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Abstract 

A considerable number of engineering assets are fast reaching and operating beyond their 

orignal design lives. This is the case across various industrial sectors, including oil and 

gas, wind energy, nuclear energy, etc. Another interesting evolution is the on-going 

advancement in cyber-physical systems (CPS), where assets within an industrial plant are 

now interconnected. Consequently, conventional ways of progressing engineering assets 

beyond their original design lives would need to change. This is the fundamental research 

gap that this PhD sets out to address. Due to the complexity of CPS assets, modelling 

their failure cannot be simplistically or analytically achieved as was the case with older 

assets. This research is a completely novel attempt at using advanced analytics techniques 

to address the core aspects of asset life extension (LE). The obvious challenge in a system 

with several pieces of disparate equipment under condition monitoring is how to identify 

those that need attention and prioritise them. To address this gap, a technique which 

combined machine learning algorithms and practices from reliability-centered 

maintenance was developed, along with the use of a novel health condition index called 

the potential failure interval factor (PFIF). The PFIF was shown to be a good indicator of 

asset health states, thus enabling the categorisation of equipment as “healthy”, “good ” or 

“soon-to-fail”. LE strategies were then devoted to the vulnerable group labelled “good – 

monitor” and “soon-to-fail”. Furthermore, a class of artificial intelligence (AI) algorithms 

known as Bayesian Neural Networks (BNNs) were used in predicting the remaining 

useful life (RUL) for the vulnerable assets. The novelty in this was the implicit modelling 

of the aleatoric and epistemic uncertainties in the RUL prediction, thus yielding 

interpretable predictions that were useful for LE decision-making. An advanced analytics 

approach to LE decision-making was then proposed, with the novelty of implementing 

LE as an on-going series of activities, similar to operation and maintenance (O&M). LE 

strategies would therefore be implemented at the system, sub-system or component level, 

meshing seamlessly with O&M, albeit with the clear goal of extending the useful life of 

the overall asset. The research findings buttress the need for a paradigm shift, from 

conventional ways of implementing LE in the form of a project at the end of design life, 

to a more systematic approach based on advanced analytics.  

Keywords: 

Remaining useful life (RUL), Prognostics and health management (PHM), Condition 

monitoring, Artificial intelligence algorithm, Life extension. 
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Chapter 1. Introduction 

1.1 Background 

Recent advances in technology has led to increased deployment of new assets across 

different industries. However, existing facilities are also ageing. For instance, in the oil 

and gas industry and wind energy sector, a significant number of engineering assets are 

fast reaching their end-of-life (EoL) (Shafiee & Animah, 2017). To provide some context, 

data shows that as at 2016, roughly 3400 wind turbines had exceeded 20 years of 

operational life in Germany, 1250 wind turbines in Denmark, over 500 in Spain (which 

was due to increase to 4200 in 2020), with the UK having a younger fleet with only 19 

having exceeded 20 years as at 2016 (Ziegler et al., 2018). In the oil and gas industry, it 

is estimated that two-thirds (about 66%) of North Sea oil and gas infrastructure can be 

considered to be ageing and are in their life extension (LE) phase, with the figure from 

Malaysia in the Asia pacific being 48% of oil and gas platforms having exceeded 25 years 

of operational life. In the Middle East, the data shows a much higher proportion of 70% 

of a total of about 800 platforms already operating beyond their design life (Ferreira et 

al., 2020). 

From the foregoing data, it is clear that finding innovative ways to continue operating and 

maintaining these assets is more important now than ever before. Although a lot of 

decommissioning activities are on-going and more are due to commence soon, LE 

remains the preferred option for most asset owners. Also noteworthy is the present 

transition of assets into smart systems, with multiple sensors collecting vital operations 

and condition monitoring data to aid engineers make important and impactful 

maintenance decisions (Tuptuk & Hailes, 2018). To safely implement LE in systems 

where sensor data is ubiquitous, it is exigent to develop tailor-made techniques to aid 

maintenance decision-making. One of the key activities in this regard is prognostics – the 

prediction of future health states of an asset based on either known degradation models 

or asset performance data (Jardine et al., 2006). Specifically, predicting the remaining 

useful life (RUL) of an asset is a key task in prognostics upon which maintenance 

decision-making is based. For this research, the use of RUL transcends just maintenance 

decision-making as it is intended for asset LE applications. 
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The methods used in this research can only be well understood when put in the context 

of prognostics and health management (PHM). PHM involves three core tasks, namely, 

diagnostics, prognostics, and maintenance decision-making. While diagnostics detect, 

identify and isolate faults in equipment, prognostics use diagnostics information along 

with past health states to predict future health states and then determine the mean time 

interval between maintenance actions on equipment (An et al., 2015). With prognostics,  

the time a component or system can operate from the present time until failure is 

determined – this time is known as the remaining useful life (RUL) and it is critical for 

making LE decisions. Figure 1-1 gives a simple illustration of the RUL for a degradable 

equipment. Methods for predicting RUL are either model-based (using physics of failure), 

data-driven (using sensor data) or a fusion/hybrid of both approaches (Lei et al., 2018).  

 

Figure 1-1 Showing the RUL, an important parameter for LE decision-making. 

Model-based methods require knowledge of the physics of failure – for example, the 

popular Paris’ law which is used to model fatigue crack propagation. For modern systems, 

the reality is that the inherent complexities cannot be completely or simplistically 

modelled through physics of failure approach. This research therefore focuses on data-

driven methods of RUL prediction. Statistical methods have been used extensively in the 

literature for data-driven RUL prediction (Sikorska et al., 2011). However, with the 

advancement of sensor technologies, data analytics platforms and internet-of-things 

devices, the use of artificial intelligence (AI) algorithms and techniques have recently 

received an increased attention from both academic researchers and industry 

practitioners.  

Time
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As stated earlier, a significant number of assets across various industries have reached or 

are approaching their EoL. Most assets’ owners set up a project at the end of an asset’s 

design life in order to implement LE (Stacey, 2011). The ubiquitous sensor data gathered 

over the operational life of the asset is not optimised due to computing resources that were 

hitherto ill-suited to analyse such large data volumes and the lack of methodologies to 

use data-driven approaches within an LE framework. This research explores the practical 

use of AI algorithms and techniques for prognostics and, subsequently, a life-extension 

framework that factors in the entire process of using advanced analytics in a data-driven 

context is developed. To close the research gap, the following propositions were explored. 

i. Candidate equipment for LE should be identifiable, from amongst disparate 

equipment within a fleet of assets, using mostly sensor data and AI algorithms. 

ii. From amongst a plethora of AI algorithms, there should be a class that is most 

suitable for achieving reliable RUL prediction results for engineering assets, which 

would be practical, realistic, and useful for LE decision-making. 

iii. The prediction results obtained should be measurable, using either well established 

metrics, or bespoke ones adapted for prognostics and LE applications. 

iv. There should be technical standards and specific government regulations to guide 

the practice of using a purely advanced analytics approach to achieve LE decisions 

for critical engineering assets.  

1.2 Aim and objectives of the research 

The aim of this research is to develop advanced data-driven methods, mostly based on 

artificial intelligence techniques, for prognostics of engineering assets and thereafter, for 

life extension (LE) decision-making. 

The following are the objectives of the research: 

Objective 1: To establish the background for the research via the conduct of a thorough 

literature review, including the state-of-the-art and best industry practices in PHM, as it 

relates to LE. 

Objective 2: To establish the best set of prognostic performance measures, focusing on 

algorithm performance and life-cycle asset maintenance improvements, specifically to 

help make optimal LE decisions. 
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Objective 3: To develop a data-driven technique which exploits AI algorithms to help 

identify and prioritise candidate equipment for LE. 

Objective 4: To develop, train and validate a prognostic algorithm for RUL prediction. 

Objective 5: To develop strategies for using estimated RUL results to make LE decisions, 

within a defined standards and regulations framework, especially for safety-critical assets. 

The feasibility of the concepts, as well as the algorithms and techniques developed from 

this research, will all be demonstrated via case studies. 

1.3 Thesis structure 

The thesis is written in eight chapters, with Chapter 2 to Chapter 7 formatted as journal 

papers addressing one or more specific aspects of each of the research objectives. Chapter 

1 presents the introduction and covers the background of the research while Chapter 8 

presents the discussion on the entire research, the findings, potential impacts of the 

research and serves to synthesize the entire research outputs. Highlights regarding areas 

of future research and the conclusions are also provided in Chapter 8. Table 1-1  presents 

a list of the chapters, their titles and how each chapter maps to the research objectives. 

Table 1-1 Thesis chapters and their link to the research objectives 

Chapter # Title Link to objective 

1 Introduction -- 

2 Literature Review: “Artificial Intelligence in Prognostic 
Maintenance of Engineering Systems” 

1, 2, 5 

3 “Requirements for Standards and Regulations in AI-
Enabled Prognostics and Health Management”  

1, 5 

4 “Performance Metrics for Artificial Intelligence 
Algorithms Adopted in Prognostics and Health 
Management of Mechanical Systems” 

1 , 2 

5 “Adopting Machine Learning and Condition Monitoring 
P-F Curves in Determining and Prioritising High-Value 
Assets for Life Extension”  

3, 5 

6 “Uncertainty Quantification in Remaining Useful 
Prediction Using Bayesian Neural Networks” 

4, 5 

7 “An Advanced Analytics Approach to Asset Life 
Extension Decision-making” 

5 

8 “Discussion: Research Findings, Implications and 

Suggestions for Future Work. 

-- 
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Chapter 2 presents the details of a comprehensive literature review, titled Artificial 

Intelligence in Prognostic Maintenance of Engineering Systems authored by Sunday 

Ochella, Mahmood Shafiee, and Fateme Dinmohammadi, and is published in the Journal 

of Engineering Applications of Artificial Intelligence 102 (2022): 104552. The review 

involved a total of 178 publications comprising 86 journal articles and 92 conference 

papers published from 2005 to 2021. Common AI algorithms used for prognostics were 

identified along with the various datasets available for data-driven prognostics research. 

A few algorithm performance metrics were discussed, as well as the soft issues around 

infrastructure, cyber-security, manpower, standards, and regulations which will need to 

be in place to enable the full adoption of AI-enabled PHM systems. 

As is the case with any emerging technology or any significant change to a field of 

practice, there is need for standards and regulations to guide the technology or the 

practice. AI-enabled PHM and the associated maintenance decision-making or life 

extension implications, especially for safety-critical assets, must be guided by best 

practices and a suitable set of government regulations. However, such standards do not 

exist for AI-enabled prognostics. Chapter 3 covers some of the extant standards in use, 

most of which have been adapted from diagnostics. The factors necessary for a standards 

and regulations environment to ensure safety, reliability, explainability, interpretability 

and accuracy of AI-enabled prognostic systems are discussed extensively in a conference 

paper titled Requirements for Standards and Regulations in AI-Enabled Prognostics and 

Health Management by Sunday Ochella, Mahmood Shafiee and Chris Sansom and 

published in the IEEE Xplore Digital Library. 

Chapter 4 of this thesis presents a review of the performance metrics used in data-driven 

PHM. A succinct taxonomy of the metrics was presented, grouping them into 

conventional metrics, algorithm performance metrics, cost-benefit metrics and 

computational performance metrics. The pros and cons of most of the metrics were 

discussed, along with user requirements, algorithm design requirements and other critical 

considerations for proper performance metrics selection. This work, authored by Sunday 

Ochella and Mahmood Shafiee, was presented as a conference paper titled Performance 

Metrics for Artificial Intelligence Algorithms Adopted in Prognostics and Health 
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Management of Mechanical Systems and has been published in Journal of Physics: 

Conference Series 1828(1) (2021): 012005. 

In Chapter 5, a data-driven technique for identifying and prioritising equipment for LE 

was developed and presented as a journal paper titled Adopting Machine Learning and 

Condition Monitoring P-F Curves in Determining and Prioritising High Value Assets for 

Life Extension. This paper, authored by Sunday Ochella, Mahmood Shafiee, and Chris 

Sansom, has been published in the Journal of Expert Systems with Applications 176 

(2021): 114897. The highlight of the paper is the development of an equipment health 

index called the Potential Failure Interval Factor (PFIF), which is predicted for every 

piece of equipment within a fleet, using machine learning algorithms implemented on 

MATLAB. On the basis of the predicted PFIF, equipment were grouped as either 

“healthy”, “good – no action”, “good – monitor” or “soon-to-fail”, thus helping engineers 

to prioritise resources towards the most vulnerable equipment. 

In Chapter 6, a deep Bayesian Neural Network (BNN) was implemented for RUL 

prediction, incorporating uncertainty quantification. The BNN yields mean RUL 

predictions along with credible intervals, thus giving engineers a time range to plan and 

implement a suitable LE strategy. Data pre-processing was performed in a similar manner 

to the pre-processing for the work in Chapter 5, while the BNN algorithm for RUL 

prediction was implemented as Python codes on TensorFlow (version 2.6.0), with 

probability computations performed using TensorFlow Probability (version 0.13.0). The 

findings from this work have been prepared as an article titled Uncertainty Quantification 

in Remaining Useful Life Prediction Using Bayesian Neural Networks, authored by 

Sunday Ochella, Mahmood Shafiee and Chris Sansom and has been prepared for 

submission to the Applied Soft Computing journal. 

To synthesize the findings from the results obtained in the previous chapters of the thesis, 

a life-extension decision-making framework was developed in Chapter 7. The result of 

this work is a journal article titled An Advanced Analytics Approach to Asset Life 

Extension Decision-Making by Sunday Ochella, Mahmood Shafiee and Chris Sansom. 

The paper has been submitted to the Journal of Computers and Industrial Engineering. 

The highlights of the work include the use of RUL results with uncertainty quantification, 

(results from Chapter 6), along with a PHM metric called the alert time (from Chapter 4),
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Figure 1-2 Mind map of the various chapters and key subsections in the thesis

Chapter 1: Introduction
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Thesis
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grouping case study
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4.2.1: Conventional 
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4.2.3: Other 
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6.3: BNN algorithm 
for RUL prediction
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6.4: RUL prediction 
case study
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Future Work

6.2.2: Approaches to 
uncertainty quantification
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6.3.2: BNN algorithm 
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3.3: Regulatory 
requirements

3.4: Demonstration 
via a case study
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7.3: 
Methodology7.2.3: Overview of 

decision-making 
models in LE
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to determine appropriate LE strategies for equipment grouped as “good – monitor” and 

“soon-to-fail” (results from the work in Chapter 5). Thus, engineers can use the 

interpretable results from RUL prediction with uncertainty quantification to make real 

life decisions about LE, thereby avoiding equipment failure and extending the overall life 

of engineering assets. 

Figure 1-2 shows a mind map of the various chapters and the key areas each chapter 

covers. The mind map progresses sequentially in a clockwise manner, starting from the 

introduction covered in Chapter 1, then to the review papers, presented as Chapter 2, 

Chapter 3, and Chapter 4. It then transits to the technical papers, which are presented as 

Chapter 5, Chapter 6, and Chapter 7, and then concludes with the discussion section 

presented in Chapter 8. It is a succinct pictorial that presents, at a glance, the entire 

structure of the PhD thesis.  

Table 1-2 List of publications – journal papers 

In terms of output, this research has led to the production of the following conference and 

journal papers, all of which were written by the PhD student , Sunday Ochella, as the first 

author, with contributions from the supervisors, Dr Mahmoud Shafiee in terms of 

additional conceptualization, reviewing, validation and editing, Prof Chris Sansom in 

terms of review and supervision, and Fateme Dinmohammadi contributing towards 

Journal Papers 

S/N Paper Title Journal 

1 Adopting Machine Learning and Condition 

Monitoring P-F Curves in Determining and 

Prioritizing High-value Assets for Life 

Extension. 

Journal of Expert Systems with 

Applications (published). 

DOI: 10.1016/j.eswa.2021.114897 

2 Artificial Intelligence in Prognostic 

Maintenance of Engineering Systems (review 

paper). 

Journal of Engineering Applications of 

Artificial Intelligence (published). 

DOI:  10.1016/j.engappai.2021.104552 

3 An Advanced Analytics Approach for Asset 

Life Extension Decision-making. 

Journal of Computers and Industrial 

Engineering (submitted ). 

4 Uncertainty Quantification in Remaining 

Useful Life Prediction Using Bayesian 

Neural Networks. 

Prepared for submission to the journal 

of Applied Soft Computing. 

https://dx.doi.org/10.1016/j.eswa.2021.114897
https://doi.org/10.1016/j.engappai.2021.104552
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review and validation for one of the papers. Table 1-2 presents a list of the journal papers 

while Table 1-3 presents the list of conference papers. 

Table 1-3 List of publications – conference papers 

  

A pictorial illustration of everything presented in this chapter and the interconnection 

between the various aspects of the research is shown in Figure 1-3. 

Conference Papers 

S/N Paper Title Conference 

1 Artificial Intelligence in Prognostic 

Maintenance. 

29th European Safety and Reliability 

Conference, 2019 (published). 

DOI: 10.3850/978-981-11-2724-3_0188-cd 

2 Performance Metrics for Artificial 

Intelligence (AI) Algorithms Adopted in 

Prognostics and Health Management 

(PHM) of Mechanical Systems. 

International Symposium on Automation, 

Information and Computing, 2020 

(published). 

DOI:  10.1088/1742-6596/1828/1/012005 

3 Requirements for Standards and 

Regulations in AI-Enabled Prognostics 

and Health Management. 

26th IEEE International Conference on 

Automation and Computing, 2021 

(published). 

DOI:  10.23919/ICAC50006.2021.9594069 

https://dx.doi.org/10.3850/978-981-11-2724-3_0188-cd
https://dx.doi.org/10.1088/1742-6596/1828/1/012005
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Figure 1-3 Interconnection between the various aspects of the research and how they map 
to the research objectives. 

 

Advanced Analytics 
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 Engineering Applications of Artificial 
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Chapter 5: Identify and Prioritise Equipment for 
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along with potential failure (P-F) curves to 
develop novel asset health index.

 Vulnerable equipment for life extension are then 
grouped together.

 Case study used to demonstrate feasibility.
(Objectives 3, 5)

Expert Systems with Applications 176 (2021), 114897

Chapter 3: Requirements for 
Standards and Regulations in PHM

 Standards and regulations guiding 

PHM practice.

 Critical factors in AI-enabled PHM.

 Develop acceptability criterion, Ac.
(Objectives 1, 5)

IEEE Xplore 

DOI: 10.23919/ICAC50006.2021.9594069

Chapter 1: Introduction

 General background.

 Aim and objectives of research.

 Thesis structure.

Chapter 8: Discussion

 Key findings.

 Novelty and intellectual contributions.

 Impact of findings.

 Suggestions for future work.

Chapter 6: Uncertainty Quantification in RUL 
Prediction

 Development AI-algorithm for RUL prediction.
 Uncertainty quantification incorporated.
 Equipment RUL predicted as probability 

distributions.
(Objectives 4, 5)

Article prepared for journal submission

Chapter 7: Advanced Analytics Approach for LE 
Decision-making

 Use equipment grouping from Chapter 5.
 Use PHM metric from Chapter 4.
 Use RUL results from Chapter 6.
 Propose data-driven LE strategies.

(Objective 5)
Computers and Industrial Engineering (submitted)

Chapter 4: PHM Metrics and KPIs

 Identifying metrics for algorithm 

performance measurement.
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applications.

 Apply metrics for RUL prediction 
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(Objectives 1, 2)
Journal of Physics: Conference Series 

(2021), 1828(1)
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Abstract: Prognostics and health management (PHM) has become a crucial aspect of the 

management of engineering systems, where sensor hardware and decision support 

methodologies are used to detect anomalies, diagnose faults and predict system 

remaining useful lifetime (RUL). Methodologies for PHM are either model-based, data-

driven or a fusion of both approaches. Data-driven approaches make extensive use of 

algorithms to extract underlying system relationships from large datasets collected from 

physical systems. In recent years, several data-driven models have been developed by 

the PHM research community using Artificial Intelligence (AI) and Machine Learning 

(ML) algorithms to identify failure signatures embedded in large amounts of condition 

monitoring data that capture a rich variety of operational modes and system health states. 

The field of AI is fast gaining acceptance in various industries. With advancements in 

the use of AI in engineering systems, where new designs now adopt the interconnection 

of components in a cyber-physical space, there is increasing awareness that current 

inspection and maintenance methodologies will have to adapt to the transition into a more 

predictive and proactive philosophy. In this paper, a state-of-the-art review of AI 

techniques for prognostic maintenance of engineering systems is conducted. 

Furthermore, given that the future of inspection and maintenance will be predominantly 

AI-driven, the paper discusses the soft issues relating to manpower, cyber-security, 

standards, and regulations under such a regime. The review concludes that current 

systems and methodologies for maintenance will inevitably become incompatible with 

future designs and systems; as such, continued research into AI-driven prognostics 

systems is expedient as it offers the best promise of bridging the potential gap. 

Keywords: Prognostics and Health Management (PHM), Artificial Intelligence (AI), 

Machine Learning (ML), Predictive maintenance, Algorithm, Remaining useful life (RUL). 
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2.1 Introduction 

The conventional maintenance practice in industries was corrective in nature, where an 

equipment was repaired or replaced upon failure. However, due to the high failure cost 

and downtime penalty, preventive maintenance (PM) strategies became very popular in 

the early 1980s. PM includes performing various actions at predetermined time or usage 

intervals, such as replacing an oil filter in a machine. This strategy is still a predominant 

maintenance strategy in a lot of industries, including construction, mining, chemical and 

petrochemical (Shafiee, 2015). However, since equipment utilization and maintenance 

resources may not be optimized by fixed-interval PM methodologies, risked-based 

methods are increasingly being adopted in industrial facilities so that resources can be 

assigned to equipment according to their criticality rankings. Specific reference can be 

made to the oil and gas industry, where the American Petroleum Institute (API) published 

recommended practices for the implementation of risk-based inspection (RBI) in oil and 

gas processing facilities; (see API (2016a) and API (2016b). The semi-quantitative 

approach offered by API makes extensive use of inspection data (where such data is 

available) to develop physics-based models for the equipment, incorporating expert 

knowledge from the operators and process engineers into the analysis. Therefore, RBI is 

effectively a hybrid of both model-driven and data-driven methods (Shafiee and Soares, 

2020). 

Despite being implemented in many fields, RBI is yet to be proven when used in the 

context of an ecosystem where large amounts of sensor data are constantly gathered from 

heterogeneous systems at a very high rate. In recent years, condition-based maintenance 

(CBM) has become popular in an effort to minimize unplanned maintenance, increase 

reliability and reduce operating costs. CBM recommends optimal maintenance actions 

based on asset condition information (Jardine et al., 2006). CBM involves the key tasks 

of diagnostics and prognostics, both of which fundamentally involve collecting sensor 

data, processing the data and constructing the system health states based on the processed 

data. While the diagnostics task detects, identifies and isolates faults, the prognostics task 

uses diagnostics information along with past historical data to predict future health states 

of the equipment as well as determine the time to perform maintenance actions (An et al., 

2015). Prognostic maintenance therefore means making maintenance decisions based on 

predicted time that a component or system can operate before encountering a failure – 
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this time is known as the remaining useful life (RUL). The methods for predicting a 

system’s future health state can be categorized into model-driven (where a physical model 

of system degradation behaviour is developed to estimate RUL); data-driven (where 

condition monitoring data is processed and used to estimate RUL); or a fusion of both 

approaches. 

Data-driven techniques in PHM were mostly based on statistical methods. However, with 

advances in sensor technology and signal processing, artificial intelligence (AI) 

techniques have become increasingly popular. AI is the ability of a machine to display 

human-like intelligence, especially in response to inputs from its environment. The field 

of AI has received wide attention in recent years in various applications, particularly in 

cases where very large volumes of data are generated at a fast rate. In such cases, the 

conventional statistical methods become less useful as analytical tools. With respect to 

the area of predictive maintenance (PdM) and prognostics and health management 

(PHM), various AI algorithms have been proposed in the literature on how to predict the 

state of health of engineering systems. To this end, the RUL estimation at system, 

subsystem or component level is a critical task upon which the entire prognostics 

endeavour is based. 

This paper provides a thorough state-of-the-art review of the AI techniques adopted for 

PHM of mechanical engineering systems. Most reviews covering the subject tend to focus 

on a specific algorithm or class of algorithms, or on specific use cases; hence, ignoring 

actual issues around real-life implementation of PHM in fielded systems. This review 

provides a broad perspective on the subject while delving into the soft issues that need to 

be addressed to enable adoption of AI-driven PHM technologies. The applications of 

various AI techniques in PHM are identified via a systematic literature review to aid 

practitioners in making well-informed decisions. Our review shows that a finite collection 

of PHM datasets is continuously used for the purpose of training and testing AI 

algorithms. These datasets have been mostly obtained from either numerical simulations 

or experimental measurements from accelerated degradation testing in research 

laboratories, and there seems to be dearth of real-life data from operational systems. So, 

there either is a lack of appreciable collaboration between the industry and academia or 

the actual level of collaboration is not accurately captured in the literature, perhaps due 
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to confidentiality reasons. Our study also reveals that ‘deep learning’ algorithms are 

becoming very popular in recent years as they deliver very good results while eliminating 

the need to pre-process the data before feeding it into an algorithm or model. Of course, 

there are other enablers for the proliferation of deep learning algorithms, like availability 

of big data and high capability Graphics Processing Units (GPUs). 

The remaining part of this paper is organized as follows: Section 2.2 outlines the 

procedure for using AI in prognostic maintenance, including a brief overview on popular 

algorithms used in the literature for prognostics. Section 2.3 presents a systematic 

literature review to provide a broad picture of the state of AI-driven prognostic 

maintenance research, identifying the various algorithms that have been used and the 

associated datasets used to test the algorithms. Some metrics applied to measure the 

performance of the algorithms and PHM results, in general, were also briefly discussed. 

Section 2.4 discusses the soft issues around the real-time implementation of AI for 

prognostic maintenance which tend to be generally ignored in the literature. Section 2.5 

discusses ideas for future research while Section 2.6 summarizes the discussion and 

concludes the paper. 

2.2 Use of AI in prognostic maintenance 

There are quite a number of comprehensive reviews on data-driven prognostics in the 

published literature. Jardine et al. (2006) conducted a review of machinery diagnostics 

and prognostics and discussed how the entire CBM process aids in maintenance decision-

making. Primitively, the tendency has been to concentrate on prognostics as a separate 

area that is yet to be fully explored. However, intuition suggest that one must be able to 

perform diagnostics (i.e., detect, isolate and identify faults) before attempting to perform 

prognostics (Schwabacher and Goebel, 2007; Jardine et al., 2006; Sikorska et al., 2011; 

An et al., 2015). This is inevitable in the case of developing data-driven PHM techniques 

because the existence of actual failure data is fundamental to the training process of AI 

algorithms. In general, most of the reviews in the literature (Jardine et al., 2006; Sikorska 

et al., 2011; An et al., 2015; Lei et al., 2018) delineate the procedure of deploying AI in 

PHM into three broad stages: (i) data collection and processing; (ii) development of 

algorithm, training and validation; and (iii) RUL prediction and maintenance decision-

making. The broad delineation of this process is illustrated in Figure 2-1. Some important 
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aspects of the three main stages involved are discussed in subsection 2.2.1 and subsection 

2.2.2. 

  

Figure 2-1 Flow process for the use of AI for prognostics 

2.2.1 The key: good quality data 

Since AI approaches are purely data-driven, the results obtained will be only as good or 

as accurate as the quality of the dataset used for training the algorithm. PHM typically 

involves data collection, cleaning, preprocessing and features extraction, RUL prediction 

and, eventually, algorithm performance measurement using suitable RUL metrics. With 

the advancement of internet of things (IoT) technologies, it is now cheaper and easier to 

obtain large amounts of data from engineering systems (Lei et al., 2018; Zhao et al., 

2019). However, some real challenges that are still being experienced with the availability 

of good quality data are outlined below: 

i. With thousands of sensors being deployed in engineering systems to measure 

different physical parameters, a large amount of multi-dimensional data is generated. 

Several techniques for data dimensionality reduction have been developed over the 

years, including: principal component analysis (PCA), independent component 

analysis (ICA), self-organizing maps (SOM) and wavelet packet decomposition 

(WPD). However, the challenge in PHM research is the need to process the data as 

and when they are collected (i.e., in real or close to real time). The operating 

conditions of the sensors need to be monitored, their calibration issues must be 

addressed, and noise in the data should be removed by pre-processing the signals. 
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ii. As a further point regarding data quality and preprocessing, it is important to state 

that not all the data collected for prognostics purpose contain useful information for 

algorithm development. PHM practitioners using AI algorithms for data-driven 

prognostics need to be aware of the relevance of features engineering, especially 

how to eliminate redundant features that are not informative, as well as how to craft 

new features via features crosses or computing different statistics or parameters from 

the collected data to serve as additional features that will typically be more 

informative than the raw data. Most of the popular libraries available for use like 

scikit-learn, TensorFlow with Keras, MATLAB, PyTorch, etc., include rich 

packages for data preprocessing and features engineering. 

iii. In industrial environments, it is neither safe and nor economically feasible to run 

machines until they break down. As such, most data available for academic research 

are obtained from experiments, test beds and simulations, which might not be a true 

representative of real-life failure data.  

iv. In real-life applications, machines are subject to varying environmental conditions. 

The ability to prune the data to discount for the attendant noise while at the same 

time taking credit for environmental loading is also a major challenge. All these 

issues with data reliability and quality help to emphasize the importance of 

uncertainty quantification when using such data for prognostics. Different categories 

of algorithms addressing uncertainty quantification are briefly discussed in 

subsection 2.2.2.5. 

v. In a few cases where real-life data have been provided by industry, as in the study 

by Carroll et al. (2019) on wind turbine gearbox failures, the details of the data were 

not provided due to confidentiality reasons. 

The literature search conducted for this work identified some datasets commonly used for 

research on the use of AI in PHM. These datasets are briefly introduced below. 

2.2.1.1 NASA C-MAPSS dataset 

This dataset presents the NASA turbofan engine degradation problem and was first 

introduced for the PHM 2008 data challenge. The dataset was generated with a MATLAB 

Simulink tool called the Commercial Modular Aero-Propulsion System Simulation, C-

MAPSS, producing a large amount of realistic turbofan engine degradation data (Saxena 
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et al., 2008). The dataset comprises data for engine conditions under normal mode as well 

as faulty modes, with the fault being introduced at a given time and persisting till the end.  

Figure 2-2 provides an illustration of the engine simulated in C-MAPSS, showing the 

main elements of the engine from which sensor information were collected. The engine 

has five rotating components, namely: the fan, the low-pressure compressor (LPC), the 

high-pressure compressor (HPC), the low-pressure turbine (LPT), and the high-pressure 

turbine (HPT). These five rotating components have health parameter inputs that allow 

for the simulation of deterioration, along with sensor information collected from when 

the engine is put in service until the time it crosses a failure threshold. The data was 

generated by varying the input parameters to conform with the response of the real aircraft 

engine used, thus producing realistic engine degradation data. The training data was 

obtained by running the engine under various engine modes and operational settings, and 

then introducing a fault at a known time (measured in engine cycles). The fault then 

persists in the engine, leading to gradual degradation until a final failure threshold is 

reached. The test data was collected by running the engines and introducing a fault at a 

known time (but not revealed), with the test data cut off after the fault is introduced. Table 

2-1 shows the sensor information collected from the various parts of the engine, along 

with information indicating the operational settings. 

 

Figure 2-2: A simplified illustration of the engine simulated in C-MAPSS (adopted from 

Sexena and Goebel, (2008)). 

The challenge is to identify the present health state of the various engine units in the test 

dataset and subsequently, the time-to-failure or RUL of each engine unit. The dataset is 
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useful for benchmarking, enabling the comparison between different AI algorithms. This 

is possible because four datasets out of the five datasets available in C-MAPSS have a 

training set, a test set and ground truth RUL values to measure performance. In the fifth 

dataset, the challenge dataset, the ground truth RUL values are not provided. Ramasso et 

al. (2015) provided a detailed guidance on the appropriate use of this dataset for research. 

Table 2-1 Parameters in the C-MAPSS dataset 

# column  Measured parameter Unit of measurement 

1 Unit number -- 

2 Time cycles 

3 Operational setting 1 -- 

4 Operational setting 2 -- 

5 Operational setting 3 -- 

6 Total temperature at fan inlet °R 

7 Total temperature at LPC1 outlet °R 

8 Total temperature at HPC2 outlet °R 

9 Total temperature at LPT3 outlet °R 

10 Pressure at fan inlet psia 

11 Total pressure in bypass-duct psia 

12 Total pressure at HPC outlet psia 

13 Physical fan speed rpm 

14 Physical core speed rpm 

15 Engine pressure ratio (P50/P2) -- 

16 Static pressure at HPC outlet psia 

17 Ratio of fuel flow to Ps30 pps/psi 

18 Corrected fan speed rpm 

19 Corrected core speed rpm 

20 Bypass Ratio -- 

21 Burner fuel-air ratio -- 

22 Bleed Enthalpy -- 

23 Demanded fan speed rpm 

24 Demanded corrected fan speed rpm 

25 HPT4 coolant bleed lbm/s 

26 LPT coolant bleed lbm/s 
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure 
Turbine 

 

2.2.1.2 FEMTO-ST bearings dataset on PRONOSTIA test bed 

This dataset was introduced for the PHM 2012 data challenge during the IEEE 

International Conference on PHM. The data, which was provided by the 

Institute Franche-Comté Electronics Mechanics Thermal Processing and Optics–

Sciences and Technologies (FEMTO-ST Institute, France), consists of 17 run-to-failure 

data of rolling element bearings generated from the PRONOSTIA test bed. Six of the 
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datasets are full run-to-failure data, whereas the other 11 datasets are truncated. This 

makes the training of AI algorithms challenging and the accurate prediction of RUL 

difficult because the training set is from just six bearings, posing challenges for training 

because AI algorithms require ample data for meaningful training to be achieved. Full 

details of the dataset from the PRONOSTIA testbed are presented by Nectoux et al. 

(2012). 

2.2.1.3 Other datasets 

The PHM 2010 data challenge presented data for high-speed Computer Numerical 

Control (CNC) milling machine with cutters used until a significant wear stage. The 

challenge was to accurately predict the RUL of the cutting tools. Other milling datasets 

are also available and have been used in publications. Another set of data for prognostics 

research is the NASA battery data, which has been used in about 8% of the publications 

found in the literature. Most of the datasets discussed in this work are publicly available 

for download (see NASA Prognostics Data Repository, 2017). 

Although some of the datasets discussed are from real accelerated life degradation 

experiments, it is remarkable that there is a paucity of research publications that have 

used data from actual operational engineering assets. Nevertheless, the obvious advantage 

of these common datasets is the ability for different researchers to compare the results 

obtained using different algorithms on the same dataset. Also, early career researchers 

that would otherwise experience difficulty accessing data or designing their own 

experiments to obtain data, can make use of these publicly available datasets for research. 

Figure 2-3 shows the usage of various datasets in data-driven prognostics research. The 

papers in which a specific dataset was used for studies are listed in Table 2-3. 
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Figure 2-3 Datasets used in prognostics research 

2.2.2 AI algorithms for prognostics 

As stated earlier, one of the reasons for the recent increase in popularity of the use of AI 

for prognostics is due to the increased availability of data from sensors installed on 

engineering devices and systems. Other contributory factors are successes recorded in 

other applications, like e-maintenance, as well as the evolution of a rather large number 

of algorithms on different platforms like Python, TensorFlow with Keras (using Python), 

PyTorch, Sci-kit Learn, MATLAB, R, Java, C++ and Microsoft Azure Learning Studio. 

The availability of cross-platform libraries via the ability to import different libraries unto 

different platforms has also helped to accelerate adoption. Some popular algorithms in 

use include Deep Learning, regular Artificial Neural Networks (ANNs), nearest 

neighbour algorithms (mostly k-NN), naïve Bayes, decision trees, and Support Vector 

Machine (SVM). For prognostic maintenance, ANNs (and other algorithms based on 

neural networks) have been used the most in the literature. Figure 2-4 illustrates the broad 

categorization of common AI algorithms. The algorithms captured are in no way 

exhaustive as variants of each algorithm have been used for different applications. 



 

23 

 

Figure 2-4 Categorization of common AI algorithms 

The algorithms used in majority of the publications in the literature are discussed briefly 

below. 

2.2.2.1 Deep Learning 

The deep learning architecture originated from ANN with the unique quality of having 

multiple layers stacked on each other, between the input layer and the output layer. This 

characteristic of deep learning also applies to the multi-layer perceptron (MLP), which is 

a neural network with multiple hidden layers trained via backward propagation. In that 

sense, the MLP can be said to be an instance of deep learning. However, what makes deep 

learning attractive, as compared to traditional machine learning algorithms, is the ability 

to skip the process of hand-crafting features from the input data before being fed into the 

network. With deep learning, the input can be fed directly into the network and the 

network learns the features on its own. Deep learning was first introduced for use in 

natural language and image processing and recognition (LeCun et al., 2015). The deep 
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learning algorithms that have been used for prognostics and health management (PHM) 

of engineering systems include autoencoders (and its variants), restricted Boltzmann 

machine (RBM) with its variants being deep belief networks (DBN) and deep Boltzmann 

machine (DBM), convolutional neural networks (CNN) and recurrent neural networks 

RNN. Variants of RNN, the long short-term memory (LSTM) and Gated Recurrent Units 

(GRU) have also been used in the literature for prognostics. 

Furthermore, different deep learning algorithms have been combined to solve prognostics 

problems, exploiting the advantage of each algorithm to address an aspect of the problem 

that is amenable to the application of that particular algorithm. Yue et al. (2018) used 

CNN-LSTM to address the issue of blade icing on wind turbines. Features extraction was 

performed using the CNN algorithm while LSTM was used to make time series 

predictions based on the extracted features. Chen et al. (2018) applied a somewhat similar 

approach to the wind turbine blade icing prognostic problem using deep neural networks 

to learn and extract features while using k-NN to classify the learned features. The CNN 

architecture has an input layer, several hidden layers, and an output layer. For most 

configurations, the hidden layers are the convolution layer, the pooling layer and a fully 

connected layer, beyond which a regression or classification algorithm is used to generate 

the output, depending on the nature of the problem being addressed. Li et al. (2019) and 

Zhu et al. (2019) used a multiscale feature extraction approach, where the CNN had 

several concatenated convolution and pooling layers. The aim was to gain better 

representation of different features of the raw data. Good results were obtained by the 

multiscale approach when applied to bearing data from the PRONOSTIA test bed and 

compared to other deep learning approaches. Even though data can be fed directly to deep 

learning models without handcrafted features extraction, other approaches have involved 

some level of pre-processing of data before feeding to deep learning algorithms. Ren et 

al. (2018a) presented the spectrum-principal-energy-vector as a feature extraction method 

to obtain the eigenvector which they considered suitable for a deep CNN. Belmiloud et 

al. (2018) used wavelet packet decomposition (WPD) to extract features from bearings 

data and fed the extracted features to a deep CNN for training and RUL prediction. 

Fundamentally, CNN is a feed-forward neural network architecture. RNN, on the other 

hand, is a deep learning architecture that has memory in the sense that output from one 
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layer is fed as input to the previous layer in the form of a recurrent loop. As such, RNNs 

are more amenable to time series data since the previous output is remembered, as well 

as the present input. However, RNN only captures recent memory and is poor at 

addressing the issue of long-term dependencies. A variant of RNN, the LSTM, addresses 

this problem by the introduction of gates; the input gate, the output gate and the forget 

gate. The input gate selects key information to store in the internal state, the output gate 

determines output information and the forget discards redundant information – hence 

keeping important information, long-term, in the internal state of the network. Zheng et 

al. (2017) and Hsu and Jiang (2018) used LSTM to estimate RUL for the C-MAPSS 

dataset. The results were compared with MLP, SVM and CNN and showed that LSTM 

produced better results based on the root mean square error (RMSE) metric. Zhang et al. 

(2018b) used a bi-directional LSTM for the same C-MAPSS problem and also obtained 

better results compared to MLP, SVM, deep CNN and the conventional LSTM. Other 

researchers, including Mao et al. (2018) and Zhang et al. (2019) used LSTM to predict 

RUL for bearings while Zhang et al. (2017) applied LSTM to RUL estimation of lithium-

ion batteries. Overall, the key feature of addressing long-term dependencies was the major 

reason why researchers have used LSTM as against the standard RNN. 

 

Figure 2-5 Tree structure showing various deep learning algorithms 

Other deep learning algorithms that have been used for prognostics include deep coupling 

autoencoders, deep denoising autoencoders, restricted Boltzmann machine, deep belief 

networks and, most recently, probabilistic deep learning algorithms using variational 

inference or Monte Carlo dropout for approximating the posterior distributions. Most of 

the papers which used deep learning have been published rather recently, from 2016 
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onwards. This recent adoption clearly follows from the successes recorded by its use in 

image processing and recognition. Khan and Yairi (2018) and Zhao et al. (2019) 

presented detailed reviews on deep learning algorithms for prognostics. The deep learning 

algorithms used in the literature for prognostic maintenance are shown in Figure 2-5. 

2.2.2.2 Hybrid/Fusion 

Hybrid techniques involve the combination of model-driven and data-driven methods (in 

the context of this paper, data-driven methods are referred to as AI-based methods). Saha 

and Goebel (2008) used relevance vector machine (RVM), as a Bayesian treatment of 

SVM, for model identification and then provided estimates of RUL in the form of a 

probability density function (PDF) based on a particle filters framework built upon the 

RVM-trained model, statistical estimates of noise and projected operating conditions. 

Yang et al. (2016) used a selective kernel ensemble-based RVM algorithm to obtain 

relevance vectors for degradation data in lithium-ion batteries and fit the relevance vector 

onto a physical model to extrapolate RUL values. When the results were compared to 

feed-forward ANN and SVM, the hybrid method showed superior performance. In 

another study, Zheng et al. (2018) used a very similar approach with RVM on battery 

data to train a model, but instead they used Kalman Filters to make RUL projections. 

Ahmad et al. (2017) implemented a hybrid PHM approach by training an adaptive 

predictive model on the NASA bearing degradation data and then adopted a regression-

based approach to predict the RUL. Other researchers such as Jin et al. (2018) used a self-

organizing map (SOM) to train the degradation model for the bearings data from the 

FEMTO-ST PRONOSTIA test bed and then adopted an unscented Kalman Filters to 

estimate RUL using the trained model. In general, the hybrid approach combines the use 

of degradation data to train an AI algorithm to learn the parameters of a physical model, 

and then uses the learned model along with statistical or other approaches to make 

extrapolations or predictions. It must however be noted that hybrid methods only lend 

themselves to application areas where the underlying physics behind the system can be 

modelled, so that the training process effectively helps to approximate the model 

parameters. Hybrid models are therefore not directly applicable to complex systems 

where the physics of failure cannot be somewhat explicitly modelled. Figure 2-6 presents 

two alternative routes for using hybrid/fusion approach to estimate RUL of engineering 

systems. 
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Figure 2-6. Two alternative routes for using hybrid/fusion approach to estimate RUL. 

2.2.2.3 Support Vector Machine (SVM) 

SVM is a technique used for classification and regression by creating a hyperplane to 

separate data with different classes in a multi-dimensional space. Extracted features from 

the data are projected into the multi-dimensional space using a kernel function and then 

a hyper plane is generated such that there is maximum distance between the nearest 

training data and the hyperplane, thus providing good generalization capabilities. In 

relation to machine prognostics applications, failure data can therefore be separated from 

healthy data. Benkedjouh et al. (2013) estimated the RUL of bearings by using an 

isometric feature reduction mapping technique to extract features from the PRONOSTIA 

bearings data. The errors obtained from using three kernel functions, namely Gaussian, 

polynomial and Radial Basis Function (RBF), were compared by projecting the features 

onto a multi-dimensional hyperplane. Eventually, the Gaussian kernel function was 

shown to produce the least error compared to the other two functions. Carino et al. (2015) 

estimated the RUL of the same PRONOSTIA bearings, using the features selected based 
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on the assumption that monotonically decreasing features are most likely to represent 

degradation patterns. A one-class SVM was then used to characterize an incremental 

degradation profile in the feature space, subsequently using the RMSE to measure the 

performance of the algorithm. The key implication of the two studies cited is that data 

from most physical systems are Gaussian, along with Gaussian noise and that 

monotonically decreasing or increasing features are most useful for RUL predictions. 

Non-Gaussian data can usually be transformed to Gaussian space to make them amenable 

to modelling, with the results going through an inverse transformation after predictions 

using the learned model. 

One challenge with all datasets available for prognostics, and indeed any dataset that may 

be obtained from operational engineering systems, is the difference in lengths of the run-

to-failure data for each unit within the dataset. This difference reflects the fact that 

different equipment have different lifetimes, either due to design, different environmental 

factors or different operational or loading conditions. To address this challenge, Bluvband 

and Porotsky (2015) used SVM to predict the RUL for turbofan engines in a context of 

suspended time series, where a number of points in the data were missing. Shi et al. (2018) 

used a modified RVM with a new design matrix, called RVR-NDM which includes an 

additional column vector which represents the overall degradation pattern. The prognostic 

performance was measured using mean absolute percentage error (MAPE) and the 

RMSE. Several other studies have used SVM techniques to estimate RUL of lithium-ion 

batteries, which are important components for energy storage in a wide variety of 

applications including consumer electronics, transportation, and large-scale energy 

production. In all the studies, the common approach involves the need to separately 

extract the features and establish a degradation pattern and subsequently applying the 

SVM algorithm. In general, these techniques have produced good results for use in both 

classification and regression problems. A quick reference to studies using this algorithm 

can be found on the listing in Table 2-2. 

2.2.2.4 Ensemble 

Ensemble techniques combine several different configurations of the same base learner 

or algorithm to make a single prediction. Hu et al. (2012) conducted a study to 

demonstrate that using an ensemble of the data-driven AI algorithms for prognostics 

yields more accurate results when compared to any sole algorithm within the ensemble. 
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In the study, different weights were assigned for algorithms that are accuracy-based, those 

that are diversity-based and those that are optimization-based. As shown in Figure 2-7, 

ensemble methods include bagging, boosting and stacking. Bagging, also called bootstrap 

aggregating, assigns equal weights to each algorithm in the ensemble, with each algorithm 

trained using a random sample from the training dataset. The training data is sampled 

with replacement in the process of training each base algorithm. Random Forests is an 

example of bagging ensemble, with decision trees as the base learners. Wu et al. (2017b) 

used random forests as a bagging ensemble method for tool wear prediction. Although 

the training times achieved were slightly long, the RMSE using random forests were 

much lower when compared to ANN and SVM. Cheng et al. (2021) used an ensemble of 

80 different LSTMs to make RUL predictions for the C-MAPPS dataset, with each base 

LSTM having the same hyperparameters. Each base LSTM was also trained on a single, 

unique engine degradation data, and the results from 80 engines were aggregated to obtain 

the optimal LSTM configuration as well as RUL distribution parameters derived from the 

mean and variance of the 80 predictions. This approach produced a mean RUL prediction 

that is superior to any single prediction from each of the 80 LSTMs, thus taking full 

advantage of the bagging ensemble learning approach. 

Boosting involves the process of progressively improving the results of a classifier with 

subsequent algorithms in the ensemble, with the sole purpose of more accurately 

predicting or classifying previously misclassified instances in the data. With boosting, the 

process is initialized with a uniform distribution so that all instances in the data have equal 

likelihood of being selected in the training dataset, while misclassified instances are 

returned to the distribution to improve their chances of correct classification with other 

algorithms in the ensemble. Zhang et al. (2017a) used a multi-objective DBN for RUL 

prediction using the C-MAPSS dataset. A DBN is a deep learning algorithm comprising 

RBMs stacked to form multiple layers. The ensemble method used in the study trained 

DBNs as base learners with two conflicting objectives – accuracy and diversity. Accuracy 

is measured in terms of the error between the predicted RUL and the ground truth RUL 

while diversity checks the correlation between the output of each DBN to those of other 

DBNs within the ensemble. The various DBNs are gradually evolved through appropriate 

weighting to generate an optimal ensemble model that minimizes error and maximizes 

diversity. 
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Figure 2-7. Bagging, boosting and stacking approaches to ensemble AI learning 

Stacking involves the use of a heterogeneous mix of different base learners and then 

combining their results to produce a single prediction. The results can be combined with 

a classification algorithm or a regression algorithm, depending on the problem. Stacking 

is different from bagging in two ways; first, with stacking, the base learners are 

necessarily a heterogeneous set of algorithms or models and, second, each of the base 

learners are trained on the full set of training data unlike in bagging where the training 

data is sampled with replacement. Li et al. (2019) used a stacking ensemble approach for 

RUL prediction and tested it on the C-MAPSS dataset. The study used as base learners: 

random forests (RFs), classification and regression tree (CART), recurrent neural 

networks (RNN), autoregressive (AR) model, adaptive network-based fuzzy inference 

system (ANFIS), relevance vector machine (RVM), and elastic net (EN). Particle swarm 

optimization (PSO) and sequential quadratic optimization (SQP) methods were then used 

to assign optimal weights to each base learner. The final RUL was obtained by taking the 

weighted sum of the RULs estimated by the base learners. In general, ensemble methods 

help to produce better accuracy while ensuring good generalization capabilities. 

2.2.2.5 Bayesian algorithms and uncertainty quantification 

The algorithms discussed so far make deterministic or point estimates of RUL, which can 

be misleading in real-life applications. This is because point estimates have a fundamental 

flaw of not addressing the uncertainty in both the data and the model parameters. In 

practical terms, what this means is that an equipment with a predicted RUL of say 30 
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cycles, may end up failing earlier, after say 15 cycles or indeed lasting longer and failing 

after say 40 cycles. Such a scenario does not enable optimization of resources or efficient 

planning for maintenance and end-of-life treatment. Incorporating uncertainty in RUL 

predictions is the most effective way to address this flaw. Uncertainties in RUL prediction 

are of two types, aleatoric (or data) uncertainty and epistemic (or model parameters) 

uncertainty, both of which should be addressed, ideally. Attempts to incorporate 

uncertainty in RUL prediction have involved different approaches. Some proposals 

involve making several RUL predictions using the same algorithm and then calculating 

the mean prediction and the variance as representative values for the RUL distribution. 

Deutsch and He (2018) used a resampling technique by eliminating one training data for 

each run of a deep learning algorithm and repeated that process until the entire training 

data was covered, thereby obtaining several point estimates of RUL and the RUL 

distribution parameters therefrom. Liu et al. (2010) also used a similar approach by 

making 50 RUL prediction runs using an adaptive recurrent neural network (ARNN) and 

obtaining the RUL distribution parameters by computing the mean and variance of the 50 

RUL point estimates. While this approach may capture, to some degree, the variability in 

the model parameters, it is however a heuristic approach that fails to directly account for 

uncertainty in a repeatable and systematic way.  

Probabilistic techniques such as particle filtering (Miao et al., 2013; Su et al., 2017; 

Chang and Fang, 2019), Kalman filtering and its variants (Singleton et al., 2015a; Son et 

al., 2016; Cui et al., 2020), and Hidden Markov Models (Soualhi et al., 2016; D. Zhang 

et al., 2016; K. Zhu, 2018) have also been used extensively for prognostics. Although 

these methods are mathematically rigorous and more systematic than running several 

estimates and taking the average, they are, in real terms, health state division approaches 

and do not give RUL estimates as probability distributions with uncertainty estimates. To 

close this gap, Bayesian techniques like Gaussian Process Regression, GPR (Baraldi et 

al., 2015; Aye and Heyns, 2017; Richardson et al., 2017) enable uncertainty 

quantification in RUL prediction by providing RUL distributions as predictions, with a 

mean and variance for the RUL at each time step. However, GPR models the prior and 

the posterior distributions as multivariate normal functions, which does not always 

conform to data from operational engineering systems as they are not all multivariate 

normal. As such, a more contemporary approach is the use of Bayesian Neural Networks 
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(BNNs) for RUL prediction. BNNs can be trained using any distribution as the prior. In 

addition, BNNs have gained traction recently for use in RUL prediction due to their 

superior performance in terms of both higher accuracies and outputs of RUL predictions 

that incorporate uncertainties in both data and model parameters. Another advantage of 

BNNs, and Bayesian techniques in general, is their interpretability, mainly because of 

their mathematically rigorous foundations. This helps to quell the common criticism of 

deep learning approaches as black-box approaches that cannot be interpreted. A few 

studies have been proposed using BNNs for RUL prediction. Reference can be made to 

Kraus and Feuerriegel (2019), Peng et al. (2020), Li et al. (2020), Kim and Liu (2020), 

and Vega and Todd (2020) for additional insight. 

2.2.2.6 Reinforcement learning 

The literature search produced only scant evidence of publications using reinforcement 

learning algorithms for PHM applications. A reinforcement learning (RL) algorithm is 

implemented such that the learning agent is trained to act based on a reward system, 

depending on the outcome of the prediction. For that reason, it has found the most 

application in gaming. PHM applications are either classification (diagnostics or health 

state division), regression (RUL prediction) or, as it is in most cases, a combination of 

both problems. The most likely candidate area for the application of RL is in maintenance 

policy formulation and decision-support systems, where the feedback or results from 

maintenance actions taken based on the result of condition monitoring and RUL 

prediction are fed back to the learning agent in the form of rewards, hence aiding the 

agent to subsequently make better, fully integrated decisions. Early work by Cheng et al., 

(2018) used RL strictly for health stage division by looking at highly trendable features 

from sensor data as multiple health indicators, and then considering their change points 

simultaneously as agents. The transition between health states was then modelled as a 

Markov Decision Process, and then an RL algorithm used to determine the optimal policy 

to determine optimal change point transitions and hence, optimal health state division. 

Xanthopoulos et al. (2018) extended the use of RL beyond just health stage division by 

using Q-learning as an RL approach to determine production-maintenance control polices 

via a reward mechanism for the algorithm that looks at system health states at different 

epochs and compares one state to the previous state and to a reward threshold, and, on 

that basis, makes decision as to whether to continue production or to trigger an alert for 
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maintenance decision to be made. The application was strictly in the area of maintenance 

policy and decision-making.  

