45 research outputs found

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    System for Automatic Parking Access Based on License Plate Recognition

    Get PDF
    Cílem této práce bylo navrhnout a implementovat systém pracující v reálném čase, schopný detekovat příjezd vozidla k terminálu parkoviště, rozpoznat registrační značku a automaticky rozhodnout o jeho vpuštění. Systém pro detekci příjezdu automobilu využívá algoritmus Gaussian Mixture Model. Pro spolehlivou lokalizaci registrační značky jsou použity dvě metody. V první jsou extrahovány Maximálně Stabilní Extrémní Regiony (MSER), zatímco ve druhé je použita transformace Top-Hat. Pro určení, zda se u nalezených regionů jedná o registrační značku, je využito klasifikátoru Support Vector Machine (SVM). Klasifikace znaků je provedena použitím umělé neuronové sítě. Pro implementaci byla použita knihovna OpenCV. Extrakce MSER byla díky navržené optimalizaci zrychlena až sedmkrát. Při lokalizaci registrační značky se podařilo dosáhnout úspěšnosti 92,47% a spolehlivost klasifikace dosahuje 90,03%.Goal of this thesis was to design and implement system operating in real time, which manages to detect incoming vehicle to the car park terminal, recognize its licence plate and automatically decide on its admission. System uses the Gaussian Mixture Model algorithm for detection of incoming vehicle. For reliable localization of licence plate are used two methods, the first one uses of extraction of Maximally Stable Extremal Regions (MSERs), the second one uses of Top-Hat transformation. Support Vector Machine (SVM) algorithm is used to decide, whether is the found area a licence plate. Character classification is performed using artificial neural network. For implementation was used library OpenCV. Thanks to optimalization is the extraction of MSERs accelerated up to seven times. The accomplished success rate in case of licence plate localization is 92,47% and in case of classification of characters is 90,03%. 

    Vehicle license plate detection and recognition

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Zhihai He.In this work, we develop a license plate detection method using a SVM (Support Vector Machine) classifier with HOG (Histogram of Oriented Gradients) features. The system performs window searching at different scales and analyzes the HOG feature using a SVM and locates their bounding boxes using a Mean Shift method. Edge information is used to accelerate the time consuming scanning process. Our license plate detection results show that this method is relatively insensitive to variations in illumination, license plate patterns, camera perspective and background variations. We tested our method on 200 real life images, captured on Chinese highways under different weather conditions and lighting conditions. And we achieved a detection rate of 100%. After detecting license plates, alignment is then performed on the plate candidates. Conceptually, this alignment method searches neighbors of the bounding box detected, and finds the optimum edge position where the outside regions are very different from the inside regions of the license plate, from color's perspective in RGB space. This method accurately aligns the bounding box to the edges of the plate so that the subsequent license plate segmentation and recognition can be performed accurately and reliably. The system performs license plate segmentation using global alignment on the binary license plate. A global model depending on the layout of license plates is proposed to segment the plates. This model searches for the optimum position where the characters are all segmented but not chopped into pieces. At last, the characters are recognized by another SVM classifier, with a feature size of 576, including raw features, vertical and horizontal scanning features. Our character recognition results show that 99% of the digits are successfully recognized, while the letters achieve an recognition rate of 95%. The license plate recognition system was then incorporated into an embedded system for parallel computing. Several TS7250 and an auxiliary board are used to simulIncludes bibliographical references (pages 67-73)

