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Abstract—This paper proposes the use of Gaussian Process 
Regression to automatically identify relevant predictor variables 
in a formulation of a remaining useful life model for unmonitored, 
low value power network assets. Reclosers are used as a proxy for 
evaluating the efficacy of this method. Distribution network 
reclosers are typically high-volume assets without on-line 
monitoring, leading to an insufficient understanding of which 
factors drive their failures. The ubiquity of reclosers, and their 
lack of monitoring, prevents the tracking of their individual 
remaining life, and, confirms their use in validating the proposed 
process. As an alternative to monitoring, periodic inspection data 
is used to evaluate asset risk level, which is then used in a 
predictive model of remaining useful life. Inspection data is often 
variable in quality with a number of features missing from 
records. Accordingly, missing inputs are imputed by the proposed 
process using samples drawn from an advanced form of joint 
distribution learned from test records and reduced to its 
conditional form. This work is validated on operational data 
provided by a regional distribution network operator, but 
conceptually is applicable to unmonitored fleets of assets of any 
power network. 

Index Terms—Remaining Useful Lifetime, Asset Fleet, 
Gaussian Process, Non-Stationary Lifetime Modes 

I. INTRODUCTION

s low carbon technologies (LCT) continue to be embedded
in  electricity distribution networks, their operating 

complexity is increasing beyond their original design 
specification with new fault types emerging.  Automation 
equipment such as reclosers can protect network assets from the 
consequences of failures but at the expense of additional 
complexity brought about by remote monitoring and 
communications. Observability of existing assets on power 
distribution networks is low, which can result in their true 
condition being obscured. New automation assets are no 
exception: distribution networks are extensive, with many 
thousands of low value assets installed, making condition 
monitoring financially unviable. However, the condition of 
these assets still needs to be understood from a fleet 
management perspective – questions around annual 
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replacements, regional replacements and asset family lifetimes 
can only be informed by data but aside from routine testing, this 
is not economic to obtain at regular intervals. 

A solution is to harness routinely collected maintenance data 
as the predictors for a lifetime model. However, using test data 
for this in the conventional sense [1][2] has challenges: 1) many 
recorded parameters are incomplete due to the complexity and 
economics of operational practice. Therefore, a model must be 
capable of working on partial input data. 2) Assets are not 
homogenous and may work under differing operating and 
environmental conditions; differences such as brand, location, 
frequency of use and weather condition, vary widely even for 
the same type of asset. This can result in different lifetime 
failure modes, and the need to identify these modes. Previous 
research has investigated multiple failure modes of assets [1]; 
however, regular monitoring was undertaken in this instance. 3) 
The parameter recordings are not obtained at a regular interval, 
and testing is apparently randomly scheduled, or at least 
scheduled according to maintenance resource availability. 

In [3] the maintenance procedures of low value distribution 
circuit breakers were used to inform utility wide fleet health 
metrics by building probability densities of test data and 
relating the resulting performance modes to known failure 
mechanisms. In [4] it was also identified that accommodating 
multiple failure modes was essential, not for the diagnosis of 
faults but capturing the aging processes that are underneath 
them. In [5] an implicit metric based on continuous vibration 
data is used to evaluate the Remaining Useful Life (RUL) of a 
rotating machine which addresses dynamic lifetime problem 
due to non-steady state duty cycle. [6] uses a Weibull Mixture 
proportional hazard model to calculate the failure time 
probability density of each failure mode. This model assumes 
each failure mode has the same form of distribution but 
different parameterization, which is influenced by condition. 
Monitoring data and lifetime data are used to estimate 
distribution parameters (each failure mode is modelled as a 
product of the baseline hazard rate and deduced from the 
lifetime distribution and the covariate function), then if the 
cumulative value is over a threshold, the component is assumed 
to have failed. In [7] a range of power system equipment 
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inspection data are used to predict the failure rate, which resolve 
the bias from the conventional average reliability model in an 
economical way; a follow on study [7] [8] developed a 
condition assessment method for reclosers with condition data. 
Additionally, conventional lifetime estimation for low-value 
assets normally consider physics based models, such as [9] [10], 
which are impractical for large asset fleets. However, none of 
these worked on end-life anticipation with raw periodic 
inspection data, typically the only data available on such assets, 
and consequently did not have to address the problem of 
missing test values. 