In the furtherance of the application of RL in PHM, Skordilis and Moghaddass (2020) 

extended the use of RL by combining Bayesian filtering and deep reinforcement learning 

(DRL) such that the Bayesian filtering algorithm observes the system’s latent degradation 

or health states based on multidimensional sensor data, with continuous updating. The 

DRL component of the algorithm makes real-time system control and maintenance 

decisions based on a decision-making framework designed around the relationship 

between the costs of replacement versus that of failure, triggering warning signs based on 

computed RUL. The advantages of the proposed method include dynamic and real-time 

monitoring of latent system degradation states, with uncertainty quantification due to the 

Bayesian approach, which also lends itself to interpretability as it is mathematically 

rigorous. Another study by Kozjek et al. (2020) used RL to continuously adjust RUL 

predictions based on a reward system. RUL predictions by a primary regression algorithm 

uses the trend in system health states as input to make RUL predictions, which are then 

compared to the actual RUL, and the agent is then rewarded based on the delta between 

the two, and the RUL is thereafter adjusted accordingly. Training is performed for 

different episodes, with RUL, safety, utilization level and maintenance planning as the 

respective reward objective for each episode. Another interesting development and new 

direction in the use of RL for prognostics is in the area of health-aware control (HAC). 

HAC designs are now formulated around the use of results from data-driven PHM such 

as the system health states and RUL values as inputs into the cost functions to generate 

rewards which are then used by an RL algorithm to learn optimal system control and 

maintenance policy in the face of system degradation. Examples of such applications 

include the studies by Jha et al. (2019). Overall, the use of RL algorithms for prognostics 

is nascent and largely unexplored. 

2.3 Literature review process 

In this section, the results of our systematic literature review on the state-of-the-art in the 

use of AI algorithms for prognostic maintenance is presented. The methodology used in 

this study involves searches on indexed databases like Scopus, Web of Science, IEEE 

Xplore Digital Library and the American Society of Mechanical Engineers (ASME) 
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Digital Collections because they provide the best collection of peer-reviewed journals and 

conference papers. The following keywords and their combinations were used: “artificial 

intelligence”; “machine learning”; “prognostics”; “remaining useful life”; “estimation” 

and “prediction”. The focus of the literature study was to cover peer-reviewed 

publications; as such, books, book chapters, university dissertations and non-English 

publications were not in the inclusion criteria. Publications in the following professions 

were also excluded: health, medicine, environmental sciences, business and management, 

arts and humanities, and the social sciences. The search criteria were defined as presented 

above to sufficiently capture publications in the most relevant journals and conferences.  

A combination of the results from all four databases initially generated a total of 342 

references, which reduced to 192 after merging duplicates and deleting references that 

were not relevant to engineering assets. This number was pruned down to 178 after 

reading through the abstracts and in most cases, the full text of the papers to further 

establish relevance. Out of the 178 publications, 86 were journal articles while 92 were 

conference papers – published predominantly by IEEE and PHM Society – spanning 2005 

to 2021. A taxonomy of the results was formulated to establish the distribution of 

algorithms used, the sources of data used to demonstrate the applicability of the 

algorithms, and the various equipment used as case studies. 

2.3.1 Framework for categorization of the literature 

In order to establish trends, the identified publications were categorized based on the type 

of algorithm used, the source of data used for the research, and the equipment or system 

used as a case study (where applicable). 

2.3.1.1 AI Algorithms used for prognostics 

The review carefully looked at the various algorithms or combination of algorithms used 

in the papers selected. In classifying the algorithms, the following notes should be taken 

into consideration: 

i. Algorithms that were similar, like support vector machine, support vector 

regression, support vector classification, relevance vector machine, were all grouped 

as SVM-based algorithms. 

ii. The categories of algorithms or approaches under deep learning and ensemble 

methods are pretty much defined and were grouped as such. 
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iii. Conventionally, hybrid/fusion approaches in condition monitoring and PHM 

combine model-based and data-driven approaches for RUL prediction. However, in 

the context of AI or ML, hybrid/fusion approaches are construed to be the combination 

of model-based or statistical approaches with AI algorithms for a single prognostic 

purpose (i.e., to make a single RUL prediction). “Single” in this context means putting 

together different algorithms to produce one RUL estimate rather than each algorithm 

producing its own RUL estimate and then choosing the ‘best’ estimate based on a 

performance metric (for example, RMSE). 

iv. We also note that with ensemble and hybrid/fusion techniques, multiple 

algorithms are used together to make a single prediction of RUL. As such, for this 

work, ensemble and hybrid/fusion techniques were classified differently from methods 

that used several different algorithms, separately, to perform prognostics, compared 

the results and then chose the individual algorithm with the best performance. We 

classified such an approach as a comparison approach. 

Upon classification, deep learning algorithms was ranked first as the most used type of 

AI algorithm in the literature for prognostics (used in about 29% of the publications). This 

is because the increased adoption of AI algorithms for data-driven prognostics coincided 

with the time when deep learning was becoming the go-to algorithm for most other 

applications in other industries, enabled by availability of data to train the algorithms as 

well as computing resources capable of handling the training process. Hybrid/fusion 

approaches were ranked second at about 14%, ensemble learning was third at about 10% 

and SVM-based algorithms were fourth at about 8.5%. Although it can be argued that 

deep learning and some of the ensemble techniques have their basis in neural networks, 

ANN-based techniques in its conventional form accounted for 4.2% of the publications. 

The publications in which these common algorithms were used for prognostics were 

introduced in more detail in AI algorithms for prognostics, highlighting what each 

algorithm achieved, as well as their shortcomings. Table 2-2 presents the various 

algorithms along with the references in which the algorithms were used for research. The 

guidance for using Table 2-2 is to mainly serve as quick pointers to publications in which 

specific AI algorithms were used in the literature for prognostics so as to gain further 

insight into a specific approach or to aid comparison of research results.  
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Table 2-2 Common algorithms used in prognostics research. 

No. of 
papers 

Algorithm Publications 

48 Deep Learning Heimes (2008); Liu et al. (2010); Morando et al. (2013); Liao et al. (2016); Thirukovalluru et al. (2016); Zhang and Gao 

(2016); Zhang et al. (2016); Chen and Li (2017); Deng et al. (2017); Dong et al. (2017); Zhao et al. (2017); Guo et al. 

(2017); Jiang et al. (2017); Wang et al. (2017a); Jiang and Kuo (2017); Wang et al. (2017); Krishnan et al. (2017); Liao 

et al. (2017); Ma et al. (2017); Qi et al. (2017); Ren et al. (2017); Zhang et al. (2017); Zheng et al. (2017); Belmiloud et 

al. (2018); Chen et al. (2018); Deutsch and He (2018); Ding et al. (2018); Hinchi and Tkiouat (2018); Hsu and Jiang 

(2018); Zhang et al. (2018a); Zhang et al. (2018b); Mao et al. (2018); Mezzi et al. (2018); Remadna et al. (2018); Ren et 

al. (2018a); Ren et al. (2018b); Li et al. (2018); Ma et al. (2018); Lin et al. (2018); Wu et al. (2018); Zhang et al. (2018); 

Yan et al. (2018); Yue et al. (2018); Zhao and Wang (2018); Ren et al. (2019); Li et al. (2019); Zhang et al. (2019); Zhu 

et al. (2019). 

23 Hybrid/Fusion Camci and Chinnam (2005); Saha and Goebel (2008); Wan and Li (2013); Liu et al. (2013); Qiao and Xun (2015); Hu et 

al. (2016); Shaban and Yacout (2016); Yang et al. (2016); Yang and Zhang, (2016); Liu et al. (2016); An et al. (2017); 

Ahmad et al. (2017); Wu et al. (2017); Liu et al. (2017); Jin et al. (2018); Niu et al. (2018); Wang et al. (2018); Song et 

al. (2018); Trinh and Kwon (2018); Zheng et al. (2018); Zhou et al. (2018); Liu et al. (2019); Ordóñez et al. (2019). 

17 Ensemble Sun et al. (2010); Zhang and Kang (2010); Zhang and Kang (2010); Javed et al. (2013); Ben Ali et al. (2015); Frisk and 

Krysander (2015); Javed et al. (2015a); Javed et al. (2015b); Wu et al. (2016); Wu et al. (2017a); Zhang et al. (2017a); 

Wang et al. (2017b); Li (2017); Wu et al. (2018); Patil et al. (2019); Li et al. (2019); Cheng et al. (2021). 

14 SVM-based Peysson et al. (2009); Galar (2012); Tran et al. (2012); Fan and Tang (2013); Benkedjouh et al. (2013); Zhou et al. (2013); 

Bluvband and Porotsky (2015); Carino et al. (2015); Patil et al. (2015); Wang et al. (2016); Qin et al. (2017); Mathew et 

al. (2018); Tang et al. (2018); Shi et al. (2018). 

7 Extreme Learning 

Machine (ELM) 

Benkedjouh (2016); Liu et al. (2016); Liu et al. (2017); Laddada et al., (2017); Razavi-far et al. (2017); Xue et al. (2017); 

Zheng et al. (2018). 
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No. of 
papers 

Algorithm Publications 

7 Conventional ANN Javed et al. (2012); Lim et al. (2016); Babu et al. (2016); Zhao et al. (2017); Zhang et al. (2017b); Carroll et al. (2019); 

Khan et al. (2018). 

7 Comparison of 

individual 

algorithms 

Mathew et al. (2018); Yang et al. (2017); Wu et al. (2017b); Mansouri et al. (2017); Costello et al. (2017); Elforjani and 

Shanbr (2018); Li et al. (2012). 

5 HMM Camci and Chinnam, (2010); Xia et al. (2013); Wu et al. (2018); Soualhi et al., 2016; D. Zhang et al., 2016. 

5 Reinforcement 

Learning 

Cheng et al. (2018); Xanthopoulos et al. (2018); Jha et al. (2019); Skordilis and Moghaddass (2020);  Kozjek et al. (2020). 

5 Bayesian Neural 

Networks 

Kraus and Feuerriegel (2019); Peng et al. (2020); Li et al. (2020); Kim and Liu (2020); Vega and Todd (2020). 

4 MoG-HMM Tobon-Mejia et al. (2011a); Tobon-Mejia et al. (2011b); Tobon-Mejia et al. (2012b); Medjaher et al. (2012). 

2 Logical Analysis 

of Data (LAD) 

Ragab et al. (2016); Ragab et al. (2019). 

21 Others  Cross entropy optimization (Porotsky and Bluvband, 2012); Dynamic Bayesian Network (Tobon-Mejia et al., 2012a); 

Gaussian Process Regression (Hong and Zhou, 2012; Baraldi et al., 2015; Aye and Heyns, 2017; Richardson et al., 2017); 

Sparse Bayesian Learning (Zhou et al., 2012); Adaptive neuro-fuzzy inference system - ANFIS (Zurita et al., 2014); 

Instance-based learning (Khelif et al., 2014); Kalman Filter (Singleton et al., 2015; Son et al., 2016; Cui et al., 2020); k-

NN (Xiong et al., 2016); Particle Filter (Guha et al., 2016; Miao et al., 2013; Su et al., 2017; Chang and Fang, 2019); 

PCA (Yongxiang et al., 2016); Hidden semi-Markov model (Zhu and Liu, 2018); Light gradient boosting machine (Li et 

al., 2018); Sparse coding (Ren & Lv, 2016). 

Some of the algorithms appearing as being used in only one publication may actually have been used in multiple publications but have been grouped under fusion, hybrid or comparison 

approaches. Moreover, papers based on purely analytical statistical methods were excluded from the search.
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2.3.1.2 Datasets 

Publications in the literature show that researchers mostly used experiments (∼28%), 

closely followed by the NASA C-MAPSS dataset for turbofan engines (∼23%) and then 

the bearings data from FEMTO-ST PRONOSTIA test bed (∼16%). Data from real life 

operational assets constituted only about 7% of the publications, revealing the need for 

better collaboration between industry and researchers in terms of the provision of real 

operational asset data for data-driven prognostics research. Furthermore, these 

percentages can serve as good pointers for those who need to benchmark their studies 

with some of the datasets for which a lot of studies have already been conducted. Table 

2-3 gives the various datasets and the list of publications in which they were used. 

2.3.1.3 Application areas 

Data from rolling element bearings (∼29%), turbofan engines (∼21%), batteries (∼20%) 

and cutting tools (∼8%) were the most used in publications found in the literature. This 

is because most of the experiments conducted by researchers to obtain data for 

prognostics were conducted for bearings while the publicly available datasets were also 

from bearings and the other equipment mentioned above, mostly under test conditions or 

computer simulations. Wind turbine blades and wind turbine gearboxes were used in 

about 2% of the publications – all the data used for research on wind turbines were 

obtained from real life operational wind farms, but most could not be shared by the 

researchers for confidentiality reasons 

2.3.1.4 Epilog on algorithms 

The advantages as well as the limitations of k-NN, naïve Bayes, SVM, ANN and deep 

learning algorithms were presented in the work by Liu et al. (2018). Furthermore, 

Sikorska et al. (2011) and Khan and Yairi (2018) both proposed a more detailed 

breakdown of the advantages and disadvantages of additional techniques and provided 

guidance on the suitability of any given algorithm. Table 2-4 lists some AI algorithms 

along with a synthesis of the pros and cons as presented in Sikorska et al., (2011), Khan 

and Yairi (2018) and Liu et al., (2018). 
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Table 2-3. Common datasets used for prognostics research. 

No. of 

papers 
Dataset Publications 

38 NASA C-MAPSS dataset 

(Details presented in Section 2.1.1) 

Heimes (2008); Peysson et al. (2009); Sun et al. (2010); Javed et al. (2013); Khelif et al. (2014); Bluvband 

and Porotsky (2015); Javed et al. (2015a); Ragab et al. (2016); Lim et al. (2016); Babu et al. (2016); Xiong 

et al. (2016); Yongxiang et al. (2016); Zhang et al. (2016); Zhang et al. (2017a); Jiang and Kuo (2017); 

Zhao et al. (2017); Yang et al. (2017); Zheng et al. (2017); Zheng et al. (2018); Li et al. (2018); Hsu and 

Jiang (2018); Zhang et al. (2018a); Zhang et al. (2018b); Lin et al. (2018); Shi et al. (2018); Mathew et al. 

(2018); Li et al. (2018); Wu et al. (2018); Wu et al. (2018); Zhou et al. (2018); Ordóñez et al. (2019); Li et 

al. (2019); Skordilis and Moghaddass (2020); Kozjek et al. (2020); Kraus and Feuerriegel (2019); Peng et 

al. (2020); Kim and Liu (2020); Cheng et al. (2021). 

36 Experiments 

(Experiments conducted by each 

researcher to generate data) 

Camci and Chinnam (2005); Saha et al. (2009); Camci and Chinnam (2010); Zhang and Kang (2010); Li et 

al. (2012); Ben Ali et al. (2015); Guha et al. (2016); Hu et al. (2016); Shaban and Yacout, (2016); 

Thirukovalluru et al. (2016); Wu et al. (2016); Liu et al. (2016); Yang et al. (2016); Zhang and Gao (2016); 

Zhang et al. (2017b); Chen and Li, (2017); Wu et al. (2017a); Wu et al. (2017b); Deng et al. (2017); Dong 

et al. (2017); Wang et al. (2017a); Wang et al. (2017b); Jiang et al. (2017); Laddada et al., (2017); Liao et 

al. (2017); Ma et al. (2017); Mansouri et al. (2017); Razavi-far et al. (2017); Zhang et al. (2017); Deutsch 

and He (2018)  Elforjani and Shanbr (2018); Ma et al. (2018); Wang et al. (2018); Zhang et al. (2018); Yan 

et al. (2018); Li et al. (2020). 

26 FEMTO-ST PRONOSTIA Bearing 

Dataset 

(See details in Section 2.1.2) 

Tobon-Mejia et al. (2011b); Tobon-Mejia et al. (2012); Medjaher et al. (2012); Porotsky and Bluvband 

(2012); Benkedjouh et al. (2013); Mosallam et al. (2013); Zurita et al. (2014); Carino et al. (2015); Singleton 

et al. (2015); Liao et al. (2016); Ren and Lv (2016); Liu et al. (2016); Guo et al. (2017); Liu et al. (2017); 

Belmiloud et al. (2018); Cheng et al. (2018); Hinchi and Tkiouat (2018); Jin et al. (2018); Mao et al. (2018); 

Ren et al. (2018a); Zhao and Wang, (2018); Jin et al. (2018); Patil et al. (2019); Ren et al. (2019); Li et al. 

(2019); Zhu et al. (2019). 

12 NASA Battery data 

(Data is publicly  available online) 
 

Zhou et al. (2012); Liu et al. (2013); Zhou et al. (2013); Liu et al. (2015); Patil et al. (2015); Wang et al. 

(2016); Wu et al. (2017); Qin et al. (2017); Ding et al. (2018); Tang et al. (2018); Ren et al. (2018b); Zheng 

et al. (2018). 
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No. of 

papers 
Dataset Publications 

11 Real life data 

(Data from real life operational assets – 

wind turbine blades, gearbox; gas 

processing equipment; compressor; 

bearings; and batteries). 
 

Tran et al. (2012); Frisk and Krysander (2015); Ragab et al., (2019); Yang and Zhang (2016); Costello et 

al. (2017); Ren et al. (2017); Carroll et al. (2019); Chen et al. (2018); Niu et al. (2018); Song et al. (2018); 

Yue et al. (2018). 

7 NASA Bearing Dataset 

(Data is publicly  available on NASA 

repository). 

Tobon-Mejia et al. (2011a); Hong and Zhou (2012); Liu et al. (2017); Ahmad et al. (2017); Li (2017); Khan 

et al. (2018); Zhang et al. (2019). 

 

7 Simulation Wan and Li (2013); Xia et al. (2013); Krishnan et al. (2017); Zhu and Liu (2018); Xanthopoulos et al. 

(2018); Jha et al. (2019); Vega and Todd (2020). 

5 Research Lab Data  Saha and Goebel (2008); Morando et al. (2013); Javed et al. (2015b); Benkedjouh (2016); Mezzi et al. 

(2018). 

4 PHM 2010 Data Challenge 

(This dataset is from a CNC milling 

tool) 

Javed et al. (2012); Tobon-Mejia et al. (2012); Zhu and Liu (2018); Wu et al., (2016). 

3 PHM 2014 Data Challenge 

(Degradation data from Proton 

Exchange Membrane Fuel Cell). 

Qiao and Xun (2015); Xue et al. (2017); Liu et al. (2019). 

2 Case Western Reserve University 

Bearing Data 

An et al. (2017); Qi et al. (2017). 

2 Using multiple datasets to test 

algorithm 

Wang et al. (2017); Trinh and Kwon (2018). 

2 Exact source not specified Galar (2012); Fan and Tang (2013). 

Review papers (∼6% of papers) and a framework proposal (∼0.6% of papers) were not captured in the publications in Table 2-3 above 
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Table 2-4. Pros and cons of common AI algorithms used for prognostic maintenance. 

Algorithm Pros Cons 

k-NN a. Mature theory and easy to 

implement. 

b. Can be used for classification and 

regression. 

a. Large computation. 

b. Need lots of storage space. 

c. Selection of ‘k’ hugely influences 

outcome. 

Naïve Bayes a. Robust for missing values situation. 

b. Requires little storage space. 

c. Easy to explain. 

a. Strong prior assumptions. 

b. Computational challenges and 

combinatorial explosion. 

c. Requires prior probability. 

SVM a. Good classification accuracy. 

b. Can handle multi-dimensional 

features. 

a. Low efficiency for large volumes of 

data. 

b. Difficult to explain physical meaning. 

ANN a. Good classification accuracy. 

b. Good approximation of complex 

non-linear functions. 

a. Multiple parameters and amenable to 

over-fitting. 

b. ‘Black box’ approach and difficult to 

explain. 

Deep Learning a. Learn features and complex 

structures directly from data. 

b. Automatically recognizes failure 

signatures in data. 

a. Need large amounts of data. 

b. ‘Black box’ approach and difficult to 

explain. 

c. Training times can be long. 

d. Need huge computational resources. 

 Autoencoder a. Modifiable to learn richer 

representations. 

b. Easy to implement. 

c. Good for dimensionality reduction. 

d. Easy to track loss/cost function 

during training. 

a. Training can require lots of data and 

data processing. 

b. Learns to capture much information 

rather than much relevant information 

– may not be able to determine 

relevant information. 

 Denoising 

AE 

a. Good for denoising (feature 

extraction) because they are 

deterministic. 

b. Implicitly designed to form a 

generative model. 

a.  Randomly inserts noise at input level. 

 Variational 

AE 

a. Learns what noise distribution to 

insert at code level. 

b. Explicitly designed to form a 

generative model. 

c. Can generate data using 

distributions. 

a. Can be difficult to optimize. 

b. Can be difficult to implement. 

 RBM a. Can create patterns if there are 

missing data. 

b. Can learn a probability distribution 

from its set of inputs. 

a. Can be difficult to train. 

b. Difficult to track the lost/cost function. 

 DBM a. Parameters of all layers can be learnt 

jointly. 

b. Handles uncertainty about 

ambiguous data. 

a. Training can be slow, as such joint 

optimization of parameters impractical 

for large datasets. 
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Algorithm Pros Cons 

b. Approximate inference slow, thus not 

favoured for features extraction. 

 DBN a. Good for one-dimensional data. 

b. Can extract the global feature from 

data. 

c. Can consistently achieve high 

performance on raw data. 

a.  Optimizing training is difficult, hence 

training can be slow and inefficient. 

 CNN a. Good for multi-dimensional data 

b. Good at local feature extraction 

a.  Complicated and hence takes a long 

time to train. 

 RNN, LSTM 

and GRU 

a. Good for sequential data. 

b. Can detect changes over time. 

a.  Can be difficult to train and 

implement. 

 BNN a. Mathematically rigorous, hence a bit 

explainable. 

b. Incorporates uncertainty 

quantification. 

c. Results tend to be more realistic for 

practical purposes. 

a. Can be computationally expensive. 

b. Selection of appropriate priors can be 

tricky. 

2.3.2 RUL metrics 

The key technical endeavour in the use of AI for prognostic maintenance is the prediction 

of the RUL of an engineering system, sub-system, or component. RUL, simply put, is the 

time from the incipient stage of degradation to the point of failure. According to Jardine 

et al. (2006), RUL can be considered from two perspectives: 

i. Probability that a system will operate without failure up to a given future time. 

ii. Time to failure given the present health state and past operation profile. 

RUL is random in nature and as such, RUL estimation may connote the determination of 

RUL distribution or the expected value of RUL. Whatever approach is adopted, it is 

important to have some form of measure that determines the level of confidence to have 

in the predicted value. Some of the RUL metrics used in the literature are discussed below. 

a) Root Mean Squared Error (RMSE) 
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��� =
1

�
�|��� − ��|

�

���

 (2-2) 

c) Mean Absolute Percentage Error (MAE)  
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For Eqs. (2-1), (2-2) and (2-3), �� and ��� are the true and predicted values of the RUL, 

respectively, and n is the number of different models used or the number of different RUL 

predictions made if only one model is used. 

Leão et al. (2008) developed a framework proposing a set of prognostics performance 

metrics for use with a wide group of algorithms. The peculiar feature of the framework is 

its amenability to bespoke definition by users so as to fulfil user requirements. Some of 

the metrics include prognostics hits score, false alarm rate, missed estimation rate, 

prognostic effectivity, average bias, average absolute bias, alert time and coverage. The 

definitions of these metrics and how to apply them were covered in the study in detail, 

including a case study application. Saxena et al. (2009) pointed that the work by Leão et 

al. (2008), as well as metrics proposed by other earlier researchers, were adapted from 

metrics used for prediction in other application areas, like finance and will therefore have 

issues with applicability in the context of engineering problems. They then proposed four 

metrics to use in offline prognostics performance evaluation, particularly to help with 

prognostics algorithm development. The metrics are sequential with time and should 

necessarily be determined in order as follows: prognostic horizon, α-λ performance, 

relative accuracy and convergence. A further addition to the discourse on prognostics 

performance metrics is the review performed by Lei et al. (2018). The review catalogues 

metrics for determining the level of confidence in RUL predictions when several models 

are used. Some of these metrics are confidence interval, relative accuracy, convergence, 

predictability, mean prediction error, overall average bias, overall average variability, 

reproducibility, online RMSE, online coverage and online width. The PHM data 

challenges by the PHM Society use scoring functions which are basically percentage 

errors on the actual RUL values, to measure the results obtained on the datasets provided. 

The key implication is that, for whatever model being deployed for RUL prediction, 

suitable metrics must be devised as some form of measure for the performance of the 

algorithm in determining the RUL, and hence, the confidence in the entire PHM 

methodology. This is a valuable information for maintenance decision-making. An up-

to-date and comprehensive review of PHM metrics, along with the suitability of each 
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metric for use in different application scenarios is presented in the study by Ochella and 

Shafiee (2021), which forms Chapter 4 of this thesis. 

2.4 Key enablers for AI in prognostics 

As mentioned earlier, most of the early successes recorded by AI are in the area of e-

commerce (online shopping, hotel and airline reservation, social media, financial 

services, etc.). In terms of practical engineering applications, great advances have been 

recorded in the automotive industry, manufacturing industry and space exploration. In 

fact, an AI discussion paper by McKinsey Global Institute which surveyed senior AI 

executives in 3073 companies across ten countries and 14 sectors of the economy, showed 

that the automotive and assembly industry were among early leaders with high AI 

adoption (Bughin et al. 2017). For the energy and utilities industry, the report posits that 

the use cases for AI that potentially stand to yield the most benefits are the areas of 

operation and maintenance (O&M) optimization as well as prediction of consumer 

behaviour and energy utilization patterns. However, to exploit the full potentials of AI-

based systems, the right enablers must first be in place. This research identified the issues 

of infrastructure, standards, security, regulations, and manpower as key requirements that 

must be addressed to provide the enabling platform for the application of AI in prognostic 

maintenance. In what follows, a brief overview of these issues is provided. 

2.4.1 Infrastructure 

For large, established engineering companies, the cost of adoption of AI technology may 

actually be huge and can serve as an initial barrier. Major challenges are likely to be 

compatibility of old systems with new ones, data storage, and the fact that each operating 

facility within a company’s collection of assets is typically unique. Thus, there may be 

need to set up unique, bespoke AI-based prognostic maintenance systems for each facility 

across the company’s assets portfolio. Clearly, a way to go around this is a phased 

approach to adoption and implementation. Also, the concept of digital twins can be 

adopted, where actual operational assets are mimicked in a digital form and sensor 

readings and inspection data are fed to the digital version to observe the system’s 

behaviour and make predictions. General Electric (GE) is already implementing the 

digital twin concept for wind farms (Woyke, 2017). The studies by Werner et al. (2019), 

Aivaliotis et al. (2019), He et al. (2021), and Meraghni et al. (2021) all demonstrate the 
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use of digital twins for prognostics of engineering systems. The concept, in terms of PHM, 

fundamentally provides a good alternative to obtain run-to-failure data and to observe the 

results of PHM in a simulated environment, in advance, so that proactive actions can be 

taken for the real, operational system. 

2.4.2 Standards 

Engineering practice is traditionally guided by standards set by professional bodies or 

national institutes. Similarly, engineering assets built for operation in the offshore 

environments are also typically qualified by classification bodies like Lloyds Register 

(LR), American Bureau of Shipping (ABS), Det Norske Veritas Germanisher Lloyd 

(DNV GL), Bureau Veritas (BV), etc. A key consideration that has come up, in the 

discussion about AI and its application for engineering systems, is that of standardization. 

The most common standard usually mentioned in the PHM field is the Machinery 

Information Management Open Systems Alliance (MIMOSA) which proposed the Open 

System Architecture for Condition-Based Maintenance (OSA-CBM). The OSA-CBM 

defines the various stages involved in PHM for engineering system in terms of functional 

layers, namely: data acquisition via sensors, data manipulation or pre-processing, 

diagnostics (comprising health stage detection, assessment, and division), prognostics and 

decision support and, finally, advisory generation (or machine-user interface). These 

stages or functional layers were used in the IEEE standard for PHM of electronic systems 

(IEEE, 2017), which referred to them as the elements of the PHM functional reference 

model. Vogl et al. (2014) comprehensively catalogued the list of International 

Organization for Standardization (ISO) and International Electrotechnical Commission 

(IEC) standards in relation to PHM for manufacturing systems. Other recent studies 

covering the issue of standards include the detailed work by Chang et al. (2018), Vogl et 

al. (2019) and Omri et al. (2020). Furthermore, the ISO/IEC JTC 1/SC 42 is an 

international standards committee that deals with the standardization of AI and have 

published seven standards, one of which addresses AI use cases (ISO/IEC TR 20547-

2:2018) while another addresses the assessment of the robustness of neural networks 

(ISO/IEC TR 24029-1:2021). The ISO standard related to prognostics is ISO 13381-

1:2015. It can be inferred from these recent studies and the referenced standards that there 

are no standards addressing AI-based prognostics specifically. The most common 

approach towards addressing the use of AI has been from the ethical perspective and the 
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need for explainability and interpretability. In 2015, the IEEE Standards Association 

proposed “The IEEE Global Initiative on Ethics of Autonomous and Intelligent System” 

themed Ethically Allied Design (EAD). The EAD document (IEEE, 2018) catalogues 

various proposals for ethical considerations for use of AI but does not address PHM 

systems. Overall, the general consensus is that such an important evolution in the way 

engineering systems are designed, built, operated and maintained, surely requires 

standardization. A more detailed treatise regarding the requirements for standards and 

regulations for AI-enabled systems is presented as Chapter 3 of this thesis. 

2.4.3 Security 

In an AI ecosystem where assets are interconnected in a cyber-physical space, a wide 

range of legal and cyber-security issues are likely to arise – incidents have actually been 

recorded in the power and utilities, transportation, petroleum and manufacturing 

industries (Repository of Industrial Security Incidents (RISI) Online Incident Database). 

For designers of AI-based prognostic maintenance systems, how to distinguish between 

real failures and failures due to cyber-attacks becomes an added challenge to be 

considered. A study by Tuptuk and Hailes (2018) discusses in detail the security issues 

around existing and future industrial cyber-physical systems. One of the vulnerabilities 

mentioned in the paper, amongst several others, involves attacks on data acquisition and 

storage systems which can adversely affect the accuracy of prognostics and also the 

availability of the PHM module, leading to potential lack of confidence in the entire PHM 

system. As such, the issue of safety, from the perspective of cybersecurity, needs to be 

duly considered for full deployment in fielded systems. 

2.4.4 Regulations 

There is clearly a need for governments and regulatory agencies to develop new sets of 

regulations that not only provide the opportunity for operators to obtain approval for the 

use of AI in predictive maintenance for safety-critical equipment, but also provide the 

environment where such systems are protected by law from malicious intrusion and 

attacks. A study of the RISI Online Incident Database by Ogie (2017) shows that the UK 

and the US appeared to have recorded the most cyber-attacks on industrial control 

systems. However, the study suggests that this may be as a result of openness to reporting 

on the part of both countries. Such openness to reporting may indeed be dictated by 
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regulations. Therefore, regulations to be developed to guide the use of AI for prognostics 

should as a minimum spell out reporting requirements whenever incidents are recorded. 

Moreover, regulations must require demonstrable evidence that safety and reliability of 

operational engineering assets using AI for prognostics are not compromised, especially 

when compared to conventional practice. In this regard, the issues of explainability and 

interpretability also re-surface as government regulations will require clear demonstration 

of responsibility on the part of asset owners regarding the safety of any system being 

deployed. To address this concern, an acceptability criterion, Ac, is proposed for this study 

to help regulatory authorities and certification bodies confirm that all these critical factors 

have been duly considered and satisfied. A demonstration of the application of 

acceptability criterion is presented in Chapter 3 and Chapter 7 of this thesis. 

2.4.5 Manpower 

To successfully adopt AI-based prognostics for maintenance and LE applications, there 

will be a need to re-skill engineers and operators. The McKinsey Global Institute report 

by Bughin et al. (2017) posits that an AI-ready culture needs to be established such that 

there is collaboration between operators and AI systems. Apart from operators, mid-level 

managers will also need training to become AI-aware and trust the system to deliver the 

results upon which safe and efficient maintenance decision-making will be made. 

2.5 Future research 

There is some degree of inertia being witnessed across different industries towards the 

full use of AI for prognostic maintenance. The clear gap between studies found in the 

literature and actual deployment in industries is the main evidence for this. In the energy 

industry for instance, this inertia may be primarily due to the economic risks of disrupting 

established technological systems added to the uncertainties that are bound to exist during 

a transition phase. For some wind farms that have sensors gathering condition monitoring 

data via Supervisory Control and Data Acquisition (SCADA) systems, the data gathered 

quickly run into terabytes in size posing storage, processing, and interpretation 

challenges. With respect to infrastructure, a practical approach for upgrading existing 

plants to support AI-driven systems is to progressively improve on data acquisition 

capabilities by installing sensors and making robust plans for data storage and processing 

requirements. Also, prior considerations must be made at the concept stage of new 
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projects to accommodate AI-based prognostic systems. Other challenges that will need 

further research are highlighted as follows: 

i. Although attempts have been made at developing performance metrics relevant to 

the use of AI for PHM, their use in the literature is somewhat arbitrary, with 

researchers principally aiming at whatever metric will give an indication of less error. 

However, further research needs to be conducted to identify which particular metric 

best suits any given algorithm, with the intended PHM application in mind, so that 

performance measures are fairly standardized and therefore give values that are 

applicable to the real-life system being modelled. 

ii. For completely new engineering assets, how to deploy AI-based prognostics 

systems with no operational or failure data is an area that requires further research. 

Even with prior consideration at the concept stage of constructing such assets, the case 

of complete unavailability of condition monitoring and failure data is one that has not 

been covered much in the literature. The digital twin concept potentially holds the key 

to addressing this challenge. 

iii. Similar to the point raised in (ii) above, the context of managing design changes 

or retrofitting a system using AI for prognostic maintenance needs to be addressed. 

Given that prior to any change, the AI system must have been trained using data from 

an older configuration, how to reconfigure and retrain the system for optimal 

performance needs to be methodical. It will be interesting to sees how further research 

tackles the issue of seamless convergence of old systems with new ones as regards 

PHM modules running on AI algorithms. 

iv. The soft issues around manpower needs and transitioning of skills, development 

of standards to guide the professional practice of using AI in prognostic maintenance 

and developing relevant regulations to help government provide the right support and 

controls are all areas that are at their nascent stages of research. 

v. Also of interest is the issue of explainability of the inner workings of AI 

algorithms and the interpretability of results obtained from using them. For safety 

critical applications, the algorithms are rather unacceptable as black-box approaches. 

In the same vein, the results require correct interpretation, with the full understanding 

of whatever assumptions may have been made in the training process. Mathematically 

rigorous formulations of AI algorithms based on Bayesian techniques offer very 
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promising potentials for addressing these twin issues because the inner workings are 

explained to some extent by the mathematical background while the uncertainty 

quantification they provide helps with interpretability and correct application of results 

for prognostic purposes. 

vi. Deep reinforcement learning algorithms have achieved remarkable feats in 

gaming applications, with the most notable one being Google DeepMind’s AlphaGo. 

It will be interesting to see how the concept of learning agents and reward systems are 

applied in prognostics, towards perhaps achieving very accurate, online RUL 

predictions for real-life applications. Such a scenario will help engineers achieve very 

high overall equipment effectiveness/efficiencies for a lot of operational engineering 

systems, with potential implications for revolutionizing asset life extension models, 

going forward into the era of smart systems. 

2.6 Conclusion 

The field of artificial intelligence (AI) is no doubt poised to be at the heart of the unfolding 

technological revolution, termed industry 4.0. The area of prognostic maintenance and its 

application in smart engineering systems is not being left behind, as revealed by the 

plethora of research publications in the literature, particularly in the past ten years. In this 

paper, we reviewed just over 200 publications, with particular focus on 178 publications 

comprising 86 journal papers (~48%) and 92 conference papers (~52%), highlighting 

different approaches for the use of AI in prognostic maintenance of engineering systems. 

Some of the metrics used to measure prognostics performance were also presented, 

emphasizing their importance in establishing confidence levels on estimated RUL values. 

The key considerations for the actual deployment of AI-based prognostic maintenance in 

smart engineering systems of the future were also discussed. Analyses of the research 

publications in the literature reveals the need for increased collaboration between industry 

and researchers, especially as regards the availability of real-life data for research. 

Research must therefore progress to ensure that predictive maintenance as a practice is 

fully prepared to take on the inevitability of the smart factories and systems of the future. 
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Abstract: The fundamental understanding of the core aspects of prognostics and health 

management (PHM) as a field of practice is somewhat fully established. However, the 

various approaches used in the field have continuously evolved. With the recent surge in 

the adoption of artificial intelligence (AI) algorithms for predictive analytics, data-driven 

PHM is now more prominent. Notwithstanding the popularity of AI approaches, actual 

adoption and implementation in fielded systems has been minimal. One of the reasons for 

this is the lag in an ancillary area, which is the development of corresponding standards 

and regulations to guide the practice. This paper aims to synthesize various studies in the 

literature regarding standards and regulations in data-driven PHM and then sets out the 

necessary requirements for a standards and regulations regime to support the full adoption 

of AI-enabled PHM. An acceptability criterion is proposed, which incorporates the 

various factors that must be considered for verification, validation, and certification of 

AI-enabled PHM technologies. The use of the acceptability criterion is demonstrated, 

which will potentially be very useful to certification bodies and regulatory agencies in the 

process of approving AI-enabled PHM for use in safety-critical assets.   

Keywords: Artificial Intelligence (AI); prognostics and health management (PHM); 

standards and regulations; data-driven prognostics; remaining useful life (RUL). 
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3.1 Introduction 

Prognostics and health management (PHM) involves the key tasks of diagnostics, 

prognostics, and decision-support, each of which can be further sub-divided, as will be 

shown later in section 3.2 of this paper. Of the three key tasks, diagnostics is an area that 

is well established, along with the decision support derived therefrom. Prognostics, on 

the other hand, is still an evolving area due to the inherent difficulty of making 

predictions. A major endeavour in prognostics is the prediction of the remaining useful 

life (RUL) of an asset. Approaches used for RUL prediction include model-based 

methods which use the physics of failure for the physical system as a basis, data-driven 

methods which use operations, inspections and sensor data from the system, or 

hybrid/fusion approaches which combine both physics-based and data-driven methods 

(Ochella & Shafiee, 2020). In recent time, the increased complexity of physical systems 

means that it is impossible to model them using a simple physics-of-failure approach. 

Fortunately, advances in sensor technology mean that lots of data can be gathered from 

such systems, and when combined with now readily available high computing power and 

artificial intelligence (AI) algorithms, meaningful insights can be gained. 

Since the diagnostics aspect of PHM is well established, most of the existing standards 

guiding the practice of PHM have been adapted from diagnostics applications. Some of 

these standards have been reviewed in detail in different papers (Bird & Shao, 2013; 

Chang et al., 2019; Sheppard & Debruycker, 2018; Vogl et al., 2014; Zhou et al., 2013). 

Some of the referenced papers contain quite detailed treatises on standards issued by the 

International Organization for Standardization (ISO), the Society of Automotive 

Engineers (SAE), the Institute of Electrical and Electronics Engineers (IEEE) and the 

Machinery Information Management Open System Alliance (MIMOSA), which will not 

be repeated in this paper. However, all the mentioned standards tend to be agnostic to the 

approach used. In this regard, this work will highlight standards specific to the use of AI 

algorithms, and to data-driven prognostics, in general. Although some of the proposals 

presented in this paper may be applied directly to AI-enabled diagnostics, not much 

attention is paid to diagnostics as it has been covered by existing standards. 

Practically all the existing versions of AI algorithms have been used for prognostics 

(Ochella & Shafiee, 2020). The algorithms are rapidly unravelling, and so are their 
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applications for prognostics. Consequently, regulating the use of AI- enabled prognostics 

for fielded systems must incorporate enough flexibility to adapt to the rapidly evolving 

advancements in the field. Regulations, while ensuring safety, must at the same time not 

pose insurmountable bottlenecks or stifle growth. The development of standards and 

regulations for a particular technology inherently lags the technology itself. However, 

beyond proof of concept and actual deployment of some test facilities, standards and 

regulations should typically converge with advances in the technology. The focus of the 

discourse around regulating AI has been on ethical, legal and data privacy issues, and this 

is reflected in the national strategies for AI which are being adopted by different countries 

in Europe (NíFhaoláin et al., 2020). With regards to prognostics, this paper proposes a 

semi-quantitative approach to verification and validation, that draws on practices from 

safety and reliability engineering. The outcome of such an approach can then be used as 

a basis for certification of the PHM technology and serve as baseline for regulatory 

monitoring and compliance. 

The remaining part of this paper is structured as follows. Section 3.2 provides a brief 

update of extant standards and regulations that intersect with some aspects of the use of 

AI algorithms. Section 3.3 presents an analysis of the various factors that feed into the 

decision to ultimately adopt any AI-enabled PHM solution, culminating in the proposal 

of an acceptability criterion. Section 3.4 considers the hardware and software issues that 

need to be addressed to enable seamless application of AI-enabled PHM solutions to 

legacy assets, from a standards and regulations perspective and with a view towards life 

extension for such legacy facilities. Section 3.5 concludes the paper. 

3.2 Extant standards and regulations 

Engineering practice is typically guided by standards, while the products of engineering 

endeavours are regulated by government statutes and regulations. Standards embody 

guidelines, approaches and concepts and must not be mistaken for strict procedures (ISO 

13381-1:2015). Nonetheless, using standards as guides help with the process of 

verification and certification, and is therefore crucial to the process of regulatory 

compliance. Some other obvious reasons for standardization include minimizing repeated 

designs of similar systems, enhancing compatibility and interoperability (Sheppard et al., 

2009), harmonizing the lexicon of professional practice in a particular field (Kalgren et 
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al., 2006) and ensuring that best practices are maintained, across board, within the 

profession. Furthermore, standards and regulations help to increase trustworthiness, and 

hence adoption of technology. The intersections between standardization and the need for 

regulations, in the context of AI-enabled PHM, are the aspects of trustworthiness, safety, 

and legal liability in case of failure. These factors, amongst others, will form the bedrock 

of the AI-enabled PHM acceptability criterion proposed in this paper. 

3.2.1 Standards 

This section briefly discusses the existing standards that overlap with AI-enabled PHM, 

especially as regards data management and cross-platform compatibility in terms of 

information exchange. To provide a uniform platform for design, development, and 

deployment of PHM technologies, the need for uniform terminologies was identified 

early. A good attempt at defining the boundaries and establishing uniformity in PHM 

lexicon was put forth by Kalgren et al., (2006). Further, issues around data formats, ease  

 

Figure 3-1 Stages of AI-enabled PHM and their mapping to the OSA-CBM 
functional layers. 
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how the OSA-CBM maps to each of these four stages while Table 3-1 provides a list of 

some extant standards and how they map to the layers of AI-enabled PHM within the 

OSA-CBM architecture. 

An important observation from Table 3-1 is that the listed standards mostly apply to data 

acquisition, data processing, and advisory generation or information presentation to help 

with decision-support. Other existing standards are United States Military Handbooks, 

which address similar areas like those addressed by the ISO (with some in collaboration 

with the International Electrotechnical Commission, IEC) and the SAE (Vogl, Gregory 

W., Brian A. Weiss, M. Alkan Donmes, 2014).  Other standards, not cited here, but duly 

discussed in (Bird & Shao, 2013; Chang et al., 2019; Sheppard & Debruycker, 2018; Vogl 

et al., 2014; Y. Zhou et al., 2013), as stated earlier, dwell on the various stages of 

conventional PHM process, but not particularly on AI-based methods. 

Table 3-1 Standards for different stages in AI-based PHM. 

Issuer Standard Name /Title Applicable Layer 

ISO 13374 Series: Condition monitoring and diagnostics of machines—Data 
processing, communication and presentation—  

 

Part 1:2003 General guidelines DA, DM, & AG 

Part 2:2007 Data processing DA, DM, & AG 

Part 3:2012 Communication DA, DM, & AG 

Part 4:2015 Presentation AG 

13379-2:2015 Condition monitoring and diagnostics of machines—Data 
interpretation and diagnostics techniques—Part 2: Data-driven 
applications 

DA, DM, SD & HA 

13381-1:2015 Condition monitoring and diagnostics of machines—
Prognostics—Part 1: General guidelines. 

DA, DM, PA & AG 

MIMOSA OSA-EAI, OSA-CBM Defines entire 
architecture 

IEEE Std 1232 Artificial Intelligence Exchange and Service Tie to All Test 
Environments (AIESTATE). 

DA and DM 

Std 1636.2-2018 Software Interface for Maintenance Information 
Collection and Analysis (SIMICA): Exchanging Maintenance Action 
Information via the Extensible Markup Language (XML) 

DA and DM 

 

Std 1636.99-2013 Software Interface for Maintenance Information 
Collection and Analysis (SIMICA): Common Information Elements 

DA and DM 

Std 1856-2017 IEEE Standard Framework for Prognostics and Health 
Management of Electronic Systems 

DA, DM, SD, HA, 
PA and AG 

SAE HM-1 Committee Standards Series: Integrated Vehicle Health 
Management (IVHM) 

DA, DM, SD, HA, 
PA and AG 

E-32 Committee Standards Series: Aerospace Propulsion Systems 
Health Management 

DA, DM, SD, HA, 
PA and AG 
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3.2.2 Regulations 

Typically, for any technology to be approved for use, vital areas of concern to 

governments and regulatory agencies including safety, security, benefits and costs, public 

trust, and ethical concerns, must be addressed through a comprehensive risk assessment 

and management plan. As such, regulatory agencies over time, vest the responsibility for 

demonstrating safety of facilities on asset managers. Standard risk assessment and 

management procedures can be developed to critically assess AI- enabled PHM systems, 

which may be modelled in a similar fashion to the ISO/IEC/IEEE International Standard 

16085-2020 for systems and software engineering life cycle processes (ISO/IEC/IEEE, 

2021). Fundamentally, a regulations regime for AI-enabled PHM must address the 

following areas. 

a) Safety – an approach similar to safety case development can be extended to the 

use of AI in PHM systems. For this to be effective, the areas of explainability and 

interpretability of AI must be adequately addressed. As a minimum, AI-enabled PHM 

solutions must attain or beat the level of safety and reliability achievable by conventional 

systems, usually assigned as Safety Integrity Levels (SIL). As early as 2001, the UK’s 

Health and Safety Executive (HSE) identified the need for safety in industrial use of 

artificial neural networks (Lisboa, 2001). The HSE report highlighted that, from a safety 

perspective, there is the need to minimize over-complexity of models (thus aiding 

explainability), and for predictions to be interpretable. Furthermore, since data for high 

consequence, low probability scenarios are scarce, it should be required that the 

optimization process for AI-based algorithms heavily penalize erroneous predictions 

around such regions, since they are mostly safety-critical (Eldevik et al., 2018). To be 

meaningful and therefore increase confidence, predictions must also necessarily 

incorporate uncertainty quantification.  

b) Cyber-security – the interconnectedness achieved by cyber-physical systems 

(CPS), of which AI-enabled PHM systems are a part, implicitly introduces cyber-security 

challenges. So, from a safety, security and legitimacy standpoint, overall cyber-security 

issues must be adequately addressed before any credit can be taken for the validity of 

predictions. Data security must be foolproof, since prognostics results ultimately depend 

on the legitimacy of the data used for training and updating of predictive models. 
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c) Costs and benefits – at the core of deploying new technologies in fielded systems 

is the demonstration of overriding costs and benefits, when compared to existing systems. 

This may appear to be a major concern for only the asset owners. However, all 

government directives or regulations can indeed render innovation unviable because 

compliance to such regulations can potentially raise costs disproportionately. Regulations 

must therefore be drawn up to not only address safety, but also ensure that the cost-benefit 

implications are duly assessed. 

d) Flexibility – AI is still evolving, and regulations must be flexible enough to adapt 

to rapid changes in development in the technologies deploying AI, like PHM systems. 

Governments across the world have recognized the huge potentials of AI in relation to 

the Industrial Internet of Things (IIoT) and smart manufacturing, and the attempt to 

regulate AI must be carefully measured so that innovation is not inadvertently stifled. A 

workable proposal around this is the use of regulatory sandboxes to allow for the mutual 

growth of both AI-enabled technologies and the corresponding regulations. 

e) Ethical perspective – due to the fact that major concerns are usually about public-

facing AI products, most of the approaches towards the regulation of AI-enabled 

technologies have so far been from an ethical perspective. In relation to AI-enabled PHM, 

there is an intersection as regards automated decision-making technologies, which has led 

to attempts by professional societies like the IEEE to address these concerns by drafting 

the Ethically Aligned Design Standard IEEE P7000 (IEEE, 2021). Again, the recurring 

points about explainability and interpretability can help improve transparency and allay 

any concerns regarding the ethical aspects of AI-based PHM systems. 

f) Legal perspective – legal frameworks need to be set up to determine culpability 

and compensation issues that may arise from accidents due to failures attributable to AI-

enabled PHM systems. The European Union (EU) has updated its Product Liability 

Directive to account for IIoT and intelligent autonomous systems (European 

Commission, 2020). Also, the regulatory implications for the safety of AI-based modules 

in original equipment manufacturer (OEM) packages or machinery are now being 

addressed. For example, the EU Machinery Directive is now updated to address IIoT 

issues (Anastasi et al., 2021). There is also the need for predictions and performance 

logging and recording, to help during audits and root cause analysis as parts of incident 

investigations. 
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g) Trustworthiness – for an AI-enabled PHM system to be trustworthy, it must have 

a clearly defined purpose; be legitimate in terms of data quality, governance and risk 

management; be able to verifiably perform its intended functions; provide decision-

support capabilities that ensure increased human-machine interdependence; and have a 

transparent impact on stakeholders (DNV-GL, 2019). Different approaches to achieve 

trustworthiness of AI systems by demonstrating safety, security, reliability, resiliency, 

and availability are specified in ISO/IEC TR 24028:2020 (ISO/IEC TR 24028:2020 

Information Technology — Artificial Intelligence — Overview of Trustworthiness in 

Artificial Intelligence, 2020). 

All the key areas discussed in (a)-(g) above will underpin the verification, validation, 

assurance, and certification that should form the core of a regulations regime for AI-

enabled PHM systems. In addition, post-deployment runtime monitoring and regulation 

enforcement should be similar to subsisting requirements for reporting and compliance. 

3.2.3 Best practices 

Similar to the process of developing new technology and qualifying it for use, a strict 

process of technology qualification needs to be followed. The technology qualification 

process is well established for conventional systems, using well-known reliability 

methods to ensure that all failure modes and physics of failures are addressed. Also, 

software engineering practices such as audit trails, workflows, bias testing, verification 

and validation testing and explainable user interfaces are well established (Shneiderman, 

2020). An amalgam of both practices, streamlined for AI-based workflows, can be 

adopted for AI-enabled PHM. Furthermore, safety engineering practices which help to 

explore physical systems and the understanding of how they fail can be employed as an 

additional layer of check to guide decision-making (Hinrichs & Buth, 2020). Such 

relevant tools may include fault tree analysis (FTA), failure modes, effects and 

(criticality) analysis (FME(C)A), or Event Trees (Attack Trees in cybersecurity). 

Training an AI-enabled PHM model on specific training data introduces bias which must 

be offset through sensitivity analysis, uncertainty quantification and testing on out-of-

sample data to ascertain true performance. This must be a minimum requirement for 

assurance and eventual certification. In addition, the various plans on how to integrate 

AI-based prognostics systems into asset, data and organizational management structures 
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must be vetted and assured, preferably by independent third-party to eliminate potential 

familiarity bias by in-house engineers. DNVGL-RP-0510 provides a framework for 

assurance of data-driven algorithms and models (DNV-GL, 2020). 

From a regulatory standpoint, it must be further emphasized that independent third-party 

testing, verification, and validation remains vital. For AI-based systems, verification 

should probe the key concerns of repeatability, explainability and interpretability. 

Methods for explaining AI-based predictions include the use of counterfactuals or post 

hoc (retrospective) methods, causal methods incorporating expert knowledge, and the use 

of interactive/exploratory user interfaces (Leslie, 2019; Shneiderman, 2020). On the basis 

of independent third-party verification, AI-based PHM systems can then be certified in 

compliance with subsisting regulatory requirements, as is typically the practice. Post-

certification, and after deployment in fielded systems, continuous monitoring and 

feedback is important. Conventional ways of maintaining the overall safety culture in 

organizations through personnel training, competency development, detailed failure 

reporting and incident investigations must be adhered to. 

3.3 Fulfilling regulatory compliance 

3.3.1 Further requirements 

In addition to the previously discussed areas which should be considered for an effective 

regulation regime, this section sets out basic requirements for safety-critical assets, 

culminating in the proposal of a flexible, robust, and user-definable acceptability criterion 

for AI-enabled PHM. Safety-critical assets or systems are those whose failure can lead to 

serious injury, loss of life or significant economic consequences. Some critical 

infrastructure where AI-based PHM are being deployed include electric power systems, 

oil and gas generation and distribution, water supply systems, road, rail and air 

transportation systems (Laplante et al., 2020). Clearly, most of these systems are public-

facing and must be regulated to ensure public as well as industrial safety. To attain high 

confidence in the decision support derived from AI-enabled PHM for such critical 

infrastructure, the following considerations should be made. 

1) Besides standards and regulations, policies are another important layer in the overall 

drive towards effective PHM implementation. While standards are driven at the level of 

professional or standardization organizations and regulations are driven at the level of the 
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governments, policies are driven at the level of the organization or asset operator (Goebel 

& Rajamani, 2021). For each of the important factors highlighted in this paper, 

organizational policies should be updated or formulated to address successful 

implementation and continuous monitoring of AI-enabled PHM systems. E.g., data 

governance policy, cyber-security policy, safety policy, legal and ethical policy, etc. 

2) Since data for high consequence and low probability events are typically scarce, AI 

algorithms should be adapted to such tail events by generating data around tail events 

based on causal knowledge of the physical system, thus enabling the infusion of some 

learning data points within the low-probability region (Agrell et al., 2018). For such 

scenarios, moreover, constraints can be imposed on predictions from the AI algorithm so 

as to lie within known limits of operations of such physical systems. 

3) Fail-safe operations should be derived by exploiting ensemble learning such that, 

in the scenario that there is no consensus from the multiple predictors within the ensemble, 

intelligent agents may make decisions regarding the optimal prediction while also 

prompting human agents for decision-making (Laplante et al., 2020). 

4) There should be a clear delineation of the conditions or assumptions under which 

prognostics were made and the boundaries of validity must accompany any predictions. 

