):
 # Get the total number of cycles for each unit
 unit_group = df.groupby(by="unit_num")
 max_cycle = unit_group["time_cycles"].max()

 # Merge the max cycle back into the original frame
 df_with_RUL = df.merge(max_cycle.to_frame(name='max_cycle'), left_on='unit_num',
right_index=True)

 # Calculate remaining useful life for each row
 remainining_useful_life = df_with_RUL["max_cycle"] - df_with_RUL["time_cycles"]
 remainining_useful_life = remainining_useful_life.astype('float32')
 df_with_RUL["RUL"] = remainining_useful_life

 # drop max_cycle as it's no longer needed
 df_with_RUL = df_with_RUL.drop("max_cycle", axis=1)
 return df_with_RUL

train_data = add_remainining_useful_life(train_data)
print(train_data[index_names+['RUL']].head())
print(train_data[index_names+['RUL']].tail())

 unit_num time_cycles RUL

0 1 1 191.0

1 1 2 190.0

2 1 3 189.0

3 1 4 188.0

4 1 5 187.0

 unit_num time_cycles RUL

20626 100 196 4.0

20627 100 197 3.0

20628 100 198 2.0

20629 100 199 1.0

20630 100 200 0.0

In [8]:
In a similar manner, the instantaneous RUL is added to the test data
def add_test_remainining_useful_life(df,y_test):
 # Get the total number of cycles for each unit
 unit_group = df.groupby(by="unit_num")
 max_cycle = unit_group["time_cycles"].max()

 # Merge the max cycle back into the original frame
 df_with_RUL = df.merge(max_cycle.to_frame(name='max_cycle'), left_on='unit_num',
right_index=True)

 # Calculate remaining useful life for each row
 df_with_RUL["ground_truth_RUL"]= pd.DataFrame(index= df_with_RUL.index,columns=ran
ge(1))
 for unit in df_with_RUL['unit_num'].unique():
 df_with_RUL.loc[df_with_RUL['unit_num']==unit,"ground_truth_RUL"] = (y_test["tru
e_RUL"][unit-1] + df_with_RUL.loc[df_with_RUL['unit_num']==unit,"max_cycle"] - df_with
_RUL.loc[df_with_RUL['unit_num']==unit,"time_cycles"])

 df_with_RUL["ground_truth_RUL"] = df_with_RUL["ground_truth_RUL"].astype('float32'
)

 # drop max_cycle as it's no longer needed
 df_with_RUL = df_with_RUL.drop("max_cycle", axis=1)
 return df_with_RUL

255

test_data = add_test_remainining_useful_life(test_data,y_test)
print(test_data[index_names+['ground_truth_RUL']].head())
print(test_data[index_names+['ground_truth_RUL']].tail())

 unit_num time_cycles ground_truth_RUL

0 1 1 142.0

1 1 2 141.0

2 1 3 140.0

3 1 4 139.0

4 1 5 138.0

 unit_num time_cycles ground_truth_RUL

13091 100 194 24.0

13092 100 195 23.0

13093 100 196 22.0

13094 100 197 21.0

13095 100 198 20.0

Training and test data

Here, a copy of the training data is made for subsequent use in training. Also, for the test data, the

sensor values at the last cycle before operation is terminated, is extracted, since the last cycle

gives details of the condition of the units at that time. The extracted sensor values will be used as

test data to make RUL predictions for the units.

In [9]:
X_train = train_data[sensor_names].copy()
y_train = train_data['RUL'].copy()

get last row of each engine
X_test = test_data.drop('time_cycles', axis=1).groupby('unit_num').last().copy()
X_test = X_test[sensor_names]
print(X_test)

 s_2 s_3 s_4 ... s_17 s_20 s_21

unit_num ...

1 0.372226 0.142986 0.151614 ... 0.364002 0.595684 0.753142

2 0.476941 0.325848 0.568511 ... 0.238194 0.612036 0.478819

3 0.616363 0.422285 0.502470 ... 0.527168 0.260987 0.539408

4 0.341900 0.482938 0.278954 ... 0.574104 0.347510 0.519276

5 0.405945 0.481724 0.643028 ... 0.555293 0.404591 0.675466

...

96 0.306015 0.436458 0.178269 ... 0.187055 0.806650 0.880696

97 0.376534 0.254715 0.440413 ... 0.416654 0.404564 0.726828

98 0.436109 0.552340 0.580009 ... 0.706586 0.439407 0.558200

99 0.271540 0.169338 0.182222 ... 0.069381 0.709553 0.778531

100 0.609637 0.511884 0.550551 ... 0.561634 0.561010 0.513536

[100 rows x 12 columns]

Validation set

In the code below, that training data is split such that the entire run-to-failure trajectory data of a

given unit are either assigned to the training or validation set. The validation set is used to check

model performance for overfitting, after training.

256

Sklearns’ GroupShuffleSplit is used, where the groups used for splitting are based on the unit

numbers.

In [10]:
from sklearn.model_selection import GroupShuffleSplit

Regardless of the initial seed setting for reproducibility, GroupShuffleSplit
requires its own seed
group_ss = GroupShuffleSplit(n_splits=1, train_size=0.85, random_state=seed_value)
#85% of the data is retained for training, 15% for validation

def train_val_group_split(X, y, group_ss, groups, print_groups=True):
 for idx_train, idx_val in group_ss.split(X, y, groups=groups):
 if print_groups:
 print('train_split_units', train_data.iloc[idx_train]['unit_num'].unique()
, '\n')
 print('validate_split_units', train_data.iloc[idx_val]['unit_num'].unique(
), '\n')

 X_train_split = X.iloc[idx_train].copy()
 y_train_split = y.iloc[idx_train].copy()
 X_val_split = X.iloc[idx_val].copy()
 y_val_split = y.iloc[idx_val].copy()
 return X_train_split, y_train_split, X_val_split, y_val_split

split_result = train_val_group_split(X_train, y_train, group_ss, train_data['unit_num'
])
X_train_split, y_train_split, X_val_split, y_val_split = split_result

train_split_units [2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21

22 24 25 26 27 28 29 30 32 33 35 36 37 38 39 41 42 43 44 47 48 49 5

0 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 75

76 77 78 79 80 82 83 85 86 87 88 89 90 92 93 94 95 96 97 98 99 100]

validate_split_units [1 11 19 23 31 34 40 45 46 54 71 74 81 84 91]

To ensure that the comparison of model performance is between two similarly distributed

datasets, the train and validation sets obtained after the split are compared below.