For power distribution networks, this paper proposes a novel 
analytic approach to manage fleets of unmonitored, low value 
assets, with reclosers used as proxy asset for method validation, 
using periodic inspection data rather than an online condition 
monitoring system [11]; in particular, the contribution includes: 
A RUL estimator for pole mounted reclosers based on annual 
inspection data. This accommodates multiple lifetime modes 
identified within a fleet of recloser assets which rules out the 
use of conventional lifetime distributions. A Gaussian Process 
Regression model with an Automatic Relevance Determination 
kernel is proposed as the predictive model which automatically 
selects predictor inputs from maintenance data and provides an 
RUL confidence level which can be used to rank assets within 
a fleet according to risk. The model is validated on archived 
recloser data gathered in the field. 

This paper is organized as follows: the next section gives an 
overview of recloser assets used in power distribution networks, 
how these work and the consequence to operators if they 
perform sub-optimally. Following this, the data accrued during 
routine maintenance operation is described along with the 
challenges it presents to lifetime estimation models. The key 
barriers are multi-modal lifetimes, which motivates the need for 
the next section to cover the application of mixture models to 

lifetime distributions. The paper concludes with a reflection on 
how the contributed technique and models like it are essential 
for unmonitored assets on extensive regional power 
infrastructure.  

II.  AUTOMATED RECLOSERS 
Reclosers are widely used in distribution networks which are 

designed to interrupt transient fault currents until they pass, 
then automatically reconnect their associated circuit. On a 
three-phase circuit there will be three sets of contacts within the 
recloser which can interrupt a fault current on any one of the 
phases. Figure 1 shows a typical three-phase recloser. Reclosers 
are often used in rural areas, which are served by overhead line 
(OHL) circuits which means that recloser units can be situated 
on a pole in series with the conductors [12]. The complete 
recloser installed on an OHL circuit is shown in Figure 2, which 
also shows the remaining components of the recloser mounted 
in a box mid-way up the pole the recloser is installed on. This 
contains a battery to power the recloser actuation mechanism 
that opens and closes the contacts, and the control circuitry for 
initiating trip and close operations.  

A.  General recloser operation 
Reclosers serve two purposes: to allow current to pass under 

normal operation and to isolate current under fault conditions. 
This means that both their conductivity and insulation 
properties must be assessed as well as the assets ability to make 
the transition from conductor to isolator. Figure 3 shows the 
operation sequence of a typical recloser aligning the control 
signals with the behavior of the circuit current: recloser would 
be activated when the line current exceeds a preset threshold for 

 
Figure 1: Actuating components on a three phase pole 

mounted auto-recloser. 
 

 
Figure 2: Three-phase pole mounted auto-recloser in situ. 
Highlighted are the recloser contact unit (upper) and the 

auxiliary components including the control circuit. 
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a short period – this may be invoked by an equipment fault, tree 
contact with an overhead line or a line-to-ground fault caused 
by an insulation failure; then the contacts will be opened, and 
the arcing will be extinguished. When the fault is cleared, the 
contact would be re-closed resulting in the associated circuit 
being re-energized. One feature of recloser operation is that if 
the fault has not passed, the contacts will reopen in an attempt 
to clear the fault again. After a set number of open operations 
within a given time period, the recloser will lock-out and 
require a manual reset on the basis that the fault experienced 
was not of a transient nature. 

 The recloser performance during these operations is 
dependent on the condition of a number of the subcomponents 
of the asset, such as controller and main switching device, 
meaning that failure modes can take a variety of forms. 
Consequently, tests carried out under routine maintenance are 
wide ranging in their scope. 

B.  Typical data resulting from recloser maintenance 
For many utilities, the common test data gathered on 

reclosers includes contact resistance, insulation resistance, 
counter, timing test, failure reason and failure time [13]. These 
tests are elaborated upon in Table I. The number of recloser 
operations (or counts), and the times with which they take to 
execute are also carried out. As a matter of operational course, 
failure information and general observations tend to be 
recorded alongside these and provide useful context including 
failure reason, failure time, installation time and the 
manufacturer and model name.  

