20 research outputs found

    Compression and intelligence: social environments and communication

    Full text link
    Compression has been advocated as one of the principles which pervades inductive inference and prediction - and, from there, it has also been recurrent in definitions and tests of intelligence. However, this connection is less explicit in new approaches to intelligence. In this paper, we advocate that the notion of compression can appear again in definitions and tests of intelligence through the concepts of `mind-reading¿ and `communication¿ in the context of multi-agent systems and social environments. Our main position is that two-part Minimum Message Length (MML) compression is not only more natural and effective for agents with limited resources, but it is also much more appropriate for agents in (co-operative) social environments than one-part compression schemes - particularly those using a posterior-weighted mixture of all available models following Solomonoff¿s theory of prediction. We think that the realisation of these differences is important to avoid a naive view of `intelligence as compression¿ in favour of a better understanding of how, why and where (one-part or two-part, lossless or lossy) compression is needed.We thank the anonymous reviewers for their helpful comments, and we thank Kurt Kleiner for some challenging and ultimately very helpful questions in the broad area of this work. We also acknowledge the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, and Generalitat Valenciana for Prometeo/2008/051.Dowe, DL.; Hernández Orallo, J.; Das, PK. (2011). Compression and intelligence: social environments and communication. En Artificial General Intelligence. Springer Verlag (Germany). 6830:204-211. https://doi.org/10.1007/978-3-642-22887-2_21S2042116830Chaitin, G.J.: Godel’s theorem and information. International Journal of Theoretical Physics 21(12), 941–954 (1982)Dowe, D.L.: Foreword re C. S. Wallace. Computer Journal 51(5), 523–560 (2008); Christopher Stewart WALLACE (1933-2004) memorial special issueDowe, D.L.: Minimum Message Length and statistically consistent invariant (objective?) Bayesian probabilistic inference - from (medical) “evidence”. Social Epistemology 22(4), 433–460 (2008)Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier, Amsterdam (2011)Dowe, D.L., Hajek, A.R.: A computational extension to the Turing Test. Technical Report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp (1997)Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (February 1998)Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)Hernández-Orallo, J.: Constructive reinforcement learning. International Journal of Intelligent Systems 15(3), 241–264 (2000)Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg, MD, U.S.A (2000)Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)Lewis, D.K., Shelby-Richardson, J.: Scriven on human unpredictability. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 17(5), 69–74 (1966)Oppy, G., Dowe, D.L.: The Turing Test. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Stanford University, Stanford (2011), http://plato.stanford.edu/entries/turing-test/Salomon, D., Motta, G., Bryant, D.C.O.N.: Handbook of data compression. Springer-Verlag New York Inc., Heidelberg (2009)Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In: 4th International Conference on Cognitive Science (and 7th Australasian Society for Cognitive Science Conference), vol. 2, pp. 570–575. Univ. of NSW, Sydney, Australia (July 2003)Sayood, K.: Introduction to data compression. Morgan Kaufmann, San Francisco (2006)Scriven, M.: An essential unpredictability in human behavior. In: Wolman, B.B., Nagel, E. (eds.) Scientific Psychology: Principles and Approaches, pp. 411–425. Basic Books (Perseus Books), New York (1965)Searle, J.R.: Minds, brains and programs. Behavioural and Brain Sciences 3, 417–457 (1980)Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964)Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances in neural information processing systems, 1038–1044 (1996)Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT Press, Cambridge (1998)Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)Veness, J., Ng, K.S., Hutter, M., Silver, D.: A Monte Carlo AIXI Approximation. Journal of Artificial Intelligence Research, JAIR 40, 95–142 (2011)Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer, Heidelberg (2005)Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)Wallace, C.S., Dowe, D.L.: Intrinsic classification by MML - the Snob program. In: Proc. 7th Australian Joint Conf. on Artificial Intelligence, pp. 37–44. World Scientific, Singapore (November 1994)Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283 (1999); Special issue on Kolmogorov complexityWallace, C.S., Dowe, D.L.: MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10, 73–83 (2000