    Research on Segmentation And Recognition of Fuzzy License Plate

    Get PDF
    摘要 车牌识别技术是车辆管控系统研究中的一个重要研究课题,目前主要应用于公路收费、停车管理、交通道路卡口、车辆调度、车辆检测等方面。虽然现阶段车牌识别技术已经较为成熟,但在污损、模糊、光照变化等复杂条件影响下,模糊车牌的识别准确率并不理想。本课题是企业委托项目中新产品研发的关键技术之一,将重点研究模糊车牌的定位、分割、识别等问题。 本文的主要工作有: 1.车牌图像的定位:给出一种基于图像颜色、边缘特征与最大稳定极值区域(MaximallyStableExtremalRegionsMSER)文字搜索法三种方法并行的车辆图像定位方法。通过上述三种方法以及深度学习网络模型,以卡口车牌图像为输入...Abstract License plate recognition technology is an important research topic in vehicle control research. At present, it is widely used in highway toll collection, parking management, traffic road, vehicle scheduling, vehicle detection and so on. Although the license plate recognition technology has been mature at the present, the recognition accuracy of fuzzy license plate is not ideal under ...学位:工程硕士院系专业:信息科学与技术学院_工程硕士(计算机技术)学号:2302014115317

    Text-detection and -recognition from natural images

    Get PDF
    Text detection and recognition from images could have numerous functional applications for document analysis, such as assistance for visually impaired people; recognition of vehicle license plates; evaluation of articles containing tables, street signs, maps, and diagrams; keyword-based image exploration; document retrieval; recognition of parts within industrial automation; content-based extraction; object recognition; address block location; and text-based video indexing. This research exploited the advantages of artificial intelligence (AI) to detect and recognise text from natural images. Machine learning and deep learning were used to accomplish this task.In this research, we conducted an in-depth literature review on the current detection and recognition methods used by researchers to identify the existing challenges, wherein the differences in text resulting from disparity in alignment, style, size, and orientation combined with low image contrast and a complex background make automatic text extraction a considerably challenging and problematic task. Therefore, the state-of-the-art suggested approaches obtain low detection rates (often less than 80%) and recognition rates (often less than 60%). This has led to the development of new approaches. The aim of the study was to develop a robust text detection and recognition method from natural images with high accuracy and recall, which would be used as the target of the experiments. This method could detect all the text in the scene images, despite certain specific features associated with the text pattern. Furthermore, we aimed to find a solution to the two main problems concerning arbitrarily shaped text (horizontal, multi-oriented, and curved text) detection and recognition in a low-resolution scene and with various scales and of different sizes.In this research, we propose a methodology to handle the problem of text detection by using novel combination and selection features to deal with the classification algorithms of the text/non-text regions. The text-region candidates were extracted from the grey-scale images by using the MSER technique. A machine learning-based method was then applied to refine and validate the initial detection. The effectiveness of the features based on the aspect ratio, GLCM, LBP, and HOG descriptors was investigated. The text-region classifiers of MLP, SVM, and RF were trained using selections of these features and their combinations. The publicly available datasets ICDAR 2003 and ICDAR 2011 were used to evaluate the proposed method. This method achieved the state-of-the-art performance by using machine learning methodologies on both databases, and the improvements were significant in terms of Precision, Recall, and F-measure. The F-measure for ICDAR 2003 and ICDAR 2011 was 81% and 84%, respectively. The results showed that the use of a suitable feature combination and selection approach could significantly increase the accuracy of the algorithms.A new dataset has been proposed to fill the gap of character-level annotation and the availability of text in different orientations and of curved text. The proposed dataset was created particularly for deep learning methods which require a massive completed and varying range of training data. The proposed dataset includes 2,100 images annotated at the character and word levels to obtain 38,500 samples of English characters and 12,500 words. Furthermore, an augmentation tool has been proposed to support the proposed dataset. The missing of object detection augmentation tool encroach to proposed tool which has the ability to update the position of bounding boxes after applying transformations on images. This technique helps to increase the number of samples in the dataset and reduce the time of annotations where no annotation is required. The final part of the thesis presents a novel approach for text spotting, which is a new framework for an end-to-end character detection and recognition system designed using an improved SSD convolutional neural network, wherein layers are added to the SSD networks and the aspect ratio of the characters is considered because it is different from that of the other objects. Compared with the other methods considered, the proposed method could detect and recognise characters by training the end-to-end model completely. The performance of the proposed method was better on the proposed dataset; it was 90.34. Furthermore, the F-measure of the method’s accuracy on ICDAR 2015, ICDAR 2013, and SVT was 84.5, 91.9, and 54.8, respectively. On ICDAR13, the method achieved the second-best accuracy. The proposed method could spot text in arbitrarily shaped (horizontal, oriented, and curved) scene text.</div

