2,187,099 research outputs found
Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs
Protostellar Jet and Outflow in the Collapsing Cloud Core
We investigate the driving mechanism of outflows and jets in star formation
process using resistive MHD nested grid simulations. We found two distinct
flows in the collapsing cloud core: Low-velocity outflows (sim 5 km/s) with a
wide opening angle, driven from the first adiabatic core, and high-velocity
jets (sim 50 km/s) with good collimation, driven from the protostar.
High-velocity jets are enclosed by low-velocity outflow. The difference in the
degree of collimation between the two flows is caused by the strength of the
magnetic field and configuration of the magnetic field lines. The magnetic
field around an adiabatic core is strong and has an hourglass configuration.
Therefore, the low-velocity outflow from the adiabatic core are driven mainly
by the magnetocentrifugal mechanism and guided by the hourglass-like field
lines. In contrast, the magnetic field around the protostar is weak and has a
straight configuration owing to Ohmic dissipation in the high-density gas
region. Therefore, high-velocity jet from the protostar are driven mainly by
the magnetic pressure gradient force and guided by straight field lines.
Differing depth of the gravitational potential between the adiabatic core and
the protostar cause the difference of the flow speed. Low-velocity outflows
correspond to the observed molecular outflows, while high-velocity jets
correspond to the observed optical jets. We suggest that the protostellar
outflow and the jet are driven by different cores (the first adiabatic core and
protostar), rather than that the outflow being entrained by the jet.Comment: To appear in the proceedings of the "Protostellar Jets in Context"
conference held on the island of Rhodes, Greece (7-12 July 2008
Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes
While most calculations on the properties of the ferromagnetic semiconductor
GaAs:Mn have focussed on isolated Mn substituting the Ga site (Mn), we
investigate here whether alternate lattice sites are favored and what the
magnetic consequences of this might be. Under As-rich (Ga-poor) conditions
prevalent at growth, we find that the formation energies are lower for
Mn over interstitial Mn (Mn).As the Fermi energy is shifted towards
the valence band maximum via external -doping, the formation energy of
Mn is reduced relative to Mn. Furthermore, under epitaxial growth
conditions, the solubility of both substitutional and interstitial Mn are
strongly enhanced over what is possible under bulk growth conditions. The high
concentration of Mn attained under epitaxial growth of p-type material opens
the possibility of Mn atoms forming small clusters. We consider various types
of clusters, including the Coulomb-stabilized clusters involving two Mn
and one Mn. While isolated Mn are hole killers (donors), and therefore
destroy ferromagnetism,complexes such as Mn-Mn-Mn) are found
to be more stable than complexes involving Mn-Mn-Mn. The
former complexes exhibit partial or total quenching of holes, yet Mn in
these complexes provide a channel for a ferromagnetic arrangement of the spins
on the two Mn within the complex. This suggests that ferromagnetism in
Mn doped GaAs arises both from holes due to isolated Mn as well as from
strongly Coulomb stabilized Mn-Mn-Mn clusters.Comment: 7 figure
Spin-phonon coupling in single Mn doped CdTe quantum dot
The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is
addressed theoretically. Recent experimental
results\cite{Le-Gall_PRL_2009,Goryca_PRL_2009,Le-Gall_PRB_2010}show that it is
possible to induce Mn spin polarization by means of circularly polarized
optical pumping. Pumping is made possible by the faster Mn spin relaxation in
the presence of the exciton. Here we discuss different Mn spin relaxation
mechanisms. First, Mn-phonon coupling, which is enhanced in the presence of the
exciton. Second, phonon-induced hole spin relaxation combined with carrier-Mn
spin flip coupling and photon emission results in Mn spin relaxation. We model
the Mn spin dynamics under the influence of a pumping laser that injects
excitons into the dot, taking into account exciton-Mn exchange and phonon
induced spin relaxation of both Mn and holes. Our simulations account for the
optically induced Mn spin pumping.Comment: 17 pages, 11 figures, submitted to PR
Electronic structure of InMnAs studied by photoemission spectroscopy: Comparison with GaMnAs
We have investigated the electronic structure of the -type diluted
magnetic semiconductor InMnAs by photoemission spectroscopy. The Mn
3 partial density of states is found to be basically similar to that of
GaMnAs. However, the impurity-band like states near the top of
the valence band have not been observed by angle-resolved photoemission
spectroscopy unlike GaMnAs. This difference would explain the
difference in transport, magnetic and optical properties of
InMnAs and GaMnAs. The different electronic
structures are attributed to the weaker Mn 3 - As 4 hybridization in
InMnAs than in GaMnAs.Comment: 4 pages, 3 figure
Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys
Influence of disorder, antisite defects, martensite transition and
compositional variation on the magnetic properties and electronic structure of
MnNiGa and MnNiGa magnetic shape memory alloys have been
studied by using full potential spin-polarized scalar relativistic
Korringa-Kohn-Rostocker (FP-SPRKKR) method. MnNiGa is ferrimagnetic and its
total spin moment increases when disorder in the occupancy of Mn (Mn
atom in Ni position) is considered. The moment further increases when Mn-Ga
antisite defect[1] is included in the calculation. A reasonable estimate of
for MnNiGa is obtained from the exchange parameters for the
disordered structure. Disorder influences the electronic structure of
MnNiGa through overall broadening of the density of states and a decrease
in the exchange splitting. Inclusion of antisite defects marginally broaden the
minority spin partial DOS (PDOS), while the majority spin PDOS is hardly
affected. For MnNiGa where 10, as decreases,
Mn moment increases while Mn moment decreases in both
austenite and martensite phases. For 0.25, the total moment of the
martensite phase is smaller compared to the austenite phase, which indicates
possible occurrence of inverse magnetocaloric effect. We find that the
redistribution of Ni 3- Mn 3 minority spin electron states
close to the Fermi level is primarily responsible for the stability of the
martensite phase in Mn-Ni-Ga.Comment: 10 pages, 5 figure
- …