III.  RECLOSER LIFETIME PREDICTION WITH INCOMPLETE DATA 
There are several facets to the problem of managing low 

value unmonitored power assets. This section identifies a means 
of addressing each of these in order to obtain a predictive model 

of individual asset lifetime that is economic and accurate.  
Figure 4 shows how the proposed modeling approach works 

on maintenance record data: a training phase takes an earlier 
portion of the data and identifies the representative exemplars 
for fitting the predictive model, omitting failed assets. This 
model is then used on the remaining, later portion of the 
maintenance records to predict failure times of subsequent 
records. During this phase, the inspection data needs to be 
preprocessed first, including imputing the missing values in 
records. Then the proposed data will be input into the abnormal 
recloser identification model to identify reclosers that are at 
high risk of failure and therefore are not representative of 
normally operating assets. The high risk reclosers can be 
classified into an appropriate life mode using a pre-trained 
clustering model. Finally, with a pre-trained lifetime prediction 
model, the lifetime of a given recloser can be estimated. The 
following sections now explain in detail how each of these parts 
is modeled. 

A.  Missing Value Imputation from Incomplete Records 
Some inspections are conducted as part of a wider 

investigation and may only result in a subset of the regular tests 
being carried out, which results in a partial record. This poses a 
problem for most classifiers and regression models, as these 
require a complete input vector. Therefore, to ensure all records 

 
Figure 3: Simplified recloser operating sequence adapted from 

[13]. 
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Figure 4 The data flow of maintenance records through the 

proposed model framework. 
 

TABLE I 
PERIODIC INSPECTION DATA 

PARAMETER DEFINITION 

Contact Resistance 
The test is used to measure the voltage 
drop/resistance across the terminals of 
each pole 

Insulation Resistance 

The resistance to current leakage 
through and over the surface of the 
insulation material surrounding a 
conductor 

Counter Counter recording the trips since 
commissioning 

Timing test Times for contacts to open (trip tests) 
and close (close tests).  

Failure reason The cause(s) of the recloser failure 

Failure time The time and date of the recloser 
failure 
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can be used irrespective of missing features, a missing data 
imputation model is used based on the joint distribution of the 
maintenance record values. The missing data can be imputed 
from the conditional form of this joint distribution using the 
observed features as conditioning variables. The data features 
can be rewritten as observed features 𝑋𝑜 and missing features 
𝑋𝑚. 

𝑋 = [
𝑋𝑚

𝑋𝑜
] (1) 

which have the following mean and covariance: 

𝜇 = [
𝜇𝑚

𝜇𝑜
] (2) 

∑ = [
∑𝑚𝑚 ∑𝑚𝑜

∑𝑜𝑚 ∑𝑜𝑜
] (3) 

The resulting mean and covariance of the conditional 
distribution 𝑝(𝑋𝑚|𝑋𝑂 = 𝑎) are [14]: 

𝜇̅ = 𝜇𝑚 +  ∑𝑚𝑜∑𝑜𝑜
−1

(𝑋𝑜 − 𝜇𝑜) (4) 

∑̅ =  ∑𝑚𝑚 − ∑𝑚𝑜∑𝑜𝑜
−1∑𝑜𝑚 (5) 

The prior mean 𝜇 and covariance ∑ are from training data, 
conditional mean 𝜇̅, covariance ∑̅ and observed data 𝑎 are for 
test data. To avoid outliers skewing the mean of this 
distribution, the missing values are imputed from the median of 
samples taken from the conditional Multivariate Gaussian 
distribution.  

B.  Abnormal Recloser Identification 
Failure data is required for learning an RUL model, and not 

all maintenance data will reflect exemplars of degradation 
based aging. This necessitates a means of identifying and 
removing normal maintenance data and catastrophic event 
based failures. To achieve this, an Ensemble Random 
Undersampling (RUS) Boosted Tree [15] is used to identify 
abnormal reclosers. RUSBoost is an ensemble classification 
model designed to alleviate adverse effects of data imbalance, 
a problem inherent in many operational data sets. In this 
application, at-risk reclosers will only make up a small 
proportion of the overall records, which will make a classifier 
inherently more competent at recognizing healthy reclosers. 