In [11]:
fig, axes = plt.subplots(1,2, figsize=(12,4))
sns.histplot(y_train_split, ax=axes[0])
axes[0].set_title("Histogram of RUL of training data")
sns.histplot(y_val_split,ax=axes[1])
axes[1].set_title("Histogram of RUL of validation data")
plt.show()

Figure B-4 Plot comparing the distribution of RUL values for the units in the training data
to those in the validation data.

The histograms showing the RUL distributions for the training data and validation data shows

that the distributions are similar and can be used as a basis for checking model performance.

257

B.2.3 Assumptions about the RUL

The first assumption about the RUL which was used to compute the instantaneous RUL for the

training data is a linear RUL, which reduces linearly from the beginning of operation until the

unit fails. However, this linear assumption about the RUL is only fairly true after a fault is

recorded and degradation sets in. As such, the assumption about the RUL should match the curve

indicating the condition of a unit under degradation (i.e., the P-F curve). The modelling of the

RUL will therefore be such that the RUL remains constant, from the beginning of operation until

a given time, when it then changes and starts to decrease linearly.

From information available in references, which is a result of critically looking at the data for all

100 units, like

 the average RUL for all the unit in FD001 (since they are identical units operating

under similar operational conditions),

 the minimum and maximum unit lifetime of the 100 units, and

 the fact that positive RUL prediction is better than negative prediction (since

negative predicted RUL values mean that the unit will fail without

foreknowledge),

and, on the basis of the above, the RUL for FD001 will be capped at 125 cycles. So, for any unit,

any RUL above 125 will hold at that value until the cycle at which the RUL goes below 125, at

which point it begins to reduce linearly.

In [12]:
Re-assign train and validation split with RUL capped at 125 cycles.
y_train_capped = y_train.clip(upper=125)
split_result = train_val_group_split(X_train, y_train_capped, group_ss, train_data['un
it_num'])
X_train_split, y_train_capped_split, X_val_split, y_val_capped_split = split_result

train_split_units [2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21

22 24 25 26 27 28 29 30 32 33 35 36 37 38 39 41 42 43 44 47 48 49 5

0 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 75

76 77 78 79 80 82 83 85 86 87 88 89 90 92 93 94 95 96 97 98 99 100]

validate_split_units [1 11 19 23 31 34 40 45 46 54 71 74 81 84 91]

B.2.4 MC Dropout

Having prepared the training and validation data, the MC dropout algorithm will now be built and

fine-tuned.

In [13]:
Import the required classes
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Concatenate
from tensorflow.keras.layers import Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

In [14]:
Define the cost function, i.e., the negative log likelihood, NLL
def NLL(y, distr):
 return -distr.log_prob(y)

Define the location (i.e., mean) and spread (i.e., the variance) parameters for the
output nodes of the BNN
def normal_softplus(params):
 return tfd.Normal(loc=params[:,0:1], scale=1e-3 +tf.math.softplus(params[:,1:2]))
 # both location and scale parameters are learnable

258

 # softplus used because the spread should take negative values

Define network architecture and tune the hyperparameters

The Keras tuner is installed to tune the hyperparameters of the network. The tuned

hyperparameters include the dropout probability, p, the number of nodes in each hidden layer,

and the learning rate for the Adam optimizer.

The number of nodes for the first layer and last hidden layer were fixed at 256 in order to control

the width of the network, while exploiting the depth to achieve the desired results.
In [15]:

%%capture
%%capture suppresses installation output
!pip install keras-tuner --upgrade # Install Keras tuner for use in hyperparameter tu
ning

In [16]:
import keras_tuner as kt

def build_model_mcBNN(hp):
 inputs = tf.keras.Input(shape=(X_train_split.shape[1],))
 x = inputs

 rate = hp.Float("dropout", 0.1, 0.5, step=0.1, default=0.2) # tune dropout rate

 hp_units = hp.Int("hidden_size", 64, 1024, step=16, default=64) # tune number of h
idden units
 x = Dense(units=256, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=hp_units, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=hp_units, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=hp_units, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=hp_units, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=hp_units, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 x = Dense(units=256, activation="relu")(x)
 x = Dropout(rate, seed=seed_value)(x, training=True)

 params_mc = Dense(2)(x)
 dist_mc = tfp.layers.DistributionLambda(normal_softplus, name='normal_softplus')(p
arams_mc)

 model_mc = tf.keras.Model(inputs=inputs, outputs=dist_mc)

 hp_learning_rate = hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3, 1e-4]) #
tune learning rate
 model_mc.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp_learning_rate
), loss=NLL)

 return model_mc

In [17]:
Use Keras tuner to tune hyperparameters
tuner = kt.Hyperband(build_model_mcBNN, objective="val_loss", max_epochs=20, hyperband
_iterations=1)

tuner.search(X_train_split, y_train_capped_split,
 validation_data=(X_val_split, y_val_capped_split),
 callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=1)])

best_model = tuner.get_best_models(1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]

259

print(f"""
The hyperparameter search is complete. The optimal number of units for the densely-
connected hidden layers is {best_hyperparameters.get('hidden_size')}, the optimal lear
ning rate for the optimizer is {best_hyperparameters.get('learning_rate')}, and the op
timal dropout rate is {best_hyperparameters.get('dropout')}.
""")

Trial 30 Complete [00h 00m 13s]
val_loss: 4.136396884918213

Best val_loss So Far: 3.967135190963745
Total elapsed time: 00h 03m 35s
INFO:tensorflow:Oracle triggered exit

The hyperparameter search is complete. The optimal number of units for the
densely-connected hidden layers is 992, the optimal learning rate for the
optimizer is 0.001,and the optimal dropout rate is 0.1.