    Text Extraction From Natural Scene: Methodology And Application

    Full text link
    With the popularity of the Internet and the smart mobile device, there is an increasing demand for the techniques and applications of image/video-based analytics and information retrieval. Most of these applications can benefit from text information extraction in natural scene. However, scene text extraction is a challenging problem to be solved, due to cluttered background of natural scene and multiple patterns of scene text itself. To solve these problems, this dissertation proposes a framework of scene text extraction. Scene text extraction in our framework is divided into two components, detection and recognition. Scene text detection is to find out the regions containing text from camera captured images/videos. Text layout analysis based on gradient and color analysis is performed to extract candidates of text strings from cluttered background in natural scene. Then text structural analysis is performed to design effective text structural features for distinguishing text from non-text outliers among the candidates of text strings. Scene text recognition is to transform image-based text in detected regions into readable text codes. The most basic and significant step in text recognition is scene text character (STC) prediction, which is multi-class classification among a set of text character categories. We design robust and discriminative feature representations for STC structure, by integrating multiple feature descriptors, coding/pooling schemes, and learning models. Experimental results in benchmark datasets demonstrate the effectiveness and robustness of our proposed framework, which obtains better performance than previously published methods. Our proposed scene text extraction framework is applied to 4 scenarios, 1) reading print labels in grocery package for hand-held object recognition; 2) combining with car detection to localize license plate in camera captured natural scene image; 3) reading indicative signage for assistant navigation in indoor environments; and 4) combining with object tracking to perform scene text extraction in video-based natural scene. The proposed prototype systems and associated evaluation results show that our framework is able to solve the challenges in real applications

    RODRIGUEZ-SERRANO, PERRONNIN: LABEL EMBEDDING FOR TEXT RECOGNITION 1 Label embedding for text recognition

    Get PDF
    The standard approach to recognizing text in images consists in first classifying local image regions into candidate characters and then combining them with high-level word models such as conditional random fields (CRF). This paper explores a new paradigm that departs from this bottom-up view. We propose to embed word labels and word images into a common Euclidean space. Given a word image to be recognized, the text recognition problem is cast as one of retrieval: find the closest word label in this space. This common space is learned using the Structured SVM (SSVM) framework by enforcing matching label-image pairs to be closer than non-matching pairs. This method presents the following advantages: it does not require costly pre- or post-processing operations, it allows for the recognition of never-seen-before words and the recognition process is efficient. Experiments are performed on two challenging datasets (one of license plates and one of scene text) and show that the proposed method is competitive with standard bottom-up approaches to text recognition. 1 Introduction and related wor

    IMPROVED LICENSE PLATE LOCALIZATION ALGORITHM BASED ON MORPHOLOGICAL OPERATIONS

    Get PDF
    Automatic License Plate Recognition (ALPR) systems have become an important tool to track stolen cars, access control, and monitor traffic. ALPR system consists of locating the license plate in an image, followed by character detection and recognition. Since the license plate can exist anywhere within an image, localization is the most important part of ALPR and requires greater processing time. Most ALPR systems are computationally intensive and require a high-performance computer. The proposed algorithm differs significantly from those utilized in previous ALPR technologies by offering a fast algorithm, composed of structural elements which more precisely conducts morphological operations within an image, and can be implemented in portable devices with low computation capabilities. The proposed algorithm is able to accurately detect and differentiate license plates in complex images. This method was first tested through MATLAB with an on-line public database of Greek license plates which is a popular benchmark used in previous works. The proposed algorithm was 100% accurate in all clear images, and achieved 98.45% accuracy when using the entire database which included complex backgrounds and license plates obscured by shadow and dirt. Second, the efficiency of the algorithm was tested in devices with low computational processing power, by translating the code to Python, and was 300% faster than previous work
    corecore