C.  Mixture Models for Non-Stationary Lifetime Distribution 
Power system assets on distribution networks can be 

exposed to a variety of conditions that may influence their 
operational health. Consequently, lifetimes may be non-
stationary. To accurately identify the lifetime of each asset, a 
Gaussian Mixture Model (GMM) [16] is used to approximate 
complex distributions from a linear combination of Gaussian 
distributions: 

 
f(𝑥) = ∑ 𝜑𝑖

𝐾
𝑖=1

1

√(2𝜋)𝐾|𝜎𝑖|
exp (−

1

2
(𝑥 − 𝜇𝑖)𝑇𝜎𝑖

−1(𝑥 − 𝜇𝑖)) (6) 

∑ 𝜑𝑖 = 1

𝐾

𝑖=1

 (7) 

 
where in (6) and (7) 𝜑𝑖  denotes the proportion of the 
components, 𝜎𝑖 represents the variance, 𝜇𝑖 represents the mean, 
𝑥 represents the input lifetime (in this case, transformed into log 
space) and 𝑓(𝑥) denotes the probability density; 𝐾 represents 

the number of mixture components used. Model selection 
criteria such as Bayesian Information Criteria (BIC) [16] can be 
used to determine K i.e. how many distributions are required.  
   

BIC = −2(logL) + 𝑁𝑝𝑎𝑟𝑎 ∗ log (𝑁𝑜𝑏𝑠) (8) 
 
where 𝑙𝑜𝑔𝐿  represents optimized log likelihood values,  

𝑁𝑝𝑎𝑟𝑎  and 𝑁𝑜𝑏𝑠  denote the number of parameters and the 
number of observations respectively. 

D.  Covariate Based Lifetime Prediction with Gaussian 
Processes  

The test measurements can be considered as covariates in a 
regression model with the regression line being a count down 
to the time of failure. The form of this relation is unknown so a 
flexible regressor must be found to relate the routine 
measurement covariates to the life expectancy. A very flexible 
regression model is the Gaussian Process (GP). Given N data 
points of training data, 𝑋 = 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑁, where each training 
data 𝑥𝑖 is an m-dimensional vector of input features, and 𝑌 =
𝑦1, 𝑦2, 𝑦3 … 𝑦𝑁  is a target variable. GP assumes any finite 
number of the input features have a joint Gaussian distribution: 

𝑝(𝑓(𝑥𝑖)|𝑥𝑖)~𝑁(0, 𝐾) (9) 
where 𝑋  represents the input features, 𝑓  denotes a latent 

variable function, and 𝐾  is a covariance matrix containing 
elements from a kernel function which is normally 
parameterized by hyperparameters A and s. The 
hyperparameters of the kernel function are unknown and can be 
obtained from training data.The dimensionality of K is dictated 
by the lengthscale 𝑠  and amplitude 𝐴 . To select the most 
relevant input feature set, the Automatic Relevance 
Determination (ARD) Squared Exponential kernel [17] can be 
used: 

𝐾(𝑥, 𝑥′) = 𝐴𝑒𝑥𝑝 (−
1

2
𝑀‖𝑥 − 𝑥𝑚‖2) 

 
(10) 

where 𝑀 = 𝑑𝑖𝑎𝑔(𝑠) is a diagonal matrix constituted by the 
lengthscale of input features. A short lengthscale corresponds 
to high relevance. This partitions up as follows: 

 

[
𝑦
𝑦𝑝

] ~𝑁(0, [
𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋𝑝)

𝐾(𝑋𝑝, 𝑋) 𝐾(𝑋𝑝, 𝑋𝑝)
]) 

 

(11) 

Leading to the following expression for the predictor: 
 

𝑃(𝑦𝑝|𝑋, 𝑦, 𝑋𝑝)~𝑁(𝑦̅𝑝, 𝑐𝑜𝑣(𝑦𝑝)) (12) 
 
To ensure the inputs are Gaussian distributed, a Box-Cox 

transformation is used [18]. Box-Cox is a transformation which 
can convert non-Gaussian distributed variables into ones 
approximating a Gaussian distribution. Box-Cox has a 
hyperparameter 𝜆 which is optimized according to goodness of 
fit to a Gaussian distribution, of transformed data [19]. Box-
Cox covers two scenarios, when the parameter 𝜆 is non-zero: 

𝑋𝑛𝑒𝑤 =
𝑋𝜆 − 1

𝜆
 (13) 

 Gaussian Process based Fleet Lifetime Predictor Model for Unmonitored Power Network Assets



 5 

Otherwise: 

𝑋𝑛𝑒𝑤 = log (𝑋) (14) 

  
These candidate components will now be evaluated as a whole 
on a set of representative data to demonstrate how repurposed 
maintenance data can be used to evaluate recloser fleet 
lifetimes. 