Tune the network for optimal number of epochs

With the "best hyperparameters" obtained using the Keras Tuner, the network is then tuned for

the optimal number of epochs for training.

In [18]:
from time import time
start = time()

Build the model with the optimal hyperparameters and train it on the data for 100 ep
ochs
model_mcBNN = tuner.hypermodel.build(best_hyperparameters)
history = model_mcBNN.fit(X_train_split, y_train_capped_split, epochs=100, validation_
data=(X_val_split, y_val_capped_split))

val_loss_per_epoch = history.history['val_loss']
best_epoch = val_loss_per_epoch.index(min(val_loss_per_epoch))
print('Best epoch: %d' % (best_epoch,))

print('time taken : ',np.round(time() - start,3))

Epoch 1/100

550/550 [==========] - 2s 3ms/step - loss: 33.9080 - val_loss: 4.7199

Epoch 2/100

550/550 [===========] - 2s 3ms/step - loss: 4.2300 - val_loss: 4.0213

Epoch 3/100

550/550 [===========] - 2s 3ms/step - loss: 4.1063 - val_loss: 3.9651

Epoch 98/100

550/550 [===========] - 2s 3ms/step - loss: 3.1198 - val_loss: 3.7016

Epoch 99/100

550/550 [===========] - 2s 3ms/step - loss: 3.2413 - val_loss: 3.8065

Epoch 100/100

550/550 [===========] - 2s 3ms/step - loss: 3.1634 - val_loss: 4.1723

Best epoch: 83

time taken : 156.292

Train network

The "best hyperparameters" and the "best epoch" values are now used to train the built model

using the training and validation data.

In [19]:

Reinstantiate the model for training with the optimum number of epochs

model_mcBNN = tuner.hypermodel.build(best_hyperparameters)

Retrain the model

history = model_mcBNN.fit(X_train_split, y_train_capped_split, epochs=best_epoch, vali

dation_data=(X_val_split, y_val_capped_split))

260

Epoch 1/83

550/550 [============] - 2s 3ms/step - loss: 36.7881 - val_loss: 4.0799

Epoch 2/83

550/550 [============] - 2s 3ms/step - loss: 4.1760 - val_loss: 3.9963

Epoch 3/83

550/550 [============] - 2s 3ms/step - loss: 4.0966 - val_loss: 3.9661

Epoch 81/83

550/550 [============] - 2s 3ms/step - loss: 3.2910 - val_loss: 4.2135

Epoch 82/83

550/550 [============] - 2s 3ms/step - loss: 3.2326 - val_loss: 4.0278

Epoch 83/83

550/550 [============] - 2s 3ms/step - loss: 3.2059 - val_loss: 4.3600

In [20]:
#save complete model in HDF5 format to a desired file path.
Note that file path needs to be edited to a valid path for the code to run.
model_mcBNN.save('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN.hdf5')

#save model weights
model_mcBNN.save_weights('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN_tf', save_f
ormat="tf") #saved as tensorflow format
model_mcBNN.save_weights('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN_hdf5', save
_format="h5") #saved as hdf5 format

In [21]:
Plot training history to visualise the trend for the training and validation losses
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.ylabel('Negative log likelihood')
plt.xlabel('Epochs')
plt.legend()
plt.grid(True)
plt.show()

Figure B-5 History plot showing the trend of training loss and validation loss for 83 epochs

B.2.5 Make predictions
Make predictions using the trained network.

In [22]:
Make RUL Predictions for the 100 units
Obtain the conditional probability distribution for each of the 100 units by
making T=1000 passes of the trained network on the test data.

runs = 1000
mcBNN_cpd = np.zeros((runs,X_test.shape[0]))
for i in tqdm(range(0,runs)):

261

 mcBNN_cpd[i,:]=np.reshape(model_mcBNN.predict(X_test),X_test.shape[0])
print(mcBNN_cpd)
print('mcBNN_cpd.shape:', mcBNN_cpd.shape)

[[118.6445 48.8294 18.6502 ... 44.5461 121.1437 58.0834]

 [106.2577 52.8661 4.7994 ... 51.2589 123.3344 54.4142]

 [127.1441 47.3087 13.7941 ... 55.7179 125.3473 52.6028]

 ...

 [123.1064 40.7012 11.4769 ... 59.7974 124.6401 59.0367]

 [104.2856 46.2623 9.2323 ... 57.2838 133.3996 59.8538]

 [101.2841 49.2697 32.7777 ... 49.0042 129.8383 54.006]]

mcBNN_cpd.shape: (1000, 100)

In [23]:
Define functions to plot outputs
def make_plot_runs(ax, y_hat, y_true, ylim=[-10,250]):
 x_horizontal = np.arange(1,(y_true.shape[0]+1))
 ax.scatter(x_horizontal, y_true, color="steelblue", alpha=1, marker='.',linewidth=
1.5) #groundtruth
 ax.plot(x_horizontal, y_hat, color="red", linewidth=0.6, marker='x') #predicted
 ax.set_ylim(ylim)

def make_plot_runs_avg(ax, y_hat, y_true, ylim=[-10,250]):
 x_horizontal = np.arange(1,(y_true.shape[0]+1))
 ax.scatter(x_horizontal,y_true,color="steelblue", alpha=1, marker='.',linewidth=1.
5) #groundtruth
 ax.set_ylim(ylim)
 ax.plot(x_horizontal,y_hat,color="red",linewidth=0.6, marker='x') #predicted
 ax.plot(x_horizontal,upper_quantile_y_hat,color="green",linewidth=0.3,linestyle="-
.")
 ax.plot(x_horizontal,lower_quantile_y_hat,color="green",linewidth=0.3,linestyle="-
-")
 ax.fill_between(x_horizontal, lower_quantile_y_hat, upper_quantile_y_hat, color='b
', alpha=0.15)