5) Concepts of explainable AI (XAI) should be incorporated, with the provision of 

interactive and exploratory user interfaces that ensure that the user understands the 

accuracy of predictions and can interpret them using the associated uncertainty bounds. 

The user should also understand when the failure will occur, what the likely failure mode 

will be and when to take proactive action to avert failure. 

3.3.2 Acceptability criterion 

In this subsection, all the critical factors for the effective implementation of a regulatory 

regime are harnessed and consolidated to propose a unifying criterion for accepting and 

approving an AI-enabled PHM system or module. For consideration during certification 

or as part of the regulatory approval process, all the important factors mentioned should 

be checked off as either satisfactory or unsatisfactory. If the results from such a process 

are collated as an array, F, we propose an acceptability criterion, Ac, as given in Eq. (3-1):  
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Ac = βF, (3-1) 

where β is a normalizing array of 1 × n dimension, which indicates the importance or 

weight assigned to each of the factors considered, while F is an array of n × 1 dimension, 

whose elements are either one or zero, representing whether each factor is satisfactory or 

unsatisfactory, respectively. The values of Ac lie in the range [0,1]. The matrix product 

can be expressed as a sum, given in Eq. (3-2) as: 

�� = � β� × ��

�

���

 (3-2) 

where i is an index representing the number of factors considered, ranging from 1 to n, 

while the sum of the weights must be equal to one, as given in Eq. (3-3): 

� ��

�

���

= 1 (3-3) 

 

Figure 3-2 Overall flow of AI-enabled PHM process within the context of compliance with 
standards and regulations. 
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The criterion is formulated to provide both robustness and flexibility, allowing adjustment 

to the factors which are considered important, depending on the use case and context. 

Figure 3-2 shows an illustration of the entire AI- enabled PHM process, from design and 

algorithm development using standards all the way to the application of the acceptability 

criterion and then to subsequent certification, implementation, and continuous 

monitoring. 

3.4 Demonstration and discussion 

3.4.1 Typical application of acceptability criterion 

The use of the acceptability criterion is succinctly demonstrated in this section. It requires 

a list of all the factors that need to be satisfied to assure regulators that due diligence has 

been carried out. As stated earlier, such a list of factors and the corresponding importance 

weighting would typically be context-specific. For demonstration purposes, Table 3-2 

shows a list of factors and the importance weighting assigned to each of them for a given 

AI-enabled PHM solution. 

From the somewhat arbitrary assignments in Table 3-2 the acceptability criterion is 

computed using the formula in Eq. (3-2) to obtain Ac = 0.75. A suitable acceptance 

threshold is then set by the certification body, say Ac ≥ 0.9, depending on how safety-

critical the monitored system or unit is. To achieve certification, the value of Ac must be 

increased by at least satisfying any two of cyber-security, explainability, and having a 

legal and ethical policy (all of which were not previously satisfied, per the illustration 

provide in Table 3-2). Doing so will raise the Ac score to ≥ 0.9. This demonstration shows 

how flexibly the acceptability criterion can be applied and contextualized. Furthermore, 

its robustness property stems from its amenability to different levels of scrutiny, which 

may be very high level, or very detailed, depending on industry-specific requirements. 

Table 3-2 Application of the acceptability criterion 

i Factor Satisfied? F Weight, β βF 

1 Safety Yes 1 0.20 0.20 

2 Reliability Yes 1 0.10 0.10 

3 Cyber-security No 0 0.10 0.00 

4 Explainability No 0 0.10 0.00 

5 Interpreatibility Yes 1 0.05 0.05 
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i Factor Satisfied? F Weight, β βF 

6 Accurate preditions Yes 1 0.20 0.20 

7 Follows sector-specific standards Yes 1 0.10 0.10 

8 Legal and ethical policy No 0 0.05 0.00 

9 Third-party testing, verification and validation Yes 1 0.10 0.10 

� βiFi = 0.75 

3.4.2 Other Considerations 

a) Hardware considerations: sensors selection and placement affect the quality of 

data and condition monitoring capabilities. Optimal sensor placement methodologies 

must be explored and developed, especially when migrating existing or legacy systems 

to AI-enabled PHM. Also, interoperability across different OEM modules and data 

storage equipment should follow recognized standards. 

b) Software considerations: troubleshooting and debugging spurious predictions or 

software faults for black-box models is potentially tricky. This relates directly to 

explainability of AI. All the core tenets on XAI, some of which were discussed earlier in 

subsection 3.3.1, along with software engineering best practices can help in this regard. 

c) Legacy assets and convergence issues: a possible solution that promises to 

provide a bridge for integration of new processes or solutions with existing ones is the 

concept of digital twins. Again, new technologies or concepts automatically trigger 

corresponding regulation and compliance issues. Digital twin technologies, which 

implicitly incorporate AI-enabled PHM, must also be qualified and certified for use 

(DNV-GL, 2016). For organization-wide deployment, the relevant change management 

issues to be addressed include upgrade of sensors, data management and documentation, 

personnel training and competency development, human factors, upgrade of user 

interfaces, and scalability across the entire asset portfolio. 

3.4.3 Potential Challenges 

Cyber-physical systems raise additional security challenges, which increases cost, 

complexity, and introduce additional compliance requirements, thereby raising the barrier 

to adoption. Also, legal and liability issues add another layer of challenges which should 

be carefully legislated to encourage innovation. Integration of legacy facilities and the 

convergence of old systems with new ones, both in terms of hardware and software, 

presents additional personnel and competency development requirements. Human factors 
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issues must be addressed such that user-interfaces and system troubleshooting modules 

are easily comprehensible. Personnel training should incorporate the core principles of 

explainability and interpretability so that operators and asset managers can draw the full 

benefits of the decision support capabilities that AI-enabled PHM provides. 

As a final yet important point, to avoid an overload of standards and the potential 

confusion that it can trigger, professional societies should coordinate standards 

development, addressing the various stages of AI-enabled PHM specific to different 

fields. The SAE’s work in this regard, with different committees addressing sector-

specific PHM standards, is a good model to follow. 

3.5 Conclusion 

There is no doubt that the recent rapid increase in the application of AI in engineering 

systems is bound to continue. Consequently, professionals as well as regulators must find 

creative ways of establishing a productive nesting ground for the successful maturation of 

AI-enabled technologies, one of which is data-driven prognostics. Professional 

organizations like the IEEE, ISO, SAE, and other organizations like MIMOSA, have 

indeed laid the foundation in terms of defining architectures and developing some 

associated standards. Formulation of ancillary regulations, however, lag standards 

development. This study proposed a flexible yet robust way of approaching certification 

and regulation of AI-enabled PHM, by the utilization of a user-definable acceptability 

criterion. The application of the acceptability criterion was demonstrated in this paper, and 

if fully exploited, will help serve as a basis for establishing regulatory sandboxes, which 

are necessary at this stage of technological readiness of AI-enabled PHM. Ultimately, this 

should be one amongst the many small leaps that must be made towards the actualization 

of a fully functional regulatory framework for AI-enabled PHM. 
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Abstract. Research into the use of artificial intelligence (AI) algorithms within the field 

of prognostics and health management (PHM), in particular for predicting the remaining 

useful life (RUL) of mechanical systems that are subject to condition monitoring, has 

gained widespread attention in recent years. It is important to establish confidence levels 

for RUL predictions, so as to aid operators as well as regulators in making informed 

decisions regarding maintenance and asset life-cycle planning. Over the past decade, 

many researchers have devised indicators or metrics for determining the performance of 

AI algorithms in RUL prediction. While most of the popularly used metrics like Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), etc. were adapted from other 

applications, some bespoke metrics are designed and intended specifically for use in PHM 

research. This study provides a synopsis of key performance indicators (KPIs) that are 

applied to AI-driven PHM technologies of mechanical systems. It presents details of the 

application scenarios, suitability of using a particular metric in different scenarios, the 

pros and cons of each metric, the trade-offs that may need to be made in choosing one 

metric over another, and some other factors that engineers should take into account when 

applying the metrics. 

Keywords—Artificial intelligence (AI), prognostics and health management (PHM), 

remaining useful life (RUL), key performance indicator (KPI), metrics selection, 

mechanical systems. 
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4.1 Introduction 

Prognostics and Health Management (PHM) involves assessing the health state of 

systems, sub-systems or components throughout their lifecycle with a view towards 

avoiding unexpected failures as well as possibly extending their useful life (Kim et al., 

2017). A mechanical system is considered to be under a normal or healthy state of 

operation if certain parameters remain above a predetermined threshold (Shafiee & 

Finkelstein, 2015). This threshold is often defined based on temperature, pressure, 

vibration, noise or other measurable parameters. These measurements can be used as an 

indication of the current health state of the system or to alert any deviation from normal 

operating condition, which can help determine how much longer the system would run 

before its condition falls below the threshold. A key activity in PHM, therefore, is the 

prediction of the remaining useful life (RUL) of systems. 

RUL is defined as the duration between the current time and the time when system 

condition reaches the failure threshold. Up to date, many different approaches have been 

proposed in the literature to predict the RUL of mechanical systems. In general, the RUL 

prediction approaches can be categorized into three types according to their principles: 

physic-based, data-driven, and hybrid (or fusion) techniques (Animah & Shafiee, 2018). 

The data-driven RUL prediction approaches involves the use of artificial intelligence (AI) 

algorithms along with sensor data from the monitored equipment (Ochella & Shafiee, 

2020). Given the recent rapid advances in the field of AI, a plethora of AI algorithms have 

been applied to predict the RUL of mechanical systems. These algorithms range from 

conventional techniques such as artificial neural network (ANN), neuro-fuzzy systems, 

support vector machine (SVM) and Gaussian process regression (GPR) (Lei et al., 2018) 

to more recent techniques such as deep learning algorithms (Zhao et al., 2019). 

Irrespective of the type of algorithm used, an important factor in adopting AI in PHM is 

the ability to measure the performance of the algorithm. 

The performance metrics serve as indicators of the level of confidence one may have in 

the accuracy of an algorithm and the associated methodology. As RUL prediction is 

inherently a regression problem, a performance metric is required to assess the prediction 

error (as opposed to classification problems that seek to determine right or wrong 

classification). These key performance indicators have mostly been adapted from metrics 
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used to measure errors in forecasting and are predominantly statistical measures of error. 

While these statistical error-based metrics are popular and still widely in use, some 

researchers have developed bespoke performance measures for PHM algorithms. For 

instance, the readers can refer to Leão et al., 2008; Saxena et al., 2009b; and Sharp, 2013, 

all of which present bespoke PHM metrics in full detail. 

The current study provides a synopsis of the KPIs and metrics that are being used for AI-

driven PHM of mechanical systems and equipment. It also presents details of the 

application scenarios, suitability of using a particular metric in different scenarios, the 

pros and cons of each metric, and the various considerations that should be made when 

choosing a metric for assessing the performance of different AI algorithms. A broad 

classification scheme is presented using not only the conventional forecasting metrics but 

also incorporating other metrics developed by PHM researchers. The results of this study 

can serve as a useful resource to help researchers select the most suitable AI algorithm 

for their PHM related research. 

The remainder of this paper is organized as follows. Section 4.2 provides a classification 

of metrics used to measure the performance of AI-driven PHM algorithms. Section 4.3 

presents details of the key considerations which should be made in choosing one metric 

over another. Section 4.4 briefly discusses some challenges that may arise when defining 

suitable metrics to use for AI algorithms in PHM research. Some concluding remarks are 

also provided at the end. 

4.2 Performance metrics for AI algorithms in PHM 

Currently, most performance metrics used for PHM have been adapted from other 

disciplines such as forecasting, meteorology, finance, medicine, etc. A broad 

classification of the PHM metrics is presented in the study by Saxena et al., (2009b). This 

study not only uses the conventional forecasting metrics but also incorporates other 

metrics developed by PHM researchers. The proposed classification framework for PHM 

performance metrics is shown in Figure 4-1. 
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Figure 4-1 A classification framework for PHM performance metrics. 

4.2.1 Conventional metrics 

Conventional metrics constitute the building block of most PHM performance measures. 

Given that the fundamental approach used to determine the performance of a PHM 

algorithm relies on comparing the predicted RUL value with the true value, the statistical-

based measures are by far the most common metrics being adopted. Some studies have 

shown that the mean squared error (MSE), root mean squared error (RMSE), mean 

absolute error (MAE) and mean absolute percentage error (MAPE) are the most widely 

used metrics for measuring the performance of AI algorithms (Botchkarev, 2019). These 

“primary” metrics are typically determined by a three-step approach involving (1) 

calculation of the point distance (between the estimated and true values), (2) 

normalization, and (3) aggregation of point results over the entire dataset. The 

conventional performance metrics are based on either accuracy or precision. In what 

follows, the accuracy-based and precision-based performance measures are briefly 

reviewed. 
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4.2.1.1 Accuracy-based metrics 

Accuracy essentially measures how close the estimated RUL value is to the actual value 

(Engel et al., 2000). Most metrics aggregate the errors in point estimates over the 

complete dataset, and thus they need to take the mean or median as measures of 

performance evaluation. The disadvantage of these measures is that they weigh the errors 

equally, irrespective of when the error occurred. Depending on end-user requirements, it 

may be expedient to give more weights to the errors obtained from predictions made near 

the end-of-life (EoL) of the system. Directly related to this point is the notion of 

timeliness, which has also been proposed as a metric. Making accurate predictions early 

enough is important in order to help with maintenance planning and logistics. 

In this study, we define y��(�) as the predicted RUL value and ��(�) as the true RUL 

value, both at time instant �, and for the ith prediction. Some conventional accuracy-based 

metrics for PHM applications are given below: 
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The merits and demerits of these metrics are discussed in subsection 4.3.4 of this paper. 
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4.2.1.2 Precision-based metrics 

Precision refers to the spread or narrowness of the interval within which the estimates are 

bounded. Precision-based metrics provide an indication of the spread of RUL predictions, 

given the same set of inputs. An emphasis is made here on the difference between 

sensitivity and precision. Sensitivity gives an indication of how the predictions from an 

algorithm would change with the changes in inputs. Thus, the sensitivity is a measure of 

robustness. Some conventional precision-based metrics for PHM applications are given 

below: 

�������� ��������� (��) =  �
∑ (���(�)� ��� )� �

���

���
�

�
��

  (4-9)

 where ���  is the mean of the errors. 
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������ �������� ��������� (����) =  ������ 
���,…,�

|y��(�) −  �| (4-11)

  where � is the median of the errors. 

4.2.2 PHM-specific algorithms 

Engel et al. (2000) proposed the use of confidence intervals, along with accuracy and 

precision, to determine whether the RUL estimates are within acceptable bounds. In 

addition to these metrics, Vachtsevanos et al. (2007) proposed also some other metrics 

for fault diagnosis and prognosis, including: timeliness, similarity, sensitivity, 

incorporation of uncertainty, as well as cost-benefit metrics such as technical value and 

total value. Leão et al. (2008) extended the conventional metrics and proposed some new 

metrics which are discussed in subsection 4.2.2.1. Other researchers, e.g. Saxena et al. 

(2008), proposed a number of hierarchical metrics for PHM. Sharp (2013) argued that the 

hierarchical metrics proposed by Saxena et al. (2008) are complicated to use. Therefore, 

he proposed a set of metrics which could be used in a hierarchical manner or integrated 

with other metrics. 

In an attempt to develop metrics for assessing the performance of PHM algorithms, there 

has been a somewhat unintended multiplicity of proposed metrics. Thus, most researchers 

resort to the use of metrics such as MAE, RMSE, etc., instead of those designed for PHM. 
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The PHM metrics can be classified into three groups: (1) metrics that directly measure 

the algorithm’s performance, (2) metrics that are based on a cost-benefit criterion, and (3) 

metrics that can be used to measure computational performance. There three groups are 

described in more detail in the subsections below. 

4.2.2.1 Algorithm performance metrics 

Leão et al. (2008) proposed a number of metrics to help with defining user requirements 

as well as verifying algorithm performance. Some of these performance metrics include: 

a. Prognostic Hits Score (PHS) – this is defined as the number of correct prognostics 

estimates divided by the total number of estimates, where the alert time is greater than 

or equal to actual time to failure. This metric gives an indication of number of useful 

predictions (NuP). 

b. Alert time, ta – this is the minimum lead time required to plan and take maintenance 

action for any unit under operation. To be able to act on time before a unit’s failure, 

the alert time must be equal to or greater that the RUL. 

c. False Alarm Rate (FAR) – this is defined as the number of false alarms due to 

prognostics estimates divided by NuP. “False alarm” in prognostics implies the 

occurrence of actual failure of an equipment later than the RUL predicted by the 

algorithm, i.e., the unit does not fail at the time the algorithm says it would but 

continues to operate beyond the predicted EoL. 

d. Correct Rejection Rate (CRR) – this is defined as the number of correct rejections 

divided by total number of prognostic estimates that meet rejection criterion. Rejection 

criterion is met when alert time plus confidence interval is less than the ground truth 

RUL. Correct rejection implies rejecting the prediction when not enough time is 

available to take an action before failure occurs. 

e. Imprecise Correct Estimation Rate (ICER) – this is defined as the number of correct 

predictions that do not provide enough precision in order to be useful to the user, 

divided by the total number of correct prognostics estimates. 

f. Prognostic effectivity – this is defined as the capacity of prognostics algorithm to avoid 

unscheduled maintenance. This metric is calculated by dividing the number of avoided 

unscheduled maintenance events by total number of unscheduled maintenance events 

caused by the failure mode of interest. Prognostic effectivity is thus a lagging indicator 

as it can only be measured after events have happened. 
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g. Average Bias (AB) – this metric is given by: 

�� =  
1

�
�(y��(�) −  ��(�) 

�

���

) (4-12)

where ��(�) is the ground truth RUL at time t and n is the total number of predictions 

that helped to avoid unplanned maintenance. 

h. Average Absolute Bias (AAB) – this metric is similar to AB but uses absolute 

difference. This is an accuracy measure and is given by: 
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�|y��(�) −  ��(�)| 

�

���

 (4-13)

i. Coverage – this is defined as the relative frequency of occurrence of the failure mode 

of interest, which is calculated by dividing the number of failures caused by the failure 

mode of interest by the total number of recorded failures for a component. It does not 

directly measure the algorithm performance but may be used as a weighting factor 

when considering all failure modes of the component.  

The following set of hierarchical metrics were proposed by Saxena et al. (2008), with 

additional guidance by Saxena et al. (2009a) and Goebel et al. (2011) on how to apply 

them. The metrics need to be applied in a logical manner in order to make any meaningful 

deductions from them. 

j. Prognostic Horizon – this metric gives the difference between the time when 

prediction first meets the specified performance criteria (i.e., ±α% error on RUL) and 

the EoL, i.e., the time when prediction crosses the failure threshold. 

k. α-λ performance – this metric gives an indication of the prediction accuracy at specific 

time instances, i.e., it checks if prediction is within acceptable bounds (±α% of RUL) 

at a given time fraction λ, between first prediction and EoL (λ = 0 at time of first 

prediction; λ = 1 at EoL). 

l. Relative Accuracy – this is an instantaneous measure of error in RUL prediction 

relative to ground truth RUL. 

m. Cumulative Relative Accuracy – this is a normalised weighted sum of instantaneous 

relative accuracies over the lifetime of the prediction (i.e., from first prediction to 

EoL). Weights are assigned such that predictions at critical times, such as near the 

EoL, are more important than earlier predictions. 
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n. Convergence – it measures the manner in which any metric improves with time, e.g., 

how quickly a prediction converges towards the actual RUL as it progresses towards 

EoL. 

o. Robustness – it attempts to quantify the sensitivity of an algorithm with respect to its 

parameters, like the size of the training data or choice of prior distributions. 

Confidence bounds of a robust algorithm are not expected to vary wildly with changes 

in the input parameters. 

Sharp (2013) proposed four metrics intended to measure the performance of algorithms 

and possibly compare different prognostics sets, independent of the unit of RUL (e.g., 

time, number of cycles, etc.). These metrics capture fundamental aspects of accuracy, 

precision and timeliness. They are briefly explained below: 

1) Weighted Error Bias (WEB) – this is defined as the effective bias in all predictions as 

a percentage of total equipment lifetime. The WEB is calculated using the formula, 

��� =
100
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������������������
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���
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���
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 where y��(�) is the predicted RUL for unit i at time instant t; ��(�) is the importance 

weight of unit i at time t; T is the total number of times that RUL prediction is made; 

and N is the number of units. The optimal value for the WEB is zero, indicating that 

the average prediction is centred on the true RUL value. 

2) Weighted Prediction Spread (WPS) – this metric is designed to capture prediction 

uncertainties and, simultaneously, apply weights to prediction importance across 

various points of the equipment lifetime. First, instantaneous percentage errors in RUL 

prediction are allocated into bins, across the lifetime of an equipment, with the 

percentage error computed by the following equation: 

%�� = 100% ×
����(�)� ��(�)�

�������������

   (4-15) 

Instantaneous percentage errors can then be placed in bins divided either equally 

between 0% and 100% of total unit lifetime or by points centred 

around (� ����� ��������)⁄ . The WPS can then be computed as: 
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where � is the number of bins, ��� is a weighting function based on the centre value 

of each reference bin. WPS values give an indication of the level of uncertainty in the 

prediction, with higher values indicating larger uncertainty. 

3) Confidence Interval Coverage (CIC) – this metric helps to check whether the true RUL 

value lies within the confidence interval of the prediction. This is given by: 

��� = 100% ×
∑ (����� ∈ ���) �

����

�
 (4-17) 

CIC is therefore interpreted as the sum of the percentage of true RUL values contained 

within their corresponding error bin sets divided by the number of bins. A 100% score 

implies that all predictions fall within the true RUL values. 

4) Confidence Convergence Horizon (CCH) – this metric identifies the predicted RUL 

value that once reached, all remaining predictions would fall within no more than 

±10% of the true RUL, 95% of the time (assuming a 95% confidence level). This 

metric is somewhat similar to the α-λ performance metric as proposed by Saxena et al. 

(2008), however it is more focused on the quality of prediction towards EoL. 

Sharp (2013) further proposed a “Total Score” metric that aggregates the four metrics 

mentioned above, namely, WEB, WPS, CIC and CCH. This metric is calculated as below:  

���������� =  ���⃗ × �

���� |���| 
��� � ���

���
���

� (4-18) 

where ���⃗  is a normalized vector representing the importance weight of the four metrics. 

For example, ���⃗  = [0.25, 0.25, 0.25, 0.25] means equal weights. 

Three metrics were proposed by Zemouri & Gouriveau (2010) for adoption in AI-

driven PHM, in a scenario where M different prediction algorithms were used to make n 

different RUL predictions. The three metrics are: 

a. Overall Average Bias (OAB) – this gives the average of the absolute value of the 

prediction errors. It is calculated by: 
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b. Overall Average Variability (OAV) – this is computed as the mean of the standard 

deviations. It is calculated by: 
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c. Reproducibility – this represents the mean distance between RUL predictions of the M 

different algorithms. It is calculated by: 
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where ��� is the Euclidean distance between the ith and jth prediction algorithms and is 

given by: 

(���)� = (�� − ��)
� + (������� − �������)� (4-22) 

where � is the error (y��(�) −  ���), and � and ������ both are n-dimensional. 

4.2.2.2 Cost-benefit metrics 

The metrics discussed so far are meant to measure the quality of RUL predictions. 

However, the real benefit of making correct predictions is to record less number of 

unexpected failures and minimize the hassles associated with unplanned interventions. 

Cost-benefit metrics measure the anticipated benefits of adopting PHM in business, such 

as life-cycle cost savings or risk reduction. Some cost-benefit metrics are: 

a. Life Cycle Cost – It calculates the total cost of acquisition, operation and maintenance 

under a PHM system and compares with the costs when there is no PHM decision 

system. In order to justify the adoption of PHM, the costs with PHM should be lower. 

b. MTBF-to-MTBUR Ratio – It is defined as the ratio of mean time between failures 

(MTBF) (which is estimated by conventional reliability methods) to the mean time 

between unit replacement (MTBUR) (after PHM implementation). This metric gives 
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an indication of the effectiveness of predictions. Lower MTBF-to-MTBUR ratio 

indicates the efficiency of the PHM decision system. 

c. Return-on-Investment (ROI) – this is defined as the average annual profit as a 

percentage of the initial investment made for PHM implementation.  

d. Technical Value and Total Value – technical value measures the benefits of correct 

predictions for critical failure modes against the cost of wrong predictions and the 

associated resource requirements. Total value, on the other hand, looks at the benefits 

across all the failure modes that a PHM system can effectively cover, less all costs 

associated with the PHM implementation. 

Details of the formulae associated with the above cost-benefit metrics can be found in 

Vachtsevanos et al. (2007) and Saxena et al. (2008). Luna (2009) analyzed the cost 

implications of accurate and timely estimates of RUL on four logistics support scenarios: 

(i) lead times for ordering the spare parts required for maintenance actions; (ii) mitigation 

of consequences of failures; (iii) extension of useful operational lifetime; and (iv) 

reduction in maintenance cost. Tang et al. (2011) proposed two metrics of ‘skill’ and 

‘value’, which were adapted from meteorology literature. Skill measures how much better 

a prediction model is than the reference prediction; for example, whether the prediction 

of RUL using AI algorithms can help make more accurate decisions about maintenance, 

compared to conventional methods that do not employ AI-enabled PHM. On the other 

hand, the measure of “value” represents whether the RUL estimates actually lead to lower 

maintenance expenditure, compared to the reference case. 

An important note on cost-benefit metrics is the fact that the analysis is based on historical 

figures about lifetimes of similar equipment or experimental run-to-failure data. 

Consequently, evaluation of the actual performance of AI algorithms using these cost-

benefit metrics can only be correctly performed after PHM implementation and is thus 

not immediately or directly applicable to newly introduced equipment. This further 

underscores the limitation of offline PHM metrics because the actual RUL is required, 

which is not available in most cases in real practice. The concept of online PHM 

performance metrics is discussed in subsection 4.2.3. 
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4.2.3 Other performance metrics 

Two other categories of metrics worth discussing are computational metrics and online 

evaluation metrics. Computational metrics measure the performance of an algorithm in 

terms of run time and processing capabilities of the hardware and software used to run 

the algorithm. Another broad categorization of PHM performance metrics is to 

distinguish between offline and online evaluations. Offline metrics assume a priori that 

run-to-failure data is sufficient to predict the RUL and perform an evaluation. All the 

metrics discussed so far make this assumption and are thus suitable for offline 

evaluations. Online performance metrics, on the other hand, involve making RUL 

estimates based on data available up to the present time, with regular updating as more 

data becomes available in (near) real-time. Liu & Sun (2012) proposed two metrics, 

namely, relative accuracy (RA) and relative precision (RP) for online PHM performance 

evaluation. The metrics were based on the probability of predictions falling within a user-

defined acceptance zone, the level of confidence of the predictions, and the actual data 

measured in (near) real-time during operation (as against previously collected run-to-

failure data). Other studies have proposed online, real-time parameter tuning and updating 

as more operational data become available. For instance, Zhou et al. (2018) proposed a 

method using long short-term memory (LSTM) algorithm for updating the RUL 

prediction model parameters. However, the performance of the algorithm was evaluated 

using the MSE metric, rather than some bespoke metric for online performance 

evaluation. 

4.3 Considerations and selection criteria 

Defining user requirements and developing algorithms for PHM are processes that feed 

into each other. The choice of the cost function, the optimization objective, and 

performance metrics for use with AI algorithms in PHM will therefore necessarily depend 

on key factors, some of which are shown in Figure 4-2. The factors have been broadly 

grouped into the ones related to user requirements and those that are necessary for 

algorithm design. 
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4.3.1 User requirements 

  Timeliness – the time of first prediction should trigger maintenance planning and 

determine the usefulness of the RUL prediction algorithm. 

 Criticality – components whose failures result in severe consequences should have 

stricter performance requirements. For instance, the lead time required to take 

maintenance action should be longer for safety-critical equipment, along with 

narrow confidence bounds at a high confidence level. Furthermore, defining the 

failure threshold is a key consideration for critical equipment. 

 Maintenance logistics support – the lead time required to order spare parts would 

influence the choice of PHM metrics. For example, the prognostic horizon and the 

alert time metrics. 

 Regulation/standards – extant regulations, or lack thereof, contribute to user 

requirement specifications, since standards and regulations will necessarily have to 

be complied with. 

 Cost-benefit – this is perhaps of utmost importance in PHM research as it 

determines whether or not a PHM decision system is worth it. 

 

 

Figure 4-2 Considerations for PHM metrics selection 
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4.3.2 Algorithm design requirements 

 Data type and characteristics – although ground truth RUL values obtained from 

run-to-failure data attempt to simulate real life scenarios, such data will always 

differ from reality. Algorithm design must therefore factor in noise in sensor data 

along with other uncertainties associated with health state estimation and future 

loading conditions. 

 Algorithm optimization type – essentially, AI algorithms perform optimization by 

minimizing a loss function designed around a performance metric, e.g., MSE. 

 Computing resources – these must be compatible with data type and size, as well 

as choice of algorithm; thus, influencing algorithm design. E.g., deep learning 

algorithms require high computing resources and GPUs. 

 Algorithm computing time – closely associated with computing resources, is the 

time it takes to train a specific algorithm, and to run predictions using the test 

dataset. Typically, this time will vary depending on the size of the data, the type 

and architecture of the algorithm and the computing resources available for training. 

Most importantly, the computing time should be such that results are obtained in 

good time to allow for engineers to make decisions and implement the right life 

extension strategy. 

4.3.3 Other considerations 

An algorithm that penalizes large errors may be rejected even though it makes good 

predictions towards EoL. This is because, typically, during early life, algorithms are 

trained using minimal data and predictions could result in large errors. However, the 

errors tend to become smaller as the system approaches its EoL because more data 

becomes available. Typically, metrics that take an average over lifetime as against 

breaking down the lifetime into different parts exhibit this trait (e.g., MAE). However, in 

cases where the accuracy of early predictions is very important, penalizing early errors 

can be a performance requirement. The prognostic effectivity metric, which measures the 

prognostic system’s ability to avoid unforeseen failures, can also be a very useful input 

for maintenance planning. 
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4.3.4 Pros and cons of some selected metrics 

In addition to discussions in subsection 4.2 on each of the metrics, Table 4-1 gives the 

strengths and weaknesses of some selected metrics. As a general note regarding the units 

of the metrics discussed; accuracy-based and precision-based metrics, along with their 

other derivatives, are typically measured in the same unit as the RUL – which is either 

number of cycles or running hours. Weighted metrics and relative accuracy metrics are 

devoid of units and are more amenable to easy comparison of results across different 

simulations and algorithms. 

Table 4-1. Merits and demerits of AI-driven PHM performance metrics. 

Metric Pros Cons 

MAE; Overall Average 

Bias 

a. Easy to compute and 

understand. 

b. Unit is same as unit of RUL. 

c. Equal weighting for individual 

errors. 

a. Susceptible to outliers. 

b. Does not reveal bias. 

c. Requires ground truth RUL. 

d. Unsuitable for multiple datasets 

with varying scales. 

SSE; MSE a. Applies weighting to magnitude 

of error. 

b. Good for gradient-based 

algorithms (amenable to 

optimization). 

a. Requires ground truth RUL. 

b. Sensitive to outliers. 

c. Unit differs from unit of RUL (i.e., 

scale-dependent). 

RMSE a. Applies weighting to magnitude 

of error. 

b. Unit is same as unit of RUL. 

a. Requires ground truth RUL. 

b. Sensitive to outliers. 

c. Unsuitable for sparse data. 

MAPE; sMAPE a. No unit; good for comparison 

across different datasets. 

b. Easy to compute and 

understand. 

a. Does not reveal bias. 

b. Sensitive to outliers. 

c. Requires true RUL. 

MdAE a. Less sensitive to outliers (than 

MAE). 

a. May not work well with very large 

datasets. 

MdAPE a. Handles outliers well. 

b. Not scale-dependent. 

a. Not intuitive or directly 

informative. 

Std. Deviation; 

Overall Average 

Variability 

a. Handles outliers well. 

b. It is a good indication of spread. 

a. Assumes a distribution for RUL. 

b. Affected by weighting of errors. 

MAD (Mean Absolute 

Deviation) 

a. Good for sparse data. 

b. Easy to compute and 

understand. 

a. May not work well for a large data 

set with lots of outliers. 

MdAD (Median 

Absolute Deviation) 

a. Handles outliers well. 

b. Good for sparse data. 

a. May not work well with very large 

data sets. 

Prognostic Horizon a. Easy to compute and 

understand. 

b. Amenable to user definition. 

a. May be confusing to use for 

multiple predictions. 
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Metric Pros Cons 

α-λ performance a. Flexibility to define user 

requirements. 

b. Provides a visual graph of 

performance. 

a. Requires ground truth RUL. 

b. Requires prediction to remain 

within α-bounds. 

Relative accuracy 

(RA); Cumulative RA 

a. Useful for comparing multiple 

algorithms. 

a. Requires ground truth RUL. 

Convergence a. Good indicator of EOL 

predictions. 

a. Requires ground truth RUL. 

b. Difficult to measure for predictions 

with large spread. 

WEB, WPS, CIC, CCH 

and Total score 

a. Assigns weights as a function 

of operational life. 

b. Mostly scale-independent. 

c. Incorporates uncertainties. 

a. Not easy to compute or understand. 

b. Requires true RUL. 

4.4 Conclusion and future work 

A significant amount of effort has been put into the attempt to develop performance 

metrics for AI algorithms used in PHM research. This drive has led to a multiplicity of 

metrics to measure the accuracy and precision of RUL estimates. The following are 

important observations and findings: 

a) There is a need to unify performance metrics for PHM applications, thereby 

narrowing down the list. This is a daunting proposal as different application 

scenarios, data types, algorithms, etc. pose different sets of challenges. 

b) The area of online PHM performance evaluation, which indeed applies to most 

real-life systems, still remains somewhat under-researched. 

c) Incorporating uncertainties into PHM remains a challenge. Even though some AI 

algorithms now incorporate Bayesian techniques to quantify uncertainty, the RUL 

predictions are still ultimately evaluated using accuracy-based measures such as 

MAE, MSE and RMSE. 

d) As a consequence of the foregoing points, conventional performance metrics 

remain popular. It will be of interest to see how these metrics evolve as more PHM 

solutions become adopted in fielded systems, thereby serving as sources of 

feedback for the suitability of the metrics. 

This work provided a synopsis of a synopsis of the performance metrics used for AI-

driven PHM of mechanical systems, by the proposition of a comprehensive classification 

scheme. Conventional as well as PHM-specific metrics were covered, along with 



 

98 

discussion on the key factors that should guide engineers in selecting metrics during 

algorithm design. A key finding is that although efforts have been made to develop 

bespoke metrics for use in PHM, with the recent resurgence in the use of AI algorithms 

for RUL prediction, these bespoke algorithms have not yet found wide acceptance and 

application. This work therefore serves as a good reference material to help in making a 

choice between the conventional performance metrics, which remain popular, and PHM-

specific metrics, which give more insight but require a specialized understanding. 
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Abstract: Many machine learning algorithms and models have been proposed in the 

literature for predicting the remaining useful life (RUL) of systems and components that 

are subject to condition monitoring (CM). However, in cases where data is ubiquitous, 

identifying the most suitable equipment for life-extension (LE) based on CM data and 

RUL predictions is a rather challenging task. This paper proposes a technique for 

determining and prioritizing high-value assets for life-extension treatments when they 

reach the end of their useful life. The technique exploits the use of key concepts in 

machine learning (such as data mining and k-means clustering) in combination with an 

important tool from reliability-centered maintenance (RCM) called the potential-failure 

(P-F) curve. The RCM process identifies essential equipment within a plant which are 

worth monitoring, and then derives the P-F curves for equipment using CM and 

operational data. Afterwards, a new index called the potential failure interval factor 

(PFIF) is calculated for each equipment or unit, serving as a health indicator. 

Subsequently, the units are grouped in two ways: (i) a regression model in combination 

with suitably defined PFIF window boundaries, (ii) a k-means clustering algorithm based 

on equipment with similar data features. The most suitable equipment for LE are 

identified in groups in order to aid in planning, decision-making and deployment of 

maintenance resources. Finally, the technique is empirically tested on NASA’s 

Commercial Modular Aero-Propulsion System Simulation datasets and the results are 

discussed in detail. 

Keywords: Machine learning; Data mining; Potential failure interval factor; k-means 

clustering; Life-extension; Remaining useful life; Condition monitoring. 
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5.1 Introduction 

Engineering plants and systems have evolved progressively and have become 

significantly more intelligent in recent years, and so have the demands made from these 

systems in terms of human dependence on their uptime and functionality. For instance, 

human activity is so dependent on power such that only few hours of downtime on the 

power grid will pose serious economic as well as safety risks (Shafiee, 2016). Similarly, 

failure of offshore infrastructure such as oil and gas production facilities, marine 

renewable energy assets and other ship vessels and structures will affect not only the 

businesses but also a long trail of people along the value chain. This helps to emphasize 

the utmost importance of the need to ensure the safety and reliability of these systems. 

Therefore, as the evolution into the era of industry 4.0 continues, with an abundance of 

data being generated from engineering plants and installations, new ways of analyzing 

these data to make meaningful impacts, especially as regards asset life and integrity 

management, is exigent. 

In practice, not all pieces of equipment within an engineering plant will benefit from tight 

inspection and maintenance regimes or life-extension (LE) treatments. As a practice, 

some equipment can actually be run until they fail because the safety, environmental and 

economic consequences of their failures are negligible. However, some other equipment 

might be incident-critical and, therefore, it will not be efficient to run them until they fail 

because of the huge safety and economic implications. For a plant with hundreds of 

equipment within its assets register, identifying the most vulnerable equipment for life-

extension is a challenging task that, if carried out effectively, will help to ensure safe and 

cost-effective operations in later life of the facility. This is important for asset managers 

as it helps them assign resources towards LE in a more efficient and effective manner. 

This study therefore directly contributes to the process of making LE decisions in a data-

driven context, given an ecosystem where lots of operational, environmental and 

condition monitoring (CM) data are constantly gathered from plant operations. 

An important development in the industry 4.0 era is the recent rapid advancement in 

sensor technologies and an attendant increase in the amount of data being collected from 

equipment on an operational facility. The resultant ease of collecting data from 

engineering assets has led to an increase in new ways of exploiting these data for asset 
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monitoring purposes. One of the most popular approaches in recent time is the use of 

machine learning techniques and algorithms to develop models that provide insight into 

the underlying condition of equipment, based on data. This approach has proven to be 

popular because modern systems are complex and their failures cannot be simply 

modelled via physics-of-failure approaches.  

The literature is awash with studies that use machine learning (ML) algorithms for 

remaining useful life (RUL) prediction. However, most of the proposed algorithms 

predict RUL with the intent of optimizing asset maintenance strategies and to aid in 

logistics support planning (Lei et al., 2018). Furthermore, the existing methods have 

mainly been applied to structures and static mechanical equipment and include carrying 

out structural integrity assessments to determine a suitable LE strategy. Such approaches 

typically implement an LE program as a stand-alone project at the end of an asset’s initial 

design life. A model that relates RUL prediction directly to life-extension decision-

making was proposed by Vaidya & Rausand (2011). The model considered various 

factors such as future loading, system design information and expert opinions; however, 

the RUL prediction model was physics-based. Our study, instead, proposes the use of 

data-driven ML techniques to determine and prioritize the equipment for LE, strictly 

using sensor data gathered during operations as well as CM data, and not based on a 

formal structural integrity assessment. To the best of the authors’ knowledge, and based 

on findings from literature search, this is the first attempt of looking at asset LE as an 

ongoing series of activities and proposing strategies from an ML perspective, along with 

the use of tools from reliability-centered maintenance (RCM). In that regard, the major 

contribution of this study includes a unique attempt at combining a tool from RCM called 

the potential failure (P-F) curve and ML algorithms (e.g. data mining, k-means clustering) 

to prioritize vulnerable equipment for LE under an era of ubiquitous data. The study 

suggests a new technique of visualizing and exploiting P-F curves derived from CM data 

by assessing P-F curves from multiple equipment simultaneously, and then clustering 

equipment with similar degradation profiles, similar effort required during LE actions, 

similar spares philosophy and similar performance requirements in terms of safety and 

reliability. A novel index, called the potential failure interval factor (PFIF), is proposed 

to measure the health state of equipment. This new index, which has no unit, will enable 

the comparison of disparate pieces of equipment with dissimilar ranges of total lifetime, 
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thereby fully exploiting the massive sensor data available to engineers in order to optimize 

LE planning and implementation. 

The remaining part of this paper is organized as follows. Section 5.2 provides the 

theoretical background for P-F curves in CM and data mining, culminating in the choice 

of k-means clustering as the preferred algorithm. Section 5.3 provides details of the 

proposed technique, including data pre-processing and features selection, algorithm for 

fitting a regression model to processed data and applying a clustering algorithm to obtain 

groups. A demonstration of the applicability of the technique is presented in Section 5.4. 

Section 5.5 discusses the results obtained; and finally, Section 5.6 presents the conclusion 

and suggestions for further work. 

5.2 Theoretical background 

Different strategies for implementing LE in ageing engineering assets have been deployed 

by practitioners within different industry sectors as well as researchers in academia. Sharp 

et al., (2011) proposed a framework that involved dividing the equipment on an offshore 

oil and gas facility into different functional groups such as structural components, process 

systems, marine systems, and safety equipment, and then developing performance 

indicators to determine an acceptable threshold for triggering LE actions. Essentially, the 

LE activities or remediation schemes proposed were under the broad category of repair, 

replace or upgrade. Some other approaches were proposed by Shafiee & Animah (2017), 

which include replacement/repowering, reconditioning, restoration (repair, 

remanufacture or retrofitting), reclaiming, retro-filling and use-up. In light of the diversity 

of the various LE strategies that have been proposed and implemented, it is important to 

establish a framework for prioritizing equipment under consideration for LE that not only 

fits into the operational philosophy of asset owners, but also duly takes into account the 

peculiarities of the information available to asset operators about the various pieces of 

equipment within the plant. Ersdal et al., (2011) recognized that end-of-life assets can be 

grouped into four categories, namely: parts that cannot be inspected or maintained; parts 

with missing or incomplete inspection or maintenance data; parts with widespread 

deterioration; and technologically obsolete parts.   

Irrespective of the approach used, the major considerations during asset LE include: 

safety, economics, regulatory requirements, serviceability, practicality of the LE strategy 
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implementation and, more recently, convergence with the new era of “smart systems”. 

Pérez Ramírez et al., (2013) proposed a systems engineering approach to the management 

of ageing oil and gas facilities such that the end-of-life strategies are incorporated into the 

maintenance philosophy of a facility with the overall aim of making equipment function 

well beyond their original design life. In another study, Shafiee et al., (2016) proposed a 

techno-economic feasibility assessment framework for prioritizing safety critical 

elements (SCEs) within a plant for LE purposes. They showed that cost is a major driver 

in choosing a suitable end-of-life strategy by most asset managers. Animah et al., (2018) 

developed a life-cycle cost-benefit approach that takes into account several categories of 

expenditures during the extended phase of operation of offshore assets, thus aiding asset 

managers to make informed choices based on calculated costs and benefits. 

Most of the approaches mentioned so far ride on conventional methods of implementing 

an LE program which involves a project-like approach executed at the end of asset design 

life. This work takes a unique approach by viewing LE activities as an on-going series of 

activities, since different equipment within a fleet typically have varying design lives. 

The proposed approach involves mining data from each unit within the fleet and based 

on strictly data, grouping units with similar time-to-failure indicators together for LE 

action. In the following subsections, a detailed background of the key tools used in this 

work are presented. This, in addition to relevant references, will aid easy understanding 

of the concepts used throughout the study. 

5.2.1 Reliability-Centered Maintenance (RCM) 

RCM, as a concept, was first proposed in the work by Nowlan (1972), where they studied 

a fleet of aircraft at United Airlines and proposed changes to the existing maintenance 

program at the time. With RCM, they put forth a program that attempts to answer critical 

questions surrounding how failures occur, what the consequences of failures are, and what 

type of maintenance actions can prevent failures from occurring. Although the 

fundamental concepts have remained the same, the practice has evolved since then and 

has been adopted by maintenance engineers and asset managers across various industries. 

RCM was defined by Moubray (1997) as a set of practices which must be carried out to 

ensure that any physical asset continues to perform its desired function. Failure of an 

equipment to meet pre-defined performance standards, within a given operational context, 
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is therefore defined as a functional failure. The role of RCM is therefore to ensure that 

maintenance practices keep the identified equipment in such a state as to ensure that 

functional failure, with its attendant undesired consequences, is avoided. RCM practice 

asks the following key questions (Shafiee, 2015): 

 

Figure 5-1 RCM decision logic flowchart – adapted from Liang et al. (2012). 

i. Within an operational context, what are the functions of each equipment and the 

associated performance standards? 

ii. In what ways does each equipment fail to perform its specified functions? 

iii. What are the causes of each functional failure? 

iv. What are the consequences of each failure? 

v. What can be done to predict or prevent each failure? 

vi. What should be done if a suitable proactive task cannot be found? 
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Questions (v) and (vi) are directly related to remaining useful life (RUL) estimation and 

LE considerations. This paper will therefore draw from the RCM concepts related to these 

two questions to help identify equipment for LE. The logical flow of the RCM decision 

process is illustrated in Figure 5-1. This flow process specifies activities that intend to 

answer the key RCM questions mentioned in (i) to (vi) above. The process involves a 

collection of all the assets within a plant in the form of an asset register/database, along 

with accompanying operational records and maintenance history for each equipment. The 

entire plant is then divided into systems, sub-systems and components, along with a 

definition of their operating contexts. Functional analyses are then carried out in order to 

define functional requirements and performance standards, thereby helping to establish 

what functional failure entails for each equipment. Based on the functional analyses and 

subsequent Failure Modes, Effects and Criticality Analyses (FMECA), the equipment are 

categorised, according to their criticalities, into different maintenance strategies. Table 

5-1 specifies the categorization of the maintenance strategies and the application 

scenarios. 

Table 5-1 RCM strategies and their associated application scenarios. 

Maintenance 

strategy 

Application scenario 

No maintenance 

or run-to-failure 

a. Failure of equipment/item has no safety or environmental consequences. 

b. The economic consequence of failure is also negligible or tolerable. 

Failure-finding a. Failure of equipment has no immediate obvious consequence. 

b. Equipment typically has a backup protective safety device which can fail 

without being immediately evident. 

Redesign a. Equipment whose behavior may not be fully known. 

b. No known maintenance action will reduce the probability of failure. 

c. Cost of known maintenance action outweighs economic consequence of 

failure and failure is not negligible or tolerable – redesign or redundancy 

becomes the option. 

Scheduled discard a. Non-repairable items, e.g., pump impellers, seals, valve seats, etc. 

b. Involves replacing and discarding equipment without regard to condition 

(as in conventional preventive maintenance). 

Scheduled 

restoration 

a. Repairable equipment/items. 

b. Suitable on-condition tasks cannot be devised to avert potential failure. 

c. Involves overhauling or repairing items without regard to condition (as in 

conventional preventive maintenance). 

On-condition 

maintenance 

a. Degradable equipment/items. 

b. Condition indicators are known and can be monitored using sensor data 

or other PT&I techniques. 
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Obviously, there is no added benefit of extending the life of non-critical equipment or the 

ones designated for redesign. Thus, only equipment categorized under failure finding, 

scheduled restoration, scheduled discard and on-condition maintenance will typically be 

the focus for LE. In this study, the data from such equipment is mined, their potential 

failure curves constructed, and a clustering algorithm is then applied to obtain clusters of 

equipment with similar health states. The ultimate aim of grouping equipment according 

to health states is to focus on the vulnerable groups which are likely to fail first, thereby 

aiding maintenance decision-making and the subsequent application of LE actions to 

equipment within the vulnerable groups. 

5.2.1.1 Predictive testing and inspection 

Equipment condition can be monitored through non-intrusive testing, supervisory control 

and data acquisition (SCADA), visual inspection and other testing methods, depending 

on the failure modes for the equipment being monitored. This practice is also referred to 

as condition monitoring (CM). Some important predictive testing and inspections (PT&I), 

which are vital to the detection of incipient faults and performance deterioration, include 

vibration monitoring, infrared thermography, ultrasonic noise (acoustics) measurements, 

lubricant (oil) analyses, temperature measurements, flow characteristics, ultrasonic 

thickness measurements, eddy current testing and motor current signature analysis, 

amongst others. A detailed coverage of CM techniques is covered in the work by Moubray 

(1997). Data from these inspections, when collected continuously or at intervals, and in 

combination with the baseline data, can be plotted against time to help reveal the 

performance characteristics. With enough historical data, the performance plot can be 

used to detect the point of incipient failure, also known as potential failure point. This 

point can only be detected when performance has started declining and potential failure 

is possible, hence the name potential failure (or P-F) curve. 

There are a few papers in the literature which have used the P-F curve as a tool for 

evaluating performance and modelling degradation of equipment. Van Horenbeek et al., 

(2013) studied the added value of implementing an imperfectly performing CM system 

for a wind turbine gearbox by using the P-F curve. The associated secondary damage, 

which can be prevented with early detection of potential failures, was also factored into 

the model. The methodology was tested on a wind turbine gearbox dataset selected from 
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a manufacturer with a fleet of more than 800 onshore wind turbines operating over a time 

span of eight years. The approach can be extended to offshore wind energy applications 

but with more stringent detectability and efficiency parameters due to the logistical 

complexities of maintaining offshore assets. Lorenzoni et al., (2017) modelled the 

degradation of components using Dynamic Bayesian Networks, with the P-F curve 

representing the degradation pattern which was modelled as a reversed exponential 

function. The characteristic of the P-F curve in the study was susceptible to maintenance 

activities as well as operating conditions, thus factoring these uncertainties in to derive 

the health state of equipment. Five different health states were used in their study to 

characterize operating equipment, including: new or as good as new, very slight 

indication of degradation, serious degradation, stage of rapid decline, and finally, stage 

with very high probability of failure. 

5.2.1.2 Potential failure curve (P-F curve) 

Based on the information gathered from predictive testing and inspection tasks, the 

condition of an equipment when plotted against time will yield the potential failure or P-

F curve. Figure 5-2 shows typical P-F curves. 

The P-F curve is so named because it indicates the point at which the failure of an 

equipment being monitored becomes detectable. This point is indicated as the potential 

failure point, P, in Figure 5-2(a). From commencement of the service life of an equipment 

up to a certain point, failure is undetectable because all the parameters of the equipment 

being monitored, like temperature, vibration, lube oil analysis, etc., indicate that the 

equipment is in a health state that is devoid of detectable faults. However, incipient failure 

becomes detectable at a certain time when deviations start to occur. The time from the 

actual point of detection of potential failure to the point of functional failure is referred 

to as the P-F interval. It is desirable that the P-F interval is sufficient for both decision-

making and actual maintenance and LE activity, in order for the whole endeavour to be 

worthwhile. 

5.2.1.3 P-F interval determination 

Figure 5-2(b) vividly illustrates how equipment performance degrades over time for a 

single failure mode and also, how different CM techniques can detect the failure at 

different stages. If a visual inspection is conducted at point P2, the exact size of the crack 
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Figure 5-2 (a) A typical P-F curve, (b) A P-F curve for fatigue crack propagation (adapted 
from Regan (2012)). 

 

will not be detected. If, however, an appropriate and more accurate inspection technique, 

say radiography, is performed just after point P2 but before point P3, then it gives a P-F 

interval within the range (t – t2) to (t – t3), during which a maintenance intervention should 

be planned and implemented. Hence, for critical equipment, continuous monitoring using 

the right technologies and techniques is essential, in order to ensure early detection. The 

right data acquisition frequencies are also important in order for the P-F curve to serve as 

an effective tool to identify equipment undergoing deterioration in health state. In simple 
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terms, it is desirable for the inspection interval to be less than the P-F interval in order for 

faulty conditions to be captured before failure occurs. 

In practice, it is difficult to determine the P-F interval for most equipment. For some age-

related degradations, the P-F curve could be linear from the point of occurrence of 

incipient failure to the point of functional failure. For such cases, determination of the P-

F interval can be performed by a straightforward extrapolation using the slope of the 

straight-line degradation curve. However, in reality, most equipment exhibit non-linear 

degradation characteristics. Thus, estimating time-to-failure becomes an arduous but 

critical exercise. 

5.2.1.4 Relationship between P-F interval, useful life and asset life 

Moubray (1997) defined useful life, ��, as the period from commencement of service to 

the age at which the conditional probability of failure significantly increases. This may 

or may not coincide with the point at which incipient failure is first noticed. Jardine et al., 

(2006) defined RUL as “the time left before observing a failure given current machine 

age and condition, and past operation profile”. Fundamentally, an asset’s lifetime can be 

subdivided into the useful life (normal operating state) and the faulty state during which 

the asset operates with an existing fault. Goode et al., (2000) termed these two operating 

zones as “stable zone” and “failure zone” respectively. The entire asset life, ��, is 

therefore defined as the sum of the times when the asset is in a good health state and the 

time when it operates in an unhealthy state until it fails. This is illustrated in Figure 5-3. 

The asset life is therefore given by Eq. (5-1): 

����� ���� =  ������ ���� + ������ ���� (5-1)

In Figure 5-3, the faulty zone comprises the P-F interval (PFint) and ��, which represents 

the time difference between when the incipient failure actually started and when it is 

detected using sensor devices. So, the asset life is given in Eq. (5-2) as: 

�� =  �� + (�� + �����) (5-2)

The ultimate goal of LE actions is to extend the service life of an asset beyond its original 

design lifetime. Upon detection of a fault, a life-extension action is carried out (labelled 

as on-condition maintenance in Figure 5-3) and the condition of the equipment returns to 

almost as good as new condition. This action potentially increases the lifetime of the 



 

111 

equipment from “averted failure point 1” to “averted failure point 2”. Effective 

monitoring and LE can therefore potentially continue in such cycles until a cut-off point 

called maximum lifetime, Lmax, is reached, beyond which the asset owner, either as a 

matter of policy or for some other reasons, decommissions the equipment or plant. 

 

 

Figure 5-3 Effect of a life-extension action on P-F curve. 

5.2.1.5 P-F interval factor (PFIF) 

In this study, we define an index, called the P-F interval factor, for degrading components. 

