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Imitation learning is gaining more attention because it enables robots to learn skills

from human demonstrations. One of the major industrial activities that can benefit from

imitation learning is the learning of new assembly processes. An essential characteristic

of an assembly skill is its different contact states (CS). They determine how to adjust

movements in order to perform the assembly task successfully. Humans can recognize

CSs through haptic feedback. They execute complex assembly tasks accordingly.

Hence, CSs are generally recognized using force and torque information. This process

is not straightforward due to the variations in assembly tasks, signal noise and ambiguity

in interpreting force/torque (F/T) information. In this research, an investigation has

been conducted to recognize the CSs during an assembly process with a geometrical

variation on the mating parts. The F/T data collected from several human trials were

pre-processed, segmented and represented as symbols. Those symbols were used to

train a probabilistic model. Then, the trained model was validated using unseen datasets.

The primary goal of the proposed approach aims to improve recognition accuracy and

reduce the computational effort by employing symbolic and probabilistic approaches.

The model successfully recognized CS based only on force information. This shows that

such models can assist in imitation learning.

Keywords: symbolic representation, imitation learning, feature transformation, Piecewise Aggregate

Approximation (PAA), K-means, Hidden Markov Model (HMM)

1. INTRODUCTION

Industrial robots can efficiently manipulate and assemble objects in a controlled environment
with minimum variations. However, they have limitations in assembling parts with geometrical
variations and tighter tolerances. In such applications, force signals play a crucial role especially
when the robots have to interact with the surrounding environment. Nevertheless, the force signals
are noisy and ambiguous to interpret and use (Wen et al., 2014). Humans, on the other hand,
can robustly perform assembly tasks with tight tolerances (Park et al., 2008) because they are very
efficient at using haptic (F/T) information, especially when vision cannot provide the required
information. Consequently, robots can benefit from understanding how humans use such haptic
feedback information during an assembly process. This can empower robots to use force and torque
with human-like capabilities allowing them to learn and adapt according to the variations in the
environment and adjust movement for tight tolerance assembly.
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Most of the research work reported in the area of imitation
learning is based on visual perception. This is mainly because
humans mostly rely on vision to gain adequate information
about objects’ relative positions and their geometrical properties
(Ernst and Banks, 2002; Rozo et al., 2013). In assembly
applications, perception importance can vary with motion,
where gross motion relies on vision while fine motion requires
haptic information, especially in contact situations. The focus
of the work reported in this paper is on the use of haptic
information to learn an assembly task. Capturing human skills
is particularly complicated for assembly processes which often
involve an understanding of hidden process features and tacit
knowledge. For example, for a successful assembly task, an
understanding of various types of contacts between objects
and their corresponding forces is required. Another important
aspect of an assembly process is the sequential relations between
different CSs during the assembly. Henceforth, different skilled
operators can perform the stages of the same task with different
temporal properties (transition between states and durations). In
order to capture, understand and interpret human skills from
a number of trials, those trials must be aligned (in terms of
duration). Also, the underlying pattern of the haptic information
must be extracted to reveal the sequential (temporal) knowledge
(i.e., human skill). Hence, those skills must be modeled so that
they can adapt to task variations for robotic assembly.

A great deal of research has been conducted on the recognition
of the CS. The approaches for CS recognition can be arranged
into two groups, i.e., analytical approaches and learning-based
approaches. Essentially, the analytical model of the mating
system has no single structure. The general model is composed of
a set of analytical equations (sub-models), where each equation
describes a particular contact state based on a physical analysis
of the state. Furthermore, these sub-models usually rely on a set
of approximation and assumptions to simplify the given problem.
Hence, current analytical approaches to recognize CS is limited in
terms of robustness and speed (Jakovljevic et al., 2012). The main
limitation of analytical approaches is latency since it relies on a
very complex computation (Nuttin, 1995). Learning approaches,
on the other hand, appear to be a better alternative when taking
the recognition of the CSs into consideration.

Various learning-based approaches to recognize CSs have
been presented in the literature. For example, the HiddenMarkov
Model (HMM) has been implemented to recognize CS based on
F/T information in tele-manipulation and result were presented
in Hannaford and Lee (1990). However, the proposed models
rely on extensive training and are only applicable to large
clearance between the assembled parts. In Dong and Naghdy
(2007) an HMM was used to recognize the CS of a Peg-in-
Hole (PiH) assembly in a virtual environment, and to recognize
the CS during the on-line PiH process. However, the accuracy
of the trained HMM depended on the accuracy of the virtual
world model which generally has nominal behavior. Lau (2003)
proposed a framework of CS recognition in industrial robot
assembly platform using HMM and F/T information, where it
was experimentally proven that HMM-based with F/T is superior
compared to the conventional CS recognition (CAD-based and
kinematic-based).

