82 research outputs found

    A cost-effective and optimized maximum powerpoint tracking system for the photovoltaic model

    Get PDF
    Solar energy is naturally available from sun, and it can be extracted by using a photovoltaic (PV) cell. However, solar energy extraction entirely depends on the climatic conditions and angle of rays falling on PV cells. Hence, maximum powerpoint tracking (MPPT) is considered in most areas under variable climatic conditions, which acts as a controller unit for PV cells. MPPT can enhance the efficiency of PV cells. However, designing an MPPT model is challenging as different uncertainties in the climatic condition may lead to more fluctuations in voltage and current in PV cells. Under the shaded condition, the PV cell may have other MPPT points that lead to the PV cell’s low efficiency in analyzing maximum power. Hence, this paper introduces a cost-effective and optimized system for the PV model that can find optimal power and improve PV cells’ efficiency. The proposed system achieves better computational performance with ~35% and ~42% than existing MPPT techniques. The improved particle swarm optimization (PSO) is smoother due to the enhanced form of MPP tracking. Hence, improved PSO takes 0.038 sec while the existing PSO technique takes 0.045 sec to obtain the MPP tracking

    A cost effective computational design of maximum power point tracking for photo-voltaic cell

    Get PDF
    Maximum Power Point Tracking (MPPT) is one of the essential controller operations of any Photo-Voltaic (PV) cell design. Developing an efficient MPPT system includes a significant challenge as there are various forms of uncertainty factors that results in higher degree of fluctuation in current and voltage in PV cell. After reviewing existing system, it has been found that there is no presence of any benchmarked model to ensure a better form of computational model. Hence, this paper presents a novel and very simple design of MPPT without using any form of complex design mechanism nor including any form of frequently used iterative approach. The proposed model is completely focused on developing an algorithm that takes the input of voltage (open circuit), current (short circuit), and max power in order to obtain the peak power to be extracted from the PV cells. The study outcome shows faster response time and better form of analysis of current-voltage-power for given state of PV cells

    Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter

    Get PDF
    This paper proposes a new maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems, which is tested in simulations and practical implementations. In the proposed PV-MPPT system, a new control strategy is applied to create two operating areas. In each area, the step-size is different in the function of the closeness to the MPP. Because of this strategy, some drawbacks of the conventional incremental conductance (IncCond) methods are eliminated. A single-ended primary-inductor converter (SEPIC) DC-DC converter is controlled with the proposed MPPT technique. The modified IncCond method is validated under simulation with test data, real data and real scenarios of solar irradiation. The results of the proposed approach show higher MPPT efficiencies and shorter convergence times than the conventional IncCond method even in rapidly changing conditions of solar radiation

    Maximum power point tracking and control of grid interfacing PV systems

    Get PDF
    Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power.Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power

    A Unified Approach to Maximum Power Point Tracking and I-V Curve Determination of Photovoltaic Arrays from Real-time Measurements

    Get PDF
    In recent years we have seen a considerable increase in the installed capacity of Photovoltaic (PV) power generating plants worldwide. This increase is primarily attributed to the decrease in the cost of installation and the awareness towards the sustainable power generation. However, the efficiency of the PV modules is still low. The Current vs. Voltage (I-V) characteristics of the PV generators is non-linear and changes with irradiance and temperature. For optimal utilization of PV sources, Maximum Power Point Trackers (MPPTs) are used. When the array is under uniform illumination, there is a single peak on the Power vs. Voltage (P-V) curve of the PV array. This peak is easily tracked by conventional MPPTs. However, under Partial Shading Conditions (PSC), multiple peaks appear on the P-V curve. Out of these, there is one Global Peak (GP) while the others are Local Peaks (LP). When the MPPT algorithm is trapped at LP, considerable power loss occurs. Special MPPTs are designed for finding the GP when the array is under PSC. It is also important to periodically find the I-V curve of the array under the field conditions for monitoring and control of the PV generators. For this purpose, specialized tests are performed. During these tests, the generation of power from the PV arrays is halted. Similarly, the speed of performance of these tests is also important as the environmental conditions may change quickly during finding of the curve. Any change in the surroundings during the performance of finding the characteristic curve may affect the results. In this thesis, two algorithms are proposed that perform the MPP tracking and measurement of the I-V curve under any kind of irradiance. The first algorithm performs these tasks by using the module voltages as the parameter. In the second method, the input filter capacitor of buck or buck-boost converter is used. Simulation and experimental results confirm the performance of the proposed methods