In [24]:
View shape of predicted CPD and test data for compatibility
print('mcBNN_cpd.shape:', mcBNN_cpd.shape)
print('y_test.shape:', y_test.shape)

mcBNN_cpd.shape: (1000, 100)

y_test.shape: (100, 1)

In [25]:
Calculate the variance information from the output CPD using percentiles
lower_quantile_y_hat = np.quantile(mcBNN_cpd, 0.025, axis=0)
print('lower_quantile_y_hat.shape:', lower_quantile_y_hat.shape)

upper_quantile_y_hat = np.quantile(mcBNN_cpd, 0.975, axis=0)
print('upper_quantile_y_hat.shape:', upper_quantile_y_hat.shape)

lower_quantile_y_hat.shape: (100,)

upper_quantile_y_hat.shape: (100,)

Predicted RUL for all 100 units showing credible intervals as error bars

In [26]:
Define function to plot mean prediction showing credible intervals as error bars

def make_plot_runs_errbar_avg(ax, y_hat, y_true, ylim=[-10,250]):
 x_horizontal = np.arange(1,(y_true.shape[0]+1))
 #x_horizontal = x_horizontal.reshape(x_horizontal.shape[0],1)
 ax.scatter(x_horizontal,y_true,color='steelblue', alpha=1, marker='.', linewidths=
3) #groundtruth
 ax.set_ylim(ylim)
 ax.scatter(x_horizontal,y_hat,color='red', alpha=1,marker='x', linewidths=4) #pre
dicted
 ax.errorbar(x=x_horizontal, y=y_hat, yerr=(upper_quantile_y_hat - lower_quantile_y
_hat)/2,
 fmt='x', marker='x', c='red', ecolor=sns_c[9], capsize=4,
 label='Predicted mean RUL +/- credible intervals')

In [27]:
Plot predictions with error bars

262

f,ax = plt.subplots(figsize=(20,10))
make_plot_runs_errbar_avg(ax, mcBNN_cpd.mean(axis=0), y_test, ylim=[-10,220])
ax.set(title='MC Dropout BNN Showing Credible Intervals', xlabel='Unit Number', ylabel
='RUL')
ax.set_title('MC Dropout BNN Showing Credible Intervals')
ax.legend(('Ground truth RUL', 'predicted mean RUL','Predicted mean RUL +/- CI'), loc=
'upper right')
ax.set_xticks(np.arange(0, y_test.shape[0]+5, 5))
plt.show()

263

Figure B-6 Plot showing the predicted mean RUL values and the credible intervals for all 100 units in the FD001 dataset.

264

Save RUL prediction results for all 100 units as CSV

In [28]:
RUL_results = pd.DataFrame(columns=["Ground truth RUL", "Predicted Mean RUL", "CI Uppe
r Bound", "CI Lower Bound"])
RUL_results["Ground truth RUL"] = y_test["true_RUL"]
RUL_results["Predicted Mean RUL"] = np.round(mcBNN_cpd.mean(axis=0))
RUL_results["CI Upper Bound"] = np.round(upper_quantile_y_hat)
lower_quantile_y_hat_save = lower_quantile_y_hat
lower_quantile_y_hat_save[lower_quantile_y_hat_save<0]=0 #constrain negative lower
bounds to zero.
RUL_results["CI Lower Bound"] = np.round(lower_quantile_y_hat_save)
RUL_results.to_csv('/content/drive/My Drive/C-MAPSS_Data/BNN RUL Prediction Results.cs
v', index=False)

B.2.6 Make predictions for sample units

To visualise the RUL trend for some of the engine units, the instantaneous predicted RULs are

plot against time, and compared to the instantaneous ground truth RULs. This gives a picture of

the model performance as well as the uncertainty quantification in terms of instantaneous credible

intervals.

In [29]:
Define function to extract data for and make predictions for a specified unit

def unit_predict(test_data,unit_number):
 idx_unit = test_data['unit_num']==unit_number
 test_data_unit = test_data[idx_unit]
 y_true_unit = test_data_unit["ground_truth_RUL"]
 y_true_unit = y_true_unit.to_numpy()
 y_true_unit = y_true_unit.reshape(y_true_unit.shape[0],1)

 # Make RUL Prediction
 runs = 1000
 mcBNN_cpd_unit = np.zeros((runs,test_data_unit[sensor_names].shape[0]))
 for i in tqdm(range(0,runs)):
 mcBNN_cpd_unit[i,:]=np.reshape(model_mcBNN.predict(test_data_unit[sensor_names]),t
est_data_unit[sensor_names].shape[0])
 return mcBNN_cpd_unit

In [30]:
Define function to extract groundtruth RUL for unit
def extract_y_true(test_data,unit_number):
 idx_unit = test_data['unit_num']==unit_number
 test_data_unit = test_data[idx_unit]
 y_true_unit = test_data_unit["ground_truth_RUL"]
 y_true_unit = y_true_unit.to_numpy()
 y_true_unit = y_true_unit.reshape(y_true_unit.shape[0],1)
 return y_true_unit