This index is given by Eq. (5-3): 

� − � �������� �������,� =   
� − � ���������,�

���� ���������
 (5-3) 

where  � − � �������� �������,� is the P-F interval factor of the unit i at time t, 

� − � ���������,� is the P-F interval of unit i at time t, and ���� ��������� is the total 

time that unit i would normally operate before failure, which may or may not coincide 

with the design life. This indicator, the PFIF, is important because by normalizing the P-

F interval with the lifetime of each unit, a scale-independent value is obtained, which 

enables the grouping of disparate pieces of equipment with different ranges of total 

lifetime or P-F intervals. This is a very useful index that will also be used for health stage 
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division, thereby serving as an indicator of the state of health of any unit under operation. 

For illustration purposes, consider a hypothetical case where one equipment, A, has a 

typical lifetime duration of 20 years and another, B, a lifetime duration of 6 months. In 

order to group these equipment for LE action, if CM and sensor data suggest that A has 

two years left (which is the P-F interval) and B has half a month left, using the P-F interval 

alone produces two different timelines, which will not be useful for the purpose of 

grouping them together as equipment that are soon-to-fail. However, the PFIF index in 

case A is 0.1 and in case B is 0.083. Thus, depending on the clustering criteria, the ML 

algorithm will cluster both equipment in the same group: soon-to-fail. 

5.2.2 Data mining concepts and cluster analysis 

Data mining involves the extraction of embedded, hitherto unknown but essentially 

insightful and valuable information from data. Key features in data mining include the 

use of computer-based tools and algorithms, and the availability of big data, such that 

conventional methods of statistical analysis become unreasonable to implement. Two 

practical goals of data mining are prediction and description (Kantardzic, 2011). In the 

context of this study, clustering will be used as a descriptive function to help group 

equipment that are in a similar state of health with the aim of subsequently performing 

proactive or predictive tasks on the derived groups.   

Cluster analysis generally entails using a set of methodologies to automatically group or 

classify observations using linkage rules such that observations similar to each other are 

in the same group while dissimilar observations come under different groups (Myatt, 

2006). Cluster analyses are of two broad types, hierarchical and partitional clustering. 

Other clustering types are density-based, grid-based or model-based (Han et al., 2012). 

The two broad types are briefly discussed below and the rational for using k-means 

clustering for this work is thereby highlighted. 

5.2.2.1 Hierarchical clustering 

Hierarchical clustering groups data using a cluster tree or dendrogram. It is subdivided 

into agglomerative hierarchical clustering and divisive clustering, as shown in Figure 5-4. 

Hierarchical agglomerative clustering is a bottom-up approach that starts with each data 

point as a member of a cluster and recursively merges clusters until a final single cluster 

is obtained. On the other hand, the divisive clustering process, which is a top-down 
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approach, is procedurally the direct opposite of agglomerative clustering. It begins with 

the entire dataset as one cluster and progresses by dividing each cluster until a final stage 

where each data point stands on its own. 

 

 

Figure 5-4 Dendrogram for the two types of hierarchical clustering – adapted from Han et 

al. (2012). 

For both methods, similarity rules are applied to merge data points into clusters. Zhao et 

al. (2018) extracted latent variables that are not directly measured by sensors and also 

their correlation coefficients. An agglomerative hierarchical clustering algorithm was 

then used to group the extracted variables as well as the sensor readings using similarity 

measures, with the aim of identifying equipment for predictive maintenance. The method 

was applied to an electrical generator and its subsystems. Abdelhadi (2019) used an 

agglomerative hierarchical clustering approach to cluster repairable machines into virtual 

cells for maintenance tasks. The study developed a machine failure incidence matrix from 

which an eigenvector for each failure is derived. Afterwards, a similarity matrix was 

generated such that the relation between failures and equipment in terms of relative 

weights were captured. Machine cells were then developed and failures were assigned to 

suitable cells via a complete linkage agglomerative algorithm. 

5.2.2.2 Partitional clustering 

The main type of partitional clustering is the k-means clustering, and its variants. The k-

means clustering groups the points in a dataset by assigning observations to a predefined 

number of clusters. The step-by-step procedure for a typical k-means clustering algorithm 

is given below: 
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i. Initialize by determining number of clusters (i.e., k) containing randomly 

allocated data points or observations. 

ii. Compute the centroids of each cluster in step (i) and compare all data points to 

the centroids by the use of a distance metric, moving data points to the closest 

centroids thereby adjusting the initial clusters. 

iii. Compute the new centroids. 

iv. Repeat steps (ii) and (iii) until there is no further movement of data points 

between clusters. 

Three important parameters in the k-means algorithm are the number of clusters, k, cluster 

initialization and a distance metric (Jain, 2010). While a number of distance measures 

like Euclidean distance, the Jaccard distance, the Mahalanobis distance, Manhattan 

distance, cosine distance, and so on, have been used for k-means and other clustering 

algorithms, the Euclidean distance is the most commonly used for the k-means algorithm. 

This is because, amongst other reasons, the k-means algorithm clusters data points 

represented in a multidimensional Euclidean space. So, the algorithm takes input 

parameter, k, and partitions m data points so that the resulting intra-cluster similarity is 

high but the inter-cluster similarity is low. This objective is achieved by minimizing the 

squared error in the distance between each data point in a cluster and its centroid. Given 

m samples of multidimensional data in a multidimensional space, which are to be 

partitioned into k clusters, the sum of squared errors is given by: 

�� =  � � ���,� − ���
�

���� � 

���

�

���

 (5-4) 

where ����  � is the number of data points in cluster ��, where � ranges from 1 to �,  ��,� 

is a vector representing the ith data point within cluster �� (i.e., ��,� ∈ ��) and �� is the 

mean vector representing the centroid of cluster ��, which is obtained as: 

��  =
1

����  �
� ��,� 

���� � 

���

 (5-5) 

and 
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� ����  � 
� 

���
= � (5-6) 

As opposed to k-means clustering where each data point is assigned to a single cluster 

(hard assignment), a variation where each data point can be a member of multiple clusters 

with a membership value (soft assignment) is referred to as the fuzzy c-means clustering. 

Other variations of k-means clustering are highlighted in the work by Jain (2010). Table 

5-2 provides the pros and cons of the two broad types of clustering. 

Table 5-2 Pros, cons and application cases for the two broad classes of clustering 

algorithms. 

Clustering type Pros Cons Application cases 

Hierarchical 

clustering 

(agglomerative 

and divisive) 

a. No overlaps between 

clusters. 

b. Can be applied to more 

variety of data than k-

means. 

c. Typically yields a 

unique dendrogram 

(repeatable). 

a. Applicable to relatively 

small datasets (<10,000 

observations). 

b. Generating the 

hierarchical tree can be 

slow. 

c. Can handle outliers well. 

d. Does not follow a scale. 

System and subsystems 

predictive maintenance 

(Zhao et al. 2018); 

grouping maintainable 

equipment (Abdelhadi 

2019). 

Partitional 

clustering (k-

means and its 

variants) 

a. Computationally faster. 

b. Can handle a larger 

number of observations 

than hierarchical 

clustering. 

c. Clusters are clearly 

defined without 

overlaps. 

d. Scalable as it is based 

on actual numerical 

data. 

a. Difficulty in predefining 

optimal number of 

clusters. 

b. Can be distorted by 

outliers. 

c. Works only with 

numerical data. 

d. Not repeatable. Random 

initialization potentially 

results in varying 

clusters. 

Grouping maintenance 

activities (Gholami & 

Hafezalkotob 2018); 

Fault type clustering 

(Lahrache et al., 

(2017); Maintenance 

planning optimization 

(Jain, 2010; Gholami & 

Hafezalkotob, 2018). 

RUL estimation for 

heterogeneous fleet 

(Al-Dahidi et al., 2016) 

Regarding research in the area of maintenance scheduling, Gholami & Hafezalkotob 

(2018) used k-means clustering to group equipment based on similarity of maintenance 

activities and then the rules were extracted to characterize the derived clusters. The 

method was applied to data from ten pumps under functional failure conditions. The data 

comprised pump factor values for the ten pumps for 250 different failures recorded. 

Lahrache et al., (2017) used both k-means and hierarchical clustering to group faulty and 

unfaulty knives in a cutting tool machine. Also, Abdelhadi (2017) proposed a method to 

use k-means clustering to group repairable machines into virtual groups based on their 
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need for maintenance according to the time to failure and according to the location of the 

machines. Wakiru et al. (2018) used a fuzzy cluster analysis to group multiple engines 

exhibiting similar lubricant performance characteristics based on the data collected from 

lubricant oil analysis for 17 medium speed engines of a thermal power plant. 

5.3 Methodology 

The proposed technique is intended to group equipment within a fleet into clusters with 

similar health states, enabling life-extension engineers to prioritize equipment 

approaching their end-of-life. A fleet may consist of a collection of several units of whole 

systems, or a collection of several units of subsystems or components. Units within a fleet 

may be identical, similar or heterogeneous (Medina-Oliva et al., 2014). Identical units 

imply the same system with identical technical features and under the same usage and 

operational conditions; similar units share almost identical technical features and 

operational conditions but may have slightly varying usage; while heterogeneous units 

have varying technical features, usages, and operational conditions albeit they share some 

similarity in data traits that can be exploited for decision-making. This section describes 

the steps involved in the technique which was developed for a homogenous fleet (i.e., 

identical and similar units under the same operational conditions). The steps are broken 

down into two broad parts, phase 1 and phase 2. 

5.3.1 Phase 1 – data preparation and sensor selection 

Given a dataset of run-to-failure data for � units or pieces of equipment within a 

homogeneous fleet, let  �� represent the run-to-failure data for the ith unit, where � =

1, … . �. Since each unit will have a distinct lifetime, ��, the data �� is an array of the 

order �� by �, where � represents the number of variables or sensor measurements from 

each unit. The following are the steps involved in phase 1 of the methodology: 

i. For ease of application of the algorithm, the data is prepared as an ensemble, 

containing the data for each unit vertically concatenated on each other, to give an overall 

dataset array, �. The combined dataset � will be an � by � array where � is given by: 

� =   � ��

�

���

 (5-7) 
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ii. The raw run-to-failure data, �, which is taken in bulk as the training data, is then 

cleaned, pre-processed and useful features are extracted. Data pre-processing and 

feature engineering techniques depend on the nature of the data and the use for which 

the data is intended (Ramírez-Gallego et al., 2017). Features can be extracted in the time 

domain, the frequency domain or the time-frequency domain, depending on the nature 

of the signals and the specific application. For simple time-domain degradation data, the 

mean and standard deviation or variance of a signal may change progressively as the 

equipment degrades. For rotating machinery such as gears, bearings and shafts, common 

features extracted for health state construction include root-mean-square value, kurtosis, 

peak-to-peak, crest factor, skewness, etc. (Zhu et al., 2014). Features extraction does 

not only help to determine which signals are useful indicators of degradation, but also 

help in dimensionality reduction for the multivariate data. Other techniques of 

dimensionality reduction like principal component analysis (PCA) can also be used to 

reduce the dimension of the data from the fleet (Liu et al. 2019). Signals with constant 

values (i.e., no variance) are not useful indicators and are as such eliminated, resulting 

in a reduced dataset, ��������. 

iii. Next, the reduced data is normalized, unit-wise, so as to make the attributes from 

the different sensors comparable to one another. One approach is standardization. For 

that purpose, let � be the index representing the sensor number, with � ranging from 1 

to �; and, let ℓ be the index corresponding to the number of data points for unit �, with 

ℓ ranging from 1 to ��. If the ��� sensor for data ��������� for unit � has a mean value 

��,� and standard deviation ��,�, then each value �ℓ,� of each data point of ��������� is 

transformed to: 

�ℓ,�  =   
�ℓ,� −  ��,� 

��,�
 (5-8) 

Another approach is the min-max scaling, which maps the attributes to the range [0,1] 

using the transformation given in Eq. (5-9): 

�ℓ,�  →  
�ℓ,� −  min (��,� )

max(��,�)  −  min (��,�)
 (5-9) 

where min (��,�) and max (��,�) are the minimum and maximum values, respectively, 

of the ��� sensor or feature for unit �. Standardization is used for this work as it is more 

robust and not susceptible to outliers or extreme values (Aggarwal, 2015). 
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iv. The normalized data is smoothed using a suitable algorithm, depending on the 

characteristics of the data such as noise level, presence of outliers, etc. For this work, 

we adopt a local regression smoothing algorithm, called the robust locally weighted 

scatterplot smoothing (RLOWESS) (Cleveland, 1979; Cleveland et al., 1988), due to its 

effectiveness in handling outliers. 

v. To gain further insight into the data ��������, monotonicity, trendability and 

prognosability metrics are computed as presented in the work of Coble and Hines (Coble 

& Hines, 2009a; Coble &  Hines, 2009b). The fundamental concept is that features of 

data important for degradation prediction must be monotonically increasing or 

decreasing and, in addition, be trendable. This assumption of continuous degradation is 

mostly true for systems with a combination of electronic and mechanical components 

and may not be entirely correct for systems that exhibit some level of self-restoration 

when left temporarily without use, e.g. batteries (Guo, Li, et al., 2017). Monotonicity, 

which characterizes the underlying positive or negative trend of a feature, is obtained as 

the average difference of the fraction of positive and negative derivatives for each run-

to-failure data or trajectory. This is given by Eq. (5-10): 

������������ = ���� ��
��.  �� �

��� > 0

�� − 1
−  

��.  �� �
��� < 0

�� − 1
�� (5-10) 

In more precise mathematical terms, it can be expressed as follows: 

������������ =
1

�
� � �

��� ���,� (ℓ + 1) −  ��,� (ℓ)�

�� − 1

����

ℓ��

�

�

���

 (5-11) 

All symbols are as previously defined while ��,� (ℓ) represents the value of the ��� 

sensor or feature for unit � corresponding to the index ℓ. The trendability metric is 

calculated as: 

������������ =  ���
�,�

��������,�, ��,���,    �, ℎ =  1, … , � (5-12) 

where ��,�,  ��,� represents any pair of vectors for the data from the ��� sensor or feature 

for units � and ℎ respectively.  

The prognosability metric gives a measure of the variance of the features towards end-

of-life. This is an intuitive metric since a wide variance towards end-of-life can make it 
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difficult to extrapolate a feature to the failure point. Prognosability is calculated by Eq. 

(5-13): 

�������������� =  exp �−  
���(������������� )

mean(|����������  −  ������������|)
� (5-13) 

where ������������� imply the population of the values of all the features at failure 

and |���������� – ������������| stand for the difference between the start and end 

values of each individual feature. This is given in precise mathematical terms as: 

�������������� =  exp �−  
�������( ��)�

�����|��(��) − ��(1)|
� (5-14) 

where ��(��) is a vector of the last data values from each sensor for unit � (i.e., just 

before unit � fails) and ��(1) is a vector of the first data values from corresponding 

sensors for the same unit (i.e., at the beginning of operations). 

To select the optimal set of features, the three metrics are combined to obtain a fitness 

value defined by Coble & Hines, (2009a) and Coble &  Hines, (2009b) as: 

������� =  �������������� +  �������������� + ���������������� (5-15) 

The weights ��, �� and �� indicate the importance of each metric and should sum up to 

one. For this work, each metric is weighted equally. The exclusion criterion for each 

feature is then defined as fitness > τ, where τ is a carefully selected threshold based on 

the values of the three metrics. Values for monotonicity, trendability and prognosability 

all lie in the range [0, 1], with 0 representing non-trendable features and 1 representing 

perfectly trendable features. The individual algorithms are implemented as MATLAB in-

built functions and subsequently combined, thus selecting the most trendable sensors and 

obtaining a further reduced dataset, ������������, which is ready for use in phase 2 of this 

methodology. 

5.3.2 Phase 2, route 1 – fit linear model, construct health indicator and 

implement health stage division  

To obtain a single health indicator, the selected features are fused together to produce a 

single degradation trend that represents the instantaneous health states of each unit. There 

are various studies that propose different methods of doing this (Atamuradov et al., 2020; 

Wang et al., 2017). Other methods are presented in a review by (Lei et al., 2018). 
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Fundamentally, the process involves two stages: health indicator (HI) construction and 

health stage (HS) division. HI construction can be further categorized into two: physics 

HI, which is related to the physics of failure and virtual HI, which involves fusing multiple 

sensor signals together to give a virtual description of the degradation trends of complex 

systems based on data. Having established a suitable HI, the HI profile is then subdivided 

into different health stages. Again, there are two broad ways of achieving this: a two-

stage division into healthy and faulty states and a multi-stage division which assigns 

different health states as the unit progressively degrades from a healthy towards a failed 

state. Figure 5-5 shows the overall classification described in this subsection. 

 

 

Figure 5-5 Broad classification of health indicator construction and health stage division 
approaches. 

Although it is useful to extract features from the data in order to gain insight into 

underlying trends, some original data can be used as features if they exhibit good 

trendability and monotonicity traits (Wang et al., 2008). Bektas et al. (2017) established 

a single health indicator trajectory by fitting a linear model using multiple linear 

regression directly on multi-regime degradation data, thereby performing features 

selection, dimensionality reduction and sensor fusion in one step. For this work, a linear 

model is fit onto the data output from phase 1, described in subsection 5.3.1. To achieve 

this, we will calculate the PFIF, which essentially provides information regarding the state 

of health of each unit at any time instance, �. For this purpose, � corresponds to ℓ, the 

index of any given data point as operation progresses from ℓ = 1 until failure at ℓ =  ��. 
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For any run-to-failure data, the PFIF for unit � at any time index, ℓ, is therefore given by 

Eq. (5-16): 

�����,ℓ  =  
��  −  ℓ

��
 (5-16) 

Using the values of the vector ����� as a response variable and also the variables in the 

data ������������,�, a simple linear model, which is given by Eq. (5-17), is fit to the data: 

����� =  �� + ����,� + ����,� + ����,� + … + ����,� (5-17) 

where �� is the bias term, ��, … , �� are the model coefficients and ��,� are vectors 

representing the columns of ������������,�. In a vectorized form, we have: 

����� = ��  + ������������,��, (5-18) 

� = [�� ;  �� ; … ; ��] ,  ������������,� is an � �� � array of data                          

The test data represents data from presently running units similar to those whose run-to-

failure data were used to train a linear model and construct health indicators. Preparing 

the test data in a similar way as described in subsection 5.3.1 yields the data, 

����������������,�. Applying the trained linear model on this data produces the health 

states at every time instance up till the present time index, ℓ�, for each individual unit in 

the fleet. The health states at the present time can then be extracted and units with similar 

health states grouped together. For this study, four health states are defined based on the 

PFIF values, which mostly lie in the range [0, 1], with one being perfectly healthy units 

and 0 being failed equipment. A multi-scale health stage (HS) division was adopted using 

the following criteria: PFIF above 0.75 – “healthy”; PFIF above 0.50 up to 0.75 – “good 

- no action”; PFIF above 0.30 up to 0.50 – “good – monitor”; and 0.30 and below – “soon-

to-fail”. A three-stage HS division was also implemented with the following window 

boundaries: PFIF above 0.75 – “healthy”; PFIF above 0.45 up to 0.75 – “good”; and 0.45 

and below – “soon-to-fail”. Life-extension engineers may use expert judgment, and based 

on the peculiarity of the fleet, to assign different HS divisions. Equipment grouped 

together based on similar HS assignments can then be prioritized together for LE action 

and other associated logistics purposes. 
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5.3.3 Phase 2, route 2: k-means clustering using fleet data 

As an alternative to fitting a linear model to the data, a clustering algorithm can be used 

to group the units. Clustering is implemented after feature engineering and 

dimensionality reduction on the training data, thus identifying the trendable variables 

that are important condition indicators. The data that provides information regarding the  

 

Figure 5-6 Methodological approach for determining the most vulnerable equipment for 
life-extension. 
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an � by � array, where � is the number of units in the fleet and � is the number of 

selected trendable sensors. A k-means algorithm is then applied on the data 

�����������������, specifying the number of clusters to be equal to the desired number 

of health stages. The overall flow of the proposed technique, covering phase 1, phase 2 

route 1 and phase 2 route 2, is illustrated in Figure 5-6. It is important to note that route 

2 of phase 2 in this technique is not as amenable to user specification as route 1, where 

users can make choices regarding the type of algorithm to use for fitting the regression 

model and the level of accuracy to aim for, including the use of non-linear models to 

obtain model parameters that yield better predictions. Using route 2, only the number of 

clusters (and their respective centroids) can be specified, which corresponds to the 

number of divisions in the multi-stage HS division. 

5.4 Case studies 

To demonstrate the feasibility and applicability of the proposed technique, it is tested on 

the NASA C-MAPSS dataset (Saxena & Goebel, 2008), which was briefly introduced in 

subsection 2.2.1.1. 

5.4.1 Data description 

C-MAPSS, which stands for Commercial Modular Aero-Propulsion System Simulation, 

is a dataset which comprises four different run-to-failure datasets under varying 

combinations of fault modes and operational conditions. The training sets all start from a 

point where the unit is in a healthy state and terminate at the failure point of each unit. 

The test set starts from a healthy state and is terminated at some unknown point during 

each unit’s lifetime. For more details about the dataset, the readers can refer to Saxena et 

al. (2008). One of the datasets, FD001, is for a homogeneous fleet comprising run-to-

failure data from 100 identical turbofan engines, with one failure mode and under one set 

of operating conditions. Each of the 100 engine units has a distinct lifetime, ��, three 

columns representing operating conditions settings and another 21 columns representing 

sensor data. The dataset, which comes as a numerical array organized as described in 

subsection 5.3.1, is ordered as presented in Table 5-3. 
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Table 5-3 C-MAPSS dataset parameters and corresponding variables assigned 

# column  Measured parameter 
Unit of 

measurement 

Variable assigned 

(for this study) 

1 Unit number -- unit_num 

2 Time cycles Time 

3 Operational setting 1 -- ops_set1 

4 Operational setting 2 -- ops_set2 

5 Operational setting 3 -- ops_set3 

6 Total temperature at fan inlet °R sensor1 

7 Total temperature at LPC1 outlet °R sensor2 

8 Total temperature at HPC2 outlet °R sensor3 

9 Total temperature at LPT3 outlet °R sensor4 

10 Pressure at fan inlet psia sensor5 

11 Total pressure in bypass-duct psia sensor6 

12 Total pressure at HPC outlet psia sensor7 

13 Physical fan speed rpm sensor8 

14 Physical core speed rpm sensor9 

15 Engine pressure ratio (P50/P2) -- sensor10 

16 Static pressure at HPC outlet psia sensor11 

17 Ratio of fuel flow to Ps30 pps/psi sensor12 

18 Corrected fan speed rpm sensor13 

19 Corrected core speed rpm sensor14 

20 Bypass Ratio -- sensor15 

21 Burner fuel-air ratio -- sensor16 

22 Bleed Enthalpy -- sensor17 

23 Demanded fan speed rpm sensor18 

24 Demanded corrected fan speed rpm sensor19 

25 HPT4 coolant bleed lbm/s sensor20 

26 LPT coolant bleed lbm/s sensor21 
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure 
Turbine 

5.4.2 Application of the proposed technique 

This section describes the application of the proposed technique on the C-MAPSS FD001 

dataset. 

5.4.2.1 Phase 1 – data preparation and sensor selection 

Data from some sensors are directly eliminated by observing some features of the data, 

such as the mean and the variance. Constant value data with near zero variances are 

eliminated as they do not provide any useful information regarding the condition of the 

units under observation. This step reduces the data, �, from 21 sensors to the data 

��������, comprising 14 sensors. The sensors that exhibit some variance, which are 

contained in ��������, are sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21. The 

data, ��������, is then organized unit-by-unit as an ensemble of data for each unit, after 
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which they are normalized using the standardization approach to obtain ��������� and 

then smoothed using the RLOWESS algorithm. 

To achieve further dimensionality reduction while ensuring that the most trendable 

sensors are retained for the construction of health indicators for each unit, the trendability, 

monotonicity and prognosability metrics are computed using the formulae in Eq. (5-11), 

Eq (5-12) and Eq. (5-15) respectively. Figure 5-7 shows respectively three plots of 

trendability, monotonicity and prognosability metrics values obtained for 16 sensors as 

well as the combined values (or fitness), which are obtained as the sum of trendability, 

monotonicity and prognosability values.  

 

Figure 5-7 The values for (a) trendability (b) monotonicity (c) prognosability and the 
combined metrics for 14 sensors. 

To arrive at the final set of sensors to be fused to obtain the health indicators, the values 

of the three metrics are combined to obtain the plot showed in Figure 5-7(d). The 

individual plots, as well as the combined plot, show that sensors 8, 9, 13, and 14 

(a) (b)

(c) (d)
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consistently exhibit the lowest trendability traits. Consequently, based on the exclusion 

criterion defined in Eq. (5-15), these sensors were discarded using the exclusion criterion 

fitness > 2.0, yielding the data ������������, comprising the 10 selected sensors of 2, 3, 4, 

7, 11, 12, 15, 17, 20 and 21. Figure 5-8 shows the degradation trend of the 10 selected 

sensors for the first three units. Note that the full MATLAB code for the implementation 

of this proposed technique is included in this thesis as Appendix A. 

 

Figure 5-8 Degradation trend for 10 selected sensors on units 1, 2 and 3. 

5.4.2.2 Phase 2, route 1 – construct health indicator and implement HS division 

In order to fit a regression model to the pre-processed training data, ������������, the PFIF 

is computed using the formula provided in Eq. (5-16) The degradation trajectory for each 

unit, �, runs from ℓ = 1 cycle to ℓ =  �� cycles, where �� corresponds to the time index at 

which the trajectory is terminated (i.e. upon failure of the unit). These values are used to 

calculate the P-F interval and then the PFIF index, which is added as a column to the data 

������������ and used as the response variable for fitting the regression model to the data. 

A least squares regression model is fit to the data using MATLAB, to obtain the bias term, 

�� and the model coefficients, ��. Values were averaged from two runs of the MATLAB 

code that produced good fits of the model, to give θo = 0.5019 and θ = [-0.0300; -0.0199; 

-0.0471; 0.0466; -0.0622; 0.0573; -0.0365; -0.0188; 0.0314; 0.0369]. Using the model, 
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the ten selected sensors are fused together to construct a single health indicator. The health 

indicators, some of which were predominantly monotonically increasing while others 

were predominantly monotonically decreasing, were all offset to start from one and then 

decrease progressively until failure. A visualization of the constructed HIs for all 100 

units within the fleet is shown in Figure 5-9. 

 

Figure 5-9 Constructed HIs using trained data for all 100 units within the fleet. 

Following the procedure outlined in subsection 5.3.3, the test data, which comprises data 

for the 100 units up to an undefined time, are imported into MATLAB and pre-processed 

to obtain ����������������,�. The trained linear regression model is then used on 

����������������,� to predict the HIs for each of the 100 units in the test dataset. A plot of 

the HIs for the first 20 units in the test data is shown in Figure 5-10. It can be observed 

from Figure 5-10 that the trajectories for most of the units end abruptly. Extracting the 

HIs at the end of each trajectory gives the current health state of each unit. Equipment 

with the same health state can then be grouped together for the purpose of life-extension 

decision-making. 
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Figure 5-10 Constructed HIs for the 20 units using the test dataset. 

5.4.2.3 Phase 2, route 2 – Group units using k-means clustering 

The fundamental goal of the proposed technique is to achieve grouping of equipment with 

similar health states so as to prioritize the most vulnerable equipment for LE actions. An 

alternative way to achieve this grouping is to apply a clustering algorithm, after pre-

processing the data and selecting the most trendable features or sensors. From Figure 

5-10, it was established that the important indicator of the current health state for each 

unit is the last point in the data for each unit, corresponding to the point where each 

degradation trajectory ends. So, by extracting the last data point for each unit from the 

pre-processed test data, ����������������,� we obtain the data �����������������. A k-

means algorithm is then run using random initialization for ten replicates with 100 

iterations in each replicate and square Euclidian distance as the distance measure. The 

number of clusters is set to four and then to three, for four-stage HS division and three-

stage HS division respectively. This will produce groups of units that should have similar 

health states and thus help to prioritize LE decision-making. Section 5.5 presents the 

results obtained and discusses the findings.  

5.5 Results and discussion 

This section presents the results obtained for algorithms implemented to perform three-

stage and four-stage HS divisions. The results obtained using phase 2, route 1 of the 
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technique (i.e., using a linear regression model) are compared with those obtained using 

phase 2, route 2 (i.e., using k-means clustering). Since the dataset comes with ground 

truth RUL values, the predicted PFIF results, which were mostly in the range [0, 1], were 

easily compared to the scaled values of the true PFIF values which were calculated as 

follows. 

���� �����,ℓ =   
 ���� ����

 ���� ���� +  ℓ 
 (5-19) 

������ ���� �����,ℓ =  
���� �����,ℓ  − min����� �����,ℓ�

�������� �����,ℓ�  − min����� �����,ℓ�
 (5-20) 

Figure 5-11 is a plot of the predicted PFIF using the regression model, against the scaled 

true PFIF for each unit, and it shows a very good match between the predicted values and 

the ground truth values. 

 

Figure 5-11 Comparison of predicted and true health indices. 

5.5.1 Three-stage HS division 

The grouping of equipment was implemented by setting window boundaries based on the 

predicted PFIF values in order to establish health states. The subsections below present 

the results for the different health states. 

5.5.1.1 Healthy units 

The results obtained using both the regression model and k-means clustering are presented 

side by side in Table 5-4 for healthy units, for both the 3-stage and 4-stage HS divisions. 
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For the three-stage HS division, it can be observed from the results that both the linear 

model and the k-means clustering algorithm grouped 27 out of 29 units as healthy. The 

other two units were grouped by the k-means algorithm as “good”. Also, the predicted as 

well as the scaled true PFIF values show that 83% of the healthy units have true PFIF 

values above 0.65; this corresponds to the units having spent only 35% of their lifetimes, 

with 65% of their lifetimes left. Given that the application of this work is for life-

extension, and that healthy units are grouped as mostly “healthy”, with a few as “good”, 

this translates to 100% acceptable grouping. 

Table 5-4 Healthy units grouping for both 3-stage and 4-stage HS division (Number of units: 
29) 

Unit 

# 

Predicted 

PFIF 

Scaled 

True PFIF 

True 

RUL 

Model  

HS 

k-means HS 

(3-stage) 

k-means HS 

(4-stage) 

1 0.9225 0.9867 112 Healthy Group 2 Group 2 

2 0.9039 0.8334 98 Healthy Group 2 Group 2 

6 0.7707 0.5742 93 Healthy Group 2 Group 2 

9 1.0169 0.8360 111 Healthy Group 2 Group 2 

11 0.8313 0.6652 97 Healthy Group 1 Group 4 

14 0.9155 0.8764 107 Healthy Group 2 Group 2 

15 0.7795 0.6430 83 Healthy Group 2 Group 2 

22 1.0152 0.9299 111 Healthy Group 2 Group 2 

25 0.9653 0.9447 145 Healthy Group 2 Group 4 

26 0.8915 0.7591 119 Healthy Group 2 Group 2 

33 0.9367 0.8502 106 Healthy Group 2 Group 2 

39 1.0229 1.0000 142 Healthy Group 2 Group 2 

44 0.9086 0.8361 109 Healthy Group 2 Group 2 

47 0.9703 0.8102 135 Healthy Group 2 Group 2 

48 0.7833 0.6682 92 Healthy Group 2 Group 4 

50 0.7721 0.6356 79 Healthy Group 1 Group 4 

55 0.8107 0.6772 137 Healthy Group 2 Group 4 

65 0.8385 0.8025 128 Healthy Group 2 Group 4 

67 0.8464 0.6407 77 Healthy Group 2 Group 2 

69 0.9089 0.8660 121 Healthy Group 2 Group 4 

71 0.7906 0.7909 118 Healthy Group 2 Group 4 

78 0.8961 0.7427 107 Healthy Group 2 Group 4 

83 0.8785 0.8146 137 Healthy Group 2 Group 4 

85 1.0173 0.9777 118 Healthy Group 2 Group 2 

86 0.7517 0.5446 89 Healthy Group 2 Group 4 

87 0.9169 0.8436 116 Healthy Group 2 Group 4 

88 0.8135 0.7830 115 Healthy Group 2 Group 2 

96 0.7888 0.7265 137 Healthy Group 2 Group 2 

99 0.7825 0.6756 117 Healthy Group 2 Group 2 

For both the three-stage and four-stage HS divisions, it can be observed from Table 5-4 

that group 2 of the k-means clustering corresponds to the “healthy” units. For the four-
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stage HS division, it was observed that the match between the group assignments when 

using the regression model as compared to when using the k-means clustering approach 

was not consistent. This is because many of those units grouped as “good” and “healthy” 

were assigned to one of the groups when using the regression model and to other groups 

when k-means clustering was used. This is completely okay since the intent of this 

grouping in particular, and of prognostics in general, is to identify equipment that are 

about to fail before they actually fail. In that regard, equipment in a good state of health 

identified as such is not a cause for concern. 

5.5.1.2 Good units 

Table 5-5 presents the results for “good” units’ assignments for the three-stage HS 

division. In this case, group 1 of the k-means clustering corresponds to “good” units from 

the regression model. 17 out of 31 units were clustered as “good” by both approaches, 

while the k-means algorithm grouped another 13 as “healthy.” Only one unit was grouped 

by the k-means algorithm as “soon-to-fail.” Again, in the context of life-extension, if an 

equipment in a “good” state is wrongly categorised as “soon-to-fail,” there are no serious 

safety implications, even though there may be some associated logistics or cost 

implications. In terms of PFIF accuracy, 5 out of 31 units grouped as “good” have true 

PFIF values below 0.4 (i.e., less than 40% of their lifetime is left). This gives a grouping 

“accuracy” of about 84%. 

Table 5-5 Good units grouping for 3-stage HS division (Number of units: 31) 

Unit 

# 

Predicted 

PFIF 

Scaled 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

3 0.4564 0.4217 69 Good Group 1 

4 0.6494 0.5301 82 Good Group 1 

5 0.6767 0.5897 91 Good Group 2 

7 0.5153 0.4332 91 Good Group 1 

8 0.4969 0.4351 95 Good Group 1 

16 0.6635 0.5172 84 Good Group 2 

19 0.5808 0.4718 87 Good Group 1 

21 0.5798 0.3220 57 Good Group 1 

23 0.6426 0.5680 113 Good Group 1 

28 0.6954 0.4567 97 Good Group 2 

29 0.5316 0.4099 90 Good Group 2 

30 0.6292 0.5427 115 Good Group 1 

38 0.6067 0.3321 50 Good Group 2 

45 0.5936 0.5201 114 Good Group 1 

51 0.5792 0.5376 114 Good Group 2 
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Unit 

# 

Predicted 

PFIF 

Scaled 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

54 0.5838 0.5416 97 Good Group 2 

57 0.5224 0.4715 103 Good Group 1 

59 0.7438 0.6773 114 Good Group 2 

60 0.5648 0.4889 100 Good Group 2 

63 0.4536 0.3735 72 Good Group 1 

70 0.5967 0.4589 94 Good Group 1 

73 0.6591 0.6655 131 Good Group 2 

74 0.6635 0.5865 126 Good Group 1 

75 0.7094 0.6959 113 Good Group 2 

79 0.5214 0.4616 63 Good Group 1 

80 0.5907 0.4872 90 Good Group 1 

89 0.6639 0.5279 136 Good Group 2 

94 0.4627 0.3411 55 Good Group 1 

95 0.6753 0.7323 128 Good Group 2 

97 0.5991 0.4557 82 Good Group 3 

98 0.4534 0.3874 59 Good Group 1 

5.5.1.3 Soon-to-fail 

There is a good match between units grouped as “soon-to-fail” by using both approaches. 

The results presented in Table 5-6 for “soon-to-fail” units show that of the 40 units 

assigned to this group by the regression model, 31 were also assigned to the same group 

by the k-means clustering approach. The k-means approach assigned the other 9 units to 

group 1, which corresponds to “good” units. This is the main area of concern in terms of 

safety, reliability, and availability; when “soon-to-fail” units are grouped as “good” units. 

However, the true PFIF values show that 39 out of the 40 units have values below 0.4 

(i.e., all units have less than 40% of their lifetimes left). As such, the regression model 

has 97.5% “accuracy” in grouping. Looking at assignments using only the k-means 

approach, 35 units were actually grouped as “soon-to-fail,” with only two of them having 

true PFIF values above 0.4. This gives an “accuracy” of about 94% in grouping. 

Table 5-6 “Soon-to-fail” units grouping for 3-stage HS division (Number of units: 
40). 

Unit 

# 

Predicted 

PFIF 

Scaled 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

10 0.3764 0.3948 96 Soon-to-fail Group 1 

12 0.4358 0.4346 124 Soon-to-fail Group 3 

13 0.3651 0.3872 95 Soon-to-fail Group 3 

17 0.2602 0.2622 50 Soon-to-fail Group 3 

18 0.2058 0.1850 28 Soon-to-fail Group 3 

20 0.0324 0.0614 16 Soon-to-fail Group 3 

24 0.0678 0.0839 20 Soon-to-fail Group 3 
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Unit 

# 

Predicted 

PFIF 

Scaled 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

27 0.4133 0.3777 66 Soon-to-fail Group 1 

31 -0.0859 0.0077 8 Soon-to-fail Group 3 

32 0.3381 0.2834 48 Soon-to-fail Group 1 

34 -0.1119 0.0000 7 Soon-to-fail Group 3 

35 0.0754 0.0254 11 Soon-to-fail Group 3 

36 0.2490 0.1286 19 Soon-to-fail Group 1 

37 0.1405 0.1507 21 Soon-to-fail Group 3 

40 0.3335 0.1850 28 Soon-to-fail Group 3 

41 0.1418 0.1241 18 Soon-to-fail Group 3 

42 0.0032 0.0354 10 Soon-to-fail Group 3 

43 0.3733 0.2922 59 Soon-to-fail Group 3 

46 0.3231 0.2766 47 Soon-to-fail Group 1 

49 -0.0802 0.0414 21 Soon-to-fail Group 3 

52 0.0819 0.1312 29 Soon-to-fail Group 3 

53 0.1987 0.1362 26 Soon-to-fail Group 3 

56 0.2212 0.0869 15 Soon-to-fail Group 1 

58 0.1746 0.1847 37 Soon-to-fail Group 3 

61 0.0945 0.1097 21 Soon-to-fail Group 3 

62 0.1633 0.2046 54 Soon-to-fail Group 3 

64 0.1404 0.1441 28 Soon-to-fail Group 3 

66 0.2531 0.0706 14 Soon-to-fail Group 3 

68 -0.0256 0.0101 8 Soon-to-fail Group 3 

72 0.3421 0.3196 50 Soon-to-fail Group 1 

76 -0.0740 0.0173 10 Soon-to-fail Group 3 

77 0.1484 0.1844 34 Soon-to-fail Group 3 

81 -0.0803 0.0038 8 Soon-to-fail Group 3 

82 -0.0128 0.0254 9 Soon-to-fail Group 3 

84 0.3014 0.2880 58 Soon-to-fail Group 3 

90 0.2574 0.1679 28 Soon-to-fail Group 3 

91 0.2184 0.1400 38 Soon-to-fail Group 1 

92 0.1977 0.1109 20 Soon-to-fail Group 3 

93 0.3072 0.2961 85 Soon-to-fail Group 1 

100 0.1791 0.0769 20 Soon-to-fail Group 3 

5.5.2 Four-stage HS division 

For the four-stage HS divisions, a different set of window boundaries, defined in 

subsection 5.3.2, was set for the regression model while the parameter, k, was assigned a 

value of 4 for the k-means clustering approach. The results obtained are presented in the 

following subsections. 

5.5.2.1 Healthy units 

Given that the cut-off threshold for healthy units was set at values of predicted PFIF > 

0.75 for both the three-stage and the four-stage HS divisions, the results obtained for 

“healthy” units for the regression model were the same. However, since the k-means 
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clustering approach now has k = 4, the expectation was that a slightly different unit 

assignments will be obtained. As such, while the regression algorithm grouped 29 units 

as “healthy,” the k-means approach grouped 22 units as “healthy”. Details of the results 

have been presented and discussed in Healthy units. 

5.5.2.2 Good units – no action 

One of the intents behind the four-stage HS division is to distinguish between units that 

have recorded very minimal degradation and those that have significant degradation but 

are still okay to be operated. Units with minimal degradation are grouped as “good – no 

action.” Using the specified window boundaries, 26 out of the 100 units were extracted 

and grouped as “good – no action.” Out of these, the k-means approach grouped 10 in the 

same category, nine as “good – monitor,” four as “healthy” and one as “soon-to-fail. 

However, an analysis of the true PFIF values for the units show that 2 units have PFIF 

values below 0.4, giving an “accuracy” of about 92% in grouping. Considering only the 

results for the k-means approach, there was no clear distinction between the groups “good 

– no action” and “healthy” as equipment having true PFIF values within the appropriate 

ranges were almost equally grouped into both health stages. 

Table 5-7 “Good – no action” groupings for 4-stage HS division (Number of units: 
26) 

Unit 

# 

Predicted 

PFIF 

Normalized 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

4 0.6494 0.5301 82 Good - no action Group 3 

5 0.6767 0.5897 91 Good - no action Group 2 

7 0.5153 0.4332 91 Good - no action Group 3 

16 0.6635 0.5172 84 Good - no action Group 2 

19 0.5808 0.4718 87 Good - no action Group 3 

21 0.5798 0.3220 57 Good - no action Group 3 

23 0.6426 0.5680 113 Good - no action Group 4 

28 0.6954 0.4567 97 Good - no action Group 4 

29 0.5316 0.4099 90 Good - no action Group 4 

30 0.6292 0.5427 115 Good - no action Group 3 

38 0.6067 0.3321 50 Good - no action Group 4 

45 0.5936 0.5201 114 Good - no action Group 3 

51 0.5792 0.5376 114 Good - no action Group 4 

54 0.5838 0.5416 97 Good - no action Group 2 

57 0.5224 0.4715 103 Good - no action Group 4 

59 0.7438 0.6773 114 Good - no action Group 2 

60 0.5648 0.4889 100 Good - no action Group 4 
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Unit 

# 

Predicted 

PFIF 

Normalized 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

70 0.5967 0.4589 94 Good - no action Group 4 

73 0.6591 0.6655 131 Good - no action Group 4 

74 0.6635 0.5865 126 Good - no action Group 3 

75 0.7094 0.6959 113 Good - no action Group 2 

79 0.5214 0.4616 63 Good - no action Group 3 

80 0.5907 0.4872 90 Good - no action Group 3 

89 0.6639 0.5279 136 Good - no action Group 4 

95 0.6753 0.7323 128 Good - no action Group 4 

97 0.5991 0.4557 82 Good - no action Group 1 

5.5.2.3 Good units – monitor 

Table 5-8 presents the results obtained from using the regression model to group 

equipment as “good – monitor” along with the assignments using k-means for the same 

set of units. One of the units has a very low true PFIF value of 0.1850, implying that it 

was wrongly grouped and should have been grouped as “soon-to-fail.” The k-means 

clustering approach assigned 11 out of the 16 units to the same group, four units were 

assigned as “soon-to-fail” while one was grouped as “good – no action”. Assignment 

accuracies based on true PFIF values are presented in summary in Table 5-8. 

Table 5-8 “Good – monitor” groupings for 4-stage HS division (Number of units: 16) 

Unit 

# 

Predicted 

PFIF 

Normalized 

True PFIF 

True 

RUL 

Model  

HS 

k-means  

HS 

3 0.4564 0.4217 69 Good - monitor Group 4 

8 0.4969 0.4351 95 Good - monitor Group 3 

10 0.3764 0.3948 96 Good - monitor Group 3 

12 0.4358 0.4346 124 Good - monitor Group 3 

13 0.3651 0.3872 95 Good - monitor Group 1 

27 0.4133 0.3777 66 Good - monitor Group 3 

32 0.3381 0.2834 48 Good - monitor Group 3 

40 0.3335 0.1850 28 Good - monitor Group 1 

43 0.3733 0.2922 59 Good - monitor Group 1 

46 0.3231 0.2766 47 Good - monitor Group 3 

63 0.4536 0.3735 72 Good - monitor Group 3 

72 0.3421 0.3196 50 Good - monitor Group 3 

84 0.3014 0.2880 58 Good - monitor Group 1 

93 0.3072 0.2961 85 Good - monitor Group 3 

94 0.4627 0.3411 55 Good - monitor Group 3 

98 0.4534 0.3874 59 Good - monitor Group 3 



 

136 

5.5.2.4 Soon-to-fail 

Similar to the three-stage HS division, there is a good match between both approaches in 

grouping units as “soon-to-fail.” The results in Table 5-9 show that 26 out of 29 units 

were assigned to this group by both approaches, while the k-means algorithm assigned 3 

equipment to the group “good – monitor.” This is an undesirable result given that all units 

due to fail soon should be identified. Considering only the k-means assignments, 32 units 

were assigned as “soon-to-fail,” out of which only one unit had a true PFIF value above 

0.4. This translates to about 97% “accuracy” in grouping. 

Table 5-9 “Soon-to-fail” groupings for 4-stage HS division (Number of units: 29) 

Unit 

# 

Predicted 

PFIF 

Normalized 

True PFIF 

True 

RUL 

Model  

HS 

k -means  

HS 

17 0.2602 0.2622 50 Soon-to-fail Group 1 

18 0.2058 0.1850 28 Soon-to-fail Group 1 

20 0.0324 0.0614 16 Soon-to-fail Group 1 

24 0.0678 0.0839 20 Soon-to-fail Group 1 

31 -0.0859 0.0077 8 Soon-to-fail Group 1 

34 -0.1119 0.0000 7 Soon-to-fail Group 1 

35 0.0754 0.0254 11 Soon-to-fail Group 1 

36 0.2490 0.1286 19 Soon-to-fail Group 3 

37 0.1405 0.1507 21 Soon-to-fail Group 1 

41 0.1418 0.1241 18 Soon-to-fail Group 1 

42 0.0032 0.0354 10 Soon-to-fail Group 1 

49 -0.0802 0.0414 21 Soon-to-fail Group 1 

52 0.0819 0.1312 29 Soon-to-fail Group 1 

53 0.1987 0.1362 26 Soon-to-fail Group 1 

56 0.2212 0.0869 15 Soon-to-fail Group 3 

58 0.1746 0.1847 37 Soon-to-fail Group 1 

61 0.0945 0.1097 21 Soon-to-fail Group 1 

62 0.1633 0.2046 54 Soon-to-fail Group 1 

64 0.1404 0.1441 28 Soon-to-fail Group 1 

66 0.2531 0.0706 14 Soon-to-fail Group 1 

68 -0.0256 0.0101 8 Soon-to-fail Group 1 

76 -0.0740 0.0173 10 Soon-to-fail Group 1 

77 0.1484 0.1844 34 Soon-to-fail Group 1 

81 -0.0803 0.0038 8 Soon-to-fail Group 1 

82 -0.0128 0.0254 9 Soon-to-fail Group 1 

90 0.2574 0.1679 28 Soon-to-fail Group 1 

91 0.2184 0.1400 38 Soon-to-fail Group 3 

92 0.1977 0.1109 20 Soon-to-fail Group 1 

100 0.1791 0.0769 20 Soon-to-fail Group 1 

 

As mentioned earlier, it is very important that no unit close to failure is grouped as either 

“healthy” or “good” as it will lead to unexpected failures. The results for both the three-
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stage and the four-stage HS division using both the regression model and the k-means 

algorithm show reasonably high classification accuracies based on the true PFIF values. 

5.5.3 Summary of results 

The summary of the entire groupings using both approaches and for the different multi-

stage HS divisions is presented in Table 5-10.  

Table 5-10. Summary of group assignments and accuracies (note that percentages 
are based on number of units with true PFIF values within suitable thresholds). 

Three-stage HS division Four-stage HS division 

Category 
Number of units and percentage accuracy Category Number of units and percentage accuracy 

Model Accuracy k-means Accuracy  Model Accuracy k-means Accuracy 

Healthy 29 83% 40 75% Healthy 29 83% 22 95% 

Good 31 84% 28 97% 
Good – no action 26 100% 23 96% 
Good - monitor 16 94% 24 67%* 

Soon-to-
fail 

40 97% 32 100% Soon-to-fail 29 100% 31 84% 

*Low because k-means algorithm could not clearly distinguish this group; some were assigned to the group above it 

and others to the group below. 

In general, the k-means algorithm performed better for three-stage HS divisions. The k-

means approach could not clearly distinguish between the division of “good units” into 

“no action” and “monitor” categories. However, to attain a better-defined grouping 

accuracy, the regression model is the proffered approach, since the window boundaries 

are user-defined. What must be noted is the importance of defining the window 

boundaries for different health states based on sound understanding on the technical 

details of the units. 

5.5.4 Importance of experts’ judgements and other considerations 

While the proposed technique has been demonstrated to produce consistent results, it is 

important to note a few salient points. Machine learning approaches to solving 

engineering problems have been generally considered as black-box approaches due to the 

fact that it is difficult to explain the models used in clear and specific mathematical terms. 

However, the reality of complex systems and the ubiquitous availability of data make 

their use inevitable. Therefore, experts’ judgements must be used to gauge the results 

before implementation. Figure 5-6, which gives the overall flow of the proposed 

approach, factors in the important role of experts’ judgments. For instance, an equipment 

from a particular manufacturer which is known to have certain maintenance requirements, 

in spite of available data, must be considered irrespective of its grouping. Additionally, 
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in order to cluster the equipment for LE actions (repair, upgrade or replacement), some 

other operational realities such as minimum downtime required to execute actions, safety 

implications, economic implications, etc. also need to be considered. Moreover, 

operational and environmental uncertainties like terrain (whether onshore or offshore), 

lead times for ordering of spares parts and logistics requirements for repairs all need to 

be factored into the decision-making framework. 

5.6 Conclusion and future work 

The fundamental theory behind data mining concepts have been around for a while now. 

Also, the practice of RCM and the use of P-F curves by maintenance and reliability 

engineers and specialists are well established. This work developed and implemented a 

technique that harnessed concepts from both fields, factoring in the recent rapid advances 

in sensor technologies and data collection capabilities, to help group and prioritize 

equipment within a homogeneous fleet for LE actions. This is a novel combination of 

both concepts and the results presented a remarkable consistency. For asset managers and 

decision makers, this is potentially an important tool that will help with better-informed 

and data-driven logistics planning and spare parts management. Much better grouping 

results can be achieved by using more accurate models which may include adding 

regularization to the regression model or formulating a more rigorous approach for 

establishing the window boundaries for use with the potential failure interval factor 

(PFIF). 

The methodology for assessing the accuracy or suitability of unit assignments into groups 

can be formulated via a mathematically rigorous approach rather than just mere counts 

and comparison to the true PFIF as used in this work. Such a mathematical formulation, 

which is an area for future research, may in fact include the modelling of uncertainties 

into the accuracy of unit assignments. Furthermore, this work only considered identical 

units under the same operational settings for a single failure mode. It can be further 

extended and applied to a heterogeneous fleet with dissimilar units under varying loading 

conditions, different operational settings and multiple failure modes. Another important 

area of work will be a look at how LE actions carried out for any unit or group of units 

influence the continuous and ongoing use of the model. If, for instance, a life-extension 

action involves an upgrade and a replacement, it will be interesting to know how it affects 
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the model in terms of base data availability for the affected unit and availability of specific 

sensors for additional or continuous data acquisition. 

In terms of application, this work is essential for identifying and prioritizing vulnerable 

equipment for LE. It adds to the repertoire of models, tools and decision support systems 

available to asset managers and reliability engineers. Feedback from the proposed process 

can potentially serve as useful input for plant and equipment design for longevity and also 

influence original equipment manufacturer (OEM) sensor placement philosophies. 
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Abstract: Many Artificial Intelligence (AI) algorithms have been developed in the 

literature for various prognostics and health management (PHM) applications. However, 

the majority of these algorithms tend to make point estimates of model parameters, thus 

producing deterministic predictions of the remaining useful life (RUL) of industrial 

assets. These point estimates ignore the uncertainty inherent in the predictive models’ 

parameters and the uncertainty in the data used for prediction. The use of Bayesian Neural 

Networks (BNNs) shows a lot of promise in providing credible intervals for model 

predictions, thus accounting for some of the uncertainties inherent in both the model and 

the data. In this study, we propose a deep BNN algorithm using the Monte Carlo dropout 

(MC dropout) approach for predicting the RUL of engineering assets, incorporating 

uncertainty quantification. The presentation of this work avoids the overly complicated 

analytical rigors of the background of BNNs, dwelling only briefly on the fundamentals, 

so that practitioners can easily comprehend the algorithm and apply it. The model is 

empirically tested on the NASA turbofan engine degradation dataset. The findings show 

that the model yields results with RUL distribution parameters well within the RULs of 

most of the units, particularly the critical units that are at risk of failure. 

Keywords — Bayesian Neural Networks, Remaining Useful Life (RUL), Uncertainty 

Quantification, Prognostics and Health Management (PHM), Monte Carlo Dropout, Deep 

Learning. 
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6.1 Introduction 

Prognostics and health management (PHM), which is a field of study centered around 

managing the state of health of equipment or systems across diverse fields, involves the 

process of data acquisition, diagnostics, health state division, prognostics, and 

maintenance decision-making (Lei et al., 2018). The penultimate activity in this process, 

i.e., prognostics, primarily involves predicting the remaining useful life (RUL) of systems 

or components. RUL as defined by Jardine et al., (2006) is the time left before observing 

failure, given present machine age and/or condition and its past operation profile. 

Essentially, RUL is the time from the detection of incipient failure to the time when the 

system or equipment performance crosses a failure threshold. An important point to note 

is that time in this context could be in hours/minutes/seconds, in number of operational 

cycles, or even in terms of usage, examples of which include flight hours for aircraft 

engines, runtime for machines or mileage for automobiles. Knowledge of RUL 

information provides time to plan in advance and to take an action before failure occurs. 

Over the last two decades, many researchers have had to contend with different challenges 

in the process of RUL estimation. A paper by Engel et al., (2000) aptly titled Prognostics, 

the real issues involved with predicting life remaining, captured key challenges 

encountered in the process of predicting RUL by critically analyzing the interrelation 

between accuracy of prediction, precision and uncertainty in RUL. The paper explored 

some of the necessary conditions to achieve the desired convergence of accuracy and 

uncertainty as systems continue to degrade. RUL predictions obtained in the study were 

given as probability distributions to capture uncertainty in features (i.e., data) as well as 

in the prognostic process (i.e., the model). In spite of all the additional efforts in terms of 

PHM research since that study, and even with a myriad of new approaches now being 

adopted in this era of big data, the core challenges with uncertainty quantification in 

prognostics remain. 