    Assessing MPPT Techniques on Hot-Spotted and Partially Shaded Photovoltaic Modules: Comprehensive Review Based on Experimental Data

    Get PDF
    Hot-spotting is a reliability problem influencing photovoltaic (PV) modules, where a mismatched solar cell/cells heat up significantly and reduce the output power of the affected PV module. Therefore, in this paper, a succinct comparison of seven different state-of-the-art maximum power point tracking (MPPT) techniques are demonstrated, doing useful comparisons with respect to amount of power extracted, and hence calculate their tracking accuracy. The MPPT techniques have been embedded into a commercial off-the-shelf MPPT unit, accordingly running different experiments on multiple hot-spotted PV modules. Furthermore, the comparison includes real-time long-term data measurements over several days and months of validation. Evidently, it was found that both fast changing MPPT and the modified beta techniques are best to use with PV modules affected by hot-spotted solar cells as well as during partial shading conditions, on average, their tracking accuracy ranging from 92% to 94%. Ultimately, the minimum tracking accuracy is below 93% obtained for direct pulsewwidth modulation voltage controller MPPT technique

    Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition-A Retrospection

    Get PDF
    A significant growth in solar photovoltaic (PV) installation has observed during the last decade in standalone and grid-connected power generation systems. The solar PV system has a non-linear output characteristic because of weather intermittency, which tends to have a substantial effect on overall PV system output. Hence, to optimize the output of a PV system, different maximum power point tracking (MPPT) techniques have been used. But, the confusion lies while selecting an appropriate MPPT, as every method has its own merits and demerits. Therefore, a proper review of these techniques is essential. A “Google Scholar” survey of the last five years (2015-2020) was conducted. It has found that overall seventy-one review articles are published on different MPPT techniques; out of those seventy-one, only four are on uniform solar irradiance, seven on non-uniform and none on hybrid optimization MPPT techniques. Most of them have discussed the limited number of MPPT techniques, and none of them has discussed the online and offline under uniform and hybrid MPPT techniques under non-uniform solar irradiance conditions all together in one. Unfortunately, very few attempts have made in this regard. Therefore, a comprehensive review paper on this topic is need of time, in which almost all the well-known MPPT techniques should be encapsulated in one paper. This article focuses on classifications of online, offline, and hybrid optimization MPPT algorithms, under the uniform and non-uniform irradiance conditions. It summarizes various MPPT methods along with their mathematical expression, operating principle, and block diagram/flow charts. This research will provide a valuable pathway to researchers, energy engineers, and strategists for future research and implementation in the field of maximum power point tracking optimization

    SHE Control for PV System Connected to the Grid

    Get PDF
    In this article, we have proposed a new control of a PV system connected to the grid. The goal is to reduce current and voltage harmonicsfor increasing the quality of delivered energy. First, we have modeled a PV panel. Then we have dimensioned the BOOST converter by finding L and C values. Next, we have used Perturb and Observe (P&O) Maximum Power Point Control (MPPT) to improve energy efficiency. Finally, We have developed a control of single-phase H-bridge inverter in order to eliminate the 3rd,5th,7th and 9th harmonics order, and added an LCLTo connect the PV inverter to the grid, an LCL betweenthe inverter and the grid. Theperformance of the proposed system was tested by computing spectrum and THD usingMatlab/Simulink software. The proposed architecture provides better Total Harmonic Distortion (THD) which satisfy the EN50160 requirement the THD must be less than 4.66%. We found that THD was decreased from 61.93% to 0.04%

    Electrical Power Distribution Network Reliability: A Case Study in Wates Substation, Yogyakarta, Indonesia

    Get PDF
    This paper presents electrical power distribution network reliability. Reliability is one of the most critical factors of a network operating system that is supported. Several things become essential parameters in determining an index that complements the distribution system, namely SAIFI and SAIDI. This research is able to know about the high levels obtained by the distribution system at the Wates substation. With this analysis, it is expected that this will become a reference for improving service quality in the coming year. Based on the results of calculations and analyses that have been done, it can be said that the distribution system at the substation has been reliable, because all feeders have met the standards set by the SPLN, IEEE, and WCS, especially the WT 05 feeder meets the standard
    • …
    corecore