In [31]:
#Define function to plot RUL trajectory and confidence bounds for unit

def make_plot_runs_test_avg(ax, y_hat_unit, y_true_unit, lower_quantile_y_hat_unit, up
per_quantile_y_hat_unit, ylim=[-10,200]):
 x_horizontal = np.arange(1,(y_true_unit.shape[0]+1))
 ax.plot(x_horizontal,y_true_unit,color="steelblue", alpha=1, marker='.',linewidth=
0.5) #groundtruth
 ax.set_ylim(ylim)
 ax.plot(x_horizontal, y_hat_unit, color="red", linewidth=0.5, marker='.')
#predicted
 ax.plot(x_horizontal, lower_quantile_y_hat_unit, color="green",linewidth=0.3,lines
tyle="-.")
 ax.plot(x_horizontal, upper_quantile_y_hat_unit, color="green", linewidth=0.5, lin
estyle="--")
 y_true_unit_capped = y_true_unit.clip(max=125.00)
 ax.plot(x_horizontal,y_true_unit_capped, color='black', linestyle='dashed')
 ax.fill_between(x_horizontal, lower_quantile_y_hat_unit, upper_quantile_y_hat_unit
, color='b', alpha=0.15)

265

Unit 17 prediction and plots

In [32]:
Make predictions, calculate the mean RUL and the CIs for Unit 17
mcBNN_cpd_17 = unit_predict(test_data,17)
print('mcBNN_cpd_17.shape:', mcBNN_cpd_17.shape)

y_hat_17 = mcBNN_cpd_17.mean(axis=0)
print('y_hat_17.shape:', y_hat_17.shape)

lower_quantile_y_hat_17 = np.quantile(mcBNN_cpd_17, 0.025, axis=0)
print('lower_quantile_y_hat_17.shape:', lower_quantile_y_hat_17.shape)

upper_quantile_y_hat_17 = np.quantile(mcBNN_cpd_17, 0.975, axis=0)
print('upper_quantile_y_hat_17.shape:', upper_quantile_y_hat_17.shape)

mcBNN_cpd_17.shape: (1000, 165)

y_hat_17.shape: (165,)

lower_quantile_y_hat_17.shape: (165,)

upper_quantile_y_hat_17.shape: (165,)

In [33]:
Extract y_true for unit 17
y_true_17 = extract_y_true(test_data,17)

Unit 20 prediction and plots
In [34]:

Make predictions, calculate the mean RUL and the CIs for Unit 20
mcBNN_cpd_20 = unit_predict(test_data,20)
print('mcBNN_cpd_20.shape:', mcBNN_cpd_20.shape)

y_hat_20 = mcBNN_cpd_20.mean(axis=0)
print('y_hat_20.shape:', y_hat_20.shape)

lower_quantile_y_hat_20 = np.quantile(mcBNN_cpd_20, 0.025, axis=0)
print('lower_quantile_y_hat_20.shape:', lower_quantile_y_hat_20.shape)

upper_quantile_y_hat_20 = np.quantile(mcBNN_cpd_20, 0.975, axis=0)
print('upper_quantile_y_hat_20.shape:', upper_quantile_y_hat_20.shape)

mcBNN_cpd_20.shape: (1000, 184)

y_hat_20.shape: (184,)

lower_quantile_y_hat_20.shape: (184,)

upper_quantile_y_hat_20.shape: (184,)

In [35]:
Extract y_true for unit 20
y_true_20 = extract_y_true(test_data,20)

Unit 31 prediction and plots
In [36]:

Make predictions, calculate the mean RUL and the CIs for Unit 31
mcBNN_cpd_31 = unit_predict(test_data,31)
print('mcBNN_cpd_31.shape:', mcBNN_cpd_31.shape)

y_hat_31 = mcBNN_cpd_31.mean(axis=0)
print('y_hat_31.shape:', y_hat_31.shape)

lower_quantile_y_hat_31 = np.quantile(mcBNN_cpd_31, 0.025, axis=0)
print('lower_quantile_y_hat_31.shape:', lower_quantile_y_hat_31.shape)

upper_quantile_y_hat_31 = np.quantile(mcBNN_cpd_31, 0.975, axis=0)
print('upper_quantile_y_hat_31.shape:', upper_quantile_y_hat_31.shape)

mcBNN_cpd_31.shape: (1000, 196)

y_hat_31.shape: (196,)

lower_quantile_y_hat_31.shape: (196,)

upper_quantile_y_hat_31.shape: (196,)

In [37]:

266

Extract y_true for unit 31
y_true_31 = extract_y_true(test_data,31)

Unit 34 prediction and plots

In [38]:
Make predictions, calculate the mean RUL and the CIs for Unit 34
mcBNN_cpd_34 = unit_predict(test_data,34)
print('mcBNN_cpd_34.shape:', mcBNN_cpd_34.shape)

y_hat_34 = mcBNN_cpd_34.mean(axis=0)
print('y_hat_34.shape:', y_hat_34.shape)

lower_quantile_y_hat_34 = np.quantile(mcBNN_cpd_34, 0.025, axis=0)
print('lower_quantile_y_hat_34.shape:', lower_quantile_y_hat_34.shape)

upper_quantile_y_hat_34 = np.quantile(mcBNN_cpd_34, 0.975, axis=0)
print('upper_quantile_y_hat_34.shape:', upper_quantile_y_hat_34.shape)

mcBNN_cpd_34.shape: (1000, 203)

y_hat_34.shape: (203,)

lower_quantile_y_hat_34.shape: (203,)

upper_quantile_y_hat_34.shape: (203,)

In [39]:
Extract y_true for unit 34
y_true_34 = extract_y_true(test_data,34)