IV.  OPERATIONAL CASE STUDY 
In order to demonstrate the use of a comprehensive model 

for assessing asset lifetime on unmonitored assets, a set of 1916 
maintenance records for a distribution recloser fleet are 
considered. This data has been collected over a 30 year period 
from 1990 covering 3 different manufacturers and 6 different 
recloser models. Owing to progressively improving data quality 
control, recent years feature more complete records, leading to 
the selection of an identically distributed subset of records. The 
equivalence of the subset and complete data distribution was 
ascertained with a Wald-Wolfowitz test. The data used has 427 
examples of failed assets - 105 cases have complete 
maintenance records, 322 have at least one test result missing 
from the record. The data forming each record includes a timing 
test, counter and three-phase contact resistances and three-
phase insulation resistance measurements. For the timing tests, 
a recloser normally trips three times before lockout. However, 
the first shot (the opening operation) of the operational data is 
deemed invalid in this case; therefore, only the three-phase shot 
2 and shot 3 timing tests are retained as input. In terms of 
counter, reclosers normally would record the count of 
operations before and after opening. To account for any wear 
effects resulting from an operation, the counter after the 
operation for each phase and total counter will be used as the 
input here. As a pre-processing stage, the abnormal plant 
classification process described in IIIB is tested using 5-fold 
cross validation. As Figure 5 shows, 95.45% of failed assets 
(21/22) are correctly predicted as failed when using complete 
maintenance records as input data. It also shows that only 
6.25% of healthy assets (4/64) are incorrectly identified as 
failed.  

A.  Root Cause of Lifetime Modes 
As online condition monitoring is not economically feasible 

for detecting degradation in recloser assets, using periodic 
inspection data would be a practical choice to predict recloser 
lifetime. However, the combination of build heterogeneity, 
operating environment and duty cycle of reclosers results in 
non-stationary behavior. As Section IIIC discussed, the 
population distribution of the lifetime of some assets can be 
represented using a mixture model. Figure 6 shows the 
distribution of the recloser installation times which are clearly 
multi-modal. Different policies may have prompted recloser 
installation programmes and these may have in turn resulted in 
different suppliers being used depending on the scale of 
upgrade investment. Figure 7 shows the installation times and 
associated failure times for the fleet of recloser assets 
considered, highlighting the range of installation times and how 
duration does not necessarily reflect the failure time. 

Figure 8 shows the empirical distribution of lifetimes of a 
selection of recloser assets installed over 3 different periods, 
which as with Figure 6, indicates that the population of the 

 
Figure 6: Distribution of installation times – network upgrade 

programmes have resulted in this exhibiting pronounced 
multimodality. 

 
Figure 7: Trajectory and distribution of operating lives of the 
population of reclosers in the distribution network case study 
considered - blue circles are installation dates, red crosses are 

failure times. 
 
 

  
Figure 5: Maintenance record classification performance for 

identifying anomalous records automatically. Training an RUL 
model on examples of equipment that have already failed will 

result in a poor predictor. 
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lifetime of failed reclosers is composed of multiple probability 
distributions rather than a single Gaussian, Log Normal or 
Weibull distributions. Noteworthy from Figure 8 is that the 
installation times have a strong influence on the lifetime 
distribution mode – older reclosers have a longer lifetime, ones 
installed post 2009 have shorter lifetime. This may be due to 
changes in operating regime, less effective maintenance 
strategies or change in specification of the parts or materials 
used in the recloser asset in a given period. Either way, the 
installation time provides a useful indicator of the expected 
lifetime of the asset used in this analysis. 

B.  Features for Optimal Predictive Power 
With the lifetime deterioration rate of reclosers divided into 

a range of modes, an appropriate regression model can be used 
to learn the trajectory of each lifetime mode and predict the 
lifetime of other reclosers. To do this, the optimum input 
features for the model need to be selected. Using the ARD 
Kernel given in (10), the relevance of each input feature is 
obtained [17] and given in Figure 9. From Figure 9, all three 
phase contact resistances are identified as relevant lifetime 

predictors by their non-zero kernel weights. The second timing 
test of phase A and Phase B, and ground resistance of phase A 
are also weighted so that they are informative predictors.  