Prognostics approaches are broadly grouped as model-based, data-driven or a hybrid of 

both approaches. Even though the model-based and hybrid approaches require data to 

estimate the model parameters and thus, the RUL, both approaches fundamentally require 

the understanding and modelling of the physics of failure of the system or component. 

The reality is that such understanding and accurate analytical modelling of the physics of 
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failure is impractical for complex systems. As such, artificial intelligence (AI) techniques, 

which are almost entirely data-dependent, have increasingly become the approach of 

resort for prognostics in complex systems. Given the present proliferation of advanced 

sensor technologies, data storage capabilities and increased computing resources, the 

prospects of using AI algorithms to decipher the underlying failure signatures in large 

amounts of asset data for the purpose of predicting RUL is indeed now realistic, more 

than ever before. Most of the AI-based methods proposed so far involve making point 

estimates of RUL (Li et al., 2020; Li et al., 2018; Ruiz-Tagle Palazuelos et al., 2020), 

with accuracies measured in terms of the error between the point estimate and the true 

RUL, which, in reality, is unknown. In addition to the fact that the true RUL is typically 

unknown is also the fact that sensor data is inherently noisy, injecting another layer of 

uncertainty known as aleatoric uncertainty. Moreover, the use of AI algorithms involves 

the tuning of different hyperparameters like the number of layers of a neural network, the 

regularization parameter, the number of neurons in each layer or even the type of AI 

algorithm used; all these are variabilities that introduce uncertainty in the prognostic 

process itself and this class of uncertainty is termed as ‘epistemic’ uncertainty. 

Different approaches have been used in an attempt to address some of these uncertainties, 

most common of which are Bayesian approaches. Particle filter-based algorithms (Chang 

& Fang, 2019; Miao et al., 2013; Su et al., 2017) and Kalman filter-based algorithms (Cui 

et al., 2020; Singleton et al., 2015; Son et al., 2016), which are both based on Bayesian 

techniques, have been adopted for RUL prediction. However, in strict technical terms, 

these methods are essentially approaches for health stage division as they make use of 

past data to predict the present health state of a system and then based on the present 

health state and additional data, predict future health states (Sankararaman, 2015). The 

RUL is thereby obtained by deduction, inferring RUL from the time it will take for a 

system to get into a failed state. Other researchers have used Dynamic Bayesian Networks 

and Hidden Markov Models to address uncertainty in prognostics (Bartram & 

Mahadevan, 2015; Medjaher et al., 2012; Zhang et al., 2018). Gaussian Process 

Regression (GPR) is also a Bayesian technique that provides uncertainty quantification 

in terms of variance for RUL predictions and has been used extensively by researchers 

because it is also particularly well suited to scenarios with sparse data (Aye & Heyns, 

2017; Baraldi et al., 2015; Richardson et al., 2017). Studies by some researchers like 
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Deutsch & He, (2018) tried to address the fact that RUL is not deterministic by employing 

a resampling technique, using deep learning algorithms to make several repeated RUL 

predictions by removing one instance of the training data during each prediction and 

updating the RUL progressively, thereby obtaining the RUL distribution parameters. Liu 

et al., (2010) also used a similar approach, using an adaptive recurrent neural network 

(ARNN) to predict RUL by making 50 prediction runs and obtaining the RUL distribution 

parameters from the 50 RUL values. This approach has the limitation that the uncertainty 

in the model and data is not implicitly addressed. As regards AI algorithms, a key step in 

the process involves pre-processing of data, which often involves smoothing the data to 

remove some noise, discarding outliers, and even generating entirely new features via 

feature crosses that involves some mathematical transformation of the original sensor 

data. Feature crosses produce additional features that are meant to be more informative 

for prognostics purposes. While these approaches are aimed at handling some aspects of 

aleatoric uncertainty (i.e., uncertainty in sensor data), data pre-processing itself is 

somewhat subjective and injects its own layer of uncertainty. 

More contemporary approaches at applying Bayesian techniques within the sphere of AI 

algorithms used for prognostics employ the use of Bayesian Neural Networks (BNNs). 

As expounded in the work of Gal, (2016), following foundational works in BNN (Denker 

& LeCun, 1991; Hinton & van Camp, 1993; MacKay, 1992; Neal, 1995; Tishby et al., 

1989), additional efforts in solving the problem of approximating the posterior 

distribution of model weights (which is the fundamental problem in BNN) can be found 

in the works of (Barber & Bishop, 1998; Graves, 2011; Minka, 2001). However, most of 

those early approaches suffered from the drawbacks of scalability to larger data, 

adaptability to complex models, and ease of use by non-core practitioners (Gal, 2016). 

Recent advances as presented in other studies (Blundell et al., 2015; Gal & Ghahramani, 

2016a, 2016c; Hernández-Lobato & Adams, 2015) have helped to address some of these 

challenges. As such, non-core computer science or AI practitioners such as PHM 

researchers have very recently started adopting these solutions and using BNNs for 

prognostics, particularly to address the issue of uncertainty quantification. Peng et al. 

(2020) used a Bayesian deep learning method to address the issue of model (or epistemic) 

uncertainty, while Kim & Liu, (2020) and Li et al., (2020) implemented a Bayesian deep 

learning algorithm for RUL prediction incorporating both epistemic and aleatoric 
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uncertainties. However, all attempts in the literature using BNNs are analytically 

cumbersome and overly theoretical, which may be a turn-off for the core engineers for 

which these methodologies should be useful in a practical way. 

Apart from the theoretically rigorous presentation, most of the approaches assume that 

the prior distribution of the predicted RUL is a normal distribution. However, in reality, 

the true distribution of the RUL is unknown and may not be necessarily normal. This 

work addresses this gap that by proposing a deep BNN for RUL prediction using the 

Monte Carlo dropout (MC dropout) approach, outputting the mean RUL and a credible 

interval without making any explicit assumptions about the true RUL distributions. Thus, 

an approximation is made of the RUL distribution that is as close as possible to the true 

RUL distribution, using an approach that is devoid of too much theoretical formulations, 

which is therefore easy to comprehend and use for decision-making. Another specific 

contribution of this study is that the proposed algorithm, by design, incorporates both 

aleatoric and epistemic uncertainty. This is unlike earlier heuristic approaches that only 

attempt to achieve uncertainty quantification by making several, repeated point estimates 

of the RUL, thereby not accounting for aleatoric uncertainty, and only indirectly 

accounting for epistemic uncertainty. 

The remaining part of this paper is organized as follows. Section 6.2 provides a more 

detailed perspective of uncertainty quantification in PHM, clearly delineating the various 

types of uncertainties and the attempts that have been made to address them. Section 6.3 

provides a brief but succinct exposition on BNNs and then goes on to present the Monte 

Carlo dropout BNN algorithm used for RUL prediction in this study. In Section 6.4, the 

algorithm and the methodology proposed are then applied on the publicly available 

NASA turbofan engine degradation dataset and the results are presented and discussed. 

Section 6.5 presents the conclusion and highlights areas of future work. 

6.2 Uncertainty quantification in PHM 

Methods of quantifying uncertainty or incorporating uncertainty quantification in RUL 

prediction are testing-based (offline, using data such as those obtained from accelerated 

life-cycle testing) and condition-based (online, using sensor data from the equipment or 

data obtained from condition monitoring devices) (Sankararaman, 2015; Sankararaman 

& Goebel, 2015). Testing-based methods typically apply to small components, several of 
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which can be run to failure to obtain lifetime data and failure probability distributions 

while condition-based methods apply to more complex systems. Conventionally, 

uncertainties have been categorized as aleatoric (in relation to data) and epistemic (in 

relation to model parameters). However, Sankararaman (2015) argues that a more tailored 

categorization is necessary for prognostics and RUL prediction, proposing four categories 

instead, namely: present, future, modelling and prediction method uncertainties. The 

reasons for this PHM-specific categorization are cogent and are presented below. 

6.2.1 Types of uncertainties 

For each type of uncertainty in prognostics, Sankararaman & Goebel, (2015) identified 

the sources as follows: 

 Present uncertainty: This is the uncertainty inherent in the estimation of the 

present health state, which, in PHM, is a necessary step before RUL prediction. 

The sources include sensor noise, gain and bias, data pre-processing tools and 

techniques, and filtering and estimation techniques. This uncertainty is analogous 

to aleatoric uncertainty in conventional categorizations. 

 Future uncertainty: This has to do with the inherent uncertainty in predicting 

future conditions. Sources of this uncertainty include future loading, 

environmental and operating conditions. 

 Modelling uncertainty: This uncertainty is due to the fundamental difference 

between the true system output and the output represented by the chosen or 

derived model. The uncertainties manifest in the model itself (whether linear, 

polynomial or a more complicated relationship captured via a neural network), the 

model parameters and in the determination or choice of a failure threshold or end-

of-life (EoL). 

 Prediction method uncertainty: This refers to the way the present, future, and 

modelling uncertainties combine to influence the actual RUL prediction, with its 

associated uncertainty. Given the same dataset and the same operating conditions, 

different prognostic methods generally yield different RUL predictions. In fact, 

the same method will typically yield a different RUL result for repeated runs of 

the algorithm due to variabilities in initial sampling (leading to sampling errors) 

and different approaches used in approximating the model parameters. This 
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underscores the fact that although the true RUL value may be deterministic, RUL 

results from data-based prediction algorithms are random variables. Both 

modelling and prediction method uncertainties are analogous to epistemic 

uncertainty. 

6.2.2 Approaches to uncertainty quantification 

In the subsections below, the different approaches used by PHM researchers for 

uncertainty quantification are discussed briefly.  

6.2.2.1 “Classical” methods 

Traditionally, failure probability data for components are obtained by running several of 

such components to failure, thereby obtaining a sample from which failure probability 

distribution parameters can be estimated. Out-of-sample or population failure probability 

distribution parameters are then inferred from the sample parameters using statistical 

techniques. The main, and obvious, limitation of this approach is that it is impractical for 

complex systems. 

6.2.2.2 Data pre-processing 

Sensor data come with noise, signal gain and bias; this has earlier been identified as a 

major source of uncertainty. In AI practice, an attempt to address this issue employs some 

data pre-processing techniques such as smoothing, filtering and outlier removal or 

replacement, amongst others (Ramírez-Gallego et al., 2017; Zhu et al., 2014). Although 

these approaches generally tend to make the resulting data or features more informative, 

their impact on reducing the inherent uncertainty due to noise is not well established, in 

quantitative terms. 

6.2.2.3 Several runs of point estimates 

One way some researchers have attempted to quantify uncertainty in RUL is by making 

several repeated point estimates of RUL using their model or algorithm, thereby 

generating a sample of RUL values with enough statistical significance. The population 

parameters are then estimated using the sample of RUL values. Deutsch & He, (2018) 

used a resampling technique by eliminating one training data for each run of their deep 
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learning-based algorithm and iterating this until the entire training data is covered, 

obtaining several point estimates of RUL and thus, RUL distribution parameters. Liu et 

al., 2010) also used a similar approach by making 50 RUL prediction runs using an 

adaptive recurrent neural network (ARNN) and obtaining the RUL distribution 

parameters based on the RUL point estimates. This heuristic approach, of course, fails to 

directly account for the uncertainty in the data as well as the model. 

6.2.2.4 Bayesian techniques 

Conventionally, methods employing Bayesian techniques for health state estimation and 

RUL prediction include particle filtering (Chang & Fang, 2019; Miao et al., 2013; Su et 

al., 2017), Kalman filtering and its variants (Cui et al., 2020; Singleton et al., 2015; Son 

et al., 2016), hidden Markov models (Soualhi et al., 2016; Zhang et al., 2016; Zhu, 2018) 

and Dynamic Bayesian Networks (Bartram & Mahadevan, 2015; Zhang et al., 2018). 

These methods basically predict system health states based on available data and then 

employ the use of recursive techniques or sequential updating to update the health states 

as additional data become available, using the time steps up till the time when the system 

health state reaches a failure threshold. The time steps or slices are then used as basis for 

calculating the RUL. Even though these are fundamental approaches being used to 

estimate system health states (Sankararaman, 2015), they provide probability 

distributions for the RUL, thus accounting for uncertainty. Some of these techniques have 

also been combined with classical reliability methods to achieve uncertainty 

quantification in RUL prediction. Bressel et al., (2016) used an extended Kalman filter to 

estimate the state of health and the dynamics of the degradation and associated uncertainty 

for Proton Exchange Membrane Fuel Cell (PEMFC) under variable loading. An inverse 

First Order Reliability Method (iFORM) using formulated limit state functions was then 

used to predict the RUL by extrapolating the state of health until a failure threshold is 

reached, giving the RUL along with a 90% confidence interval. 

Another common approach involves the use of a model to predict RUL and the 

subsequent use of Bayesian inference to update the RUL and its distribution parameters 

as more data become available. Zhao et al., (2013) integrated condition monitoring data 

to update the parameters of their model-based RUL prediction methodology using 

Bayesian inference, thereby updating the RUL and the associated uncertainty as more 
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data became available. An et al., (2015) also used Bayesian inference as a statistical 

method to address uncertainty in terms of noise in data (aleatory) and model weights 

(epistemic). Their method was compared to the method of using repeated predictions of 

RUL to obtain RUL distribution as used by Liu et al., (2010) and it outperformed the 

repetition method for large levels of noise and for complex underlying system 

degradation. Gao et al., (2021) proposed a joint prognostic model that uses a Maximum 

Likelihood Estimate (MLE) at an offline stage to determine the prior distribution for each 

input signal, after which the distribution parameters obtained using MLE are fed, as 

inputs, into a three layer neural network to obtain the linear model for degradation. During 

a subsequent online stage, Bayesian updating is then used, along with real-life sensor data 

from the unit whose RUL is to be predicted, to obtain the posterior distribution of the 

parameters of the linear model earlier derived, thus obtaining an updated RUL 

distribution. Liu et al., (2018) proposed an RUL prediction method based on an 

exponential stochastic degradation model that considers multiple uncertainty sources 

simultaneously, while using a Bayesian-Extreme Learning Machine to further quantify 

the uncertainties and predict the RUL for a degradation dataset for crystal oscillators. 

The advantage of BNN models over the approaches mentioned so far is that uncertainty 

quantification is implicitly modelled in the design of the network such that, rather than 

generating repeated point estimates of the RUL in order to get a sample, BNN models 

directly generate RUL values as probability distributions. Peng et al., (2020) incorporated 

uncertainty into prognostics by using Bayesian deep-learning-based models. A Bayesian 

multi-scale convolutional neural network was used to predict RUL with confidence 

interval bounds for data from bearings while a Bayesian bidirectional long short-term 

memory (LSTM) algorithm was used to predict RUL for industrial systems using the 

turbofan engine dataset. For both models, variational inference (VI) was used to 

approximate the posterior distribution of the model parameters, given the training data 

and the training RUL values. A limitation of the study by Peng et al., (2020) was that 

only the uncertainty in model parameters was addressed by their work. An attempt to 

close this gap was made in the study by Li et al., (2020), who developed a Bayesian deep 

learning framework for RUL estimation incorporating the quantification of epistemic and 

aleatoric uncertainties within the same algorithm. The framework, which was 

demonstrated using data from experiments on high voltage circuit breakers, was 
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implemented using a gated recurrent unit (GRU), which is one form of the LSTM. While 

addressing the uncertainty in the data as well as in the model parameters, a sequential 

Bayesian boosting framework was incorporated within the algorithm to help sequentially 

shrink the predicted credible interval. This final step, fundamentally, is similar to the 

study by Deutsch & He, (2018) where several RUL predictions were made and then fit 

into a distribution to account for uncertainties. 

The approach of using BNN and breaking down the prognostic process into two or more 

steps has also been studied by other researchers. Kim & Liu, (2020) proposed a Bayesian 

deep neural network for the prediction of RUL and quantification of uncertainties, which 

they grouped into two; weight uncertainty which accounts for the uncertainty in model 

weights, and degradation uncertainty which accounts the combined effects of 

signal/sensor measurement errors (i.e., uncertainty in data) and variability from one 

system to another. The model was formulated in two parts: one part was a Bayesian 

LSTM, which was used to predict the RUL while accounting for uncertainty in model 

weights, and the second part is a feed forward neural network (FFNN), which takes the 

RUL values as input and establishes the monotonic relationship between the RUL values 

and the degradation uncertainty in terms of the variance of the data. The weights of the 

FFNN were implicitly modelled within the Bayesian LSTM framework. Kraus & 

Feuerriegel, (2019) proposed a structured-effect neural network (SENN) model to 

quantify uncertainty and address the issue of interpretability of machine learning (ML) 

approaches to data-driven RUL prediction. The SENN algorithm included three 

components; the first was a non-parametric part with probabilistic lifetime models fitted 

with Weibull or lognormal distributions; the second part was a linear regression 

component using current condition data, while the third part uses an LSTM to model non-

linearities in the data using variational Bayesian inference to estimate the model 

parameters. Aside the goal of quantifying uncertainties, other researchers have also used 

BNN as an important algorithm in the scenario of small and noisy data because BNNs 

tend to be more robust to overfitting. Vega & Todd, (2020) used BNN to estimate RUL 

for miter gates in structural health monitoring (SHM) applications where minimal data 

was obtained from a finite element analysis (FEA) model which mimicked real-life 

inspection data obtained from the miter gates. The cost implication of using prognostics 
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as compared to conventional inspection methods was also evaluated using the probability 

confidence bounds estimated using the BNN. 

Guo et al., (2020) estimated RUL for an external gear pump using a Radial Basis Function 

with Bayesian regularization, which is a Bayesian approach towards minimizing 

overfitting during the training process. Li & He, (2020) also used a Bayesian optimization 

algorithm along with adaptive batch normalization (AdaBN) on a deep convolutional 

neural network for RUL prediction. Their method yielded a self-optimized network 

structure and hyperparameters selection (such as number of neural network layers, 

learning rate, batch size, etc.) as against random search and grid search. However, the 

algorithms in both the studies by Guo et al., (2020) and Li & He, (2020) generate point 

estimates for the predictions, rather than probability distributions. Gaussian Process 

Regression (GPR) is also a Bayesian technique that provides uncertainty quantification 

in terms of variance for RUL predictions and has been used extensively by researchers 

because it is also particularly well suited to scenarios with sparse data (Aye & Heyns, 

2017; Baraldi et al., 2015; Richardson et al., 2017). Other Bayesian techniques that have 

been used for uncertainty quantification in RUL prediction include: Dempster-Shafer 

theory and Bayesian Monte Carlo methods (He et al., 2011) and the Relevance Vector 

Machine (Liu et al., 2015; Zhou et al., 2013). The multifarious collection of Bayesian 

methods used for uncertainty quantification in prognostics demonstrates the fact that it is 

a challenge of huge significance in the context of using RUL predictions as a basis for 

maintenance decision-making. 

6.3 BNN algorithm for RUL prediction 

In this section, a concise background of BNNs is presented, along with our BNN 

algorithm for RUL prediction under uncertainty. 

6.3.1 BNN Background 

To get the full picture of the RUL prediction algorithm proposed in this work, it is 

expedient to give a brief background of the underlying theorems, as a detailed exposition 

will be out of the scope of this work. As stated earlier, the original intention of this work 

is to actually tone down on the cumbersome analytical coverage which is usual with BNN 

research. 
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6.3.1.1 Bayes’ theorem 

Let �(�) denote the marginal or unconditional probability of observing a dataset, �, 

irrespective of all other occurrences. Also, let �(�) denote the marginal or unconditional 

probability of observing a set of neural network weights, �, irrespective of the data or 

other parameters. The joint probability of these two observations is denoted by �(�, �) 

while the conditional probability of one observation, given another observation, is 

denoted by �(�|�), which, in this case, stands for the probability of observing the 

network weights, �, given the dataset, �. Bayes’ theorem connects all these probabilities 

as given in Eq.(6-1) : 

�(�|�) =
�(�,�) 

�(�)
, (6-1) 

where �(�, �), represents the joint probability between the model weights and the 

observed data, given in Eq. (6-2) as: 

�(�, �) =  �(�|�)�(�). (6-2) 

The joint probability, �(�, �) is symmetrical, i.e., �(�, �) =  �(�, �). 

So, in general, the application of Bayes’ theorem to neural networks involves having a 

prior belief about the model weights, which corresponds to weight initialization in 

traditional deep learning. This prior belief is denoted by �(�). The marginal probability 

of observing the data, �(�), is referred to as the evidence (i.e., referring to the observed 

data). The probability of observing the model weights given that the data (or evidence) 

has been observed (typically obtainable after training the model) represents the posterior 

probability denoted by �(�|�). The inverse of the posterior, �(�|�), represents the 

likelihood that the data or evidence, �, will be observed, given a set of weights, �. Bayes’ 

theorem can therefore be expressed as given in Eq. (6-3): 

��������� =  
������ℎ��� ×  �����

��������
 (6-3) 

6.3.1.2 Probabilistic models 

RUL prediction problems are inherently regression tasks. The core task of a neural 

network developed for a regression task is to make predictions given a training dataset, 
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�, which contains � input-output pairs of the form � = {��, ��; ��, ��; … ; ��, ��}. A 

neural network can be formulated as a probabilistic model as �(�|�, �). The joint 

distribution between the model weights and the data, �(�, �), even before training, can 

be defined using the prior belief, �(�), and the choice of the model (or likelihood), 

�(�|�), using Eq. (6-2). The likelihood is determined by the model architecture and the 

choice of the loss function used to achieve the optimization objective. For a conventional 

regression problem with a known variance and the loss measured as the mean squared 

error (MSE), the mean of a Gaussian likelihood can be specified by the network output 

as given in Eq. (6-4) (Goan & Fookes, 2020): 

�(�|�) =  �(�|�, �) (6-4) 

Typically, all the samples in the dataset, �, are assumed to be independent and identically 

distributed (i.i.d.), and the likelihood can be written as a product of the contribution from 

all the � individual samples in the dataset, given in Eq. (6-5) as: 

�(�|�) = � �(��|��, �)

�

���

 (6-5) 

It can be shown that maximizing the likelihood given in Eq. (6-5) yields the Maximum 

Likelihood Estimate (MLE) of the model weights, �, with the negative log likelihood 

(NLL) as the optimization objective during training. However, the MLE gives point 

estimates and is prone to overfitting as the regularization terms are all discarded (Jospin 

et al., 2020). Further, the full form of Eq. (6-1) can be written as given in Eq. (6-6): 

�(�|�) =
�(�|�)�(�) 

�(�)
. (6-6) 

In practice, during training, the training data or evidence is constant, so the term �(�) in 

Eq. (6-6) normalizes the likelihood, making it a proper probability distribution. So, Eq. 

(6-6) is reducible to: 

�(�|�)  ∝  �(�|�)�(�) (6-7) 

or, in other words, Posterior ∝ Likelihood × Prior. 

From Eq. (6-7), therefore, it is clear that maximizing �(�|�)p(�) corresponds to the 

maximum a posteriori (MAP) estimate, with the same optimization objective as with the 
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MLE, i.e., the negative log likelihood. The MAP, however, includes a regularization term 

but still yields a point estimate similar to the MLE (Jospin et al., 2020). So, the MLE and 

the MAP, though being probabilistic models for the neural network outputs, only yield 

point estimates and do not account for uncertainty. 

6.3.1.3 Variational Inference 

Suppose that we have full probability distributions over the parameters of the neural 

network, then uncertainties can be taken into account. To model this, the output, �, will 

be a continuous variable and not a fixed value or point estimate, with its distribution 

conditional upon an input, �, for which prediction is to be made, and the training data, �.  

The output or posterior predictive distribution, �(�|�, �), is usually calculated by 

combining (i.e., integrating) the individual predictive contributions from a given, finite 

set of distributions of model weights (i.e., �(�|�, �)), and weighing each prediction with 

its posterior probability, �(�|�). As presented in the work by Duerr et al., (2020) and 

Gal & Ghahramani, (2016b), this integral is given as in Eq. (6-8) below: 

�(�|�, �) =  � �(�|�, �) �(�|�)�� (6-8) 

It is a known problem that the analytical solution to the posterior predictive distribution, 

�(�|�), in Eq. (6-8) is intractable. Common approaches used to overcome this problem 

in BNNs is via variational inference (VI) and MC dropout. The VI approach is not used 

in this work but is only discussed briefly, without going into overly complicated analytical 

details, to help contrast it with the MC dropout approach. With VI, the analytically 

intractable posterior, �(�|�), is approximated using a posterior, ��(�), whose analytical 

form is known, with a set of parameters, �. The usual assumption for ��(�), which is 

called the variational distribution, is a standard normal distribution. As shown by Barber 

and Bishop (Barber & Bishop, 1998), the variational distribution, ��(�), can be used to 

approximate the true posterior distribution, �(�|�), by minimizing the Kullback-Leibler 

(KL) divergence between ��(�) and �(�|�).  The KL divergence between both 

distributions is defined by Eq. (6-9) as: 

�����(�) ∥ �(�|�)� = ∫ ��(�) ���
��(�)

�(�|�)
��. (6-9) 



 

157 

The KL divergence can be shown, as in the work by Barber & Bishop, (1998); Duerr et 

al., (2020) and Goan & Fookes, (2020), to be reducible to Eq. (6-10) as: 

�����(�) ∥ �(�|�)� = �� ����
��(�)

�(�)
−  ��� �(�|�)� + lo g �(�) (6-10) 

With Eq. (6-10) further reducible to Eq. (6-11) as: 

�����(�) ∥ �(�|�)� =  −ℱ(��)+ lo g �(�) (6-11) 

where ℱ(��) is the eventual optimization objective, taken from Goan & Fookes, (2020), 

and given in Eq. (6-12) as: 

ℱ(��) = ��[��� �(�|�)] − �����(�) ∥ �(�)�.  (6-12) 

 

Figure 6-1: Minimizing the KL divergence between the approximate and true posterior is 

equivalent to maximizing the evidence lower bound (ELBO) – adapted from Barber & Bishop, 

(1998) and Goan & Fookes, (2020). 

 

The first term in Eq. (6-12) is the expected value of the log likelihood with respect to the 

variational distribution parameters and the second term is the KL divergence between the 

variational and the prior distribution. The relationship described in Eq. (6-11) can be 

visualized as given in Figure 6-1. 

It can be seen from Figure 6-1 that by minimizing the KL divergence, ℱ(��) is maximized 

and approaches the log of the marginal likelihood (i.e., log of the evidence). Hence, ℱ(��) 

is commonly referred to as the Evidence Lower Bound (ELBO). So, minimizing KL 

divergence is equivalent to maximizing the ELBO. During optimization using 

backpropagation, only the terms containing the variational parameters remain, as all other 

terms reduce to zero. Eq. (6-12) can be expanded, as shown by Blundell et al., (2015), to 

obtain Eq. (6-13) given as: 



 

158 

ℱ(��) = ��[��� �(�|�)] − ��[��� ��(�)] + ��[��� �(�)]. (6-13) 

Blundell et al., (2015) showed that ℱ(��) can therefore be approximated by drawing � 

Monte Carlo samples of the weights, ��, from the variational distribution, ��(�), as: 

ℱ(��)  ≈
1

�
 ����� ���|��� − ��� ������� + ��� ����� �

�

���

 (6-14) 

where �� represents the ��� Monte Carlo sample drawn from the variational posterior 

������. This implementation of VI is the commonly known as the Bayes by backprop 

algorithm proposed by Blundell et al., (2015). 

As regards uncertainty quantification, epistemic uncertainty is captured in the variational 

posterior distribution, given in terms of the set of parameters, �, (which are the mean, μ, 

and variance, σ2, in the case of a normal distribution). Given more data, epistemic 

uncertainty can be reduced as the model better approximates the posterior distribution. 

However, aleatoric uncertainty, which is captured in the probability distribution used to 

model the likelihood function, is not reduced with the use of additional data as it only 

attempts to quantify the inherent noise in the data. The VI approach discussed so far, 

models the neural network weights as a probability distribution with means and variances. 

Thus, there are twice as many trainable parameters for the neural network, as illustrated 

in Figure 6-2(a). 

6.3.1.4 MC Dropout  

MC dropout technique works by randomly dropping nodes during the training process of 

a deep neural network, thus setting the weights of the neurons connected to the output of 

the dropped nodes to zero. The final model weights are then obtained as an average of the 

neuron weights during each epoch. Dropout is most popular for use in preventing 

overfitting (Srivastava et al., 2014). However, Gal & Ghahramani, (2016c) showed that 

dropout can also be used as a computationally cheaper algorithm to achieve the VI 

approximation in BNNs. Unlike the VI approach, the MC dropout algorithm achieves a 

similar approximation by quantifying uncertainty in BNNs without doubling the number 

of trainable parameters on the neural network. A deep BNN implementing MC dropout 

is illustrated in  Figure 6-2(b). 
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Figure 6-2 BNNs implementing (a) VI, with network weights modelled as distributions, and (b) MC dropout (adapted from (Duerr et al., 2020)). 
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The MC dropout algorithm is simply rendered as follows: given a new input �∗, the output 

of the neural network, �∗ can be computed by performing � stochastic forward passes 

through the network, obtaining an output ��∗
�
 during each of the forward passes, with a 

dropout probability, �, which determines the fraction of units to be dropped during each 

forward pass. Therefore, for the � stochastic forward passes, the outputs obtained are 

���∗
�

,  �� ∗
�

, ��∗
�

, … , ��∗
�

� and the mean output, �∗, corresponding to the input, �∗, is 

obtained by taking the average using Eq. (6-15) as: 

�∗ =  
1

�
 � ��∗

�

�

���

 (6-15) 

The uncertainty is computed from the sample ���∗
�

,  �� ∗
�

, ��∗
�

, … , ��∗
�

� by choosing � to be 

large enough to attain statistical significance. It is obvious that this is a very simplistic 

and computationally cheaper approximation of the posterior distribution, as compared to 

the VI method discussed earlier. This method also lends itself to a better possibility of 

quantifying the parameters of the true posterior distributions, without making too many 

explicit assumptions about the prior and as such, will be used for our uncertainty 

quantification in RUL prediction. 

6.3.2 BNN model for RUL prediction 

The MC dropout algorithm is implemented using TensorFlow (version 2.6.0) with Keras 

(www.tensorflow.org) and TensorFlow Probability (version 0.13.0). Other libraries and 

dependencies will also need to be imported and used as required. The step-by-step 

procedure is as follows. 

a. The training and test data is pre-processed on MATLAB and features are selected 

based on trendability, prognosability and monotonicity values, as used in one of 

our earlier work (Ochella et al., 2021) as presented in Chapter 5 of this thesis. 

b. Pre-processed training and test data containing selected features are then imported 

to TensorFlow, and the training data is further split into training data (85%) and 

validation data (15%) using scikit-learn’s GroupShuffleSplit function. 

c. The distribution of the training labels (i.e., training RULs) in the split version of 

the training and validation data are then plotted to ensure that both sets contain 

RULs of similar distribution and are indeed comparable. 

http://www.tensorflow.org/
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d. The RUL, instead of being modelled as a variable that linearly reduces from 

commencement of operation until the failure of each unit (see Figure 6-3a), is 

modelled to reflect the true degradation trend of a unit under degradation, known 

as the potential-failure (or P-F) curve (see Figure 6-3b). To achieve this, the RUL 

from commencement of operations is capped at a specified value, RULcapped, until 

the time when the unit’s RUL decreases below the capped RUL value, which 

corresponds to when a fault must have been detected. This is in line with the study 

by Heimes, (2008). The degradation curve for the capped RUL is shown in Figure 

6-3c. 
 

 

Figure 6-3 (a) Linearly degrading RUL (b) Typical degradation of components (P-F curve) 
(c) Modelling of the RUL for the training data. 

 

e. The model is then built, with an input layer, 6 inner layers, dropout between each 

layer, the rectified linear unit (ReLU) as the activation function, and an output 

layer with two nodes. The two nodes on the output layer produce the mean RUL 

and the variance information, capturing both aleatoric and epistemic uncertainties. 

The loss function is also built as the negative log likelihood, using the log_prob 

function available on TensorFlow Probability. 

f. The network hyperparameters are tuned using the Hyperband class in Keras tuner 

(O’Malley et al., 2019). The hyperparameters tuned include: the dropout rate, p, 

in the range [0.1,0.5] in steps of 0.1; the number of units or nodes in the input 

layer and in each inner layer, in the range [64,1024] in steps of 16; and the learning 

rate for the Adam optimizer, for the choice of values from the set {0.1, 0.01, 0.001, 

0.0001}. The tuning process yields a set of “best hyperparameters”. 
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g. Using the “best hyperparameters”, the optimal number of epochs for which the 

model should be trained is then tuned to obtain the “best epoch”. For both the 

hyperparameter tuning and the determination of the best epoch, the tuning 

objective was the achievement of minimum validation loss. 

h. With the MC dropout BNN now fully built, the model is then fitted using the 

training data while the optimization during training is achieved using the 

validation data. 

i. As in the MC dropout algorithm described in subsection 6.3.1.4, predictions are 

made to obtain the mean RUL for the test data and the credible interval (CI). This 

is done by obtaining the conditional probability distributions (CPD) for each of 

the engine units in the dataset using the test data, �����. The CPD, given as 

�(��|�����, ω�) is obtained by running T stochastic forward passes, thus sampling 

T times from the true RUL distribution, obtaining T values of the predicted RUL 

for each unit. The mean RUL is then obtained in a manner similar to that given in 

Eq. (6-15), but this time using the test data and the formula in Eq. (6-16) as: 

���� =  
1

�
 � �(��|�����, ��)

�

���

 (6-16) 

The mean RUL, ����, is equivalent to the Bayesian predictive distribution, 

�(�|�����, �). Regarding the uncertainty, since T was chosen in order to obtain 

statistical significance, the credible interval, CI, is obtained to be equivalent to the 

95% confidence interval if the distribution were normal (i.e., ±1.96σ). However, 

in the case of the MC dropout algorithm, the CI corresponds to the quantiles at 

0.025 and 0.975, which can also be obtained by calculating the percentiles, with 

the upper bound being the value in the predicted distribution which is greater than 

97.5% of all outcomes while the lower bound is the value less than 2.5% of all 

outcomes. 

6.4 Case Studies 

In this section, the proposed MC dropout BNN model is applied for uncertainty 

quantification in RUL predictions for the NASA C-MAPSS dataset FD001 (Saxena & 

Goebel, 2008). The same dataset was used for the demonstration in Chapter 5 to identify 

and prioritise equipment within an asset for LE, and will be used throughout this thesis 
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(the results from RUL prediction in this chapter will be used once again, later in Chapter 

7, for LE decision-making). However, for ease of cross-referencing, the dataset is briefly 

described below.  

6.4.1 Dataset description 

C-MAPSS stands for Commercial Modular Aero-Propulsion System Simulation and the 

dataset consists of four different run-to-failure datasets under varying fault modes and 

operational conditions. The training sets commence at a point where all units are in a 

healthy state and end at the point of failure for each unit. For the test sets, the data for all 

units commence when each unit is in a healthy state and are terminated at an unknown 

point during each unit’s lifetime. For more details about the dataset, the readers can refer 

to Saxena et al., (2008). For this study, the dataset FD001 is used. This dataset contains 

run-to-failure data for 100 identical turbofan engines subjected to similar failure modes 

and same operating conditions. Each of the 100 engine units has a distinct lifetime, with 

three columns representing operational condition settings and another 21 columns 

representing sensor data. These parameters, taken as the condition monitoring variables 

that give an indication of the engines’ level of degradation, are presented in Table 6-1. 

Table 6-1. Parameters in the C-MAPSS dataset. 

S/N  Measured parameter Unit of measurement Variable assigned 

1 Unit number -- unit_num 

2 Time cycles time_cycles 

3 Operational setting 1 -- ops_set1 

4 Operational setting 2 -- ops_set2 

5 Operational setting 3 -- ops_set3 

6 Total temperature at fan inlet °R s_1 

7 Total temperature at LPC1 outlet °R s_2 

8 Total temperature at HPC2 outlet °R s_3 

9 Total temperature at LPT3 outlet °R s_4 

10 Pressure at fan inlet psia s_5 

11 Total pressure in bypass-duct psia s_6 

12 Total pressure at HPC outlet psia s_7 

13 Physical fan speed rpm s_8 

14 Physical core speed rpm s_9 

15 Engine pressure ratio (P50/P2) -- s_10 

16 Static pressure at HPC outlet psia s_11 

17 Ratio of fuel flow to Ps30 pps/psi s_12 

18 Corrected fan speed rpm s_13 

19 Corrected core speed rpm s_14 

20 Bypass Ratio -- s_15 
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S/N  Measured parameter Unit of measurement Variable assigned 

21 Burner fuel-air ratio -- s_16 

22 Bleed Enthalpy -- s_17 

23 Demanded fan speed rpm s_18 

24 Demanded corrected fan speed rpm s_19 

25 HPT4 coolant bleed lbm/s s_20 

26 LPT coolant bleed lbm/s s_21 
1Low-Pressure Compressor; 2HPC – High-Pressure Compressor; 3Low-Pressure Turbine; 4High-Pressure 
Turbine 

6.4.2 Data pre-processing 

This section briefly describes the pre-processing of the data, which formed the basis for 

features selection. First, the statistics (mean, median, variance, standard deviation) for 

each of the sensor readings were calculated to gain quick but useful insights into the data. 

Sensor readings with zero variance information are not useful for predictions and were 

immediately eliminated. As such, seven sensors, s_1, s_5, s_6, s_10, s_16, s_18, and 

s_19, all of which have zero variances, were eliminated, leaving 14 sensors. The 

remaining sensor data are then scaled using Min-Max scaling, in the range [0,1], after 

which the scaled data is smoothed using the robust locally weighted scatterplot smoothing 

(RLOWESS) algorithm as in the work of Cleveland, (1979) but implemented as an in-

built function on MATLAB. The 14 remaining sensors are further subjected to checks in 

order to select the most informative sensors for prognostic purposes. To achieve this, the 

prognosability, trendability and monotonicity metrics were computed on MATLAB, in 

accordance with the work of Coble & Hines, (2009a; 2009b), where they defined the 

fitness value, which combines the values of all three metrics. The fitness values calculated 

using Eq. (6-17), which was taken from Coble & Hines, (2009a; 2009b), are shown in 

Table 6-2. 

������� = �������������� + ������������ + ������������  (6-17) 

Table 6-2. Fitness values to determine prognostic information in selected sensor data 

Sensor s_2 s_3 s_4 s_7 s_8 s_9 s_11 s_12 s_13 s_14 s_15 s_17 s_20 s_21 

Fitness 
value 

2.81 2.78 2.83 2.84 2.04 0.97 2.87 2.89 2.09 0.96 2.82 2.80 2.87 2.79 

 

Given that prognosability, trendability and monotonicity metrics have values in the range 

[0,1], the range of the fitness value is 0.0 ≥ fitness ≥ 3.0. A selection criterion was then 
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defined such that the fitness value for each selected sensor is above half of the maximum 

fitness value (i.e., above 1.5), in order to ensure that the sensors with the best predictive 

information are selected. Using the selection criterion: fitness ≥ 2.0, the most informative 

sensors where then selected, resulting in the preprocessed data for 12 sensors, s_2, s_3, 

s_4, s_7, s_8, s_11, s_12, s_13, s_15, s_17, s_20 and s_21, which were exported for use 

in training the BNN model. A plot of the smoothed data for the 10 selected sensors for 

sample engine units (units 5 and 12) is shown  Figure 6-4, revealing that most sensor 

trends are either predominantly monotonically increasing or monotonically reducing. 

 

Figure 6-4 Scaled and smoothed sensor data for units 5 and 12 showing monotonically 
increasing or decreasing signals 

6.4.3 Hyperparameter tuning and BNN training 

With the pre-processed data imported on TensorFlow, the negative log likelihood was 

defined as the loss function using the log_prob function available on TensorFlow 

Probability while the softplus function was used to constrain the trainable scale (or 

variance parameter) to a positive value. To model the RUL, the RUL values were capped 

at 125 cycles, (as explained in subsection 6.3.2(d)), which proved to yield the most 

optimal results after several iterations. Afterwards, the deep BNN was tuned using the 

Hyperband class in Keras tuner, with the first and penultimate layers of the network fixed 
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at 256 units. This was done to control the width of the network while optimizing the 

network’s depth. This led to the selection of the “best hyperparameter” values of 992 units 

in each of the 5 tunable hidden layers, a dropout rate of 0.1, and a learning rate of 0.001 

for the Adam optimizer. With the network fully configured using these values, the Keras 

tuner was then used, along with the training data, which has been split into 85% training 

data and 15% validation data, to iterate and obtain the optimal number of epochs (or “best 

epoch”) as 83, which may vary slightly depending on training, especially with the 

stochasticity introduced by dropout. The fully defined deep BNN is then used to train the 

network.  

6.4.4 Prediction and results 

In accordance with the MC dropout algorithm, RUL predictions with uncertainty 

quantification were made by making T = 1000 passes of the test data through the trained 

BNN. The mean RULs, ����, were obtained using Eq. (6-15) while the upper and lower 

bounds of the credible intervals, CI, were obtained as the quantiles at 0.975 and 0.05 

respectively (corresponding to percentiles at 97.5% and 5% respectively). The RUL 

prediction results obtained for the 100 units are given in Table 6-3. 

Table 6-3. Predictions for all 100 units in FD001 dataset (RUL and CI units are in 
number of cycles) 
 

Unit # RULt σRULp (σRULp + CI) (σRULp - CI) Unit # RULt σRULp (σRULp + CI) (σRULp - CI) 

1 112 113 131 90 51 114 54 66 42 

2 98 46 59 33 52 29 94 116 79 

3* 69 20 43 6 53 26 57 70 45 

4 82 54 73 40 54 97 125 132 118 

5 91 55 69 39 55 137 123 133 109 

6 93 125 131 117 56 15 3 11 0 

7 91 122 136 101 57 103 37 60 19 

8 95 81 107 63 58 37 45 58 31 

9 111 24 35 14 59 114 112 127 91 

10 96 104 138 60 60 100 120 132 104 

11 97 19 36 6 61 21 30 43 18 

12 124 136 148 121 62 54 117 128 97 

13 95 122 131 112 63 72 32 47 20 

14 107 67 86 51 64 28 39 51 27 

15 83 109 131 86 65 128 96 124 68 

16 84 127 135 119 66 14 35 47 24 

17 50 53 65 41 67 77 125 134 115 

18 28 38 50 27 68 8 7 18 0 

19 87 125 132 118 69 121 87 119 63 
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Unit # RULt σRULp (σRULp + CI) (σRULp - CI) Unit # RULt σRULp (σRULp + CI) (σRULp - CI) 

20 16 41 54 29 70 94 61 84 47 

21 57 111 154 72 71 118 115 133 72 

22 111 128 136 120 72 50 92 115 71 

23 113 126 134 119 73 131 126 134 115 

24 20 63 74 51 74 126 42 58 32 

25 145 124 131 116 75 113 125 133 118 

26 119 134 145 122 76 10 19 31 8 

27 66 121 129 112 77 34 53 67 39 

28 97 55 67 45 78 107 121 136 104 

29 90 111 138 85 79 63 55 69 43 

30 115 38 53 25 80 90 82 105 66 

31 8 7 16 0 81 8 11 21 1 

32 48 122 133 98 82 9 5 13 0 

33 106 54 73 38 83 137 55 76 41 

34 7 8 18 0 84 58 85 109 65 

35 11 7 16 0 85 118 107 124 91 

36 19 14 24 4 86 89 99 116 81 

37 21 66 94 45 87 116 133 143 122 

38 50 56 70 40 88 115 100 122 63 

39 142 124 132 114 89 136 53 69 41 

40 28 47 70 29 90 28 30 46 17 

41 18 25 38 13 91 38 38 50 27 

42 10 24 35 14 92 20 3 11 0 

43 59 53 68 37 93 85 24 35 15 

44 109 83 105 62 94 55 69 87 55 

45 114 32 45 21 95 128 106 125 83 

46 47 44 61 29 96 137 123 129 116 

47 135 41 62 25 97 82 70 90 55 

48 92 69 84 56 98 59 60 83 40 

49 21 53 65 40 99 117 125 133 118 

50 79 129 141 116 100 20 54 65 42 

RULt = ground truth RUL; σRULp = predicted mean RUL, CI = credible interval 
 
Blue bold text (total of 4 units): equipment that are still “healthy” but predictions indicate that they will 
soon fail. Leads to wasted resources or wasted life for the affected units. Focus was on units with predictions 
of less than 60 cycles. 

Red bold text (total of 12 units): equipment that will soon fail but prediction fails to capture this and give 
them a longer time to failure. This is undesirable as it may lead to unforeseen failure. Focus was on units 
with predictions of less than 60 cycles. 

 

The fundamental goal in prognostics is to ensure that faults in critical equipment being 

monitored are identified and their future failure times estimated so that an appropriate 

maintenance strategy can be planned and implemented in advance, before failure occurs. 

As such, the focus here will be on the units with ground truth RUL of 60 cycles or less 

(the range of the ground truth RUL is from 7 to 142). In Table 6-3, all the units with RULt 

≤ 60 cycles are in bold text. Out of the 39 engine units with RULt ≤ 60, the ground truth 
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RUL for 24 of them fall completely within the range of the RUL prediction along with 

the uncertainty bounds, the true RUL for 2 units fall just a few cycles outside the 

prediction boundary while the remaining 13 engines have predictions outside the 

uncertainty bounds. This is a good result at 95% confidence level. Most importantly, the 

predictions do not make assumptions of certainty as it is with point estimates. 

To provide further insight into the prediction results, Table 6-4 shows a comparison of 

RMSE values for the proposed method, against other methods, most of which, however, 

provide only point estimates of predictions on the FD001 dataset. 

Table 6-4: Comparison of algorithm prediction performance for different methods on the 

FD001 dataset 

Method Reference 
RMSE  

(# of cycles) 

Proposed (BNN via MC dropout) -- 38.94 

Convolutional Neural Network (CNN) Babu et al. (2016) 18.45 

Long Short-Term Memory (LSTM) Zheng et al. (2017) 16.14 

Multi-Objective Deep Belief Networks Ensemble (MODBNE) Zhang et al. (2017) 15.14 

Bi-directional LSTM Zhang et al. (2018) 14.26 

Bayesian LSTM Kim & Liu (2020) 12.19 

Deep CNN with Bayesian Optimization and Adaptive Batch 

Normalization 
Li & He (2020) 11.94 

From Table 6-4, direct comparison of the performance of the proposed method with the 

other methods suggests that the proposed method needs to be improved upon, when 

looking at just the mean RUL values (in a manner similar to point estimates). Noteworthy, 

though, is the fact that the other methods on Table 6-4 are from methods that provide 

point estimates, with the algorithms’ optimization objective being the minimization of the 

RMSE, hence the lower RMSEs recorded – obtained from algorithms which do not 

account for any uncertainty. In contrast, BNNs are designed to minimise the negative log 

likelihood, with the algorithm accounting for both epistemic and aleatoric uncertainties, 

hence the rather high RMSE obtained when using the just the mean RUL as the basis for 

performance measure. Making such comparisons, however, does not account for the 

advantage that uncertainties have been incorporated into the BNN prediction model and 

that the results obtained would be more beneficial to engineers in terms of planning for 

LE action. 
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As an additional part of the discussion regarding the prediction results, a crucial note is 

again made here that conventional algorithms that make point estimates use metrics like 

the root mean square error (RMSE), the mean absolute error (MAE) or a scoring function 

developed for use with the CMAPSS dataset. Most studies published in the literature also 

use the RMSE metric for measuring the performance of BNN algorithms used for RUL 

prediction. However, since the optimization objective for BNNs is the negative log 

likelihood, using RMSE as a performance measure is somewhat inappropriate. The fact 

is that bespoke metrics for use in measuring BNN performance do not exist at the 

moment. Since BNNs quantify uncertainty, some attempts have been made to use the 

average variance or average standard deviation (i.e., the average confidence interval or 

average uncertainty) as a performance measure. This is comparable to the Overall 

Average Variability (OAV) metric presented in subsection 4.2.2.1. The average CI 

obtained for the prediction results from this study was 38.78 cycles. Such a measure will 

only work in terms of benchmarking or comparison with other methods if the dataset is 

exactly the same, and the number of passes through the algorithm during prediction is the 

same or at least normalized, so that aleatoric uncertainty is constant, and the performance 

of epistemic uncertainty quantification can then be assessed and compared. 

Another metric that may be suitable for measuring the predictive performance of BNNs 

used for RUL predictions is the Confidence Interval Coverage (CIC), also presented in 

subsection 4.2.2.1. The CIC measures the number of predictions for which the RUL fall 

completely within the confidence bounds, as a percentage of the total number of 

predictions, and achieving a CIC of 100% would mean that all the predictions fall 

completely within the confidence bounds. The CIC value will increase when the 

confidence level is dropped from 95% to 90% and would increase further as the 

confidence level drops further. Using this metric, which is rather simplistic, would give 

an average CIC value of around 60% for our study, over several runs of the algorithm at 

95% confidence level. Again, this is an evolving area, and a clear gap exists for additional 

research towards measuring performance of BNNs, so as to achieve easy benchmarking 

of prediction results against results from other studies. Consequently, the focus of this 

study is on the practicality of using prediction results by engineers and the interpretability 

the results offer, when compared to point estimates. 
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6.4.5 Engine degradation trajectories 

The modelling of the training RUL was presented in subsection 6.3.2(d), which conforms 

to the well-known degradation trajectory in condition monitoring, known as the potential 

failure curve. In this subsection, a plot of the RUL prediction trajectories will show that 

our modelling was indeed correct. Figure 6-5 shows the RUL prediction trajectory plots 

for nine random engine units, with main selection criterion being that each unit has 

reasonably degraded and is approaching its EoL. 

 

Figure 6-5: Predicted degradation trajectory for some sample units, showing the credible 
intervals. 

As can be observed from all nine plots, the RUL remains fairly steady at the 

commencement of each unit’s operation. However, a clearly noticeable point is reached 

along the trajectory where the rate of decline increases; this point corresponds to the point 
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during operation of the engine when a fault is detected by sensors. In fact, even when the 

RUL was modelled linearly and the network was trained using the linear RUL, the RUL 

trajectory for some engines showed this characteristic. This shows that the deep BNN is 

able to decipher, from the sensor data, when a fault has occurred in any of the engines. 

Regarding uncertainty quantification, by sampling the mean RUL T times, where T = 

1000 in our study, 1000 possible combinations of the network model weights were 

accounted for. T, which represents the number of prediction runs of the algorithm for each 

set of input, was chosen to achieve statistical significance and to obtain a distribution 

spread that captures most prediction outcomes. In other machine learning applications 

that adopt the MC dropout algorithm, typical values for T lie in the range of 200 – 500, 

which equally produce a number of runs of the algorithm that achieves statistical 

significance. For this study, T was chosen as 1000 to ensure diversity in the results 

obtained, thus ensuring that the true RUL distribution is better captured. As such, the 

Monte Carlo sampling implemented by the BNN inherently accounts for the epistemic 

uncertainty as the variability of the predictions already accounts for the different model 

weights. Regarding the aleatoric uncertainty, the negative log likelihood, NLL, which was 

minimized as the optimization objective, involves the variance information in the data. 

Otherwise, the MSE, which is used for conventional regression analysis would have been 

used. Thus, the NLL accounts for heteroscedasticity in the RUL prediction, and the 

combined effect of both uncertainties can be observed in the RUL trajectories in Figure 

6-5, with varying prediction uncertainty as the degradation trajectory progresses. Another 

important observation from Figure 6-5 is that the uncertainty bounds taper inwards and 

narrows as each unit’s EoL approaches. The reason for this is that, since the model makes 

RUL predictions via Bayesian inference, the confidence of predictions increases as more 

data becomes available, hence the typically narrower confidence bounds much later in 

the unit’s operational life at which time enough operational data is available to make more 

confident predictions. 

6.5 Conclusion 

Uncertainty quantification in prognostics and health management (PHM) of industrial 

assets remains an on-going challenge because future predictions are inherently difficult 

to make, especially for complex systems. The practice of PHM has continuously evolved 
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with time and the application of contemporary technologies has consistently been 

successfully applied towards the solution of PHM challenges. In this era of big data, using 

sensor technologies to optimize future asset maintenance decisions has been extensively 

explored, leading to several methodologies for predicting RUL for equipment under 

condition monitoring. This study has tried to bridge the gap in such predictions, since 

most methodologies provide point estimates, which tend to be ignorant of the inherent 

challenges with making RUL predictions. The main issue with point estimates is that they 

are confident and can be misleading, thus making planning difficult for engineers. 

Bayesian approaches attempt to address this issue by stating where and when the 

prediction model is not very confident, based on the data available and the model used 

for prediction. Particularly, the uncertainty is quantified in numerical terms, rather than 

qualitatively, thus providing interpretable information for use in maintenance planning 

and optimization. 

Even in the area of uncertainty quantification, additional assumptions about the true 

posterior distribution are made, one of which is that the true RUL distribution is Gaussian. 

Even though the MC dropout approach seems not to explicitly make the same analytical 

assumptions of the posterior distribution, as with the VI approximation, the negative log 

likelihood, which is the optimization objective in both cases, implicitly assumes that the 

posterior is a Gaussian. As such, a possible improvement area as regards uncertainty 

quantification in RUL prediction is an algorithm that is completely agnostic to the true 

posterior distribution, since the true RUL posterior distribution is not always Gaussian. 

Also, regarding this study in particular, true ways of measuring the algorithm’s 

performance will be useful, even though performance measurement for BNNs is an 

ongoing research problem, given that the algorithms yield uncertainty bounds which 

characteristically have different spreads and their accuracies are not easy to measure using 

conventional metrics used for regression problems, like the RMSE. Developing such 

metrics will aid the easy comparison of different prognostic results for similar datasets or 

even across disparate datasets. In spite of these challenges, providing uncertainty 

quantification in prognostics, as has been expounded in this study, remains the most 

desirable approach and this study provides results that are more interpretable for 

engineers and are thus a lot more useful in practical terms. The ideal goal will be to 
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develop models that provide very narrow uncertainty bounds at high confidence levels 

and then measure their performance using bespoke metrics. 
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Abstract: The conventional approach for life-extension (LE) of complex assets involves 

carrying out a project at the end of an asset’s design life. However, the components of an 

asset such as systems, subsystems and vendor modules typically have different design 

lifetimes and considering LE only when the asset reaches its end-of-life is somewhat 

anachronistic. In recent times, many advanced analytics techniques are being adopted to 

estimate an asset’s remaining useful life (RUL) using sensor data. This paper proposes a 

novel model for data-driven LE decision-making using RUL values predicted on a 

continuous basis during an asset’s operational life. Our proposed LE model is 

conceptually targeted at the component, unit, or subsystem level, and is eventually built 

up for the entire asset. Consequently, LE is viewed and assessed as a series of ongoing 

activities, albeit carefully orchestrated in a manner similar to operation and maintenance 

(O&M). The application of the model is demonstrated using the publicly available NASA 

C-MAPSS dataset for large commercial turbofan engines. This approach will be very 

beneficial to asset owners and maintenance engineers as it seamlessly weaves LE 

strategies into O&M activities, thus optimizing resources.  