Unit 40 prediction and plots

In [40]:
Make predictions, calculate the mean RUL and the CIs for Unit 40
mcBNN_cpd_40 = unit_predict(test_data,40)
print('mcBNN_cpd_40.shape:', mcBNN_cpd_40.shape)

y_hat_40 = mcBNN_cpd_40.mean(axis=0)
print('y_hat_40.shape:', y_hat_40.shape)

lower_quantile_y_hat_40 = np.quantile(mcBNN_cpd_40, 0.025, axis=0)
print('lower_quantile_y_hat_40.shape:', lower_quantile_y_hat_40.shape)

upper_quantile_y_hat_40 = np.quantile(mcBNN_cpd_40, 0.975, axis=0)
print('upper_quantile_y_hat_40.shape:', upper_quantile_y_hat_40.shape)

mcBNN_cpd_40.shape: (1000, 133)

y_hat_40.shape: (133,)

lower_quantile_y_hat_40.shape: (133,)

upper_quantile_y_hat_40.shape: (133,)

In [41]:
Extract y_true for unit 40
y_true_40 = extract_y_true(test_data,40)

Unit 56 prediction and plots

In [42]:
Make predictions, calculate the mean RUL and the CIs for Unit 56
mcBNN_cpd_56 = unit_predict(test_data,56)
print('mcBNN_cpd_56.shape:', mcBNN_cpd_56.shape)

y_hat_56 = mcBNN_cpd_56.mean(axis=0)
print('y_hat_56.shape:', y_hat_56.shape)

lower_quantile_y_hat_56 = np.quantile(mcBNN_cpd_56, 0.025, axis=0)
print('lower_quantile_y_hat_56.shape:', lower_quantile_y_hat_56.shape)

upper_quantile_y_hat_56 = np.quantile(mcBNN_cpd_56, 0.975, axis=0)
print('upper_quantile_y_hat_56.shape:', upper_quantile_y_hat_56.shape)

mcBNN_cpd_56.shape: (1000, 136)

y_hat_56.shape: (136,)

lower_quantile_y_hat_56.shape: (136,)

upper_quantile_y_hat_56.shape: (136,)

267

In [43]:
Extract y_true for unit 56
y_true_56 = extract_y_true(test_data,56)

Unit 76 prediction and plots

In [44]:
Make predictions, calculate the mean RUL and the CIs for Unit 76
mcBNN_cpd_76 = unit_predict(test_data,76)
print('mcBNN_cpd_76.shape:', mcBNN_cpd_76.shape)

y_hat_76 = mcBNN_cpd_76.mean(axis=0)
print('y_hat_76.shape:', y_hat_76.shape)

lower_quantile_y_hat_76 = np.quantile(mcBNN_cpd_76, 0.025, axis=0)
print('lower_quantile_y_hat_76.shape:', lower_quantile_y_hat_76.shape)

upper_quantile_y_hat_76 = np.quantile(mcBNN_cpd_76, 0.975, axis=0)
print('upper_quantile_y_hat_76.shape:', upper_quantile_y_hat_76.shape)

mcBNN_cpd_76.shape: (1000, 205)

y_hat_76.shape: (205,)

lower_quantile_y_hat_76.shape: (205,)

upper_quantile_y_hat_76.shape: (205,)

In [45]:
Extract y_true for unit 76
y_true_76 = extract_y_true(test_data,76)

Unit 81 prediction and plots

In [46]:
Make predictions, calculate the mean RUL and the CIs for Unit 81
mcBNN_cpd_81 = unit_predict(test_data,81)
print('mcBNN_cpd_81.shape:', mcBNN_cpd_81.shape)

y_hat_81 = mcBNN_cpd_81.mean(axis=0)
print('y_hat_81.shape:', y_hat_81.shape)

lower_quantile_y_hat_81 = np.quantile(mcBNN_cpd_81, 0.025, axis=0)
print('lower_quantile_y_hat_81.shape:', lower_quantile_y_hat_81.shape)

upper_quantile_y_hat_81 = np.quantile(mcBNN_cpd_81, 0.975, axis=0)
print('upper_quantile_y_hat_81.shape:', upper_quantile_y_hat_81.shape)

mcBNN_cpd_81.shape: (1000, 213)

y_hat_81.shape: (213,)

lower_quantile_y_hat_81.shape: (213,)

upper_quantile_y_hat_81.shape: (213,)

In [47]:
Extract y_true for unit 81
y_true_81 = extract_y_true(test_data,81)

Unit 91 prediction and plots

In [48]:
Make predictions, calculate the mean RUL and the CIs for Unit 91
mcBNN_cpd_91 = unit_predict(test_data,91)
print('mcBNN_cpd_91.shape:', mcBNN_cpd_91.shape)

y_hat_91 = mcBNN_cpd_91.mean(axis=0)
print('y_hat_91.shape:', y_hat_91.shape)

lower_quantile_y_hat_91 = np.quantile(mcBNN_cpd_91, 0.025, axis=0)
print('lower_quantile_y_hat_91.shape:', lower_quantile_y_hat_91.shape)

upper_quantile_y_hat_91 = np.quantile(mcBNN_cpd_91, 0.975, axis=0)
print('upper_quantile_y_hat_91.shape:', upper_quantile_y_hat_91.shape)

mcBNN_cpd_91.shape: (1000, 234)

y_hat_91.shape: (234,)

268

lower_quantile_y_hat_91.shape: (234,)

upper_quantile_y_hat_91.shape: (234,)

In [49]:
Extract y_true for unit 91
y_true_91 = extract_y_true(test_data,91)