C.  Lifetime Prediction 
Once the lifetime mode is identified for each recloser, the 

next step is to build the degradation trend model for each 
lifetime mode. This is undertaken using Gaussian Process 
Regression as described in Section III to predict the RUL 
trajectory. This model is validated using Time Series Cross 
Validation (TSCV). TSCV is normally used to validate time 
ordered events which use historical data to predict the next 
value. Therefore, the size of the training set increases 
continually as the test size decreases. Here, the training set starts 
with 30 historical events with the model used to predict the 31st 
event, and ends with using the past 104 events to predict the 
latest event. The implied distribution from the errors that result 
from this are shown in Figure 10.  

 
Figure 10 Prediction errors for models where parameters are 

censored in maintenance records. 
The prediction error range give in Figure 10 is from -2 to 1.5 

years. The average Root Mean Square Error (RMSE) of the 
lifetime prediction is around 1.05 years, however, pronounced 
modality of the error distribution indicates that this is driven by 
underlying factors such as the model or location where 
unmeasured hazards may have had an influence. 

D.  Lifetime mode comparison 
Previous works [20][21] assumed asset lifetime population 

belongs to a single distribution – an assumption which, if 
incorrect, would result in predictions being an unrepresentative 
aggregate of different lifetime modes. To address this, Mixtures 
of Weibull distributions [22][23] have been used to 
approximate the lifetime population. A Gaussian Mixture 
Model (GMM) is a flexible means of approximating lifetime 
distributions of an arbitrary form. To evaluate the performance 

  
Figure 9 Gaussian Process Regression ARD kernel weights for all 

input features considered. 
 

 

 
Figure 8: Lifetime distributions for all recloser assets and three 
subpopulations of recloser assets – different years of installation 

have resulted in completely different expected lifetimes. 
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of this GMM distribution, the RUL prediction accuracies are 
contrasted against existing lifetime distribution models in Table 
II with the resulting predictive accuracies associated with using 
each model. It can be seen from Table II that the GMM with the 
number of modes implied by BIC model selection, provides the 
lowest prediction error, with the optimal number of modes 
having been automatically implied by the data. 

E.  Predictive Performance Evaluation  
 To evaluate the predictive performance of the Gaussian 

Process in the proposed method, the performance of different 
benchmark regression models with complete data are given in 
Table III.  

The Gaussian Process, via its use of the ARD kernel 
function, was chosen because it automatically selected input 
variables by their predictive power. As the predictive power of 
variables is not known in advance or through domain expertise, 
this a key practical feature. As Table III shows though, even 
with incomplete data, the proposed Gaussian Process regression 
model is also the best performer.    

V.  OPERATIONAL CONSIDERATIONS 
The previous sections worked on the assumption of a 

complete set of recloser tests within each record. However, each 
recloser normally only recorded a part of the full complement 
of tests which would mean the input to a lifetime prediction 
model usually is incomplete and therefore unusable. In the 
recloser data considered, more than half of the records have 
over 50% of test measurements missing. Therefore, this section 
tests the GP RUL predictor with incomplete data backfilled 
with imputed values using the technique described in Section 
IIIA. 

A.  Imputation Error 
An imputation model based on a conditional Gaussian 

distribution (itself a limiting form of Gaussian Process) is used 
to populate the missing values. This analysis randomly deletes 
a part of the features for all the reclosers, then the proposed 
model is used to predict the values, which can be compared with 

the censored value. Since the missing features were randomly 
selected, the same process was repeated 50 times to ensure that 
as many scenarios as possible were covered. The performance 
of this imputation model is shown in Figure 11. 

In Figure 11, for comparative purposes, the imputation error 
for each variable is normalized by its own standard deviation. 
The average imputation error is within the range [-0.2, 0.2] and 
the majority have an absolute expected value of less than 0.1. 

B.  End-to-end RUL prediction 
In practice, only a subset of the tests is actually performed 

during each periodic inspection. To further investigate the 
operational impact of these missing input values on the RUL 
assessment, an end-to-end prediction is conducted on a test set 
with randomized missing values which is given in Figure 12. 
The whole process is again validated with 5-fold cross 
validation.  
 