Keywords: Remaining useful life (RUL); life extension (LE); prognostics and health 

management (PHM); advanced analytics; reliability-centered maintenance (RCM); 

decision-making. 

7.1 Introduction 

There is an ever-increasing number of industrial engineering assets approaching the end 

of their design life, and quite a larger number are even operating beyond their typical 
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design life. Most industrial engineering assets have a design life of about 20 to 25 years. 

For instance, offshore oil and gas assets are typically designed to last for 20 to 25 years 

(Ersdal et al., 2018; Nezamian et al., 2012), wind turbines also have a design life of about 

20 to 25 years (DNV-GL, 2016; Luengo & Kolios, 2015; Nielsen et al., 2019), and, in the 

aviation industry, an aircraft’s life can vary, depending on the flight cycles or flight hours, 

but is typically between 20 to 25 years (Jiang, 2013; Wang et al., 2018). In each of the 

above industrial sectors, most of the operational assets were built in the ’70s and ’80s and 

are now running beyond their design lives. Even those built in the ’90s are now 

approaching the end of their design life, hence, there is an overwhelming need for 

development and adoption of appropriate asset end-of-life (EoL) strategies. 

At a high level, the EoL strategies of industrial assets can be divided into three major 

categories: in-situ abandonment, use-up and decommissioning, and life extension (LE) 

(Shafiee & Animah, 2017). In-situ abandonment entails leaving as asset in place at the 

site of operation upon attaining EoL, with the site prepared, made safe and all previously 

powered components de-energized. Use-up and decommissioning entails using the asset 

until failure or until the end of its design life, decommissioning it by removing the asset 

from the site and then restoring the site to its pristine condition. The third EoL strategy, 

LE, involves extending the operational life of an asset beyond the original design life and 

extracting more value from the asset. When opting for LE, the decision for either in-situ 

abandonment or decommissioning is effectively deferred to a later date, depending on 

regulatory requirements. Each of these EoL options have their own merits as well as 

potential downsides. For instance, LE avoids the need for huge capital investment while 

still extracting value from the existing asset but can increase the ongoing cost of operation 

and maintenance due to more frequent monitoring and inspections during the LE period. 

Decommissioning, on the other hand, is argued to be environmentally preferable, as 

compared to in-situ abandonment, since it restores the environment to pristine conditions, 

but it can be disproportionately expensive to implement.  

In recent years, extensive research has been carried out to assess the economic and 

environmental impacts of different EoL scenarios. Amongst these scenarios, LE has 

received the most favourable consideration because a lot of assets continue to remain 

functional and deliver value even after the expiration of their design lives. For the 
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majority of industrial assets, LE is the most favourable EoL strategy from both the 

technical and economic aspects because not only are most of the engineering designs 

typically conservative, the understanding of how to operate and maintain them has 

improved over time and, as such, additional value can usually be derived beyond the 

original design life. 

The conventional approach of LE for complex assets involves performing a series of 

activities by a project team on different components of an asset at the end of its design 

life. During the LE process, data is gathered through inspections and condition 

assessments and then some plans for Asset Integrity Management (AIM) and Structural 

Integrity Management (SIM) are prepared for LE implementation, subject to regulatory 

approval (Hua et al., 2017; Shafiee et al., 2016; Stacey, 2011). A comprehensive review 

by Shafiee & Animah, (2017) revealed some other issues that must be considered during 

LE decision-making, including lack of good quality data, workforce ageing, obsolescence 

management, and robust RUL prediction methods. Overall, the project-like approach to 

LE, which will be discussed in more detail in Section 7.2, leans overly towards SIM, 

which is understandable, given that it is the structure that supports all other components 

of most assets. However, we will show that such a project-like approach is anachronistic 

when put side-by-side the methods proposed in this paper, which are drawn on practices 

from reliability-centered maintenance (RCM) and data-driven prognostics and health 

management (PHM). 

As has been highlighted throughout this thesis, PHM involves four core areas, namely: 

data acquisition and management; diagnostics; prognostics, which involves predicting the 

remaining useful life (RUL) of an asset; and decision-making (Lei et al., 2018). There are  

three approaches to PHM, namely, model-based, data-driven, and fusion approaches, the 

details of which can be found in the work by Ochella & Shafiee, (2020). Data-driven 

PHM, the approach used in this paper, involves using sensor data from various monitored 

equipment on an asset, along with machine learning (ML) algorithms, to determine the 

state of health of the associated equipment and then predicting its RUL to make accurate 

maintenance decisions. Uninterrupted condition monitoring (CM) of equipment within 

an asset via sensor-based devices can potentially become overwhelming, particularly in 

terms of cost of data storage as well as installation and maintenance of sensors and other 
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ancillary devices. However, the alternative, which involves capturing CM data via 

periodic inspections, can be subjective since such periodic inspections are conducted by 

human inspectors whose judgement may differ from time to time. Moreover, periodic 

inspections may lead to missing out on capturing critical failure events since such 

inspections are not real-time and are characterized by a range of human factors that can 

impact on data quality (Lukens & Markham, 2018). A way around this, of course, is 

proper sensor design and placement to achieve optimal sampling frequencies, which is 

one of the main features of PHM systems. Again, it can be argued that sensors do not 

necessarily provide detailed information regarding failure modes of the monitored 

equipment since such information is typically obtained by a detailed Failure Mode, 

Effects and Criticality Analysis (FMECA). To overcome this challenge, Ochella et al., 

(2021) proposed a data-driven method which combined ML methods and RCM concepts 

to prioritize assets for LE consideration, as presented in Chapter 5 of this thesis. The 

approach involved continuous monitoring of equipment via sensors, determination of 

their states of health using a condition indicator called the potential failure interval factor 

(PFIF) and subsequently grouping different equipment with similar condition indicators 

together for the purpose of LE. These results form part of the first phase of the LE 

decision-making model proposed in this study.  

The focus of LE decision-making approach proposed in this work will be on critical 

equipment whose condition indicators reveal that they are close to their EoLs. In specific 

terms, we use a PHM metric called the alert time, in combination with RUL prediction 

results into which uncertainties have already been incorporated, to establish actionable 

decisions with implications for logistics support and LE. A novel criterion, called the 

acceptability criterion, which was proposed in Chapter 3, is also adopted to address the 

aspects of LE decision-making that involve regulatory approvals and certification by 

third-party bodies or classification societies. Furthermore, the decision-making approach 

proposed in this study considers the impact of AI-enabled PHM solutions and the 

associated regulatory environment on LE decisions. To the best of our knowledge, this is 

the first attempt at bringing these disparate research endeavours together as an integrated, 

end-to-end data-driven LE decision-making model. Our model has the capability to be 

adopted in different industries, as it relies heavily on data gathered from the operational 

assets, rather than the technicalities of a specific sector, industry, or class of assets. 
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The remaining part of this paper is organized as follows. Section 7.2 provides an overview 

of LE practices, culminating in the need for data-informed LE decision-making models. 

The details of the proposed decision-making model are presented in Section 7.3. A 

demonstration of the applicability of the entire approach is presented in Section 7.4, along 

with its limitations and suggestions for future work. Section 7.5 concludes the paper. 

7.2 Overview of LE practices 

The justifications that typically need to be made for LE are in two broad categories, 

technical and economic. The technical aspect includes safety, reliability, and availability 

of the asset, while the economic aspect looks at return on investment (ROI), overall asset 

life cycle cost (LCC) and benefit-to-cost ratio (BCR). At the core of this is the realization 

that an asset undergoing degradation requires a slightly different approach towards 

operation and maintenance (O&M). An overall asset can be grouped into different 

systems, subsystems, components and parts, so that the impact of degradation at any of 

these levels on the overall asset can be assessed. 

 

Figure 7-1 The impact of single and multiple life extension actions on an asset (adapted from 
Ochella et al., (2021)]). 

Assets are considered to have reached their EoL when a performance or degradation 

threshold is reached, as illustrated in Figure 7-1. Such thresholds are usually determined 

through classical statistical approaches like accelerated life cycle tests, or in more recent 
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times, using run-to-failure data and ML algorithms. Another way for an asset to reach 

EoL is through obsolescence, when the asset becomes unserviceable and thus 

economically and functionally impractical to operate and maintain (Macchi et al., 2018). 

Our study focuses on assets that have reached or are approaching EoL via degradation 

and are thus repairable, replaceable, or serviceable. Figure 7-1 shows the impact of single 

and multiple LE actions on an asset. From a data-driven PHM context, LE essentially 

restores the condition indicator for an asset from a state of “soon-to-fail” to a “healthy” 

or “good” state. Condition indicator charts will form a part of the decision-making model 

proposed in this paper. The following subsections, however, provide a review of 

conventional approaches to LE, and map a trend leading to the need for data-driven 

approaches, especially in the present era of big data and smart systems. 

7.2.1 Approaches to LE 

As stated earlier, conventional LE practice involves setting up a project team, which then 

embarks on and drives the LE process. Typically, an overall asset or fleet of assets, say 

an offshore platform for instance, will first be broken down into systems, subsystems, and 

components. The subdivisions are then further grouped into different categories, 

depending on failure modes and criticality. Afterwards, the condition of the critical 

equipment and structures are assessed for the eventual application of suitable LE 

strategies. The detailed review of LE research by Shafiee & Animah, (2017) showed that 

the LE process can be broadly grouped into five, viz: defining the premise and scope of 

the LE program, asset condition assessment, RUL prediction, evaluation and selection of 

LE strategies, and implementation. Obtaining regulatory approval, which is core to the 

entire spectrum of activities, straddles the five processes because all activities must 

comply with standards and government regulations. A high-level breakdown of the 

typical LE workflow is illustrated in Figure 7-2.  



 

185 

 

Figure 7-2 The general workflow for technical assessment during LE process. 

Two key technical aspects that inform decision-making are the condition 

assessment (which indicates the health state of the asset via a Health Index (HI)), and 

RUL prediction (which represents how much longer the equipment can operate before 

failure). To arrive at a health index that gives an indication of the technical condition for 

an equipment, techniques must be developed to appropriately weigh health factors (like 

testing/inspection frequency, degradation checks, maintenance, etc.) and history factors 

(like age, failure history, location/terrain, operating environment, etc.) (Animah & 

Shafiee, 2016). The condition indicator used in this work, known as the potential failure 

interval factor (PFIF), was developed in our earlier paper (Ochella et al., 2021). Other 

similar health indices in the literature include the grey health index proposed by Kalgren 

et al., (2006), the Asset Health Index proposed by De la Fuente et al., (2018) and the 

condition health and system refurbishment index proposed by Wang et al., (2015). 

7.2.1.1 Structural components of assets 

Although this study does not cover structures, conventional approaches to LE tend to be 

more focused on structures, as they are considered to be the foundation or framework 

upon which the operation of other assets and equipment are built. The development of a 

Structural Integrity Management (SIM) plan for use during the LE phase involves data 

collection, evaluation, remaining fatigue life prediction, inspection planning, obtaining 

regulatory approval and the implementation of the approved LE and inspection program 
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(Boutrot & Legregeois, 2015; Galbraith et al., 2005; Gibbs & Graf, 2014; Rashad, 2017). 

A common approach is to use probabilistic methods to model fatigue damage 

accumulation by trending stress versus number of cycles (i.e., S-N curves) (Liu & 

Frangopol, 2019). As such, the structural degradation or damage mechanisms typically 

considered include fatigue due to repeated cyclic loading over the asset’s lifetime, various 

forms of corrosion, direct physical damage due to impacts like dropped objects or 

collisions, creep, and accumulated plastic deformation, amongst others (Aeran et al., 

2016). When assessing a structure for LE, the variation of loads on the structures over the 

lifetime is analyzed and modelled, including dead load, live load, wave load, current load, 

and wind load, as may be applicable to the asset under consideration (Aeran et al., 2017). 

These various loads are typically modelled to obtain a time-dependent damage index, 

which serves as an indicator for the condition of the structure and can then be used as the 

basis for making LE decisions. 

In recent times, practices similar to those used in the field of data-driven PHM have been 

extensively applied to Structural Health Monitoring (SHM) to estimate the condition of 

structures and predict remaining fatigue life (Bull et al., 2021; Entezami et al., 2019; 

Entezami et al., 2021). Again, the data used for data-driven SHM and health condition 

assessment for asset structures are from sensors which typically log vibration and 

environmental condition data (Bhowmik, 2020). With such data, knowledge about the 

health state of the asset’s structure at any time instant is available, hence enabling the 

determination of LE actions which are triggered only as necessary, based on predictions 

from ML models (Basso & Copello, 2019). 

7.2.1.2 Impact of uncertainties on LE decision-making 

RUL prediction is a core technical aspect of the LE process. However, there are always 

uncertainties involved in the prediction process. It is therefore important to be able to 

quantify the uncertainties in RUL prediction, and subsequently exploit such 

quantification in the process of LE decision-making. Most studies in the literature propose 

point estimates of RUL; however, the predicted RUL values are often affected by 

uncertainties in the data, the model used, the environmental conditions and future loading 

conditions, amongst other factors. There are a few approaches for quantifying the 

uncertainty in RUL prediction, which yield RUL values as probability distributions rather 
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than point estimates. The study by Elwany & Gebraeel, (2008) used sensor data to predict 

RUL distributions for obtaining the parameters of an exponential degradation model as 

inputs to a spare parts replacement and inventory management decision-making model. 

Sensor-data was collected from accelerated degradation tests for rolling element bearings 

and used to compute the RUL distributions analytically. The performance of the sensor-

based prognostic model in terms of number of failures and total maintenance costs was 

compared to that of a fixed-time-interval maintenance policy. However, the model was 

tested on a single-unit replacement and inventory model and did not consider the overall 

life-cycle costs. Moreover, only the mean values were used in the RUL calculations and 

the variance information which addresses additional uncertainty was not fully exploited. 

A similar study was conducted by Wang et al., (2015) to formulate a prognostics-based 

spare parts ordering and system replacement policy for deteriorating systems. In their 

research, the lead time to order spare parts was modelled as a stochastic process with a 

probability density function rather than as a fixed value. The sensitivity of predictive 

replacement costs with respect to variations in lead time was derived, however it was only 

applied to non-reparable degrading systems and hence, the opportunities for LE were not 

fully explored. 

With regards uncertainty management in LE, Ramírez & Utne, (2015) used Dynamic 

Bayesian Networks (DBN) as a tool to support LE decision-making for ageing repairable 

systems. Several parametric models were proposed to describe the deterioration process, 

imperfect maintenance, safety and risk variables as well as evaluate costs during the LE 

period. The EoL options considered were use-up and replacement. In terms of the 

potential for failure during the LE phase, the study revealed that the use-up option had a 

higher level of uncertainty than the replacement option. However, the replacement option 

involved a higher capital cost which made the overall assessment to favour use-up, from 

a cost perspective. Spare parts inventory and lead times to order parts were not modelled 

in the study. 

7.2.1.3 LE strategies 

There are several LE strategies adopted by different industries to sustain acceptable levels 

of reliability and reliability during the LE phase. A detailed review by Shafiee & Animah, 
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(2017) lists and explains various LE strategies. Table 7-1 provides a definition of each 

strategy, along with their potential application cases. 

Table 7-1 Different life extension strategies with their meanings and potential 
application cases. 

LE strategy Meaning and application scenario 

Replacement 

/repowering 

Mostly applicable to power generation units. Involves replacing an existing 

equipment with a new one or upgrading the system to a higher nameplate capacity. 

Typically returns equipment to “as good as new (AGAN)” condition. 

Reconditioning Involves actions such as cleaning, restoration of material properties, assembling, and 

fastening. Returns equipment to a better state than before but not up to AGAN. 

Repair Involves restoring a system to a functional condition, upon failure or on a planned 

maintenance. Applicable to components or subsystems of a more complex asset and 

typically carried out using new or existing parts. 

Remanufacturing Attempts to restore a system to original equipment manufacturer (OEM) functional 

specification with warranty. Integrates reconditioning, replacement, and repair. 

Retrofitting Involves replacing old components or equipment with modern equivalents, thus 

improving functionality, availability, and safety. This is a good strategy to combat 

early onset of obsolescence. 

Use-up Involves using a component or an equipment until the end of its economic life. This 

strategy is driven by economics; as such, it may be inappropriate for application to 

safety-critical assets. 

Refurbishment Applicable to components, equipment, or systems to return them to a higher level of 

functionality. Integrates partial replacement, reconditioning, and some elements of 

redesign. 

Reclaiming Applicable to systems requiring regular lubrication over their lifetime. Involves 

cleaning the oil through filtration and other means to eliminate contaminants and 

particles, and then reusing the same oil. 

Retrofilling Applicable to systems requiring regular lubrication over their lifetime. Involves 

changing out of the lubricant, for example, changing out of a transformer’s oil. 

Condition monitoring (CM) has gained increasing popularity as one of the methods of 

gathering data about the health of an equipment to help arrive at the right decision 

regarding when to implement LE actions. Aside conventional CM methods which rely on 

asset data stored in databases, a concept that is rapidly evolving is the digital twin. 

Proposals have been made on how to deploy a digital twin as a decision-making tool for 

LE of ageing assets. To build a digital twin of an asset’s structural components, a high-

resolution modelling of the asset is conducted. Then, the model is updated using the data 

obtained by sensors and the remaining fatigue life is estimated on a continuous basis. This 

approach is currently being implemented on one of Shell’s oil and gas production 

platforms in the Southern North Sea (Knezevic et al., 2019). As regards the integration 

of PHM with asset LE strategies, Varde et al., (2014) proposed a framework that evaluates 
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refurbishment as a strategy for LE of electronic systems subjected to different failure 

modes. They derived the cost-to-benefit ratio and performed a detailed risk analysis to 

aid LE decision-making. Other studies exploring the full integration of PHM with asset 

LE strategies include Lukens & Markham, (2018) and Tiddens et al., (2015), who looked 

at issues around data quality, data analysis, integration of legacy assets with modern ones 

and engineers’ understanding of how to transition from conventional RCM practices to 

full PHM practices. 

7.2.2 Fundamental requirements for LE 

There are two broad requirements that drive asset LE decision-making; technical and 

economic requirements (Picard et al., 2007). On the technical side, the asset must 

maintain the required level of functionality, safety, reliability, availability, efficiency, 

compliance with changes in regulations and amenability to obsolescence management. 

On the economic side, the fundamental philosophy is that the overall asset LCC and the 

long-term cost of ownership and operation must be kept to a minimum, while continuing 

to extract value from the asset. These two broad categories of drivers should ideally be 

satisfied to achieve optimal outcomes. In the following subsections, some of the 

requirements are discussed further. 

7.2.2.1 Performance requirements 

One of the basic criteria for LE is that the asset must maintain an acceptable level of safety 

and reliability. In addition, the device must continue to meet or surpass a minimum 

threshold of functionality; otherwise, LE may become an unviable option. Although these 

basic criteria appear simplistic, it is challenging to achieve them for a degrading asset 

under constantly evolving environmental and process conditions, changing standards and 

regulatory requirements, and emerging trends in relevant technology. This is why LE 

decisions must factor in the degradation process or changing health condition of the asset, 

future operating conditions, environmental loads, and several other parameters (Vaidya 

& Rausand, 2011). It is clear that since these critical factors which influence LE decisions 

are constantly evolving, collecting asset CM data to reflect this evolution and thereafter 

trending the future path is a potentially robust approach towards decision support. In order 

to help demonstrate whether or not the performance requirements for the LE process have 

been satisfied, the data collected during the early operation as well as during the 
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degradation process are harnessed to develop a condition indicator, which serves as a 

basis for determining safety thresholds, reliability thresholds, functionality thresholds, 

and other performance thresholds. 

Another key factor that influences an asset’s ability to continue to meet minimum 

performance requirements, and thus support LE, is obsolescence management. The stages 

of any technology’s evolution include introduction, growth, maturity, saturation, decline 

and phase-out (Jennings et al., 2016). Once phased-out, the ability for an asset owner to 

continue to get the right support for operation and maintenance of the asset is greatly 

diminished. Thus, it is important to duly consider obsolescence forecasting and 

management as a critical factor that influences LE decision-making. 

7.2.2.2 Regulatory requirements 

The regulatory agencies in most countries have stringent requirements for granting 

approvals for LE programs. Most government regulations are targeted towards the oil and 

gas industry, the wind energy sector (Ziegler et al., 2018), the nuclear energy sector, the 

aviation industry, and the transportation industry, particularly the rail transport sector. 

The philosophy behind government regulations places the onus on asset owners to 

demonstrate that continued operation of their assets will ensure safety, reliability, and 

environmental protection. Government regulatory agencies also rely on certification of 

assets by class societies like Det Norske Veritas Germanischer Lloyds (DNV-GL), 

American Bureau of Shipping (ABS), Lloyd’s Register (LR), and so on, for the approval 

of assets for LE, particularly offshore structures (Liu et al., 2016). With such certifications 

obtained, regulatory agencies are more inclined to approve LE programs. However, in 

this present era of big data and industry 4.0, there are only a few standards and regulations 

to guide LE decision-making for systems implementing data-driven and AI-enabled 

PHM. In this paper, an acceptability criterion (Ac), which considers all the important 

factors and performance requirements in the context of data-driven LE decision-making 

and explores if all factors or requirements are satisfactorily met, is used to help determine 

suitability of an LE plan for regulatory approval. The acceptability criterion had been 

presented and its application hypothetically demonstrated in Chapter 3 of this thesis. 
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7.2.2.3 Other requirements 

The ultimate goal of applying PHM technologies is asset health management (Kalgren et 

al., 2006). Consequently, the final form of the output from a data-driven PHM system 

should be an actionable plan for LE implementation. The RUL prediction results, along 

with the confidence intervals to account for uncertainties, should be easily interpretable 

into meaningful, real-life course of actions for asset managers regarding when to trigger 

an LE strategy and what the most suitable LE strategy should be. Lifetime prediction can 

also help with inventory and stock management optimization so that parts for equipment 

are not kept in storage in excess of required levels, thus taking up space, tying down the 

resources used to buy the excess spares, and potentially undergoing deterioration in 

storage. For instance, as revealed in the study by Andreacchio et al., (2019), in the 

aviation industry, the actual cost of aircraft maintenance, at any given time, is typically 

equivalent to the cost of spares maintained in the stock inventory, which usually translates 

into a huge stock level to keep and amounts to poor use of resources. LE plans based on 

advanced analytics methods should be well implemented to help optimize the entire 

process. 

7.2.3 Overview of decision-making models in asset LE 

Decision-making under the scenario of various competing strategies, multiple criteria or 

optimization objectives and inherent uncertainties is a complex process (Niknam et al., 

2015). Maintenance decision-making and asset life-cycle management are examples of 

such a complex process because of the need to continuously ensure safety and reliability, 

eliminate or minimize unexpected failures while deriving the best possible ROI from the 

asset. When LE processes are added to the mix, the decision-making problem even 

becomes more complex. A typical approach by most researchers and asset managers is to 

focus on the optimization of cost, from an economics perspective, using one or more of 

the following tools: benefit-to-cost analysis, life-cycle cost optimization or ROI analysis 

(Jones & Zsidisin, 2008; Hermann et al., 2011; Gu et al., 2012; Woodhouse, 2012; 

Animah et al., 2018). Other approaches focus on technical aspects that mostly deal with 

SIM and AIM, with the core components being safety, reliability, and availability 

(Boutrot et al., 2017; Animah & Shafiee, 2018; Trampus, 2019; Nielsen & Sørensen, 

2021). A few approaches combine both technical and economic aspects in the form of a 
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techno-economic analysis, such as the work by Shafiee et al., (2016) and by other authors 

(Trampus, 2019; Golmakani & Pouresmaeeli, 2014). Obviously, considering just one or 

two of the various criteria leads to a multiplicity of approaches. Consequently, some 

researchers have attempted approaches that aim at analyzing the various criteria and their 

interdependencies to obtain optimization models for LE decision-making, with the most 

common being multiple criteria decision analysis (MCDA) (Kabir et al., 2014; Niknam 

et al., 2015; Shafiee, 2015; Shafiee et al., 2019; Shafiee & Animah, 2020). Of course, 

most MCDA approaches try to balance the inherently competing objectives of 

minimizing overall LCC (i.e., maximizing ROI) while ensuring high levels of safety, 

reliability, and availability during the extended period of operation. 

From a PHM perspective, the concept of LE is not new. Reinertsen, (1996) conducted an 

extensive review about diagnosis, RUL prediction and LE of technical systems. The 

review, which looked at methodologies for both repairable and non-repairable systems, 

revealed the inadequacy of the statistical methods in use and highlighted the need for 

further research in the area. Finkelstein et al., (2020) proposed a model for LE of 

degradable equipment by using the data gathered during preventive maintenance (PM). 

In their model, the failure threshold for the system was first considered to be 

deterministic, but then it was adapted as a random parameter. Although the information 

gathered during PM was used to trend the monotonically increasing degradation, the 

overall method used was analytical in nature, with the degradation process modelled as a 

Poisson process and then as a Gamma process. Overall, the idea of using data gathered 

during inspection and maintenance activities for the purpose of LE has been explored in 

the past (Labeau & Segovia, 2011; Ratnayake, 2015). However, in this present era of 

smart systems and big data, using advanced analytics methods to process sensor data on 

a near real-time basis is expedient. This work focuses on the impact of using prognostic 

information as the basis for the technical analysis to drive LE decisions, particularly using 

a condition indicator derived by ML algorithms, RUL predictions with uncertainty 

quantification, and the impact of emerging AI-enabled PHM regulations; all of which are 

the results of this PhD research from the previous chapters of this thesis. This chapter 

thus synthesizes the results from this research and apply them to the LE decision-making 

problem. 
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7.3 Methodology 

Optimization objectives for LE include maximization of operational lifetime and 

minimization of asset LCC while ensuring that reliability, availability and safety are not 

compromised (Cha & Finkelstein, 2020). This work puts forth a wide range of 

considerations that can be made in the process of conducting technical assessment for LE. 

At the core of our methodology is the use of a tool from RCM and CM known as the 

potential failure (P-F) curve, which essentially is a chart of the degradation of an asset 

versus time. Most of the other information required by the decision-making model are 

mapped onto the P-F curve. Some of the required information for the LE decision-making 

model include the potential failure interval factor (PFIF) which represents the health 

index (HI), the RUL with uncertainty quantification expressed in terms of confidence 

intervals (CI) (as obtained from Chapter 6) and the alert time (ta), which is a PHM metric 

that represents the minimum time needed for planning and executing the appropriate LE 

action (derived from Chapter 4). To set the stage for a clear understanding of the 

methodology, all the assumptions and prior preparations regarding the asset are laid out 

as follows. 

7.3.1 Assumptions, initial conditions, and background assessments 

As was stated earlier, this work assumes that a separate economic justification for LE has 

been conducted and thus focuses strictly on the technical aspects of LE decision-making. 

7.3.1.1 Integration of RCM and CM practices with PHM practices 

This methodology proposes and implicitly assumes the integration of RCM and CM 

practices with PHM technologies for the asset under consideration (which has been duly 

demonstrated in Chapter 5 of this thesis and published as a journal paper). Therefore, the 

asset is assumed to have undergone a formal technical assessment process (typically 

FMECA or other similar analysis) which would have broken down the asset into systems, 

subsystems, and components, all of which have sensors or other data acquisition devices 

installed on the equipment. 

7.3.1.2 Component-level and unit-level HIs 

Another implicit assumption is that run-to-failure data is available for the various 

components and units or systems that make up the asset. With such data, the P-F curve 
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can be plotted for each unit as shown in Figure 7-3. The instantaneous PFIF for each unit 

is calculated using Eq. (7-1) as defined by Ochella et al., (2021): 

�����,� =   
������������,�

�������������

, (7-1) 

where �����,� is the PFIF of unit i at time t, � − ����������,�
 is the P-F interval of unit i at 

time t, and �������������
 is the design life of unit i. The P-F interval is the time from the 

detection of a fault to the point of functional failure (see Figure 7-3). The PFIF is a useful 

indicator as it is a scale-independent quantity, which helps to ease grouping of equipment 

with different ranges of total lifetime, thereby serving as an indicator of the state of health 

of any unit under operation. 

 

 

Figure 7-3. Annotated P-F curve showing the important points during the degradation of a 
system (adapted from Kalgren et al., (2006)).  

To ensure that there is appropriate comparison of the predicted PFIF values with the true 

PFIF values, the true PFIF values should be scaled to achieve the same range [0,1] as the 

predicted PFIF values using the formula in Eq. (7-2), given as: 

�������������� =  
�������� ��� �(��������)

���(��������) ��� �(��������)
. (7-2) 
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7.3.1.3 System-level HI 

The various component-level HIs can be aggregated based on a weighting scheme as used 

in a paper by Wang et al., (2015) to obtain a system-level HI. This is given by Eq. (7-3): 

�������� =  � ����

�

���

 (7-3) 

where N is the number of components in the system, j represents the jth component, wj is 

the weight of the jth component and Xj is the HI of the jth component. The value of HIsystem 

is in the range [0,1] and ∑ �� = 1�
��� . The system-level HI, when plotted in real-time, 

yields a curve as shown in Figure 7-4. Thus, an asset manager who chooses to use HI 

information as a preliminary basis or the sole basis for LE decision-making can find the 

optimal window to take LE action based on the acceptable HI threshold for the system. 

 

Figure 7-4 The system-level HI versus time, showing the critical intervention 
window to prevent failure. 

7.3.2 Implication for logistics planning and LE action 

The HIs do not only serve as useful indicators for the health condition of the units or asset 

but also have intrinsic implications for logistics planning and the associated LE actions. 

Even though more rigorous tools will be used later to aid LE decision-making, at the HI 

assessment stage the asset managers are expected to have an idea of relevant actionable 

information that can be extracted from the HI values. Figure 7-5 shows a typical HI chart 

and the implications as it relates to logistics planning and LE. 
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Figure 7-5. HI values and the associated actionable decision support implications (adapted 
from Kalgren et al., (2006)). 

7.3.3 RUL prediction with uncertainty quantification 

After calculating the HIs of various systems, subsystems and components and grouping 

the equipment based on their HI values, the LE strategy can then focus on the most 

vulnerable groups, i.e., those with the lowest HIs. The RUL for the units in the most 

vulnerable groups can then be predicted using the CM data from the commencement of 

operation up to the present time (i.e., the time at which the ML algorithm is used to make 

predictions). To account for the inherent uncertainties in the data, prediction model and 

environmental loading conditions, it is important to use methodologies that yield RUL 

predictions as probability distributions having mean RUL values along with uncertainty 

bounds or confidence intervals (CI). One of such algorithms is Bayesian Neural Networks 

(BNNs), and the results used for the demonstration of this study were obtained using RUL 

values predicted by BNNs from Chapter 6. Figure 7-6 shows how the failure probability 

increases with time for any given unit. Note that RUL is continuously predicted as CM 

data becomes available, thus predicting the EoL at any given time, along with confidence 

bounds. 

For the purpose of this study, we use a PHM metric known as alert time (ta) which was 

first proposed by Leão et al., (2008) and is annotated in Figure 7-6. The value of ta 

specifies the minimum time required to schedule LE tasks, order required parts, and 

execute LE. Since the predicted EoL does not always coincide with the true EoL, the 
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importance of the CI is that it provides a buffer to help maintain ta within tolerable 

margins. It should be noted here that wasted life is also likely to occur if LE action is 

taken too early, while the unit or component still has reasonable lifetime left. Wasted life, 

as defined by Leão et al., (2008), as the additional time that a unit would have served if 

it is not taken out too early. 

 

Figure 7-6 Plot showing increasing failure probability as asset degrades with time. RUL at 
each point obtained as distributions.  

So, in order to find the sweet spot and ensure that LE action is taken before a failure 

occurs, while at the same time minimizing wasted life, the mean RUL is continuously 

monitored to comply with Eq. (7-4): 

�� ≥  ���� − ��. (7-4) 

The LE action is initiated immediately upon observing the first point where the 

requirement in Eq. (7-4) is satisfied. The overall flow of the LE decision-making model, 

comprising both the RCM and CM modules as well as the AI-enabled online monitoring 

and RUL prediction module, is illustrated in detail in Figure 7-7. 
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Figure 7-7 The overall flow of the LE decision-making model. 

Asset Register & 
Operational History

System Division/
Boundaries

Failure Mode, Effects, 
& Criticality Analysis

Decision Logic

Failure-
finding

Routine Maintenance 
or Run-to-failure

Redesign
Condition-Based 

Monitoring
Scheduled 

Restoration
Scheduled 

Discard

Identify Sub-systems 
and Components

No

No

Yes

Yes

Equipment
Important or Safety-

Critical?

High or 
Medium

Criticality?

Proactive TasksDefault Actions

Update online 
monitoring data

Train 
algorithm(s)

Extracted 
features

Validate 
algorithm(s)

Predict RUL

Trigger LE Strategy

Design data,
Sensors data,

Other inspections data

Identify candidate 
equipment

Training set Testing set

Clustering 
algorithm

� 

No

Alert time ≥ (μRUL- CIRUL) 
Yes

Validation set+ 

Calculate 
Condition Index

Pre-processing

RCM and Condition 
Monitoring Module

AI-Enabled Online Monitoring 
and LE Decision-making Module



 

199 

7.3.4 Acceptability criterion for regulatory approval 

Reference was earlier made to the need to obtain regulatory approval for LE, which is 

indeed the case for most industries. Typically, regulatory authorities need the conviction 

that due diligence was made in establishing the technical justification for LE and that 

minimum acceptable standards for safety and reliability must be maintained for all safety 

and environmentally critical elements (SECE) during the LE period. In this section, all 

the critical factors for the effective implementation of LE from a data-driven perspective 

are consolidated, thus proposing a unifying criterion for regulatory approval of the LE 

plan. A complete treatise on this was covered in Chapter 3. The parts relevant to LE 

decision-making will be recapped briefly in this subsection. 

The critical factors to be satisfied for AI-enabled PHM systems include safety and 

reliability, explainability, interpretability, accuracy of predictions, compliance with 

industry standards, actionability of AIM and SIM inspection plans, and third-party testing 

and verification of results. As part of the regulatory approval process, all the important 

factors mentioned should be checked off as either satisfactory or unsatisfactory. If the 

results from such a process are collated as an array, F, the acceptability criterion, Ac, 

proposed in Chapter 3, subsection 3.3.2, is used to determine the acceptability of the 

results from the proposed advanced analytics approach for LE. Details of the formulation 

of Ac, are again presented here for ease of referencing. Ac is given in Eq. (7-5) as: 

Ac = βF, (7-5) 

where β is a normalizing array of 1 × n dimension which indicates the importance or 

weight assigned to each of the factors considered, while F is an array of n × 1 dimension 

whose elements are either 1 or 0, representing whether each factor is satisfactory or 

unsatisfactory, respectively. The value of Ac lies in the range [0,1]. The matrix product, 

βF, can be expressed as a sum, given in Eq. (7-6) as: 

�� = � �� × ��,

�

���

 (7-6) 

where i is an index representing the number of factors considered, ranging from 1 to n; βi 

is the importance weight for the ith factor; and Fi represents whether the requirement for 
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the ith factor is satisfied or not. The sum of the weights must be equal to 1, as given in 

Eq.(7-7): 

� ��

�

���

 =  1 (7-7) 

The acceptability criterion is formulated to provide both robustness and flexibility, 

allowing for adjustments to the factors which are considered important, depending on the 

peculiarities of the asset and the subsisting regulatory environment or context. With all 

the critical factors satisfied, LE approval can then be issued by regulatory agencies, 

especially for safety-critical assets. 

7.4 Case studies 

In this section, the proposed model is tested on NASA’s publicly available C-MAPSS 

dataset (Saxena and Goebel, 2008) and the results will be reported. Full details of the 

FD001 dataset, which will again be used here, have been presented in subsection 5.4.1 of 

Chapter 5 and subsection 6.4.1 of Chapter 6. As a result, the description of the dataset 

will be skipped here. The important thing to note is that the dataset is similar to the 

scenario on a real multi-component or multi-system asset, with subsystems and 

subcomponents, or the scenario for a fleet of similar systems being managed under the 

same portfolio by the same asset manager. The intent here is to apply an LE strategy for 

a group of units that have been identified as vulnerable or at risk of failure.  

7.4.1 Data-driven condition assessment 

As presented in Chapter 5 and in our published work  (Ochella et al., 2021), a machine 

learning algorithm was developed on MATLAB to fit a linear model to the data, thus 

obtaining a condition indicator for each of the 100 units. Figure 7-8 shows the condition 

indicators obtained for all 100 units, which are, in essence, the P-F curves for each unit. 
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Figure 7-8 P-F curves for 100 turbofan engines within the asset portfolio. 

7.4.1.1 Unit-level HIs and unit groupings 

Having trained an ML algorithm and fit a linear model to the training data, the 

instantaneous PFIF for all the units were subsequently predicted based on their sensor 

values at the present time, as captured in the test data. The units were then grouped using 

a four-stage HI division, as illustrated in the HI chart in Figure 7-5. The HI division was 

achieved as follows; “Healthy”: 0.75<PFIF≤1.00; “Good”: 0.5<PFIF≤0.75; “Good – 

monitor”: 0.3<PFIF≤0.5; “Soon-to-fail”: 0.0≤PFIF≤0.3. These boundaries were defined 

for the purpose of this work, and may be made more stringent or less stringent, depending 

on the safety, reliability and functional requirements of the specific unit or asset. For 

brevity, only a list of the units categorized as “healthy” and “good” are provided in this 

paper. Given that the focus is on candidate equipment for LE, results for all units 

categorized and “good – monitor” and “soon-to-fail” will be fully presented and 

discussed.  

7.4.1.2 True and predicted RUL 

The C-MAPSS dataset FD001 provides the ground truth RUL values for all 100 units 

under monitoring. However, the key task is to use the test data to arrive at predicted RUL 
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values using advanced analytics techniques, and then use the true RUL values as bases 

for comparison. The predicted RUL values from the deep BNN in Chapter 6, which 

modelled the uncertainties in model parameters and the stochastic nature of the 

degradation process. RUL predictions were therefore obtained as probability 

distributions, with a mean RUL value, μRUL, along with credible interval (CI) estimates, 

which are useful for the purpose of applying constraints around the alert time (ta) in our 

decision-making model. The predicted μRUL and CI values for units grouped as “good – 

monitor” and “soon-to-fail” are presented in Table 7-2 and Table 7-3 respectively, under 

subsection 7.4.2.1 of this chapter. These units are the candidate units for LE. 

7.4.2 Results and discussion  

The application of the steps in the decision-making model, so far, leads to the 

identification, at every time instant, of the group of equipment that may be approaching 

failure based on the predicted HIs. Using the four-stage HI division boundaries stated in 

subsection 7.4.1.1, a total of 29 units were predicted as “healthy” and they are: 1, 2, 6, 9, 

11, 14, 15, 22, 25, 26, 33, 39, 44, 47, 48, 50, 55, 65, 67, 69, 71, 78, 83, 85, 86, 87, 88, 96, 

and 99. A total of 26 units were predicted as “good – no action”, namely:  4, 5, 7, 16, 19, 

21, 23, 28, 29, 30, 38, 45, 51, 54, 57, 59, 60, 70, 73, 74, 75, 79, 80, 89, 95, and 97. These 

groupings were in agreement with the ground truth RUL values, when used to calculate 

the scaled true PFIF values. It is important to note here that categorizing faulty units as 

“healthy” or “good” has dire implications for the avoidance of unplanned or unforeseen 

failures, and each healthy or good prediction must be thoroughly scrutinized so that 

impending failures are not missed due to false negative predictions. 

7.4.2.1 Candidate units for LE 

Ultimately, the goal of the proposed decision-making model is to identify equipment that 

are close to their EoLs by using CM data and ML algorithms, so as to trigger an LE 

strategy in good time to extend their useful lives and avoid failure. The predicted PFIF 

values, the units’ lifetimes, as well as other lifetime parameters for the units grouped as 

“good - monitor” and “good – no action” are presented in Table 7-2 and Table 7-3 

respectively. 
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In the case of units grouped together for LE consideration due to low HIs, false positive 

results, which involve wrongfully grouping healthy units as “soon-to-fail”, do not have 

any safety implications because a healthy unit wrongly thought to be about failing will 

not fail. However, false positive categorizations have economic implications since 

otherwise healthy units may be taken out of service, thereby leading to either wasted life 

in terms of the unit or wasted resources in terms of the time and personnel that would 

have been allocated for work on a healthy unit wrongfully classified as faulty. So, overall, 

the accuracy of predictions remains an important factor that should be satisfied in order 

to end up with a viable LE plan. 

7.4.2.2 Lead time for LE scheduling 

From the ground truth values for the 100 units in the FD001 dataset, the overall lifetime 

for the units range from a minimum of 141 cycles for unit #41 to a maximum of 341 

cycles for unit #12, with an average operational lifetime of about 206 cycles before 

failure. Given that these lifetime values were obtained from accelerated degradation tests, 

let us assume broadly, for the purpose of this work, that the minimum time needed to 

schedule for LE, order spare parts and implement the appropriate LE strategy is 20 cycles. 

This is the value of ta, which will be similar for all units since the units within the asset 

or fleet of assets are identical or homogeneous. From Eq. (7-2), to take LE actions before 

any failure occurs, the condition ta ≥ (μRUL – CI) must be satisfied. The governing 

constraint to ensure timely LE action is therefore (ta + CI) ≥ μRUL. So, the values for (ta + 

CI) greater than μRUL in Table 7-2 and Table 7-3 indicate units for which there is enough 

window to schedule for LE. For such units, an opportunistic window can also be used to 

trigger and implement LE strategy, since an LE plan will already exist. However, for units 

which the governing constraint has been satisfied and the values of (ta + CI) are less than 

μRUL, there is no longer enough window to plan in advance since even the tolerance built 

into the RUL values through uncertainty quantification in terms of the confidence 

intervals has been used up. From Figure 7-5, the logistics and LE implications for such 

units are “emergency logistics sparing and parts requirements” and “take LE action now” 

respectively. These are also shown on Table 7-2 and Table 7-3. 
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Table 7-2. Units grouped as “good – monitor” (16 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles) 

Unit # 
Predicted 

HI (PFIF) 

Unit 

Lifetime 

True 

μRUL 

Predicted 

μRUL 

CI Upper 

bound 

CI lower 

bound CI (ta + CI) Implication for LE 

3 0.46 195 69 20 43 6 23 43 Take LE action now 

8 0.50 261 95 81 107 63 26 46 Schedule LE or opportunistic action 

10 0.38 288 96 104 138 60 34 54 Schedule LE or opportunistic action 

12 0.44 341 124 136 148 121 12 32 Schedule LE or opportunistic action 

13 0.37 290 95 122 131 112 9 29 Schedule LE or opportunistic action 

27 0.41 206 66 121 129 112 8 28 Schedule LE or opportunistic action 

32 0.34 193 48 122 133 98 11 31 Schedule LE or opportunistic action 

40* 0.33 181 28* 47 70 29 23 43* Schedule LE or opportunistic action 

43 0.37 231 59 53 68 37 15 35 Schedule LE or opportunistic action 

46 0.32 193 47 44 61 29 17 37 Schedule LE or opportunistic action 

63 0.45 227 72 32 47 20 15 35 Take LE action now 

72 0.34 181 50 92 115 71 23 43 Schedule LE or opportunistic action 

84 0.30 230 58 85 109 65 24 44 Schedule LE or opportunistic action 

93 0.31 329 85 24 35 15 11 31 Take LE action now 

94 0.46 188 55 69 87 55 18 38 Schedule LE or opportunistic action 

98 0.45 180 59 60 83 40 23 43 Schedule LE or opportunistic action 

*Predicted RUL along with confidence bounds, when combined with the alert time requirement, missed this unit as a unit that will soon fail. 
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Table 7-3. Units grouped as “soon-to-fail” (29 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles). 

Unit 
# 

Predicted HI 
(PFIF) 

Unit 
Lifetime 

True 
μRUL 

Predicted 
μRUL 

CI Upper 
bound 

CI lower 
bound 

CI (ta + CI) Implication for LE 

17 0.26 215 50 53 65 41 12 32 Schedule LE or opportunistic action 

18* 0.21 161 28* 38 50 27 12 32 Schedule LE or opportunistic action 

20* 0.03 200 16* 41 54 29 13 33 Schedule LE or opportunistic action 

24* 0.07 206 20* 63 74 51 11 31 Schedule LE or opportunistic action 

31 -0.09 204 8 7 16 0 9 29 Take LE action now 

34 -0.11 210 7 8 18 0 10 30 Take LE action now 

35 0.08 209 11 7 16 9 9 29 Take LE action now 

36 0.25 145 19 14 24 4 10 30 Take LE action now 

37* 0.14 142 21* 66 94 45 28 48 Schedule LE or opportunistic action 

41 0.14 141 18 25 38 13 13 33 Take LE action now 

42 0.00 166 10 24 35 14 11 31 Take LE action now 

49* -0.08 324 21* 53 65 40 12 32 Schedule LE or opportunistic action 

52* 0.08 218 29* 94 116 79 22 42 Schedule LE or opportunistic action 

53* 0.20 190 26* 57 70 45 13 33 Schedule LE or opportunistic action 

56 0.22 151 15 3 11 0 8 28 Take LE action now 

58 0.17 213 37 45 58 31 13 33 Schedule LE or opportunistic action 

61 0.09 180 21 30 43 18 13 33 Take LE action now 

62 0.16 286 54 54 117 128 63 83 Take LE action now 

64* 0.14 196 28* 39 51 27 12 32* Schedule LE or opportunistic action 

66 0.25 161 14 35 47 24 12 32 Schedule LE or opportunistic action 

68 -0.03 195 8 7 18 0 11 31 Take LE action now 

76 -0.07 215 10 19 31 8 12 32 Take LE action now 

77 0.14 196 34 53 67 39 14 34 Schedule LE or opportunistic action 

81 -0.08 221 8 11 21 1 10 30 Take LE action now 

82 -0.01 171 9 5 13 9 8 28 Take LE action now 

90 0.26 174 28 30 46 17 16 36 Take LE action now 

91 0.22 272 38 38 50 27 12 32 Schedule LE or opportunistic action 

92 0.20 170 20 3 11 0 8 28 Take LE action now 

100* 0.18 218 20* 54 65 42 11 31* Schedule LE or opportunistic action 

*Predicted RUL along with confidence bounds, when combined with the alert time requirement, missed these units as units that will soon fail.
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Note that the initial grouping of equipment into “good – monitor” and “soon-to-fail” was 

done using only the predicted HIs. From the predicted mean RUL values, the credible 

intervals and the application of the alert time metric, it can be observed that most of the 

recommended decisions are in agreement with the initial group assignments based on 

only the HIs. This demonstrates that using the HIs is indeed a good basis for prioritizing 

the equipment for closer monitoring, before eventually calculating the RULs and CIs for 

the vulnerable set of equipment or units. 

7.4.2.3 Acceptability criterion for regulatory approval 

Regulatory approvals need to be sought for the implementation of LE programs. To grant 

approvals, most regulatory agencies will not only actively participate in the process of 

drawing out an LE plan, but also rely on compliance with known standards or on 

certification by classification societies. To determine whether all the critical factors have 

been duly considered, importance or weight assignments are given to each factor, based 

on the peculiarity of the industry and the operating environment. For this case study, the 

weights of the critical factors have been ranked, in descending order and shown in Table 

7-4. Out of the seven factors considered, safety and reliability were considered the most 

important and assigned a weight of 0.3, while explainability was ranked least important 

with a weight of 0.05. These weights, of course, do not undermine the actual need for any 

AI-enabled PHM system to have all these critical factors addressed. The weights assigned 

in Table 7-4 were arrived at based on the judgement of the authors about the importance 

of each factor in asset operating under an AI-enabled PHM system. Furthermore, the 

factors were assessed in a manner similar to the guidance in the International Organization 

for Standardization (ISO) standard, ISO 13381-1:2015 (ISO 13381-1:2015 Condition 

Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, 

2015). For real-life applications, a team of engineers would typically arrive at these 

weights based on more detailed analysis and their expert judgement and experience. 

Table 7-4. Typical application of acceptability criterion (Ac). 

i Factor Satisfied? F Weight, β βF 

1 Safety and reliability Yes 1 0.30 0.30 

2 Algorithm produces accurate predictions Yes 1 0.20 0.20 

3 Workable of AIM and SIM inspection plan Yes 1 0.20 0.20 

4 Interpretable results and outputs Yes 1 0.15 0.15 
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i Factor Satisfied? F Weight, β βF 

5 Compliance with industry standards Yes 1 0.10 0.10 

6 Third party testing and verification of results No 0 0.05 0.00 

7 Explainable AI methods used No 0 0.05 0.00 

    Ac (i.e., ΣβF) = 0.85 

Given the weight assignments in Table 7-4, the acceptability criterion is calculated using 

the formula in Eq. (7-6) to obtain Ac = 0.85. An appropriate acceptance threshold can then 

be determined by the regulatory agency or certification body, for instance Ac ≥ 0.9 may 

be the requirement for accepting the LE plan, depending on how safety-critical the 

industrial sector is (oil and gas or nuclear, for example). To achieve certification, 

therefore, the critical factors which have not been satisfied, namely explainability and 

third-party testing and verification in this case, must be revised and improved to a 

satisfactory level, such that the value of Ac meets or exceeds the minimum threshold. For 

instance, further improvements in the LE plan by subjecting it to a successful third-party 

verification, for the illustration given, will raise the Ac score to 0.95, which is greater than 

0.9, thus meeting acceptance and approval requirements. This demonstration, albeit 

simplistic, shows how flexibly the acceptability criterion can be applied and 

contextualized. Furthermore, its robustness property stems from its amenability to 

different levels of scrutiny, which may be at a high level, or very detailed. 

7.4.3 Additional comments and future work. 

The model proposed in this paper addresses LE decision-making, end-to-end, from a 

strictly data-driven perspective. Moreover, the dataset used to demonstrate the use of this 

model, which comprises run-to-failure data for a multi-unit system, similar to real-life 

assets, has not been used in the literature beyond just making RUL predictions. As such, 

there is no work in the literature to which direct comparison can be made to see how well 

the proposed model performs. Moreover, most decision-making models are unique, and, 

in the demonstration provided in this work, ground truth RUL values were available for 

the dataset used, which served as a guide to judge the timeliness for initiating LE plans 

for the units within the asset portfolio. 

For real-life assets, it will be interesting to see how the component-level HIs can be 

aggregated to subsystem or system-level HIs using Eq. (7-3), before eventually grouping 

units, and applying the model to determine suitable LE strategies. System level HIs were 
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not calculated in the case study because CM data for sub-components were not available 

and the units were considered to be independent homogeneous units. For a scenario where 

an equipment has different degradable sub-components and the data for each component 

is collected via sensors, and where each component has different lifetimes and required 

reliability levels, system-level HIs may be calculated based on the individual HIs for the 

sub-components. An LE scenario for such an equipment may involve applying the 

appropriate strategy, such as replacement or repair, to just one sub-component of the 

equipment, in order to improve the HI for the equipment and extend its overall useful life. 

Another area that will need to be assessed more critically is the determination of the 

various factors that can affect the alert time ta. A deterministic value of 20 cycles was 

used to demonstrate the application of the model, however, ta is stochastic in nature and 

its value can be influenced by factors such as whether the unit has redundancies, the 

specific part needed to implement the LE strategy, the availability of the part either as a 

warehouse item, as an off-the-shelf purchase or as a special-order part. Other factors that 

can influence the alert time include the specific LE strategy to be implemented, given that 

repair, replacement, or refurbishment times can vary. A deterministic alert time, like the 

one used in this work, will only work when the LE strategy is the same and all other 

conditions which may affect parts ordering and availability of engineers are assumed to 

be the same, which is hardly the case. Another inherent challenge with advanced analytics 

approaches to PHM is the availability of real-life run-to-failure data for the equipment. 

For real-life operational assets, a practical advanced analytics approach will involve using 

design data, a digital twin of the asset, and continuous online monitoring and PHM model 

updating. 

Knowledge retention and ageing workforce are well known challenges with conventional 

LE and later life operation of old assets. Data storage capabilities necessary for the use of 

advanced analytics approaches, along with the continuous monitoring and trending 

associated with it, provides a potential path towards solving the loss-of-knowledge 

conundrum. Such systems will have long usage histories, trends, and accompanying 

baseline and operations data for each monitored system, subsystem, or component, which 

can easily be recalled and analysed as required. The important aspect, from a staffing 

perspective, is that the advanced analytics-based PHM systems should be easily 
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interpretable by new staff with minimal training, and should have direct correlation to 

decision-making, as was demonstrated in this work. 

7.5 Conclusion 

This paper proposed a novel advanced analytics approach for asset life extension 

decision-making. At its core, the approach involved the integration of practices from 

reliability-centered maintenance (RCM) and data-driven prognostics and health 

management (PHM). This approach to LE decision-making, which considered LE as an 

ongoing activity during an asset’s operational lifetime, is more relevant to the present era 

of smart industrial systems and big data, as against conventional LE approaches that 

involve setting up a project team at the end of an asset’s overall design life. The proposed 

advanced analytics approach is more intuitive, as different equipment or units within an 

overall asset often have varying design lives and will thus benefit from a philosophy 

which views LE as an ongoing strategy, similar to operations and maintenance.  

The proposed approach focuses on the technical assessments that need to be made to 

justify LE. The process involved the prediction of health indices for each unit, grouping 

the units according to their health indices, focusing on units with low health indices, 

predicting their remaining useful life (RUL), and then making LE decisions based on 

uncertainty quantification and a key PHM metric known as alert time. A sample 

application case using a publicly available asset degradation dataset for multiple units 

showed that the integrated approach led to interpretable results and actionable outcomes, 

which would help ensure that the useful life of each unit on an asset was extended before 

it was due to fail – this will inevitably lead to the extension of the overall asset’s lifetime. 