    Data Mining in Ubiquitous Healthcare

    Get PDF

    Robot-object contact perception using symbolic temporal pattern learning

    No full text
    This paper investigates application of machine learning to the problem of contact perception between a robots gripper and an object. The input data comprises a multidimensional time-series produced by a force/torque sensor at the robots wrist, the robots proprioceptive information, namely, the position of the end-effector, as well as the robots control command. These data are used to train a hidden Markov model (HMM) classifier. The output of the classifier is a prediction of the contact state, which includes no contact, a contact aligned with the central axis of the valve, and an edge contact. To distinguish between contact states, the robot performs exploratory behaviors that produce distinct patterns in the time-series data. The patterns are discovered by first analyzing the data using a probabilistic clustering algorithm that transforms the multidimensional data into a one-dimensional sequence of symbols. The symbols produced by the clustering algorithm are used to train the HMM classifier. We examined two exploratory behaviors: a rotation around the x-axis, and a rotation around the y-axis of the gripper. We show that using these two exploratory behaviors we can successfully predict a contact state with an accuracy of 88 ± 5 % and 81 ± 10 %, respectively

    Underwater robot-object contact perception using machine learning on force/torque sensor feedback

    No full text
    Autonomous manipulation of objects requires re- liable information on robot-object contact state. Underwater environments can adversely affect sensing modalities such as vision, making them unreliable. In this paper we investi- gate underwater robot-object contact perception between an autonomous underwater vehicle and a T-bar valve using a force/torque sensor and the robot’s proprioceptive information. We present an approach in which machine learning is used to learn a classifier for different contact states, namely, a contact aligned with the central axis of the valve, an edge contact and no contact. To distinguish between different contact states, the robot performs an exploratory behavior that produces distinct patterns in the force/torque sensor. The sensor output forms a multidimensional time-series. A probabilistic clustering algo- rithm is used to analyze the time-series. The algorithm dissects the multidimensional time-series into clusters, producing a one- dimensional sequence of symbols. The symbols are used to train a hidden Markov model, which is subsequently used to predict novel contact conditions. We show that the learned classifier can successfully distinguish the three contact states with an accuracy of 72% ± 12 %

    Latent class cluster analysis

    Get PDF

    Symbolic-based recognition of contact states for learning assembly skills

    Get PDF
    Imitation learning is gaining more attention because it enables robots to learn skills from human demonstrations. One of the major industrial activities that can benefit from imitation learning is the learning of new assembly processes. An essential characteristic of an assembly skill is its different contact states (CS). They determine how to adjust movements in order to perform the assembly task successfully. Humans can recognise CSs through haptic feedback. They execute complex assembly tasks accordingly. Hence, CSs are generally recognised using force and torque information. This process is not straightforward due to the variations in assembly tasks, signal noise and ambiguity in interpreting force/torque (F/T) information. In this research, an investigation has been conducted to recognise the CSs during an assembly process with a geometrical variation on the mating parts. The F/T data collected from several human trials were pre-processed, segmented and represented as symbols. Those symbols were used to train a probabilistic model. Then, the trained model was validated using unseen datasets. The primary goal of the proposed approach aims to improve recognition accuracy and reduce the computational effort by employing symbolic and probabilistic approaches. The model successfully recognised CS based only on force information. This shows that such models can assist in imitation learning.</div

    Simultaneous feature selection and clustering using mixture models

    Full text link

    Unsupervised Learning with Feature Selection Based on Multivariate McDonald’s Beta Mixture Model for Medical Data Analysis

    Get PDF
    This thesis proposes innovative clustering approaches using finite and infinite mixture models to analyze medical data and human activity recognition. These models leverage the flexibility of a novel distribution, the multivariate McDonald’s Beta distribution, offering superior capability to model data of varying shapes. We introduce a finite McDonald’s Beta Mixture Model (McDBMM), demonstrating its superior performance in handling bounded and asymmetric data distributions compared to traditional Gaussian mixture models. Further, we employ deterministic learning methods such as maximum likelihood via the expectation maximization approach and also a Bayesian framework, in which we integrate feature selection. This integration enhances the efficiency and accuracy of our models, offering a compelling solution for real-world applications where manual annotation of large data volumes is not feasible. To address the prevalent challenge in clustering regarding the determination of mixture components number, we extend our finite mixture model to an infinite model. By adopting a nonparametric Bayesian technique, we can effectively capture the underlying data distribution with an unknown number of mixture components. Across all stages, our models are evaluated on various medical applications, consistently demonstrating superior performance over traditional alternatives. The results of this research underline the potential of the McDonald’s Beta distribution and the proposed mixture models in transforming medical data into actionable knowledge, aiding clinicians in making more precise decisions and improving health care industry
    corecore