 
 
 

  
Figure 11 Imputation errors for parameters censored in 

maintenance records. 
 

TABLE II 
LIFETIME POPULATION DENSITY MODEL 

MODEL AVERAGE 
RMSE (YEAR) 

GAUSSIAN MIXTURE WITH ORDER SELECTED BY BIC 0.707 
GAUSSIAN MIXTURE WITH 3 COMPONENTS 0.813 
WEIBULL MIXTURE WITH 2 COMPONENTS 1.15 
WEIBULL MIXTURE WITH 3 COMPONENTS 0.92 

EXPONENTIAL MIXTURE WITH 2 COMPONENTS 2.57 
MIXTURE OF WEIBULL AND EXPONENTIAL 2.49 

 

 
Figure 12 Model RUL inference process using an incomplete 

data set. In the practical context, not all maintenance records will 
include all tests. 

 

Training Data 
(complete 
records)

Test set (partially 
complete data)

Validate record

Infer lifetime 
mode

Remaining Useful 
Life predictor

Impute missing 
data

Anomalous record detector

Remaining useful life 
(days)

Abnormal Events

Events with complete 
records

Selected 
lifetime mode

Missing data imputation model

Lifetime distribution models

Failure time regression model

TABLE III 
LIFETIME PREDICTOR PERFORMANCE COMPARISON 

PREDICTOR RMSE 

THE PROPOSED METHOD WITH COMPLETE DATA 0.7 YEARS 
THE PROPOSED METHOD WITH INCOMPLETE DATA 1.38 YEARS 

LINEAR REGRESSION WITH COMPLETE DATA 6.3781 YEARS 
TREE WITH COMPLETE DATA 4.3781 YEARS 
SVM WITH COMPLETE DATA 3.0575 YEARS 

ENSEMBLE WITH COMPLETE DATA 3.4712 YEARS 
NEURAL NETWORK WITH COMPLETE DATA 6.7836 YEARS 
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TABLE IV 
PERFORMANCE OF THE PROPOSED REMAINING USEFUL LIFE PREDICTION 

MODEL SENSITIVITY SPECIFICITY PRECISION 
ABNORMAL EVENT 

IDENTIFICATION WITH 
COMPLETE DATA 

84% 98.36% 95.45% 

ABNORMAL EVENT 
IDENTIFICATION WITH 

INCOMPLETE DATA 
68.85% 89.78% 56% 

 
Table IV shows that the abnormal event identification model 

performs well at identifying abnormal events with complete 
data (Specificity and precision >95%). With working on the 
incomplete data, it becomes more likely to misidentify the 
abnormal events. However, it still performs well at identifying 
normal events and the proposed data imputation model can 
reduce the burden of collecting high quality data. This is also 
reflected in Figure 13 where the complete and incomplete input 
data are compared in terms of performance. From Figure 13, the 
complete data provides the stronger predictor, but the imputed 
data still offers an estimate based on what would otherwise be 
unusable data. The overall performance is summarized using 
RMSE which is widely used to evaluate RUL prediction 
performance [24].  

VI.  CONCLUSION 
With increasing use of low value automation and sensing 

devices on power distribution networks, new approaches to 
assessment of reliability are required in order to manage these 
new assets effectively. Fleet sizes are large and heterogeneous 
both in terms of OEM and operating environments, bearing this 
in mind, a non-stationary, adaptive RUL model based on 
Gaussian Process Regression has been developed here to base 
asset fleet lifetime estimates on routinely gathered performance 
data. To address the data quality issues that may be seen in the 
field, a missing data imputation strategy is also proposed to 
allow predictions to continue to be made in the event that 
predictor inputs are missing. While this work has focused 
entirely on the application of these analytical tools to recloser 
assets, many of the principles apply to other low value high 

volume assets such as switching capacitors and some types of 
distribution switchgear – indicating the subsequent 
developments of this research. An information system that can 
benchmark asset performance in the context of fleet wide 
behavior exhibited historically during routine maintenance [3], 
offers a route to harnessing additional assets insight without 
investing in condition monitoring. For utilities going forward, 
tools such as these will be essential as they are expected to 
provide high service quality without large investments in 
distribution monitoring down to the individual asset level. 
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