Subplots for 9 sample units

In [50]:
Plot curves for 9 selected units together

f,ax = plt.subplots(3,3, figsize=(15,15))
make_plot_runs_test_avg(ax[0,0], y_hat_17, y_true_17, lower_quantile_y_hat_17, upper_q
uantile_y_hat_17, ylim=[-5,250])
ax[0,0].set_xticks(np.arange(0, y_true_17.shape[0]+10, 50))
ax[0,0].set(title='MC Dropout BNN Predictions for Unit 17', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[0,1], y_hat_20, y_true_20, lower_quantile_y_hat_20, upper_q
uantile_y_hat_20, ylim=[-5,250])
ax[0,1].set_xticks(np.arange(0, y_true_20.shape[0]+10, 50))
ax[0,1].set(title='MC Dropout BNN Predictions for Unit 20', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[0,2], y_hat_31, y_true_31, lower_quantile_y_hat_31, upper_q
uantile_y_hat_31, ylim=[-5,250])
ax[0,2].set_xticks(np.arange(0, y_true_31.shape[0]+10, 50))
ax[0,2].set(title='MC Dropout BNN Predictions for Unit 31', xlabel='Time in cylcles',
ylabel='RUL')
ax[0,2].legend(('Ground truth RUL','Predicted mean RUL','Lower bound of CI','Upper bou
nd of CI','RUL training'), loc='best')

make_plot_runs_test_avg(ax[1,0], y_hat_40, y_true_40, lower_quantile_y_hat_40, upper_q
uantile_y_hat_40, ylim=[-5,250])
ax[1,0].set_xticks(np.arange(0, y_true_40.shape[0]+10, 50))
ax[1,0].set(title='MC Dropout BNN Predictions for Unit 40', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[1,1],y_hat_56, y_true_56, lower_quantile_y_hat_56, upper_qu
antile_y_hat_56, ylim=[-5,250])
ax[1,1].set_xticks(np.arange(0, y_true_56.shape[0]+10, 50))
ax[1,1].set(title='MC Dropout BNN Predictions for Unit 56', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[1,2], y_hat_68, y_true_68, lower_quantile_y_hat_68, upper_q
uantile_y_hat_68, ylim=[-5,250])
ax[1,2].set_xticks(np.arange(0, y_true_68.shape[0]+10, 50))
ax[1,2].set(title='MC Dropout BNN Predictions for Unit 68', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[2,0], y_hat_76, y_true_76, lower_quantile_y_hat_76, upper_q
uantile_y_hat_76, ylim=[-5,250])
ax[2,0].set_xticks(np.arange(0, y_true_76.shape[0]+10, 50))
ax[2,0].set(title='MC Dropout BNN Predictions for Unit 76', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[2,1], y_hat_81, y_true_81, lower_quantile_y_hat_81, upper_q
uantile_y_hat_81, ylim=[-5,250])
ax[2,1].set_xticks(np.arange(0, y_true_81.shape[0]+10, 50))
ax[2,1].set(title='MC Dropout BNN Predictions for Unit 81', xlabel='Time in cylcles',
ylabel='RUL')

make_plot_runs_test_avg(ax[2,2], y_hat_91, y_true_91, lower_quantile_y_hat_91, upper_q
uantile_y_hat_91, ylim=[-5,250])
ax[2,2].set_xticks(np.arange(0, y_true_91.shape[0]+10, 50))
ax[2,2].set(title='MC Dropout BNN Predictions for Unit 91', xlabel='Time in cylcles',
ylabel='RUL')

f.tight_layout(pad=2.0)
plt.show()

269

Figure B-7 Degradation trajectory for nine sample units showing trend of mean RUL and the upper and lower uncertainty bounds.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1. Introduction
	1.1 Background
	1.2 Aim and objectives of the research
	1.3 Thesis structure
	1.4 References

	Chapter 2. Artificial Intelligence in Prognostic Maintenance of Engineering Systems
	2.1 Introduction
	2.2 Use of AI in prognostic maintenance
	2.2.1 The key: good quality data
	2.2.1.1 NASA C-MAPSS dataset
	2.2.1.2 FEMTO-ST bearings dataset on PRONOSTIA test bed
	2.2.1.3 Other datasets

	2.2.2 AI algorithms for prognostics
	2.2.2.1 Deep Learning
	2.2.2.2 Hybrid/Fusion
	2.2.2.3 Support Vector Machine (SVM)
	2.2.2.4 Ensemble
	2.2.2.5 Bayesian algorithms and uncertainty quantification
	2.2.2.6 Reinforcement learning

	2.3 Literature review process
	2.3.1 Framework for categorization of the literature
	2.3.1.1 AI Algorithms used for prognostics
	2.3.1.2 Datasets
	2.3.1.3 Application areas
	2.3.1.4 Epilog on algorithms

	2.3.2 RUL metrics

	2.4 Key enablers for AI in prognostics
	2.4.1 Infrastructure
	2.4.2 Standards
	2.4.3 Security
	2.4.4 Regulations
	2.4.5 Manpower

	2.5 Future research
	2.6 Conclusion
	2.7 Acknowledgement
	2.8 References

	Chapter 3. Requirements for Standards and Regulations in AI-Enabled Prognostics and Health Management
	3.1 Introduction
	3.2 Extant standards and regulations
	3.2.1 Standards
	3.2.2 Regulations
	3.2.3 Best practices

	3.3 Fulfilling regulatory compliance
	3.3.1 Further requirements
	3.3.2 Acceptability criterion

	3.4 Demonstration and discussion
	3.4.1 Typical application of acceptability criterion
	3.4.2 Other Considerations
	3.4.3 Potential Challenges

	3.5 Conclusion
	3.6 References

	Chapter 4. Performance Metrics for Artificial Intelligence Algorithms Adopted in Prognostics and Health Management of Mechanical Systems
	4.1 Introduction
	4.2 Performance metrics for AI algorithms in PHM
	4.2.1 Conventional metrics
	4.2.1.1 Accuracy-based metrics
	4.2.1.2 Precision-based metrics

	4.2.2 PHM-specific algorithms
	4.2.2.1 Algorithm performance metrics
	4.2.2.2 Cost-benefit metrics

	4.2.3 Other performance metrics

	4.3 Considerations and selection criteria
	4.3.1 User requirements
	4.3.2 Algorithm design requirements
	4.3.3 Other considerations
	4.3.4 Pros and cons of some selected metrics