An acceptability criterion, which was developed to aid regulatory agencies and 

certification bodies in approving LE plans, was also presented and its application was 

demonstrated. The acceptability criterion was designed to ensure that the critical aspects 

of an AI-enabled or advanced analytics-based PHM system are duly considered and 

satisfied. Satisfying such factors, which include safety, reliability, compliance with 

standards and regulations, ensuring interpretability, and so on, helps the asset owner 

demonstrate that the asset is able to meet the minimum safety and system health condition 

requirements during the LE phase, while continuing to deliver value to the owner, which 

is the ultimate aim of LE. 
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Chapter 8. Discussion: Research Findings, Implications and 

Suggestions for Future Work. 

8.1 Introduction 

A significant number of operational engineering assets are operating beyond their original 

design lives, while quite a large number are also fast approaching the end of their original 

design lives (Galbraith et al., 2005; Stacey, 2011; Shafiee & Animah, 2017). This is the 

case across many industrial sectors, such as oil and gas, wind energy, nuclear power 

generation, chemical industries, and some manufacturing plants. The typical design life 

of such assets is between 20 to 25 years (Nezamian et al., 2012; Luengo & Kolios, 2015; 

DNV-GL, 2016; Ersdal et al., 2018; Nielsen et al., 2019). While it is true that existing 

plants are ageing and reaching the ends of their design lives, an interesting evolution is 

also going on, where assets within an industrial plant are now interconnected in a cyber-

physical space, leading to the present era of Industry 4.0. As such, conventional ways of 

progressing engineering assets beyond their original design lives would need to change. 

This is the fundamental research gap that this PhD thesis sets out to address. In Chapter 

1, pertinent propositions were made on how to achieve this overall aim and close the 

research gap, leading to the formulation of five core research objectives, three of which 

involved demonstrating the feasibility of the methods and techniques proposed. 

The interconnectedness of engineering systems in a cyber-physical space, coupled with 

the advancement of sensor technologies, means that abundant data can now be collected 

from operational assets (Lee et al., 2013; Lee et al., 2018). Since these assets are complex, 

modelling how they can fail cannot be simplistically or analytically achieved as was the 

case with older assets. Determining how to extend the life of an asset necessarily involves 

making economic as well as technical justifications. This research dwells on some aspects 

of the technical justifications that need to be made, in the context of contemporary 

practice. The future direction of asset management and maintenance optimization 

involves making sense of the abundant data collected through monitoring devices. This 

research is a completely novel attempt at using advanced analytics techniques, primary 

involving artificial intelligence (AI) algorithms, to address the core aspects of asset life 

extension (LE). The overall findings show that conventional ways of implementing LE is 
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anachronistic, and an approach more relevant to modern day, as well as future assets, is 

proposed. 

8.2 Overview of key findings and intellectual contributions 

8.2.1 Research objectives and related novelties achieved 

In Chapter 2, a detailed review of the state-of-the-art was conducted. This review revealed 

some important areas that require novelty, including: 

i. A much-needed transition from just research on remaining useful life (RUL) 

predictions to actual usage and application of results on real-life assets. 

ii. Development of algorithms and techniques that incorporate uncertainty 

quantification in predictions and thus render RUL prediction results interpretable 

and more meaningful for use. 

iii. Proposal of a standards and regulations framework to govern the practice of asset 

optimisation and LE strategies that are based mostly on AI-enabled prognostic 

and health management (PHM) systems. 

iv. Identification of all the other soft issues that will enable actual implementation of 

the research findings, thus helping to make the leap from just research to actual 

implementation in fielded systems. 

The above areas requiring novelty were presented in a conference paper at the 2019 29th 

European Safety and Reliability Conference and the points resonated with the research 

community. The remaining part of the research was therefore dedicated to achieving all 

the additional objectives in order to close these gaps. 

The obvious challenge in a system with several pieces of disparate equipment under 

condition monitoring is how to identify those that need attention and prioritise them. In 

Chapter 5, this research gap was addressed through the development of a novel technique 

which combined machine learning algorithms (implemented on MATLAB) and practices 

from reliability-centered maintenance. This endeavour led to the development of a new 

health condition index called the potential failure interval factor (PFIF), which was shown 

to be a good indicator of the health states of assets. Using the PFIF and the machine 

learning algorithm developed, units or equipment on an assert were labelled as “healthy”, 

“good – no action”, “good – monitor” or “soon-to-fail”. As such, LE strategies were 
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devoted to the group labelled “good – monitor” and “soon-to-fail”. This part of the 

research directly addressed Objective 3 of the research, and a case study was used to 

demonstrate feasibility of the proposed technique. When the clustering results were 

benchmarked against the ground truth RUL for the units in the case study, it showed that 

the technique achieved upwards of 94% clustering “accuracy” (clustering accuracy, in 

this context, refers to placement of units with low RULs or low true PFIFs in the group 

“soon-to-fail” or “good – monitor”). 

Following the determination of the health states of each equipment on an asset, AI 

algorithms in the class of Bayesian Neural Networks (BNNs) were used to address RUL 

prediction under uncertainty (Chapter 6). The use of BNNs for uncertainty quantification 

in RUL prediction is at the frontier of the RUL prediction research space, and publications 

using similar algorithms for RUL predictions only started appearing in larger numbers in 

the literature from the year 2020. Using Python version 3.7, in TensorFlow with Keras 

(version 2.6.0)  and TensorFlow Probability (version 0.13.0), a novel BNN algorithm was 

built, the basis of which were established theoretical foundations of BNNs (Barber & 

Bishop, 1998; Blundell et al., 2015; Gal & Ghahramani, 2016a, 2016b, 2016c). The 

novelty of the study was the implicit modelling of aleatoric and epistemic uncertainty, 

which contrasted with other approaches that use heuristics in an attempt to incorporate 

uncertainty quantification in RUL prediction. Moreover, the predictions were directly 

applicable to the LE decision-making technique developed in Chapter 7 of this thesis, 

which has real-life implications for operational assets. 

Prior to closing the gap of achieving interpretable RUL predictions with uncertainty 

quantification, Chapter 4 had addressed the issues around how to evaluate performance 

(Objective 2) at the various stages of implementing an advanced analytics technique for 

LE. Key performance indicators (KPIs) for AI algorithm performance, PHM 

implementation, software system performance and hardware computational performance 

were identified. Most importantly, methods for defining user requirements were proposed 

and juxtaposed with the pros and cons of each metric or KPI. Not only did this help to 

determine a set of metrics used for this research (namely, alert time and Confidence 

Interval Coverage), it also gives a guide on how metric selection should be conducted. 

This research output directly addressed Objective 2 of the PhD research. 
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The meeting point of the entire research endeavour was in Chapter 7, where an advanced-

analytics approach for LE was proposed. This directly collated all the results from the 

previous chapters and put them together to address the overall aim of the research. As 

against conventional methods where an LE project team is set up at the end of an asset’s 

design life (Boutrot & Legregeois, 2015; Gibbs & Graf, 2014; Rashad, 2017), the 

proposed advanced analytics approach brings in the novelty of implementing LE as an 

on-going series of activities, similar to operation and maintenance (O&M). LE strategies 

are therefore implemented on a continuous basis, at the system, sub-system or component 

level and meshes seamlessly with O&M and maintenance optimization, albeit with the 

clear goal of extending the useful life of the overall asset. Of course, as is the practice for 

safety-critical assets, regulatory approval must be sought to extend operations beyond the 

original design life of an asset. Since this is a novel approach, the accompanying 

framework regarding the requirements for standards and regulations was developed and 

presented in Chapter 3.  

The important factors necessary for the adoption, approval, and implementation of an AI-

enabled LE framework were identified and discussed in detail. These factors include: 

safety; cyber-security; cost and benefits; flexibility; ethical considerations; 

trustworthiness; accuracy; interpretability; explainability; legal considerations; third-

party verification, validation and certification; compliance with sector-specific standards; 

and other best practices and additional requirements. To satisfy these requirements, a 

novel acceptability criterion for regulatory purposes was proposed at a conceptual level 

and its potential application was demonstrated in Chapter 3, thus addressing parts of 

Objective 5 of the PhD research. 

8.2.2 Summary of specific novelties and the potential impacts of research 

findings 

Table 8-1 presents a summary of the novelty of the research as it relates to each individual 

objective and the overall aim of the PhD research. Also presented in Table 8-1 are the 

potential real-life impacts of the research findings in terms of how they will influence 

some core practices in asset integrity and maintenance management, and ultimately, life 

extension. 
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Table 8-1 Mapping of research objective to novelty and potential impacts. 

Objective # Novelty Impact 

2. To establish the best set of 

prognostic performance 

measures, focusing on 

algorithm performance and life-

cycle asset maintenance 

improvements, specifically to 

help make optimal LE 

decisions. 

 Taxonomy developed for metrics used for performance 

evaluation in PHM. 

 Requirements and considerations for metric selection 

developed and proposed. 

 Identified relevant metrics for application in 

uncertainty quantification and for LE purposes, along 

with the limitation of each metric. 

 There is now a ready-made repertoire of metrics 

and KPIs for researchers and PHM practitioners 

to reference. 

 The metrics selection considerations are useful 

for new researchers or even experienced 

practitioners, thus ensuring that they can 

concentrate on the core tasks of RUL prediction 

and LE decision-making. 

3. To develop a data-driven 

technique which exploits AI 

algorithms to help identify and 

prioritise candidate equipment 

for LE. 

 Development of a novel health index called the 

potential failure interval factor (PFIF). 

 Technique for grouping assets based on health states 

using strictly condition monitoring data. 

 Identification of most vulnerable group of equipment 

on an asset or within a fleet at any given time instance. 

 Features engineering helps in identifying the 

most useful sensors. Thus, this research will help 

guide sensor placement prioritization to obtain 

optimal data for RUL prediction purposes. 

 Grouping of equipment according to their states 

of health will lead to optimisation of resources, 

as focus will be on the most vulnerable group. 

4. To develop, train and 

validate a prognostic 

algorithm/model for RUL 

prediction. 

 RUL prediction algorithm is developed which 

implicitly models aleatoric and epistemic uncertainties. 

 RUL predictions obtained as probability distributions 

rather than point estimates, hence provides a time 

range within which LE can be planned. 

 No explicit prior assumption about the distribution of 

RUL probability distribution (most other studies 

assume Normal distribution). Hence output estimates 

true posterior distribution as closely as possible. 

 The RUL results obtained provide room for a 

margin of error, rather than the overly confident 

point estimates that most methodologies 

produce. 

 With uncertainty quantification and Bayesian 

techniques, predictions become more confident 

with time and thus converge towards the true 

value, which is therefore helpful for end-of-life 

scenarios and LE applications. 
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Objective # Novelty Impact 

5. To develop strategies for 

using estimated RUL results to 

make LE decisions, within a 

defined standards and 

regulations framework, 

especially for safety-critical 

assets. 

 Novel advanced analytics approach for asset LE, rather 

than the conventional end-of-life project-based 

approach. Proposed approach uses data-driven 

methods, end-to-end, to achieve asset health 

management and LE decision-making. 

 Novel framework for regulations regime in AI-enabled 

PHM. Most efforts have been towards standards while 

attempts at regulations have mostly been from an 

ethical perspective, rather than technical. 

 Developed the Acceptability Criterion, Ac, which 

aggregates all the key factors important for regulatory 

approval and ensures that a minimum satisfactory 

threshold is met. 

 Capital outlays associated with LE projects will 

be minimised or fully eliminated. 

 Exploiting RUL predictions for LE decision-

making ensures that results from RUL 

predictions are continuously adapted to make 

them practically useful. 

 Clarity regarding regulatory requirements helps 

to accelerate adoption of new approaches and 

new technologies. The additional implication of 

this is that there will be much faster 

advancements in the field, provided that the 

regulations are flexible enough not to stifle 

additional research and development. 

Note: Objective 1, which addressed review of the state-of-the-art, was not captured in this table, hence the numbering from 2 to 5.
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8.2.3 Major limitations and challenges. 

The major challenge during this research was lack of access to data from real-life 

operational assets. The data used for the demonstration of the feasibility of the models 

and approaches proposed in this research was from simulations and experiments. During 

the course of the project, data was sought from the industry over a one-year period. The 

data that was eventually collected was four-years’ worth of vibration data from a 

compressor on an offshore gas compression platform.  However, the data was not useful 

for this research because it did not contain enough failure history as most failures recorded 

were from instrumentation or electronics and had negligible relevance to real degradation 

of mechanical or degradable components of the compressor. Consequently, after 

preliminary data exploration, the conclusion was reached that the data was insufficient to 

train an AI algorithm for RUL prediction. This experience underscored the finding from 

the review conducted in Chapter 2 about lack of availability or access to real-life 

operational data for AI algorithm development in PHM research. Future work should 

ensure that access to real-life data is explored. 

Furthermore, even if data from a real-life operational asset was available, data for high-

consequence low-probability events are scarce. As such, algorithms trained on only 

available data will not adapt to making good predictions around tail events that are not 

reflected or captured in the training data. Finding creative and realistic ways to get 

representative training data for such scenarios (which are typically critical incidents) is 

therefore essential and is an important area for additional research. 

8.3 Conclusion 

This research set out to investigate the possibility of developing techniques for 

prognostics and LE of operational engineering assets under condition monitoring. As 

opposed to the conventional way of implementing LE as an end-of-life project, one major 

conclusion of this research is that using advanced analytics techniques, LE can be 

implemented at the system, sub-system, and component level on an on-going basis, in a 

manner similar to O&M. The following are the key conclusions: 

i. There is a gap between the plethora of techniques available in the literature and 

the actual deployment of technologies for prognostics in the field. For this transition 
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to happen, our survey, which was conducted as part of this research, concludes that the 

critical areas of infrastructure integration (i.e., between old and new systems), cyber-

security, upskilling of existing manpower and the development of standards and 

regulations to guide the practice, must all be addressed. 

ii.  Based on asset condition monitoring data, equipment within a fleet or subsystems 

within a larger system can be grouped together for LE using health indices constructed 

from the sensor data collected from the individual equipment or subsystems. Such a 

data-driven approach is the most practical way of managing a large asset with disparate 

pieces of equipment, systems, or subsystems, in a cyber-physical space. 

iii. In the present era of smart systems and big data, and going into the future, life 

extension for engineering assets should be implemented as an on-going activity similar 

to O&M, rather than as a project at the end of an asset’s design life. The feasibility of 

the approach has been demonstrated by this PhD research. 

iv. The quantification of uncertainty in RUL prediction is important as it makes the 

results from prognostics more interpretable and useful to practitioners. Predicted RUL 

values along with uncertainty bounds or credible intervals give engineers a time frame 

within which a suitable LE strategy can be triggered before failure occurs. 

Deterministic RUL estimates do not provide uncertainty bounds and can thus be overly 

confident and error-prone in practical terms. 

v. Part of the technical requirements for LE involves obtaining regulatory approvals, 

especially for safety-critical systems. For engineering assets implementing AI-enabled 

PHM, the regulatory framework in most countries or regions is at a nascent stage. This 

research concluded that regulations must be flexible so as to develop and evolve with 

the practice of AI-based prognostics. Moreover, for regulatory agencies to grant 

approvals for adoption and implementation in fielded systems, a strict acceptability 

criterion should be followed, taking into consideration all the important factors in AI-

enabled prognostics such as safety, accuracy, cyber-security, interpretability, 

explainability, third-party verification and validation, and compliance with standards. 

vi. To ensure that prognostics results are practically useful, information about the 

alert time for each equipment, system or subsystem must also be available in addition 

to the data collected from operational assets for prognostics. The alert time, which is 
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unique for each equipment, specifies the minimum time needed to plan and take LE 

action to avoid failure for each equipment, system, or subsystem.  

8.4 Suggestions for future work 

In the course of the research and while collating the findings, the following challenges 

remain unaddressed and offer potentials for additional research. 

i. A more unified, standardised way of measuring performance of algorithms to 

ensure that prediction results lead to the selection of the right LE strategy. Unifying 

the varied array of metrics is a challenge for the PHM community. In specific terms, 

metrics for benchmarking the performance of BNNs, which account for uncertainty 

quantification, need to be researched further. This will enable the adoption of 

systematic approaches to performance measurement and benchmarking, especially 

with respect to the impact on the use of prediction results for LE decision-making. 

ii. Developing prognostics systems for new assets with no operational data  

remains a challenge, since operational data is fundamental to training algorithms and 

making RUL predictions. Attempts to surmount this challenge involve using design 

data and a digital twin of the asset to generate data and carry out continuous updates 

as the asset goes live into operations. This solution is still at its nascent stage and is an 

area for additional research. 

iii. A few proposals exist regarding how to aggregate component level health 

indices (HIs) to obtained system-level HI. In reality, such proposals are theoretical. It 

will be of interest to independently subject an entire system to system-level 

degradation or deterioration in performance, and, based on sensor readings and other 

condition monitoring data, compute system-level HI. The system-level HI can then be 

compared to the HI obtained by aggregating subsystem or component-level HIs. This 

is similar to calculating system-level reliability from component level reliability and 

will help verify if the formula proposed in the literature and given in this research as 

Eq. (7-3), is valid. Such a validation will be useful because by using the formula, 

system-level HI can be improved to a target level by focusing on improving the HIs 

for specific components is a systematic manner. 

iv. How to implement changes to a trained predictive algorithm after a significant 

asset upgrade or retrofitting is a challenge, since the algorithm would have been trained 
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using data from the old system configuration. Developing techniques to ensure that 

predictions continue to remain accurate under a scenario of an asset retrofit is an area 

that can be explored further. 

v. Reinforcement learning (RL) algorithms have not received that much attention 

in prognostics research. It will be interesting to see how learning agents and a reward 

system as applied in RL can be useful in ensuring that the system learns to make better 

predictions or LE strategy recommendations, based on the outcome of previous 

predictions or LE actions. 

vi. For this research, the grouping of equipment using the PFIF index was 

empirically tested on a homogenous fleet. It will be interesting to see how the 

methodology works for a heterogenous fleet, with several units under multiple, and 

varying, operational conditions in a more complex system. 

vii. The alert time for any given equipment can be affected by diverse factors, such 

as location of the asset, stock availability or even the LE strategy chosen for 

implementation. Rather than the fixed values used in this research to demonstrate the 

application of the alert time, further research can investigate how the stochasticity of 

the alert time affects LE decision-making. 

viii. Knowledge retention and ageing workforce were identified as known issues in 

conventional LE and later-life operation of ageing assets. Going forward into the era 

of smart systems and big data, it will be interesting to see how the advanced analytics 

approach presented in this research helps to address this problem. The potential 

solution lies in the data storage capabilities that come with an advanced analytics 

approach, since it requires historical operational data which are archived and trended 

for equipment condition assessment and RUL prediction. With such details of usage 

history and stored data, new employees with data analytics capabilities can easily call 

up such data, and with minimal training, and use the data to make predictions that 

should be interpretable for decision-making purposes. 
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APPENDICES 

Appendix A MATLAB Codes for Chapter 5 

A.1 Code for MATLAB function for importing train data 

function TrainFD001 = ImportTrainData(filename, dataLines) 

% IMPORTFILE Import data from a text file 

% TRAINFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME for the % default 

selection. Returns the data as a table. 

% TRAINFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row 

% interval(s)of text file FILENAME. Specify DATALINES as a positive scalar 

% integer or a N-by-2 array of positive scalar integers for dis-contiguous row % intervals. 

% Example: 

% TrainFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield 

% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\train_FD001.txt", [1, % Inf]); 

Input handling 

% If dataLines is not specified, define defaults 

if nargin < 2 

    dataLines = [1, Inf]; 

end 

Setup the Import Options and import the data 

opts = delimitedTextImportOptions("NumVariables", 26); 

 

% Specify range and delimiter 

opts.DataLines = dataLines; 

opts.Delimiter = " "; 

 

% Specify column names and types 

opts.VariableNames = ["unit_num", "time", "ops_set1", "ops_set2", "ops_set3", "sensor1", 

"sensor2", "sensor3", "sensor4", "sensor5", "sensor6", "sensor7", "sensor8", "sensor9", 

"sensor10", "sensor11", "sensor12", "sensor13", "sensor14", "sensor15", "sensor16", 

"sensor17", "sensor18", "sensor19", "sensor20", "sensor21"]; 

opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", "double", "double", 

"double", "double"]; 

 

% Specify file level properties 

opts.ExtraColumnsRule = "ignore"; 

opts.EmptyLineRule = "read"; 

opts.ConsecutiveDelimitersRule = "join"; 

opts.LeadingDelimitersRule = "ignore"; 

 

% Import the data 

TrainFD001 = readtable(filename, opts); 

end 
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A.2 Code for MATLAB function for importing test data 

function TestFD001 = ImportTestData(filename, dataLines) 

% IMPORTFILE Import data from a text file 
% TestFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME for the 
% default selection. Returns the data as a table. 
% TestFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row 
% interval(s)of text file FILENAME. Specify DATALINES as a positive scalar 
% integer or a N-by-2 array of positive scalar integers for dis-contiguous row % intervals. 

% Example: 
% TestFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield 
% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\test_FD001.txt", [1, 
% Inf]); 

Input handling 

% If dataLines is not specified, define defaults 
if nargin < 2 
    dataLines = [1, Inf]; 
end 

Setup the Import Options and import the data 

opts = delimitedTextImportOptions("NumVariables", 26); 
 
% Specify range and delimiter 
opts.DataLines = dataLines; 
opts.Delimiter = " "; 
 
% Specify column names and types 
opts.VariableNames = ["unit_num", "time", "ops_set1", "ops_set2", "ops_set3", "sensor1", 
"sensor2", "sensor3", "sensor4", "sensor5", "sensor6", "sensor7", "sensor8", "sensor9", 
"sensor10", "sensor11", "sensor12", "sensor13", "sensor14", "sensor15", "sensor16", 
"sensor17", "sensor18", "sensor19", "sensor20", "sensor21"]; 

opts.VariableTypes = ["double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double", "double", "double", "double", "double", "double", "double", "double", 
"double", "double"]; 
 
% Specify file level properties 
opts.ExtraColumnsRule = "ignore"; 
opts.EmptyLineRule = "read"; 
opts.ConsecutiveDelimitersRule = "join"; 
opts.LeadingDelimitersRule = "ignore"; 
 
% Import the data 
TestFD001 = readtable(filename, opts); 
end 
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A.3 Code for MATLAB function for importing ground truth RUL data 

function RULFD001 = importfile(filename, dataLines) 

% IMPORTFILE Import data from a text file 

% RULFD001 = IMPORTFILE(FILENAME) reads data from text file FILENAME 

% for the default selection.  Returns the data as a table. 

% 

% RULFD001 = IMPORTFILE(FILE, DATALINES) reads data for the specified row 

% interval(s) of text file FILENAME. Specify DATALINES as a positive scalar  

% integer or a N-by-2 array of positive scalar integers for dis-contiguous row 

% intervals. 

% 

% Example: 

% RULFD001 = importfile("C:\Users\s302504\OneDrive – Cranfield 

% University\Documents\MATLAB\Sunday Data\C-MAPSS Dataset\RUL_FD001.txt", [1, 

% Inf]); 

Input handling 

% If dataLines is not specified, define defaults 

if nargin < 2 

    dataLines = [1, Inf]; 

end 

Setup the Import Options and import the data 

opts = delimitedTextImportOptions("NumVariables", 1); 

 

% Specify range and delimiter 

opts.DataLines = dataLines; 

opts.Delimiter = " "; 

 

% Specify column names and types 

opts.VariableNames = ["RULFD001","unit_num"]; 

opts.VariableTypes = ["double", "double"]; 

 

% Specify file level properties 

opts.ExtraColumnsRule = "ignore"; 

opts.EmptyLineRule = "read"; 

opts.ConsecutiveDelimitersRule = "join"; 

opts.LeadingDelimitersRule = "ignore"; 

 

% Import the data 

RULFD001 = readtable(filename, opts); 

RULFD001.unit_num = [1:100]'; 

end 
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A.4 Code for MATLAB function for equipment prioritisation and 

grouping 

Data-based grouping of equipment within a fleet for life-extension. 

Load Data 

X = ImportTrainData("train_FD001.txt"); 

Calculate group statistics according to unit numbers 
Here, the “groupsummary” function is used to compute some features for the data (variance, 
standard deviation, mean and median). 

data4grpstats = X(:,:); 

data4grpstats.unit_num = categorical(data4grpstats.unit_num); 

groupstats = groupsummary(data4grpstats,"unit_num",["var","std","mean","median"]) 

groupstats = 100×102 table  

The group statistics show that the sensor readings across different unit numbers (i.e., pieces of 
equipment) are within similar ranges, some with the same mean, others with variance of 0. 

View variance for each unit number 

idxVar = strncmp([groupstats.Properties.VariableNames],'var_',4); 

unitVariances = groupstats(:,idxVar) 

unitVariances = 100×25 table  

Excluding var_time, which represents the number of cycles, statistics for the training data X, show 
that some of the variables have variances of 0. A careful look at the raw data shows that indeed, 
the values of some of these variables are constant while some show negligible variation. From a 
features engineering point of view, these variables will offer no useful insight into our data and 
will thus be discarded. 

Eliminate variables with negligible variances 
The dataset is reduced by eliminating variables with zero or near zero variances. 

tempUnitVar = table2array(unitVariances); 

idxZeroVar = tempUnitVar(:,2:end)>=0.0001; % 1st column is left out as it represents  

% time (number of cycles) 

idxZeroVar indexes the variables with variance below 0.0001, across all units. The variables to 
be included in the reduced data are extracted below. 

idxContinuousVariables = [1 1 idxZeroVar(1,:)]; % the columns representing unit number and 

% time are to be included in the extracted data 

idxContinuousVariables = logical(idxContinuousVariables); 

continuousVariables = (X.Properties.VariableNames(idxContinuousVariables)) 

continuousVariables = 1×16 cell 

'unit_num'    'time'       'sensor2'    'sensor3'    'sensor4'    

'sensor7'    ⋯ 
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The following variables have zero variances: "ops_set1", "ops_set2", "ops_set3", "sensor1", 
"sensor5", "sensor6", "sensor10", "sensor16", "sensor18", and  "sensor19." Eliminating these 
variables using the code below leaves a reduced data set, Xreduced. 

X_reduced = X(:,continuousVariables); 

Prepare data as an ensemble of data from each unit 

The code below extracts the data from each unit within the fleet and generates an ensemble of 
data, with each member of the ensemble being the reduced run-to-failure degradation data, 
Xi_reduced, for individual equipment. 

units = X_reduced{:,1}; 

ntunits = unique(units); 

Xi_reduced = cell(numel(ntunits),1); 

for i=1:numel(ntunits) 

    idxUnitNum = units == ntunits(i); 

    Xi_reduced{i} = X_reduced(idxUnitNum,:); 

end 

Normalize data for each unit 

The code below normalizes the reduced run-to-failure data for each unit via the standard z-score 
normalization: . 

X_reducedNorm = cell(length(Xi_reduced),1); 

for irow = 1:length(Xi_reduced) 

    forNorm = Xi_reduced{irow}; 

    forNorm = table2array(forNorm); 

    X = forNorm(:,3:end); 

    forNorm(:,3:end) = (X - mean(X))./std(X); 

    forNorm = array2table(forNorm,"VariableNames",continuousVariables); 

    X_reducedNorm{irow} = forNorm; 

end 

Visualize some of the data against time (i.e., number of cycles) 

% convert all the tables in X_clusterdata to arrays 

arrayX_reducedNorm = cell(length(X_reducedNorm),1); 

for unit = 1:length(arrayX_reducedNorm) 

    arrayX_reducedNorm{unit} = table2array(X_reducedNorm{unit}); 

    arrayX_reducedNorm{unit} = 

smoothdata(arrayX_reducedNorm{unit},1,"rlowess","SmoothingFactor",0.5); 

end 

 

%plot sensor data against time for selected units 

for unit = 1:2 %for the first 2 units 

    plot(arrayX_reducedNorm{unit}(:,2), arrayX_reducedNorm{unit}(:,3:end)); 

    hold on; 

    legend(continuousVariables(:,3:end),"Location","northeastoutside","FontSize",9); 

    xlabel("Time (in cycles)", "FontWeight","bold"); 

    ylabel("Normalised data (units 1 and 2)","FontWeight","bold"); 

    title("Normalised data against time"); 

end 

hold off 
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      Figure A-1 Plot of normalised sensor data for units 1 and 2 

The plot shows all 14 variables for 2 units. Two distinct patterns are observable, predominantly 
monotonically increasing and monotonically decreasing. Since the data is noisy, it is smoothed 
using the robust locally weighted scatterplot smoothing (RLOWESS) algorithm built into 
MATLAB. RLOWESS handles outliers well. 

Checking for trendability, monotonicity and prognosability of sensor variables. 

An important characteristic for features that indicates their usefulness for prognostics is 
trendability. Trendability values range from 0 to 1, with 0 being non-trendable and 1 being 
perfectly trendable. Fundamentally, trendability uses the feature engineering principle of 
eliminating strongly correlated features. 

% prepare data for use with trendability function 

data4trend = cell(length(arrayX_reducedNorm),1); 

for unit = 1:length(arrayX_reducedNorm) 

    data4trend{unit} = 

array2table(arrayX_reducedNorm{unit}(:,2:end),"VariableNames",continuousVariables(2:end)); 

end 

trend_values = trendability(data4trend,"time") 

trend_values = 1×14 table  

monot_values = monotonicity(data4trend,"time","method","sign") 

monot_values = 1×14 table  

prognos_values = prognosability(data4trend,"time") 

prognos_values = 1×14 table  
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Sort out and select the most trendable sensors. 

trendability(data4trend,"time") 

monotonicity(data4trend,"time","method","sign") 

prognosability(data4trend,"time") 

The plots clearly show four sensors with very low trendability values. The same four sensors 
(sensors 8, 9,13, and 14) have the lowest monotonicity and prognosability values. The values of 
the metrics can then be combined and the variables with the highest values extracted as the sensors 
with the best trendabilities. 

%add the values of the three metrics 

combined_values = table2array(trend_values) + table2array(monot_values) + 

table2array(trend_values); 

combined_values = array2table(combined_values, "VariableNames", 

trend_values.Properties.VariableNames) 

combined_values = 1×14 table  

  sensor2 sensor3 sensor4 sensor7 sensor8 sensor9 ⋯ 

1 2.3765 2.2736 2.5450 2.5141 1.5130 0.7695  

% visualise the combined values 

bar(table2array(combined_values), 0.6) 

xticks(1:14); 

xticklabels(combined_values.Properties.VariableNames); 

xtickangle(60); 

title("Combined values = Monotonicity + Trendability + Prognosability","FontSize",10) 

xlabel("Features"); 

ylabel("Combined values (or fitness)") 

 

Figure A-2 Plot of fitness values for 14 sensors 
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% Define criterion for exclusion, here selected sensors have combined values greater than 2.0   

% (out of a maximum of 3.0). Users may define their own criterion. For this work, all sensors  

% with combined values of 2.0 out of 3.0 actually have combined values above 2.5 out of 3.0. 

idxSelect = table2array(combined_values) > 2.0; 

select_sensors = combined_values.Properties.VariableNames(:,idxSelect) 

select_sensors = 1×10 cell 

'sensor2'    'sensor3'    'sensor4'    'sensor7'    'sensor11'    

'sensor12'   ⋯ 

Given the specified criterion, a total of 10 sensors (labelled 2, 3, 4, 7, 11, 12, 15, 17, 20 and 21) 
will be retained and fused to construct the health indices for the units. 

Visualize the data for the most trendable sensors selected 

Below is a code to plot the selected sensors for a selected number of units. 

%plot selected sensor data against time for some selected units 

idxSelect1 = [0 0 idxSelect]; %columns for 'unit number' and 'time' to 

% be left out of the columns of the normalized, reduced training data. 

idxSelect1 = logical(idxSelect1); 

for unit = 1:3 %for the first 3 units 

    plot(arrayX_reducedNorm{unit}(:,2), 

    arrayX_reducedNorm{unit}(:,idxSelect1)); 

    hold on; 

legend(continuousVariables(:,idxSelect1),"Location",… 

"northeastoutside","FontSize",9); 

    xlabel("Time (in cycles)"); 

    ylabel("Normalised sensor data"); 

    title("Normalised data against time (units 1, 2 and 3)"); 

end 

hold off 

 

Figure A-3 Plot of normalised data for 10 selected sensors for units 1, 2 and 3. 
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The plot shows that the selected sensors are trendable, showing continuous degradation, from an 
initial value. 

Reduce data to contain only selected features 

The code below extracts that data for the selected sensors and makes it ready for fusing, in order 
to construct the unified health indicator. 

idxSelect2 = [1 1 idxSelect1(:,3:end)]; %include the column for unit number and time in the  

% data 

idxSelect2 = logical(idxSelect2); 

X_clusterdata = cell(length(X_reducedNorm),1); 

for i = 1:length(X_clusterdata) 

    X_clusterdata{i} = X_reducedNorm{i}(:,idxSelect2); 

end 

Construct health indicator for the units - 3 stage division 

This section of the code will implement the fusing of the selected sensors to obtain a single 
degradation trend. Thereafter, the lifetime of each unit will be categorized into "healthy", "good 
" or "soon-to-fail." These health indices, which will be translated to timelines, normalized by the 
unit life (using an index called Potential Failure Interval Factor, PFIF) will then form the basis 
for clustering equipment for life-extension. 

The units will all be assumed as starting healthy and then progressively degrading until failure. 
As such, the health condition index will be assigned a value of 1 at the beginning and 0 at failure. 
Since the health condition index assignment is for the purpose of clustering the units into groups, 
a simplistic linear division of the health states is implemented below. 

Xi_clusterdata = cell(length(X_clusterdata),1); 

for i=1:length(X_clusterdata) 

    Xi_clusterdata{i} = X_clusterdata{i}; 

    PF_interval = max(Xi_clusterdata{i}.time) - Xi_clusterdata{i}.time; % compute  

% instantaneous P-F interval for each unit 

    PFIF = PF_interval/max(Xi_clusterdata{i}.time); %compute P-F interval factor by  

% normalising the P-F interval with the lifetime of each unit 

    Xi_clusterdata{i}.PFIF = PFIF; 

end 

The PF interval factor, PFIF, will then be used to categorize each unit at different stages of 
operation as either "healthy", "good" or "soon-to-fail" using the code below: 

for i = 1:length(Xi_clusterdata) 

    Xi_clusterdata{i}.health_condition = categorical(Xi_clusterdata{i}.PFIF); 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF > 0.75,:) = "healthy"; 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.75 & Xi_clusterdata{i}.PFIF 

> 0.45,:) = "good"; 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.45 ,:) = "soon-to-fail";  

end 

Construct health indicators for the units: 4-stage HS division. 

This section of the code will implement the fusing of the selected sensors to obtain a single 
degradation trend. Thereafter, the lifetime of each unit will be categorized into "healthy", "good 
- no action", "good - monitor" and "soon-to-fail." These health indices, which will be translated 
into timelines, normalized by the unit life (using the PFIF index), will then form the basis for 
clustering equipment for life-extension. 
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The units will all be assumed as starting healthy and then progressively degrading until failure. 
As such, the health condition index will be assigned a value of 1 at the beginning and 0 at failure. 
Since the health condition index assignment is for the purpose of clustering the unit into the four 
broad groups mentioned earlier, a simplistic linear division of the health states is implemented 
below. 

Xi_clusterdata = cell(length(X_clusterdata),1); 

for i=1:length(X_clusterdata) 

    Xi_clusterdata{i} = X_clusterdata{i}; 

    PF_interval = max(Xi_clusterdata{i}.time) - Xi_clusterdata{i}.time; % compute  

% instantaneous P-F interval for each unit 

    PFIF = PF_interval/max(Xi_clusterdata{i}.time); %compute P-F interval factor by  

% normalising the P-F interval with the lifetime of each unit 

    Xi_clusterdata{i}.PFIF = PFIF; 

end 

The PF interval factor, PF_intFactor, will then be used to categorize each unit at different stages 
of operation as either "healthy", "good - no action", "good - monitor" or "soon-to-fail" using the 
code below: 

for i = 1:length(Xi_clusterdata) 

    Xi_clusterdata{i}.health_condition = categorical(Xi_clusterdata{i}.PFIF); 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF > 0.75,:) = "healthy"; 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.75 & Xi_clusterdata{i}.PFIF 

> 0.5,:) = "good - no action"; 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.5 & Xi_clusterdata{i}.PFIF 

> 0.30,:) = "good - monitor"; 

    Xi_clusterdata{i}.health_condition(Xi_clusterdata{i}.PFIF <= 0.30 ,:) = "soon-to-fail";  

end 

Fit a regression model to data and fuse all selected sensors   

X_TrainUnwrap = vertcat(Xi_clusterdata{:}); 

mdlvars = continuousVariables(:,idxSelect1); 

X_mdl = X_TrainUnwrap{:,mdlvars}; 

y = X_TrainUnwrap.PFIF; 

mdl = fitrlinear(X_mdl,y,"Learner","leastsquares","Regularization","ridge","Solver","sgd"); 

bias = mdl.Bias %model bias 

bias = 0.5122 

weights = mdl.Beta %model coefficients 

weights = 10×1 

   -0.0324 
   -0.0081 
   -0.0467 
    0.0182 
   -0.0496 
    0.0268 
   -0.0012 
   -0.0212 
    0.0159 
    0.0284 

bias_optimal = (0.5052 + 0.4986)/2 %average of two good performing models 

bias_optimal = 0.5019 
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weights_optimal = ([-0.0466;-0.0248;-0.0546;0.0483;-0.0661;0.0548;-0.0428;-0.0114;0.0282; 

0.0384] + [-0.0133;-0.0150;-0.0397;0.0449;-0.0584;0.0599;-0.0302;-0.0262;0.0347;0.0354])/2 

%average of two good performing models 

weights_optimal = 10×1 

   -0.0300 
   -0.0199 
   -0.0471 
    0.0466 
   -0.0622 
    0.0573 
   -0.0365 
   -0.0188 
    0.0314 
    0.0369 

Fuse selected sensors into a single health indicator 

Using the fitted linear regression model, the selected sensors are all fused into a single degradation 
trajectory, serving as a single health state indicator, using the code below: 

% Fuse the data using model bias and weights 

Yi = cell(numel(Xi_clusterdata),1); 

for i = 1:length(Xi_clusterdata) 

    data_fuse = Xi_clusterdata{i}{:, mdlvars}; 

    YiRaw = bias_optimal + data_fuse*weights_optimal; 

    % Smooth the fused data with RLOWESS algorithm 

    Yi{i} = smoothdata(YiRaw,1,"rlowess","SmoothingFactor",0.5); 

    % Scale fused data to the range [0,1] 

    Yi{i} = (Yi{i} - min(Yi{1}))/(max(Yi{i})-min(Yi{i})); 

    % Offset the data to all start at 1 

    Yi{i} = Yi{i} + 1 - Yi{i}(1); 

end 

Visualize fused health indicator 

%plot the degradation trajectories for the units within the fleet 

for unit = 1:length(Yi) %for all the units within the fleet 

    plot(Xi_clusterdata{unit}{:,2}, Yi{unit}(:,1)); 

    ylabel("Condition indicator"); 

    xlabel("Time (in cycles)"); 

    title("Fused data (condition indicator) against time"); 

    hold on; 

end 

hold off 
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Figure A-4 Plot of condition indicators for all 100 units in the FD001 dataset. 

Import and prepare test data "test_FD001.txt" 

XTest = ImportTestData("test_FD001.txt");  %import test data for 100 units 

XTestReduced = XTest(:,continuousVariables); %reduce test data to only sensors with non-zero  

% variances convert reduced test data to an ensemble of data for each unit 

test_Units = XTestReduced{:,1}; 

ntest_Units = unique(test_Units); 

XTestReduced_i = cell(numel(ntest_Units),1); 

for i = 1:numel(ntest_Units) 

    idxtUnitNum = test_Units == ntest_Units(i); 

    XTestReduced_i{i} = XTestReduced(idxtUnitNum,:); 

end 

 

% normalize test data 

XTestclusterdata_i = cell(length(XTestReduced_i),1); 

for irowtest = 1:length(XTestReduced_i) 

    forNormtest = XTestReduced_i{irowtest}; 

    forNormtest = table2array(forNormtest); 

    Xt = forNormtest(:,3:end); 

    forNormtest(:,3:end) = (Xt - mean(Xt))./std(Xt); 

    forNormtest(:,3:end) = smoothdata(forNormtest(:,3:end),1,"rlowess","SmoothingFactor",0.5); 

%smooth normalized test data as done with normalised train data 

    forNormtest = array2table(forNormtest,"VariableNames",continuousVariables); 

    XTestclusterdata_i{irowtest} = forNormtest; 

end 

Train test data using developed model to obtain health indices. 

% make prediction of health indices for test data using trained linear model 

X_TestUnwrap = vertcat(XTestclusterdata_i{:}); 

X_Test = X_TestUnwrap{:,mdlvars}; 
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yPredRaw = bias_optimal + X_Test*weights_optimal; % predict output add predicted indices as a 

% column to test data (as PFIF) 

X_TestUpdated = X_Test; 

X_TestUpdated = array2table(X_TestUpdated,"VariableNames",mdlvars); 

X_TestUpdated.predPFIF = yPredRaw; 

 

% add unit number and time variables to updated test data with health indices 

X_TestUpdated.unit_num = XTest.unit_num; 

X_TestUpdated.time = XTest.time; 

 

% reorder columns 

X_TestUpdated = movevars(X_TestUpdated, 'unit_num', 'Before', 'sensor2'); 

X_TestUpdated = movevars(X_TestUpdated, 'time', 'Before', 'sensor2'); 

Extract the "present" condition for each unit using the maximum time value. 

% convert test data updated with condition indicator into an ensemble of data for each unit. 

final_units = X_TestUpdated{:,1}; 

nfinal_units = unique(final_units); 

data4groups = cell(numel(nfinal_units),1); 

for i = 1:numel(nfinal_units) 

    idxunits4goups = final_units == i; 

    data4groups{i} = X_TestUpdated(idxunits4goups,:); 

end 

%offset predicted health index to match health indicator earlier contructed. Also smooth the  

% fused data 

for i = 1:length(data4groups) 

   data4groups{i}.predPFIF = movmean(data4groups{i}.predPFIF, [15 15]); 

   data4groups{i}.predPFIF = 

smoothdata(data4groups{i}.predPFIF,1,"rlowess","SmoothingFactor",0.5); 

 

    % Offset the data to 1 

   data4groups{i}.predPFIF = data4groups{i}.predPFIF + 1 - data4groups{i}.predPFIF(1); 

end 

% view the predicted health indicator trajectories 

for unit = 1:20 % length(data4groups) %for the first 20 units 

    plot(data4groups{unit}.time, data4groups{unit}.predPFIF, "-"); 

    hold on 

end 

xlim([0,350]) 

ylabel("Condition indicator"); 

xlabel("Time (in cycles)"); 

title("Predicted degradation trajectory/health indicator"); 

hold off 
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Figure A-5 Predicted health index degradation trajectory for units 1 to 20. 

%extract PF interval factor at present time for each unit 

Yi_groups = cell(numel(nfinal_units),1); 

for i = 1:numel(nfinal_units) 

    [t_max,idxT_cluster] = max(data4groups{i}.time); 

    Yi_groups{i}.VariableNames = ["unit_num", "predPFIF"]; 

    Yi_groups{i} = data4groups{i}(idxT_cluster,Yi_groups{i}.VariableNames); 

end 

Visualize predicted condition indicator for test data alongside true RUL values 

unit_health = vertcat(Yi_groups{:}); 

plot(unit_health.unit_num, unit_health.predPFIF,"--","Color","r") 

xlim([0.0 110.0]); 

ylim([-0.2 1.2]); 

trueRUL = ImportRULFD001("RUL_FD001.txt"); 

% extract the values of time at which the test data terminates for each unit 

t_i = cell(length(XTestclusterdata_i),1); 

for i = 1:length(XTestclusterdata_i) 

    t_i{i} = max(XTestclusterdata_i{i}.time); 

end 

t_i = vertcat(t_i{:}); 

 

%calculate actual PFIF using the true RUL values 

truePF_interval = trueRUL.RULFD001; 

truePFIF = truePF_interval./(trueRUL.RULFD001 + t_i); 

 

% normalize true PFIF values to the range [0, 1] for scale-independent comparison with the 

% predicted PFIF values 

trueRUL.truePFIFn = (truePFIF - min(truePFIF))./(max(truePFIF) - min(truePFIF)); 

hold on 

plot(trueRUL.unit_num,trueRUL.truePFIFn,"-","Color","g") 

xlabel("Unit Number"); 
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ylabel("Condition Indicator / Normalized True PFIF"); 

legend("Predicted PFIF","Normalized True PFIF", "Location","best") 

hold off 

 

Figure A-6 Plot comparing scaled true PFIF to predicted PFIF for all 100 units. 

Both plots on the same chart show that the predicted condition indicator (i.e., PFIF) very closely 
matches the normalized ground truth RUL values. This shows that the proposed index, the PFIF, 
is indeed a good indicator of the health state of the units. 

A.4.1 Assign health state to each unit based on extracted present health 

indicator – 3 stage division 

Each unit is assigned a health condition as either "healthy", "good", or "soon-to-fail" based on the 
predicted PF interval factor, which is essentially the health indicator. The assignment is performed 
in a linear manner since the PF interval factor is not scale-dependent and already factors in the 
variability in the total lifetimes for each unit. The assignment for the purpose of this work (for 
PFIF ranging from 0 to around 1) is:  

above 0.75: "healthy";  

above 0.45 up to 0.75: "good";  

0.45 and below: "soon-to-fail." 

unit_health.health_condition = categorical(unit_health.predPFIF); 

idx_healthy = unit_health.predPFIF > 0.75; 

unit_health.health_condition(idx_healthy,:) = "healthy"; 

idx_good = unit_health.predPFIF <= 0.75 & unit_health.predPFIF > 0.45; 

unit_health.health_condition(idx_good,:) = "good"; 

idx_soontf = unit_health.predPFIF <= 0.45; 

unit_health.health_condition(idx_soontf,:) = "soon-to-fail"; 
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%add trueRUL values for easy comparison of health state assignment 

unit_health.trueRUL = trueRUL.RULFD001; 

unit_health.truePFIFn = trueRUL.truePFIFn; 

 

Healthy = unit_health(idx_healthy,:) 

Healthy = 29×5 table  

Good = unit_health(idx_good,:) 

Good = 31×5 table  

Soon_to_fail = unit_health(idx_soontf,:) 

Soon_to_fail = 40×5 table  

Run k-means clustering to obtain clusters of units – 3 stage division  

% extract present values of normalised test data for possible clustering 

XTestdata4kmeans = cell(length(XTestclusterdata_i),1); 

for i = 1:length(XTestclusterdata_i) 

    XTestdata4kmeans{i} = XTestclusterdata_i{i}(end,:); 

end 

XTestdata4kmeans = vertcat(XTestdata4kmeans{:}); 

[idxKmeansUnits, Cs] = kmeans(table2array(XTestdata4kmeans(:,mdlvars)),3,"display","final", 

"distance","sqeuclidean","MaxIter", 100,"Replicates",10); 

 

%check the intra-cluster similarity levels for each cluster using the silhouette function 

silhouette(table2array(XTestdata4kmeans(:,mdlvars)),idxKmeansUnits) 

 

Figure A-7 Silhouette plot showing similarity between the sensor data for the 100 units 
clustered into 3 groups using k-means clustering. 

Compare k-means clustering results to result from linear model – 3 stage division 
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% extract cluster members 

Group1  = unit_health(idxKmeansUnits==1,:) 

Group1 = 41×5 table  

Group2  = unit_health(idxKmeansUnits==2,:) 

Group2 = 32×5 table  

Group3  = unit_health(idxKmeansUnits==3,:) 

Group3 = 27×5 table  

A.4.2 Assign health state to each unit based on extracted present health 

indicator – 4 stage division 

Each unit is assigned a health condition as either "healthy", "good - no action", "good - monitor", 
"soon-to-fail" based on the predicted PF interval factor, which is essentially the health indicator. 
The assignment is performed in a linear manner since the PF interval factor is not scale-dependent 
and already factors in the variability in the total lifetimes for each unit. The assignment for the 
purpose of this work (for PFIF ranging from 0 to around 1) is:  

above 0.75: "healthy";  

above 0.50 up to 0.75: "good - no action";  

above 0.30 up to 0.50: "good - monitor"; 

0.30 and below: "soon-to-fail". 

unit_health.health_condition = categorical(unit_health.predPFIF); 

idx_healthy = unit_health.predPFIF > 0.75; 

unit_health.health_condition(idx_healthy,:) = "healthy"; 

idx_goodna = unit_health.predPFIF <= 0.75 & unit_health.predPFIF > 0.5; 

unit_health.health_condition(idx_goodna,:) = "good - no action"; 

idx_goodmo = unit_health.predPFIF <= 0.5 & unit_health.predPFIF > 0.30; 

unit_health.health_condition(idx_goodmo,:) = "good - monitor"; 

idx_soontf = unit_health.predPFIF <= 0.30; 

unit_health.health_condition(idx_soontf,:) = "soon-to-fail"; 

 

%add trueRUL values for easy comparison of health state assignment 

unit_health.trueRUL = trueRUL.RULFD001; 

unit_health.truePFIFn = trueRUL.truePFIFn; 

 

Healthy = unit_health(idx_healthy,:) 

Healthy = 31×6 table  

Good_no_action = unit_health(idx_goodna,:) 

Good_no_action = 31×6 table  

Good_monitor = unit_health(idx_goodmo,:) 

Good_monitor = 19×6 table  

Soon_to_fail = unit_health(idx_soontf,:) 

Soon_to_fail = 19×6 table  

Run k-means clustering to obtain clusters of units – 4 stage division 

% extract present values of normalised test data for possible clustering 

XTestdata4kmeans = cell(length(XTestclusterdata_i),1); 
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for i = 1:length(XTestclusterdata_i) 

    XTestdata4kmeans{i} = XTestclusterdata_i{i}(end,:); 

end 

XTestdata4kmeans = vertcat(XTestdata4kmeans{:}); 

[idxKmeansUnits, Cs] = kmeans(table2array(XTestdata4kmeans(:,mdlvars)),4,"display","final", 

"distance","sqeuclidean","MaxIter", 100,"Replicates",10); 

 

%check intra-cluster similarity of cluster members using the silhouette function 

silhouette(table2array(XTestdata4kmeans(:,mdlvars)),idxKmeansUnits) 

 

Figure A-8 Silhouette plot showing similarity between the sensor data for the 100 units 
clustered into 4 groups using k-means clustering. 

Compare k-means clustering results to result from linear model 

% extract cluster members 

Group1  = unit_health(idxKmeansUnits==1,:) 

Group1 = 25×6 table  

Group2  = unit_health(idxKmeansUnits==2,:) 

Group2 = 32×6 table  

Group3  = unit_health(idxKmeansUnits==3,:) 

Group3 = 23×6 table  

Group4  = unit_health(idxKmeansUnits==4,:) 

Group4 = 20×6 table  
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Appendix B Codes for Chapter 6 - RUL prediction using BNN 

B.1 MATLAB code for data pre-processing 

Processing FD001 data for use in RUL prediction using BNN 

Load Data 
The MATLAB functions for importing the train and test data, which were defined in Appendix 
A.1 and Appendix A.2 respectively, will be used here (with some slight variations) to import the 
FD001 train and test data for subsequent pre-processing. 

X = ImportTrainData("train_FD001.txt"); 

Group statistics according to unit numbers 
Here, the “groupsummary” function is used to compute some features for the data (variance, 
standard deviation, mean and median). 

data4grpstats = X(:,:); 

data4grpstats.unit_num = categorical(data4grpstats.unit_num); 

groupstats = groupsummary(data4grpstats,"unit_num",["var","std","mean","median"]) 

The group stats show that the sensor readings across different unit numbers (i.e., pieces of 
equipment) are within similar ranges, some with the same mean, others with variance of 0. 

View variance for each unit number 

idxVar = strncmp([groupstats.Properties.VariableNames],'var_',4); 

unitVariances = groupstats(:,idxVar) 

Excluding var_time which represents the number of cycles, statistics for the training data X, show 
that some of the variables have variances of 0. A careful look at the raw data shows that indeed, 
the values of some these variables are constant while some show negligible variation. From a 
features engineering point of view, these variables will offer no useful insight into our data and 
will thus be discarded. 

Eliminate variables with negligible variances 
The data set is reduced by eliminating variables with zero or near zero variances. 

tempUnitVar = table2array(unitVariances); 

idxZeroVar = tempUnitVar(:,2:end)>=0.0001; % 1st column is left out as it represents  

% time (number of cycles) 

idxZeroVar indexes the variables with variance below 0.0001, across all units. The variables to 
be included in the reduced data are extracted below. 

idxContinuousVariables = [1 1 idxZeroVar(1,:)]; % the columns representing unit number  

% and time are to be included in the extracted data 

idxContinuousVariables = logical(idxContinuousVariables); 

continuousVariables = (X.Properties.VariableNames(idxContinuousVariables)) 

continuousVariables = 1×16 cell 

'unit_num'    'time'       's_2'        's_3'        's_4'        

's_7'        ⋯ 
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The following variables have zero variances: "ops_set1", "ops_set2", "ops_set3", "sensor1", 
"sensor5", "sensor6", "sensor10", "sensor16", "sensor18", and  "sensor19." Eliminating these 
variables using the code below leaves a reduced data set, Xreduced. 

X_reduced = X(:,continuousVariables); 

Prepare train data as an ensemble of data from each unit 
The code below extracts the data from each unit within the fleet and generates an ensemble of 
data, with each member of the ensemble being the reduced run-to-failure degradation data, 
Xi,reduced, for individual equipment. 

units = X_reduced{:,1}; 
ntunits = unique(units); 
Xi_reduced = cell(numel(ntunits),1); 
for i=1:numel(ntunits) 
    idxUnitNum = units == ntunits(i); 
    Xi_reduced{i} = X_reduced(idxUnitNum,:); 
end 

Import and prepare test data "test_FD001.txt" 

XTest = ImportTestData("test_FD001.txt");  % import test data for 100 units 

XTestReduced = XTest(:,continuousVariables); % reduce test data to only sensors with non-zero 

% variances 

 

% convert reduced test data to an ensemble of data for each unit 

test_Units = XTestReduced{:,1}; 

ntest_Units = unique(test_Units); 

XTestReduced_i = cell(numel(ntest_Units),1); 

for i = 1:numel(ntest_Units) 

    idxtUnitNum = test_Units == ntest_Units(i); 

    XTestReduced_i{i} = XTestReduced(idxtUnitNum,:); 

end 

Scale train and test data for each unit using min-max scaler 

The code below scales the reduced run-to-failure data for each unit using:  

X_std = (X - min(X_train))/(max(X_train) - min(X_train)) 

X_scaled = X_std * (max - min) + min, where max=1 and min=0 for scaling in the range [0,1].  

For the test data, the stored min(X_train) and max(X_train) values are used to scale the 
corresponding column (or sensor) values in the test data. 

Xtrain_reduced_scaled = cell(length(Xi_reduced),1); 

Xtest_reduced_scaled = cell(length(XTestReduced_i),1); 

for irow = 1:length(Xi_reduced) 

    train_for_scaling = Xi_reduced{irow}; 

    X_train = table2array(train_for_scaling(:,3:end)); 

    X_train_min = min(X_train); 

    X_train_max = max(X_train); 

    max_for_scaling = 1; 

    min_for_scaling = 0; 

    X_train = ((X_train - X_train_min)./(X_train_max - X_train_min))*(max_for_scaling-

min_for_scaling)+min_for_scaling; 

    X_train = array2table(X_train,"VariableNames",continuousVariables(:,3:end)); 

    train_for_scaling(:,3:end) = X_train; 

    Xtrain_reduced_scaled{irow} = train_for_scaling; 
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    % scale test data 

    test_for_scaling = XTestReduced_i{irow}; 

    X_test = table2array(test_for_scaling(:,3:end)); 

    X_test = ((X_test - X_train_min)./(X_train_max - X_train_min))*(max_for_scaling-

min_for_scaling)+min_for_scaling; % stored values of min(X_train) and max(X_train) are used 

    X_test = array2table(X_test,"VariableNames",continuousVariables(:,3:end)); 

    test_for_scaling(:,3:end) = X_test; 

    Xtest_reduced_scaled{irow} = test_for_scaling; 

end 

Visualize some of the train data against time (i.e., number of cycles) 

% convert all the tables in train data to arrays, smooth data using RLOWESS algorithm, and  

% visualise  

Xtrain_reduced_scaled_smoothed = cell(length(Xtrain_reduced_scaled),1); 

for unit = 1:length(Xtrain_reduced_scaled) 

    Xtrain_reduced_scaled_smoothed{unit} = Xtrain_reduced_scaled{unit}; 

    train_for_smoothing = table2array(Xtrain_reduced_scaled{unit}(:,3:end)); 

    train_for_smoothing = smoothdata(train_for_smoothing,1,"rlowess","SmoothingFactor",0.8); 

    Xtrain_reduced_scaled_smoothed{unit}(:,3:end) = 

array2table(train_for_smoothing,"VariableNames",continuousVariables(:,3:end)); 

end 

 

%plot sensor data against time for units 5 and 12 for the first 2 units 

plot(Xtrain_reduced_scaled_smoothed{5}.time, 

table2array(Xtrain_reduced_scaled_smoothed{5}(:,3:end))); 

hold on; 

plot(Xtrain_reduced_scaled_smoothed{12}.time, 

table2array(Xtrain_reduced_scaled_smoothed{12}(:,3:end))); 

legend(continuousVariables(:,3:end),"Location","northeastoutside","FontSize",9, 

"Interpreter","none"); 

xlabel("Time (in cycles)", "FontWeight","bold"); 

ylabel("Smoothed scaled data (units 5 and 12)","FontWeight","bold"); 

title("Plot of smoothed scaled data against time"); 

grid on 

hold off 

 

Figure B-1 Plot of scaled and smoother data for 14 sensors for sample units (units 5 and 12) 
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Plot shows all 14 variables for 2 units. Two distinct patterns are observable, predominantly 
monotonically increasing and monotonically decreasing. To reduce noise in the data, it was 
smoothed using the robust locally weighted scatterplot smoothing (RLOWESS) algorithm built 
into MATLAB. RLOWESS handles outliers well. 

Note that here, the “smoothing factor” is set to 0.8, as against 0.5 used in the previous data pre-
processing conducted for the study in Chapter 5. A higher “smoothing factor” produces better 
trends, which helps with yielding better predictive performance on models trained with the 
smoother data. 

Smooth the test data using the same algorithm 

% convert all the tables in test data to arrays and smooth data using RLOWESS algorithm  

Xtest_reduced_scaled_smoothed = cell(length(Xtest_reduced_scaled),1); 

for unit = 1:length(Xtest_reduced_scaled) 

    Xtest_reduced_scaled_smoothed{unit} = Xtest_reduced_scaled{unit}; 

    test_for_smoothing = table2array(Xtest_reduced_scaled{unit}(:,3:end)); 

    test_for_smoothing = smoothdata(test_for_smoothing,1,"rlowess","SmoothingFactor",0.8); 

    Xtest_reduced_scaled_smoothed{unit}(:,3:end) = 

array2table(test_for_smoothing,"VariableNames",continuousVariables(:,3:end)); 

end 

Checking for trendability, monotonicity and prognosability of sensor variables. 
An important characteristic for features that indicates their usefulness for prognostics is 
trendability. Trendability values range from 0 to 1, with 0 being non-trendable and 1 being 
perfectly trendable. Fundamentally, trendability uses the feature engineering principle of 
eliminating strongly correlated features. 

% prepare data for use with trendability function 

data4trend = cell(length(Xtrain_reduced_scaled_smoothed),1); 

for unit = 1:length(Xtrain_reduced_scaled_smoothed) 

    data4trend{unit} = Xtrain_reduced_scaled_smoothed{unit}(:,2:end); 

end 

trendability_values = trendability(data4trend,"time") 

monotonicity_values = monotonicity(data4trend,"time","method","sign") 

prognosability_values = prognosability(data4trend,"time") 

Sort out and select the most trendable sensors. 

trendability(data4trend,"time") 

monotonicity(data4trend,"time","method","sign") 

prognosability(data4trend,"time") 

The values of the metrics can then be combined and the variables with the highest values extracted 
as the sensors containing the most prognostic information. 

%add the values of the three metrics 

fitness = table2array(trendability_values) + table2array(monotonicity_values) + 

table2array(trendability_values); 

fitness = array2table(fitness, "VariableNames", trendability_values.Properties.VariableNames) 

fitness = 1×14 table 

s_2 s_3 s_4 s_7 s_8 s_9 s_11 s_12 s_13 s_14 s_15 s_17 s_20 s_21 

2.8052 2.7805 2.8290 2.8386 2.0424 0.9675 2.8735 2.8852 2.0906 0.9558 2.8153 2.7973 2.8724 2.7854 
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% visualise the combined values 

bar(table2array(fitness), 0.6); 

xticks(1:14); 

xticklabels(fitness.Properties.VariableNames); 

xtickangle(60); 

title("Fitness = Monotonicity + Trendability + Prognosability","FontSize",10, 

"Interpreter","none"); 

xlabel("Features"); 

ylabel("Fitness"); 

 

Figure B-2 Plot of fitness values for 14 sensors 

%Define criterion for exclusion, here selected sensors have combined values greater than 2.5  

% (out of a maximum of 3.0). Users may define their own criterion. 

idx_select = table2array(fitness) > 2.0; 

selected_sensors = fitness.Properties.VariableNames(:,idx_select) 

selected_sensors = 1×12 cell 

's_2' 's_3' 's_4' 's_7' 's_8' 's_11' 's_12' 's_13' 's_15' 's_17' 's_20'        

Given the specified criterion, a total of 12 sensors (labelled 2, 3, 4, 7, 8, 11, 12, 13, 15, 17, 20 and 
21) will be retained and used for further model development. 

Visualize the data for the most trendable sensors selected 

Below is a code to plot the selected sensors for a selected number of units. 

% plot selected sensor data against time for some selected units 

idx_select1 = [0 0 idx_select]; %columns for 'unit number' and 'time' to be left out of the 

% columns of the normalized, reduced training data. 

idx_select1 = logical(idx_select1); 

 

%for the first 2 units 

plot(Xtrain_reduced_scaled_smoothed{5}.time, 

table2array(Xtrain_reduced_scaled_smoothed{5}(:,idx_select1))); 

hold on; 

plot(Xtrain_reduced_scaled_smoothed{12}.time, 

table2array(Xtrain_reduced_scaled_smoothed{12}(:,idx_select1))); 
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hold on; 

legend(continuousVariables(:,idx_select1),"Location","northeastoutside","FontSize",9, 

"Interpreter","none"); 

xlabel("Time (in cycles)"); 

ylabel("Smoothed scaled sensor data"); 

title("Plot of smoothed scaled training data (units 5 and 12)", "FontSize",9); 

grid on 

hold off 

 

Figure B-3 Plot of scaled and smoothed data for 12 selected sensors for sample units (units 
5 and 12) 

The plot shows that the selected sensors are trendable, showing continuous degradation, from an 
initial value. For this study, 12 sensors were selected with fitness values greater than or equal to 
2, as against 10 sensors selected for the study in Chapter 5. This was due to the adjustment in the 
smoothing factor from 0.5 to 0.8. 

Reduce data to now contain only values for selected features 

The code below extracts that data for the selected sensors and makes it ready for use fusing, in 
order to construct the unified health indicator. 

idx_select2 = [1 1 idx_select1(:,3:end)]; %include the column for unit number and time in the 

data 

idx_select2 = logical(idx_select2); 

train_FD001_scaled_smoothed = cell(length(Xtrain_reduced_scaled_smoothed),1); 

test_FD001_scaled_smoothed = cell(length(Xtest_reduced_scaled_smoothed),1); 

for i = 1:length(Xtrain_reduced_scaled_smoothed) 

    train_FD001_scaled_smoothed{i} = Xtrain_reduced_scaled_smoothed{i}(:,idx_select2); 

    test_FD001_scaled_smoothed{i} = Xtest_reduced_scaled_smoothed{i}(:,idx_select2); 

end 

Unwrap and save processed data for use in further model development 

% Unwrap processed data 
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train_FD001_processed = vertcat(train_FD001_scaled_smoothed{:}); 

test_FD001_processed = vertcat(test_FD001_scaled_smoothed{:}); 

 

% Save files for usage 

writematrix(table2array(train_FD001_processed),'train_FD001_pre-

processed.txt','Delimiter','tab'); 

writematrix(table2array(test_FD001_processed),'test_FD001_pre-

processed.txt','Delimiter','tab'); 
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B.2 Code for RUL prediction on TensorFlow 

Uncertainty Quantification in RUL Prediction Using Bayesian Neural 
Networks 

B.2.1 Introduction 

A deep Bayesian Neural Network (deep BNN) is implemented using the Monte Carlo dropout 

approach, applied on the NASA C-MAPSS dataset FD001. 

Dataset FD001 comprises run-to failure data or trajectories for 100 engine units, operating under 

similar operational conditions. There are 26 columns in the dataset, column 1 represents the unit 

number, column 2 represents the time in cycles, columns 3, 4 and 5 represent operational settings, 

while columns 6 to 26 represent sensor readings for 21 different sensors. The sensor readings will 

be explored to predict the RUL for each engine unit. 

Import libraries 

Here, some of the required libraries are imported and the random seed is set for reproducibility of 

results. This code was run on subscription version of Google Colab, in order to access the 

computing resources the platform provides, particularly the GPUs for faster running of the 

algorithms. 

In [1]: 
try: #If running in colab  
    import google.colab 
    IN_COLAB = True  
    %tensorflow_version 2.x 
except: 
    IN_COLAB = False 
  
import tensorflow as tf 
if (not tf.__version__.startswith('2')): #Checking if tf 2.0 is installed 
 print('Please install tensorflow 2.0 to run this notebook') 
 print('Tensorflow version: ',tf.__version__, ' running in colab?: ', IN_COLAB
) 

Tensorflow version:  2.6.0  running in colab?:  True 

In [2]: 
%%capture     
# %%capture suppresses installation output 
!pip install tensorflow_probability 

In [3]: 
import matplotlib.pyplot as plt 
import numpy as np 
from tqdm.notebook import tqdm 
import urllib.request 
import tensorflow_probability as tfp 
  
%matplotlib inline 
plt.style.use('default') 
  
tfd = tfp.distributions 
tfb = tfp.bijectors 
print("TFP Version", tfp.__version__) 
print("TF  Version", tf.__version__) 
TFP Version 0.13.0 
TF  Version 2.6.0 

In [4]: 
# Use seaborn for pairplot 
!pip install -q seaborn 
  
%matplotlib inline 
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import os 
seed_value = 42 
os.environ['PYTHONHASHSEED']=str(seed_value) 
 
# Import more libraries and dependencies 
import pandas as pd 
import numpy as np 
import random 
import matplotlib.pyplot as plt 
import seaborn as sns; sns.set() 
  
sns.set_palette(palette='deep') 
sns_c = sns.color_palette(palette='deep') 
  
import tensorflow as tf 
from tensorflow import keras 
from tensorflow.keras import layers, Sequential 
from tensorflow.keras.layers import Dense, Dropout, Masking, TimeDistributed 
from sklearn.model_selection import GroupShuffleSplit 
 
# Make numpy printouts easier to read. 
np.set_printoptions(precision=4, suppress=True) 
random.seed(seed_value) 
np.random.seed(seed_value) 
tf.random.set_seed(seed_value) 

In [5]: 

 
Note that all file paths need to be edited to a valid path for the code to run. 
The codes and associated files for this study were run from a Google drive location and outputs 
were written to the same Google drive location. 
 
# mount google drive to access location of data 

from google.colab import drive 

drive.mount('/content/drive') 

Mounted at /content/drive 

B.2.2 Load data 

In the following code, the FD001 data, which had been pre-processed on MATLAB and the 

informative features selected, is uploaded from its location and variable names were assigned to 

the various columns of the data, indicating the unit numbers and the sensor readings for the 

selected sensors. 

In [6]: 
data_path = '/content/drive/My Drive/C-MAPSS_Data/' 
train_name = 'train_FD001_pre-processed12.txt' 
test_name = 'test_FD001_pre-processed12.txt' 
index_names = ['unit_num', 'time_cycles'] 
sensor_names = ['s_2','s_3','s_4','s_7', 's_8', 's_11', 's_12', 's_13', 's_15','s_17',
's_20','s_21']  #12 sensors 
column_names = index_names + sensor_names 
train_data = pd.read_csv((data_path+train_name), sep='\s+', header=None,  
                 names=column_names) 
test_data = pd.read_csv((data_path+test_name), sep='\s+', header=None,  
                 names=column_names) 
y_test = pd.read_csv((data_path+'RUL_FD001.txt'), sep='\s+', header=None, 
                 names=['true_RUL'])  #output y will be used to represent RUL. y_test 
represents groundtruth RUL 
  
print('train_data.shape:', train_data.shape) 
print('y_test.shape:', y_test.shape) 
train_data.head() 

train_data.shape: (20631, 14) 

y_test.shape: (100, 1) 
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Compute instantaneous RUL and add to data 

Now, the RUL at each time instant (in cycles), from beginning of operations until each unit fails, 

is calculated, and added as a column to the training data. 

In [7]: 
# Add RUL to train data 
def add_remainining_useful_life(df): 
    # Get the total number of cycles for each unit 
    unit_group = df.groupby(by="unit_num") 
    max_cycle = unit_group["time_cycles"].max() 
     
    # Merge the max cycle back into the original frame 
    df_with_RUL = df.merge(max_cycle.to_frame(name='max_cycle'), left_on='unit_num',   
right_index=True) 
     
    # Calculate remaining useful life for each row 
    remainining_useful_life = df_with_RUL["max_cycle"] - df_with_RUL["time_cycles"] 
    remainining_useful_life = remainining_useful_life.astype('float32') 
    df_with_RUL["RUL"] = remainining_useful_life 
     
    # drop max_cycle as it's no longer needed 
    df_with_RUL = df_with_RUL.drop("max_cycle", axis=1) 
    return df_with_RUL 
   
train_data = add_remainining_useful_life(train_data) 
print(train_data[index_names+['RUL']].head()) 
print(train_data[index_names+['RUL']].tail()) 

   unit_num  time_cycles    RUL 

0         1            1  191.0 

1         1            2  190.0 

2         1            3  189.0 

3         1            4  188.0 

4         1            5  187.0 

       unit_num  time_cycles  RUL 

20626       100          196  4.0 

20627       100          197  3.0 

20628       100          198  2.0 

20629       100          199  1.0 

20630       100          200  0.0 

In [8]: 
# In a similar manner, the instantaneous RUL is added to the test data 
def add_test_remainining_useful_life(df,y_test): 
    # Get the total number of cycles for each unit 
    unit_group = df.groupby(by="unit_num") 
    max_cycle = unit_group["time_cycles"].max() 
 
    # Merge the max cycle back into the original frame 
    df_with_RUL = df.merge(max_cycle.to_frame(name='max_cycle'), left_on='unit_num',   
right_index=True) 
     
    # Calculate remaining useful life for each row 
    df_with_RUL["ground_truth_RUL"]= pd.DataFrame(index= df_with_RUL.index,columns=ran
ge(1)) 
    for unit in df_with_RUL['unit_num'].unique(): 
      df_with_RUL.loc[df_with_RUL['unit_num']==unit,"ground_truth_RUL"] = (y_test["tru
e_RUL"][unit-1] + df_with_RUL.loc[df_with_RUL['unit_num']==unit,"max_cycle"] - df_with
_RUL.loc[df_with_RUL['unit_num']==unit,"time_cycles"]) 
 
    df_with_RUL["ground_truth_RUL"] = df_with_RUL["ground_truth_RUL"].astype('float32'
) 
     
    # drop max_cycle as it's no longer needed 
    df_with_RUL = df_with_RUL.drop("max_cycle", axis=1) 
    return df_with_RUL 
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test_data = add_test_remainining_useful_life(test_data,y_test) 
print(test_data[index_names+['ground_truth_RUL']].head()) 
print(test_data[index_names+['ground_truth_RUL']].tail()) 

   unit_num  time_cycles  ground_truth_RUL 

0         1            1             142.0 

1         1            2             141.0 

2         1            3             140.0 

3         1            4             139.0 

4         1            5             138.0 

       unit_num  time_cycles  ground_truth_RUL 

13091       100          194              24.0 

13092       100          195              23.0 

13093       100          196              22.0 

13094       100          197              21.0 

13095       100          198              20.0 

Training and test data 

Here, a copy of the training data is made for subsequent use in training. Also, for the test data, the 

sensor values at the last cycle before operation is terminated, is extracted, since the last cycle 

gives details of the condition of the units at that time. The extracted sensor values will be used as 

test data to make RUL predictions for the units. 

In [9]: 
X_train = train_data[sensor_names].copy() 
y_train = train_data['RUL'].copy() 
  
# get last row of each engine 
X_test = test_data.drop('time_cycles', axis=1).groupby('unit_num').last().copy() 
X_test = X_test[sensor_names] 
print(X_test) 

               s_2       s_3       s_4  ...      s_17      s_20      s_21 

unit_num                                ...                               

1         0.372226  0.142986  0.151614  ...  0.364002  0.595684  0.753142 

2         0.476941  0.325848  0.568511  ...  0.238194  0.612036  0.478819 

3         0.616363  0.422285  0.502470  ...  0.527168  0.260987  0.539408 

4         0.341900  0.482938  0.278954  ...  0.574104  0.347510  0.519276 

5         0.405945  0.481724  0.643028  ...  0.555293  0.404591  0.675466 

...            ...       ...       ...  ...       ...       ...       ... 

96        0.306015  0.436458  0.178269  ...  0.187055  0.806650  0.880696 

97        0.376534  0.254715  0.440413  ...  0.416654  0.404564  0.726828 

98        0.436109  0.552340  0.580009  ...  0.706586  0.439407  0.558200 

99        0.271540  0.169338  0.182222  ...  0.069381  0.709553  0.778531 

100       0.609637  0.511884  0.550551  ...  0.561634  0.561010  0.513536 

 

[100 rows x 12 columns] 

Validation set 

In the code below, that training data is split such that the entire run-to-failure trajectory data of a 

given unit are either assigned to the training or validation set. The validation set is used to check 

model performance for overfitting, after training. 
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Sklearns’ GroupShuffleSplit is used, where the groups used for splitting are based on the unit 

numbers. 

In [10]: 
from sklearn.model_selection import GroupShuffleSplit 
  
# Regardless of the initial seed setting for reproducibility, GroupShuffleSplit  
# requires its own seed 
group_ss = GroupShuffleSplit(n_splits=1, train_size=0.85, random_state=seed_value)   
#85% of the data is retained for training, 15% for validation 
  
def train_val_group_split(X, y, group_ss, groups, print_groups=True): 
    for idx_train, idx_val in group_ss.split(X, y, groups=groups): 
        if print_groups: 
            print('train_split_units', train_data.iloc[idx_train]['unit_num'].unique()
, '\n') 
            print('validate_split_units', train_data.iloc[idx_val]['unit_num'].unique(
), '\n') 
  
        X_train_split = X.iloc[idx_train].copy() 
        y_train_split = y.iloc[idx_train].copy() 
        X_val_split = X.iloc[idx_val].copy() 
        y_val_split = y.iloc[idx_val].copy() 
    return X_train_split, y_train_split, X_val_split, y_val_split 
  
split_result = train_val_group_split(X_train, y_train, group_ss, train_data['unit_num'
]) 
X_train_split, y_train_split, X_val_split, y_val_split = split_result 

train_split_units [ 2   3   4   5   6   7   8   9  10  12  13  14  15  16  17  18  20  21  

22  24  25  26  27  28  29  30  32  33  35  36  37  38  39  41  42  43  44  47  48  49  5

0  51  52  53  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  72  73  75  

76  77  78  79  80  82  83  85  86  87  88  89  90  92  93  94  95  96  97  98  99 100]  

validate_split_units [ 1 11 19 23 31 34 40 45 46 54 71 74 81 84 91]  

 

To ensure that the comparison of model performance is between two similarly distributed 

datasets, the train and validation sets obtained after the split are compared below. 

In [11]: 
fig, axes = plt.subplots(1,2, figsize=(12,4)) 
sns.histplot(y_train_split, ax=axes[0]) 
axes[0].set_title("Histogram of RUL of training data") 
sns.histplot(y_val_split,ax=axes[1]) 
axes[1].set_title("Histogram of RUL of validation data") 
plt.show() 

 
Figure B-4 Plot comparing the distribution of RUL values for the units in the training data 
to those in the validation data. 

The histograms showing the RUL distributions for the training data and validation data shows 

that the distributions are similar and can be used as a basis for checking model performance. 



 

257 

B.2.3 Assumptions about the RUL 

The first assumption about the RUL which was used to compute the instantaneous RUL for the 

training data is a linear RUL, which reduces linearly from the beginning of operation until the 

unit fails. However, this linear assumption about the RUL is only fairly true after a fault is 

recorded and degradation sets in. As such, the assumption about the RUL should match the curve 

indicating the condition of a unit under degradation (i.e., the P-F curve). The modelling of the 

RUL will therefore be such that the RUL remains constant, from the beginning of operation until 

a given time, when it then changes and starts to decrease linearly. 

From information available in references, which is a result of critically looking at the data for all 

100 units, like 

 the average RUL for all the unit in FD001 (since they are identical units operating 

under similar operational conditions), 

 the minimum and maximum unit lifetime of the 100 units, and 

 the fact that positive RUL prediction is better than negative prediction (since 

negative predicted RUL values mean that the unit will fail without 

foreknowledge), 

and, on the basis of the above, the RUL for FD001 will be capped at 125 cycles. So, for any unit, 

any RUL above 125 will hold at that value until the cycle at which the RUL goes below 125, at 

which point it begins to reduce linearly. 

In [12]: 
# Re-assign train and validation split with RUL capped at 125 cycles. 
y_train_capped = y_train.clip(upper=125) 
split_result = train_val_group_split(X_train, y_train_capped, group_ss, train_data['un
it_num']) 
X_train_split, y_train_capped_split, X_val_split, y_val_capped_split = split_result 

train_split_units [ 2   3   4   5   6   7   8   9  10  12  13  14  15  16  17  18  20  21  

22  24  25  26  27  28  29  30  32  33  35  36  37  38  39  41  42  43  44  47  48  49  5

0  51  52  53  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  72  73  75  

76  77  78  79  80  82  83  85  86  87  88  89  90  92  93  94  95  96  97  98  99 100]  

validate_split_units [ 1 11 19 23 31 34 40 45 46 54 71 74 81 84 91]  

B.2.4 MC Dropout 

Having prepared the training and validation data, the MC dropout algorithm will now be built and 

fine-tuned. 

In [13]: 
# Import the required classes 
from tensorflow.keras.layers import Input 
from tensorflow.keras.layers import Dense 
from tensorflow.keras.layers import Concatenate 
from tensorflow.keras.layers import Dropout 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam 

In [14]: 
# Define the cost function, i.e., the negative log likelihood, NLL 
def NLL(y, distr):  
  return -distr.log_prob(y)  
  
# Define the location (i.e., mean) and spread (i.e., the variance) parameters for the 
# output nodes of the BNN 
def normal_softplus(params):  
  return tfd.Normal(loc=params[:,0:1], scale=1e-3 +tf.math.softplus(params[:,1:2])) 
  # both location and scale parameters are learnable 
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  # softplus used because the spread should take negative values 

Define network architecture and tune the hyperparameters 

The Keras tuner is installed to tune the hyperparameters of the network. The tuned 

hyperparameters include the dropout probability, p, the number of nodes in each hidden layer, 

and the learning rate for the Adam optimizer. 

The number of nodes for the first layer and last hidden layer were fixed at 256 in order to control 

the width of the network, while exploiting the depth to achieve the desired results. 
In [15]: 

%%capture     
# %%capture suppresses installation output 
!pip install keras-tuner --upgrade  # Install Keras tuner for use in hyperparameter tu
ning 

In [16]: 
import keras_tuner as kt 
  
def build_model_mcBNN(hp): 
    inputs = tf.keras.Input(shape=(X_train_split.shape[1],)) 
    x = inputs 
     
    rate = hp.Float("dropout", 0.1, 0.5, step=0.1, default=0.2)  # tune dropout rate 
     
    hp_units = hp.Int("hidden_size", 64, 1024, step=16, default=64) # tune number of h
idden units 
    x = Dense(units=256, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
     
    x = Dense(units=hp_units, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
  
    x = Dense(units=hp_units, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
  
    x = Dense(units=hp_units, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
  
    x = Dense(units=hp_units, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
  
    x = Dense(units=hp_units, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
     
    x = Dense(units=256, activation="relu")(x) 
    x = Dropout(rate, seed=seed_value)(x, training=True) 
 
    params_mc = Dense(2)(x) 
    dist_mc = tfp.layers.DistributionLambda(normal_softplus, name='normal_softplus')(p
arams_mc) 
  
    model_mc = tf.keras.Model(inputs=inputs, outputs=dist_mc) 
     
    hp_learning_rate = hp.Choice('learning_rate', values=[1e-1, 1e-2, 1e-3, 1e-4])    # 
tune learning rate 
    model_mc.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp_learning_rate
), loss=NLL) 
     
    return model_mc 

In [17]: 
# Use Keras tuner to tune hyperparameters 
tuner = kt.Hyperband(build_model_mcBNN, objective="val_loss", max_epochs=20, hyperband
_iterations=1) 
  
tuner.search(X_train_split, y_train_capped_split, 
    validation_data=(X_val_split, y_val_capped_split), 
    callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=1)]) 
  
best_model = tuner.get_best_models(1)[0] 
best_hyperparameters = tuner.get_best_hyperparameters(1)[0] 
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print(f""" 
The hyperparameter search is complete. The optimal number of units for the densely- 
connected hidden layers is {best_hyperparameters.get('hidden_size')}, the optimal lear
ning rate for the optimizer is {best_hyperparameters.get('learning_rate')}, and the op
timal dropout rate is {best_hyperparameters.get('dropout')}. 
""") 

Trial 30 Complete [00h 00m 13s] 
val_loss: 4.136396884918213 
 
Best val_loss So Far: 3.967135190963745 
Total elapsed time: 00h 03m 35s 
INFO:tensorflow:Oracle triggered exit 
 
The hyperparameter search is complete. The optimal number of units for the  
densely-connected hidden layers is 992, the optimal learning rate for the  
optimizer is 0.001,and the optimal dropout rate is 0.1. 

Tune the network for optimal number of epochs 

With the "best hyperparameters" obtained using the Keras Tuner, the network is then tuned for 

the optimal number of epochs for training. 

In [18]: 
from time import time 
start = time() 
  
# Build the model with the optimal hyperparameters and train it on the data for 100 ep
ochs 
model_mcBNN = tuner.hypermodel.build(best_hyperparameters) 
history = model_mcBNN.fit(X_train_split, y_train_capped_split, epochs=100, validation_
data=(X_val_split, y_val_capped_split)) 
  
val_loss_per_epoch = history.history['val_loss'] 
best_epoch = val_loss_per_epoch.index(min(val_loss_per_epoch)) 
print('Best epoch: %d' % (best_epoch,)) 
  
print('time taken : ',np.round(time() - start,3)) 

Epoch 1/100 

550/550 [==========] - 2s 3ms/step - loss: 33.9080 - val_loss: 4.7199 

Epoch 2/100 

550/550 [===========] - 2s 3ms/step - loss: 4.2300 - val_loss: 4.0213 

Epoch 3/100 

550/550 [===========] - 2s 3ms/step - loss: 4.1063 - val_loss: 3.9651 

 

Epoch 98/100 

550/550 [===========] - 2s 3ms/step - loss: 3.1198 - val_loss: 3.7016 

Epoch 99/100 

550/550 [===========] - 2s 3ms/step - loss: 3.2413 - val_loss: 3.8065 

Epoch 100/100 

550/550 [===========] - 2s 3ms/step - loss: 3.1634 - val_loss: 4.1723 

Best epoch: 83 

time taken :  156.292 

Train network 

The "best hyperparameters" and the "best epoch" values are now used to train the built model 

using the training and validation data. 

In [19]: 

# Reinstantiate the model for training with the optimum number of epochs 

model_mcBNN = tuner.hypermodel.build(best_hyperparameters) 

  

# Retrain the model 

history = model_mcBNN.fit(X_train_split, y_train_capped_split, epochs=best_epoch, vali

dation_data=(X_val_split, y_val_capped_split)) 
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Epoch 1/83 

550/550 [============] - 2s 3ms/step - loss: 36.7881 - val_loss: 4.0799 

Epoch 2/83 

550/550 [============] - 2s 3ms/step - loss: 4.1760 - val_loss: 3.9963 

Epoch 3/83 

550/550 [============] - 2s 3ms/step - loss: 4.0966 - val_loss: 3.9661 

 

Epoch 81/83 

550/550 [============] - 2s 3ms/step - loss: 3.2910 - val_loss: 4.2135 

Epoch 82/83 

550/550 [============] - 2s 3ms/step - loss: 3.2326 - val_loss: 4.0278 

Epoch 83/83 

550/550 [============] - 2s 3ms/step - loss: 3.2059 - val_loss: 4.3600 

In [20]: 
#save complete model in HDF5 format to a desired file path. 
# Note that file path needs to be edited to a valid path for the code to run. 
model_mcBNN.save('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN.hdf5') 
 
#save model weights 
model_mcBNN.save_weights('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN_tf', save_f
ormat="tf")  #saved as tensorflow format 
model_mcBNN.save_weights('/content/drive/My Drive/C-MAPSS_Data/model_mcBNN_hdf5', save
_format="h5")  #saved as hdf5 format 

In [21]: 
# Plot training history to visualise the trend for the training and validation losses 
plt.plot(history.history['loss'], label='loss') 
plt.plot(history.history['val_loss'], label='val_loss') 
plt.ylabel('Negative log likelihood') 
plt.xlabel('Epochs') 
plt.legend() 
plt.grid(True) 
plt.show() 

 
Figure B-5 History plot showing the trend of training loss and validation loss for 83 epochs 

B.2.5 Make predictions 
Make predictions using the trained network. 

In [22]: 
# Make RUL Predictions for the 100 units 
# Obtain the conditional probability distribution for each of the 100 units by 
# making T=1000 passes of the trained network on the test data. 
  
runs = 1000 
mcBNN_cpd = np.zeros((runs,X_test.shape[0]))  
for i in tqdm(range(0,runs)): 
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    mcBNN_cpd[i,:]=np.reshape(model_mcBNN.predict(X_test),X_test.shape[0]) 
print(mcBNN_cpd) 
print('mcBNN_cpd.shape:', mcBNN_cpd.shape) 

[[118.6445  48.8294  18.6502 ...  44.5461 121.1437  58.0834] 

 [106.2577  52.8661   4.7994 ...  51.2589 123.3344  54.4142] 

 [127.1441  47.3087  13.7941 ...  55.7179 125.3473  52.6028] 

 ... 

 [123.1064  40.7012  11.4769 ...  59.7974 124.6401  59.0367] 

 [104.2856  46.2623   9.2323 ...  57.2838 133.3996  59.8538] 

 [101.2841  49.2697  32.7777 ...  49.0042 129.8383  54.006 ]] 

mcBNN_cpd.shape: (1000, 100) 

In [23]: 
# Define functions to plot outputs 
def make_plot_runs(ax, y_hat, y_true, ylim=[-10,250]): 
    x_horizontal = np.arange(1,(y_true.shape[0]+1)) 
    ax.scatter(x_horizontal, y_true, color="steelblue", alpha=1, marker='.',linewidth=
1.5) #groundtruth  
    ax.plot(x_horizontal, y_hat, color="red", linewidth=0.6, marker='x')  #predicted 
    ax.set_ylim(ylim) 
 
def make_plot_runs_avg(ax, y_hat, y_true, ylim=[-10,250]): 
    x_horizontal = np.arange(1,(y_true.shape[0]+1)) 
    ax.scatter(x_horizontal,y_true,color="steelblue", alpha=1, marker='.',linewidth=1.
5) #groundtruth       
    ax.set_ylim(ylim) 
    ax.plot(x_horizontal,y_hat,color="red",linewidth=0.6, marker='x') #predicted 
    ax.plot(x_horizontal,upper_quantile_y_hat,color="green",linewidth=0.3,linestyle="-
.") 
    ax.plot(x_horizontal,lower_quantile_y_hat,color="green",linewidth=0.3,linestyle="-
-") 
    ax.fill_between(x_horizontal, lower_quantile_y_hat, upper_quantile_y_hat, color='b
', alpha=0.15) 

In [24]: 
# View shape of predicted CPD and test data for compatibility 
print('mcBNN_cpd.shape:', mcBNN_cpd.shape) 
print('y_test.shape:', y_test.shape) 

mcBNN_cpd.shape: (1000, 100) 

y_test.shape: (100, 1) 

In [25]: 
# Calculate the variance information from the output CPD using percentiles 
lower_quantile_y_hat = np.quantile(mcBNN_cpd, 0.025, axis=0) 
print('lower_quantile_y_hat.shape:', lower_quantile_y_hat.shape) 
  
upper_quantile_y_hat = np.quantile(mcBNN_cpd, 0.975, axis=0) 
print('upper_quantile_y_hat.shape:', upper_quantile_y_hat.shape) 

lower_quantile_y_hat.shape: (100,) 

upper_quantile_y_hat.shape: (100,) 

Predicted RUL for all 100 units showing credible intervals as error bars 

In [26]: 
# Define function to plot mean prediction showing credible intervals as error bars 
  
def make_plot_runs_errbar_avg(ax, y_hat, y_true, ylim=[-10,250]): 
    x_horizontal = np.arange(1,(y_true.shape[0]+1)) 
    #x_horizontal = x_horizontal.reshape(x_horizontal.shape[0],1) 
    ax.scatter(x_horizontal,y_true,color='steelblue', alpha=1, marker='.', linewidths=
3) #groundtruth       
    ax.set_ylim(ylim) 
    ax.scatter(x_horizontal,y_hat,color='red', alpha=1,marker='x', linewidths=4)  #pre
dicted 
    ax.errorbar(x=x_horizontal, y=y_hat, yerr=(upper_quantile_y_hat - lower_quantile_y
_hat)/2, 
        fmt='x', marker='x', c='red', ecolor=sns_c[9], capsize=4, 
        label='Predicted mean RUL +/- credible intervals') 

In [27]: 
# Plot predictions with error bars 
  



 

262 

f,ax = plt.subplots(figsize=(20,10)) 
make_plot_runs_errbar_avg(ax, mcBNN_cpd.mean(axis=0), y_test, ylim=[-10,220]) 
ax.set(title='MC Dropout BNN Showing Credible Intervals', xlabel='Unit Number', ylabel
='RUL') 
ax.set_title('MC Dropout BNN Showing Credible Intervals') 
ax.legend(('Ground truth RUL', 'predicted mean RUL','Predicted mean RUL +/- CI'), loc=
'upper right') 
ax.set_xticks(np.arange(0, y_test.shape[0]+5, 5)) 
plt.show() 
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Figure B-6 Plot showing the predicted mean RUL values and the credible intervals for all 100 units in the FD001 dataset.
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Save RUL prediction results for all 100 units as CSV 

In [28]: 
RUL_results = pd.DataFrame(columns=["Ground truth RUL", "Predicted Mean RUL", "CI Uppe
r Bound", "CI Lower Bound"]) 
RUL_results["Ground truth RUL"] = y_test["true_RUL"] 
RUL_results["Predicted Mean RUL"] = np.round(mcBNN_cpd.mean(axis=0)) 
RUL_results["CI Upper Bound"] = np.round(upper_quantile_y_hat) 
lower_quantile_y_hat_save = lower_quantile_y_hat 
lower_quantile_y_hat_save[lower_quantile_y_hat_save<0]=0 #constrain negative lower  
# bounds to zero. 
RUL_results["CI Lower Bound"] = np.round(lower_quantile_y_hat_save) 
RUL_results.to_csv('/content/drive/My Drive/C-MAPSS_Data/BNN RUL Prediction Results.cs
v', index=False) 

B.2.6 Make predictions for sample units 

To visualise the RUL trend for some of the engine units, the instantaneous predicted RULs are 

plot against time, and compared to the instantaneous ground truth RULs. This gives a picture of 

the model performance as well as the uncertainty quantification in terms of instantaneous credible 

intervals. 

In [29]: 
# Define function to extract data for and make predictions for a specified unit 
  
def unit_predict(test_data,unit_number): 
  idx_unit = test_data['unit_num']==unit_number 
  test_data_unit = test_data[idx_unit] 
  y_true_unit = test_data_unit["ground_truth_RUL"] 
  y_true_unit = y_true_unit.to_numpy() 
  y_true_unit = y_true_unit.reshape(y_true_unit.shape[0],1) 
   
  # Make RUL Prediction 
  runs = 1000 
  mcBNN_cpd_unit = np.zeros((runs,test_data_unit[sensor_names].shape[0])) 
  for i in tqdm(range(0,runs)): 
    mcBNN_cpd_unit[i,:]=np.reshape(model_mcBNN.predict(test_data_unit[sensor_names]),t
est_data_unit[sensor_names].shape[0]) 
  return mcBNN_cpd_unit 

In [30]: 
# Define function to extract groundtruth RUL for unit 
def extract_y_true(test_data,unit_number): 
  idx_unit = test_data['unit_num']==unit_number 
  test_data_unit = test_data[idx_unit] 
  y_true_unit = test_data_unit["ground_truth_RUL"] 
  y_true_unit = y_true_unit.to_numpy() 
  y_true_unit = y_true_unit.reshape(y_true_unit.shape[0],1) 
  return y_true_unit 

In [31]: 
#Define function to plot RUL trajectory and confidence bounds for unit 
 
def make_plot_runs_test_avg(ax, y_hat_unit, y_true_unit, lower_quantile_y_hat_unit, up
per_quantile_y_hat_unit, ylim=[-10,200]): 
    x_horizontal = np.arange(1,(y_true_unit.shape[0]+1)) 
    ax.plot(x_horizontal,y_true_unit,color="steelblue", alpha=1, marker='.',linewidth=
0.5) #groundtruth      
    ax.set_ylim(ylim) 
    ax.plot(x_horizontal, y_hat_unit, color="red", linewidth=0.5, marker='.') 
#predicted 
    ax.plot(x_horizontal, lower_quantile_y_hat_unit, color="green",linewidth=0.3,lines
tyle="-.") 
    ax.plot(x_horizontal, upper_quantile_y_hat_unit, color="green", linewidth=0.5, lin
estyle="--") 
    y_true_unit_capped = y_true_unit.clip(max=125.00) 
    ax.plot(x_horizontal,y_true_unit_capped, color='black', linestyle='dashed') 
    ax.fill_between(x_horizontal, lower_quantile_y_hat_unit, upper_quantile_y_hat_unit
, color='b', alpha=0.15) 
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Unit 17 prediction and plots 

In [32]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 17 
mcBNN_cpd_17 = unit_predict(test_data,17) 
print('mcBNN_cpd_17.shape:', mcBNN_cpd_17.shape) 
  
y_hat_17 = mcBNN_cpd_17.mean(axis=0) 
print('y_hat_17.shape:', y_hat_17.shape) 
  
lower_quantile_y_hat_17 = np.quantile(mcBNN_cpd_17, 0.025, axis=0) 
print('lower_quantile_y_hat_17.shape:', lower_quantile_y_hat_17.shape) 
  
upper_quantile_y_hat_17 = np.quantile(mcBNN_cpd_17, 0.975, axis=0) 
print('upper_quantile_y_hat_17.shape:', upper_quantile_y_hat_17.shape) 

mcBNN_cpd_17.shape: (1000, 165) 

y_hat_17.shape: (165,) 

lower_quantile_y_hat_17.shape: (165,) 

upper_quantile_y_hat_17.shape: (165,) 

In [33]: 
# Extract y_true for unit 17 
y_true_17 = extract_y_true(test_data,17) 

Unit 20 prediction and plots 
In [34]: 

# Make predictions, calculate the mean RUL and the CIs for Unit 20 
mcBNN_cpd_20 = unit_predict(test_data,20) 
print('mcBNN_cpd_20.shape:', mcBNN_cpd_20.shape) 
  
y_hat_20 = mcBNN_cpd_20.mean(axis=0) 
print('y_hat_20.shape:', y_hat_20.shape) 
  
lower_quantile_y_hat_20 = np.quantile(mcBNN_cpd_20, 0.025, axis=0) 
print('lower_quantile_y_hat_20.shape:', lower_quantile_y_hat_20.shape) 
  
upper_quantile_y_hat_20 = np.quantile(mcBNN_cpd_20, 0.975, axis=0) 
print('upper_quantile_y_hat_20.shape:', upper_quantile_y_hat_20.shape) 

mcBNN_cpd_20.shape: (1000, 184) 

y_hat_20.shape: (184,) 

lower_quantile_y_hat_20.shape: (184,) 

upper_quantile_y_hat_20.shape: (184,) 

In [35]: 
# Extract y_true for unit 20 
y_true_20 = extract_y_true(test_data,20) 

Unit 31 prediction and plots 
In [36]: 

# Make predictions, calculate the mean RUL and the CIs for Unit 31 
mcBNN_cpd_31 = unit_predict(test_data,31) 
print('mcBNN_cpd_31.shape:', mcBNN_cpd_31.shape) 
 
y_hat_31 = mcBNN_cpd_31.mean(axis=0) 
print('y_hat_31.shape:', y_hat_31.shape) 
 
lower_quantile_y_hat_31 = np.quantile(mcBNN_cpd_31, 0.025, axis=0) 
print('lower_quantile_y_hat_31.shape:', lower_quantile_y_hat_31.shape) 
 
upper_quantile_y_hat_31 = np.quantile(mcBNN_cpd_31, 0.975, axis=0) 
print('upper_quantile_y_hat_31.shape:', upper_quantile_y_hat_31.shape) 

mcBNN_cpd_31.shape: (1000, 196) 

y_hat_31.shape: (196,) 

lower_quantile_y_hat_31.shape: (196,) 

upper_quantile_y_hat_31.shape: (196,) 

In [37]: 
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# Extract y_true for unit 31 
y_true_31 = extract_y_true(test_data,31) 

Unit 34 prediction and plots 

In [38]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 34 
mcBNN_cpd_34 = unit_predict(test_data,34) 
print('mcBNN_cpd_34.shape:', mcBNN_cpd_34.shape) 
 
y_hat_34 = mcBNN_cpd_34.mean(axis=0) 
print('y_hat_34.shape:', y_hat_34.shape) 
 
lower_quantile_y_hat_34 = np.quantile(mcBNN_cpd_34, 0.025, axis=0) 
print('lower_quantile_y_hat_34.shape:', lower_quantile_y_hat_34.shape) 
 
upper_quantile_y_hat_34 = np.quantile(mcBNN_cpd_34, 0.975, axis=0) 
print('upper_quantile_y_hat_34.shape:', upper_quantile_y_hat_34.shape) 

mcBNN_cpd_34.shape: (1000, 203) 

y_hat_34.shape: (203,) 

lower_quantile_y_hat_34.shape: (203,) 

upper_quantile_y_hat_34.shape: (203,) 

In [39]: 
# Extract y_true for unit 34 
y_true_34 = extract_y_true(test_data,34) 

Unit 40 prediction and plots 

In [40]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 40 
mcBNN_cpd_40 = unit_predict(test_data,40) 
print('mcBNN_cpd_40.shape:', mcBNN_cpd_40.shape) 
 
y_hat_40 = mcBNN_cpd_40.mean(axis=0) 
print('y_hat_40.shape:', y_hat_40.shape) 
 
lower_quantile_y_hat_40 = np.quantile(mcBNN_cpd_40, 0.025, axis=0) 
print('lower_quantile_y_hat_40.shape:', lower_quantile_y_hat_40.shape) 
 
upper_quantile_y_hat_40 = np.quantile(mcBNN_cpd_40, 0.975, axis=0) 
print('upper_quantile_y_hat_40.shape:', upper_quantile_y_hat_40.shape) 

mcBNN_cpd_40.shape: (1000, 133) 

y_hat_40.shape: (133,) 

lower_quantile_y_hat_40.shape: (133,) 

upper_quantile_y_hat_40.shape: (133,) 

In [41]: 
# Extract y_true for unit 40 
y_true_40 = extract_y_true(test_data,40) 

Unit 56 prediction and plots 

In [42]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 56 
mcBNN_cpd_56 = unit_predict(test_data,56) 
print('mcBNN_cpd_56.shape:', mcBNN_cpd_56.shape) 
 
y_hat_56 = mcBNN_cpd_56.mean(axis=0) 
print('y_hat_56.shape:', y_hat_56.shape) 
 
lower_quantile_y_hat_56 = np.quantile(mcBNN_cpd_56, 0.025, axis=0) 
print('lower_quantile_y_hat_56.shape:', lower_quantile_y_hat_56.shape) 
 
upper_quantile_y_hat_56 = np.quantile(mcBNN_cpd_56, 0.975, axis=0) 
print('upper_quantile_y_hat_56.shape:', upper_quantile_y_hat_56.shape) 

mcBNN_cpd_56.shape: (1000, 136) 

y_hat_56.shape: (136,) 

lower_quantile_y_hat_56.shape: (136,) 

upper_quantile_y_hat_56.shape: (136,) 
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In [43]: 
# Extract y_true for unit 56 
y_true_56 = extract_y_true(test_data,56) 

Unit 76 prediction and plots 

In [44]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 76 
mcBNN_cpd_76 = unit_predict(test_data,76) 
print('mcBNN_cpd_76.shape:', mcBNN_cpd_76.shape) 
 
y_hat_76 = mcBNN_cpd_76.mean(axis=0) 
print('y_hat_76.shape:', y_hat_76.shape) 
 
lower_quantile_y_hat_76 = np.quantile(mcBNN_cpd_76, 0.025, axis=0) 
print('lower_quantile_y_hat_76.shape:', lower_quantile_y_hat_76.shape) 
 
upper_quantile_y_hat_76 = np.quantile(mcBNN_cpd_76, 0.975, axis=0) 
print('upper_quantile_y_hat_76.shape:', upper_quantile_y_hat_76.shape) 

mcBNN_cpd_76.shape: (1000, 205) 

y_hat_76.shape: (205,) 

lower_quantile_y_hat_76.shape: (205,) 

upper_quantile_y_hat_76.shape: (205,) 

In [45]: 
# Extract y_true for unit 76 
y_true_76 = extract_y_true(test_data,76) 

Unit 81 prediction and plots 

In [46]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 81 
mcBNN_cpd_81 = unit_predict(test_data,81) 
print('mcBNN_cpd_81.shape:', mcBNN_cpd_81.shape) 
 
y_hat_81 = mcBNN_cpd_81.mean(axis=0) 
print('y_hat_81.shape:', y_hat_81.shape) 
 
lower_quantile_y_hat_81 = np.quantile(mcBNN_cpd_81, 0.025, axis=0) 
print('lower_quantile_y_hat_81.shape:', lower_quantile_y_hat_81.shape) 
 
upper_quantile_y_hat_81 = np.quantile(mcBNN_cpd_81, 0.975, axis=0) 
print('upper_quantile_y_hat_81.shape:', upper_quantile_y_hat_81.shape) 

mcBNN_cpd_81.shape: (1000, 213) 

y_hat_81.shape: (213,) 

lower_quantile_y_hat_81.shape: (213,) 

upper_quantile_y_hat_81.shape: (213,) 

In [47]: 
# Extract y_true for unit 81 
y_true_81 = extract_y_true(test_data,81) 

Unit 91 prediction and plots 

In [48]: 
# Make predictions, calculate the mean RUL and the CIs for Unit 91 
mcBNN_cpd_91 = unit_predict(test_data,91) 
print('mcBNN_cpd_91.shape:', mcBNN_cpd_91.shape) 
 
y_hat_91 = mcBNN_cpd_91.mean(axis=0) 
print('y_hat_91.shape:', y_hat_91.shape) 
 
lower_quantile_y_hat_91 = np.quantile(mcBNN_cpd_91, 0.025, axis=0) 
print('lower_quantile_y_hat_91.shape:', lower_quantile_y_hat_91.shape) 
 
upper_quantile_y_hat_91 = np.quantile(mcBNN_cpd_91, 0.975, axis=0) 
print('upper_quantile_y_hat_91.shape:', upper_quantile_y_hat_91.shape) 

mcBNN_cpd_91.shape: (1000, 234) 

y_hat_91.shape: (234,) 
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lower_quantile_y_hat_91.shape: (234,) 

upper_quantile_y_hat_91.shape: (234,) 

In [49]: 
# Extract y_true for unit 91 
y_true_91 = extract_y_true(test_data,91) 

Subplots for 9 sample units 

In [50]: 
# Plot curves for 9 selected units together 
  
f,ax = plt.subplots(3,3, figsize=(15,15)) 
make_plot_runs_test_avg(ax[0,0], y_hat_17, y_true_17, lower_quantile_y_hat_17, upper_q
uantile_y_hat_17, ylim=[-5,250]) 
ax[0,0].set_xticks(np.arange(0, y_true_17.shape[0]+10, 50)) 
ax[0,0].set(title='MC Dropout BNN Predictions for Unit 17', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[0,1], y_hat_20, y_true_20, lower_quantile_y_hat_20, upper_q
uantile_y_hat_20, ylim=[-5,250]) 
ax[0,1].set_xticks(np.arange(0, y_true_20.shape[0]+10, 50)) 
ax[0,1].set(title='MC Dropout BNN Predictions for Unit 20', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[0,2], y_hat_31, y_true_31, lower_quantile_y_hat_31, upper_q
uantile_y_hat_31, ylim=[-5,250]) 
ax[0,2].set_xticks(np.arange(0, y_true_31.shape[0]+10, 50)) 
ax[0,2].set(title='MC Dropout BNN Predictions for Unit 31', xlabel='Time in cylcles', 
ylabel='RUL') 
ax[0,2].legend(('Ground truth RUL','Predicted mean RUL','Lower bound of CI','Upper bou
nd of CI','RUL training'), loc='best') 
  
make_plot_runs_test_avg(ax[1,0], y_hat_40, y_true_40, lower_quantile_y_hat_40, upper_q
uantile_y_hat_40, ylim=[-5,250]) 
ax[1,0].set_xticks(np.arange(0, y_true_40.shape[0]+10, 50)) 
ax[1,0].set(title='MC Dropout BNN Predictions for Unit 40', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[1,1],y_hat_56, y_true_56, lower_quantile_y_hat_56, upper_qu
antile_y_hat_56, ylim=[-5,250]) 
ax[1,1].set_xticks(np.arange(0, y_true_56.shape[0]+10, 50)) 
ax[1,1].set(title='MC Dropout BNN Predictions for Unit 56', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[1,2], y_hat_68, y_true_68, lower_quantile_y_hat_68, upper_q
uantile_y_hat_68, ylim=[-5,250]) 
ax[1,2].set_xticks(np.arange(0, y_true_68.shape[0]+10, 50)) 
ax[1,2].set(title='MC Dropout BNN Predictions for Unit 68', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[2,0], y_hat_76, y_true_76, lower_quantile_y_hat_76, upper_q
uantile_y_hat_76, ylim=[-5,250]) 
ax[2,0].set_xticks(np.arange(0, y_true_76.shape[0]+10, 50)) 
ax[2,0].set(title='MC Dropout BNN Predictions for Unit 76', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[2,1], y_hat_81, y_true_81, lower_quantile_y_hat_81, upper_q
uantile_y_hat_81, ylim=[-5,250]) 
ax[2,1].set_xticks(np.arange(0, y_true_81.shape[0]+10, 50)) 
ax[2,1].set(title='MC Dropout BNN Predictions for Unit 81', xlabel='Time in cylcles', 
ylabel='RUL') 
 
make_plot_runs_test_avg(ax[2,2], y_hat_91, y_true_91, lower_quantile_y_hat_91, upper_q
uantile_y_hat_91, ylim=[-5,250]) 
ax[2,2].set_xticks(np.arange(0, y_true_91.shape[0]+10, 50)) 
ax[2,2].set(title='MC Dropout BNN Predictions for Unit 91', xlabel='Time in cylcles', 
ylabel='RUL') 
 
f.tight_layout(pad=2.0) 
plt.show() 
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Figure B-7 Degradation trajectory for nine sample units showing trend of mean RUL and the upper and lower uncertainty bounds. 
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