	4.4 Conclusion and future work
	4.5 Acknowledgments
	4.6 References

	Chapter 5. Adopting Machine Learning and Condition Monitoring P-F Curves in Determining and Prioritising High-Value Assets for Life Extension
	5.1 Introduction
	5.2 Theoretical background
	5.2.1 Reliability-Centered Maintenance (RCM)
	5.2.1.1 Predictive testing and inspection
	5.2.1.2 Potential failure curve (P-F curve)
	5.2.1.3 P-F interval determination
	5.2.1.4 Relationship between P-F interval, useful life and asset life
	5.2.1.5 P-F interval factor (PFIF)

	5.2.2 Data mining concepts and cluster analysis
	5.2.2.1 Hierarchical clustering
	5.2.2.2 Partitional clustering

	5.3 Methodology
	5.3.1 Phase 1 – data preparation and sensor selection
	5.3.2 Phase 2, route 1 – fit linear model, construct health indicator and implement health stage division
	5.3.3 Phase 2, route 2: k-means clustering using fleet data

	5.4 Case studies
	5.4.1 Data description
	5.4.2 Application of the proposed technique
	5.4.2.1 Phase 1 – data preparation and sensor selection
	5.4.2.2 Phase 2, route 1 – construct health indicator and implement HS division
	5.4.2.3 Phase 2, route 2 – Group units using k-means clustering

	5.5 Results and discussion
	5.5.1 Three-stage HS division
	5.5.1.1 Healthy units
	5.5.1.2 Good units
	5.5.1.3 Soon-to-fail

	5.5.2 Four-stage HS division
	5.5.2.1 Healthy units
	5.5.2.2 Good units – no action
	5.5.2.3 Good units – monitor
	5.5.2.4 Soon-to-fail

	5.5.3 Summary of results
	5.5.4 Importance of experts’ judgements and other considerations

	5.6 Conclusion and future work
	5.7 References

	Chapter 6. Uncertainty Quantification in Remaining Useful Life Prediction Using Bayesian Neural Networks
	6.1 Introduction
	6.2 Uncertainty quantification in PHM
	6.2.1 Types of uncertainties
	6.2.2 Approaches to uncertainty quantification
	6.2.2.1 “Classical” methods
	6.2.2.2 Data pre-processing
	6.2.2.3 Several runs of point estimates
	6.2.2.4 Bayesian techniques

	6.3 BNN algorithm for RUL prediction
	6.3.1 BNN Background
	6.3.1.1 Bayes’ theorem
	6.3.1.2 Probabilistic models
	6.3.1.3 Variational Inference
	6.3.1.4 MC Dropout

	6.3.2 BNN model for RUL prediction

	6.4 Case Studies
	6.4.1 Dataset description
	6.4.2 Data pre-processing
	6.4.3 Hyperparameter tuning and BNN training
	6.4.4 Prediction and results
	6.4.5 Engine degradation trajectories

	6.5 Conclusion
	6.6 References

	Chapter 7. An Advanced Analytics Approach to Asset Life Extension Decision-Making.
	7.1 Introduction
	7.2 Overview of LE practices
	7.2.1 Approaches to LE
	7.2.1.1 Structural components of assets
	7.2.1.2 Impact of uncertainties on LE decision-making
	7.2.1.3 LE strategies

	7.2.2 Fundamental requirements for LE
	7.2.2.1 Performance requirements
	7.2.2.2 Regulatory requirements
	7.2.2.3 Other requirements

	7.2.3 Overview of decision-making models in asset LE

	7.3 Methodology
	7.3.1 Assumptions, initial conditions, and background assessments
	7.3.1.1 Integration of RCM and CM practices with PHM practices
	7.3.1.2 Component-level and unit-level HIs
	7.3.1.3 System-level HI

	7.3.2 Implication for logistics planning and LE action
	7.3.3 RUL prediction with uncertainty quantification
	7.3.4 Acceptability criterion for regulatory approval

	7.4 Case studies
	7.4.1 Data-driven condition assessment
	7.4.1.1 Unit-level HIs and unit groupings
	7.4.1.2 True and predicted RUL

	7.4.2 Results and discussion
	7.4.2.1 Candidate units for LE
	7.4.2.2 Lead time for LE scheduling
	7.4.2.3 Acceptability criterion for regulatory approval

	7.4.3 Additional comments and future work.

	7.5 Conclusion
	7.6 References

	Chapter 8. Discussion: Research Findings, Implications and Suggestions for Future Work.
	8.1 Introduction
	8.2 Overview of key findings and intellectual contributions
	8.2.1 Research objectives and related novelties achieved
	8.2.2 Summary of specific novelties and the potential impacts of research findings
	8.2.3 Major limitations and challenges.

	8.3 Conclusion
	8.4 Suggestions for future work
	8.5 References

	APPENDICES
	Appendix A MATLAB Codes for Chapter 5
	A.1 Code for MATLAB function for importing train data
	A.2 Code for MATLAB function for importing test data
	A.3 Code for MATLAB function for importing ground truth RUL data
	A.4 Code for MATLAB function for equipment prioritisation and grouping
	A.4.1 Assign health state to each unit based on extracted present health indicator – 3 stage division
	A.4.2 Assign health state to each unit based on extracted present health indicator – 4 stage division

	Appendix B Codes for Chapter 6 - RUL prediction using BNN
	B.1 MATLAB code for data pre-processing
	B.2 Code for RUL prediction on TensorFlow
	B.2.1 Introduction
	B.2.2 Load data
	B.2.3 Assumptions about the RUL
	B.2.4 MC Dropout
	B.2.5 Make predictions
	B.2.6 Make predictions for sample units