Jasim et al. (2017) have developed a method that combines
the Expectation Maximization and Gaussian Mixture Model
(EM-GMM) to recognize the CS of PiH insertion during an
automated process. In Jasim et al. (2017) the number of Gaussian
were determined using Distribution Similarity Measure-based
(DSM). In this research, the trained GMMmodels were evaluated
using a rubber PiH insertions with two different parts elasticity.
Yet, the work reported in Jasim et al. (2017) did not employ
feature selection or transformation algorithms in order to reduce
the computational effort. A Piecewise Affine Autoregressive
Exogenous (PWARX) method has been presented in Okuda et al.
(2008) to recognize the CS during the PiH assembly process. The
core idea of the PWARX was used to control a robot during the
PiH process based on a set of mathematical models (PWARX
sets). In this case, the control was achieved by switching between
the PWARX models using a Support Vector Machine (SVM).
The SVM functionality was to recognize CS and accordingly
switch over controllers to select the suitable models for the
given CS. The computational power required for this method
is quite high (Mikami et al., 2010), and the PWARX model is a
complicated model (Nakabayashi et al., 2013). In Jakovljevic et al.
(2012) a SVM has been employed to classify two successive states
based on pre-designed features sequentially. The selected features
were designed based on the quasi-static insertion force model
(Whitney, 2004). This method relies on pre-defined features
and a complex hierarchical classification algorithm since SVM
is only a binary classification approach. This work also relied
on designed features which were pre-selected by designers thus
making the method less autonomous. Hertkorn et al. (2012)
generated a wrench matrix based on the CAD models of the
assembly parts with a particle filter to recognize the CS based
on the F/T measurements. This method was implemented to
resolve the ambiguity of the force measurements and recognize
the contact formation of a rectangular workpiece on a flat surface.
The drawback of this work was the simplicity of the part’s
geometries used to validate the proposed approach.

Jamali et al. (2014) presented a CS learning algorithm based
on a symbolic representation of temporal behavior during robot
valve opening process where force signals were clustered using
the Minimum Message Length (MML) (Wallace and Dowe,
2000). The labeled symbolic data were used to train an HMM to
recognize the CS. The overall accuracy achieved by this method
was 81% about x-axis and 85% for rotation about the y-axis.
Nevertheless, the convergence time of the GMM/MML might
delay the recognition of the CS. Also, it relies on exploration
movements in order to recognize the CS.

Most of the aforementioned research follow pattern
recognition in the extracted/selected features by temporal
knowledge modeling (capturing). This can be captured in the
symbolic or non-symbolic domain. The main advantages of
the non-symbolic models are their parametric nature and their
capability to capture variations in human skills (Nejati and
Könik, 2009). On the other hand, the symbolic approaches
are well-known for capturing complex human behavior with
simpler and shortened models that have better computational
performance. For instance, symbolic approaches can capture the
assembly sequence at different hierarchical levels (granularity),
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which is difficult using probabilistic approaches. Even though
symbolic models have traditionally been considered unsuitable
for controlling real-world systems (Calinon and Billard, 2008),
researchers are now making effective use of these models
for skills representation, evaluation, generalization and robot
control (Mohammad and Nishida, 2014). These models are
computationally efficient, simple, and capable of capturing
complex human skills. Therefore, the research work reported in
this paper explores the use of symbolic models to capture human
assembly skills.

Despite significant progress in the field, researchers have
been relying on algorithms which have significant latency.
Furthermore, symbolic-based recognition of CS for imitation
learning of PiH problems has not been sufficiently explored
in the presenters of geometrical variation, in analogy to the
material property (elasticity) variation presented in Jasim et al.
(2017). In fact, probabilistic models trained based on symbolic
representation converges faster than probabilistic models trained
based on numeric representation (Kwiatkowska et al., 2004).
Thus, it is believed that combining symbolic representation
based on a simple segmentation approach [i.e., Piecewise
Aggregate Approximation (PAA) or K-means] will result in
more computationally efficient CS recognition with comparable
robustness and accuracy.

This paper investigates a symbolic-based CS recognition
approach which combines feature transformation methods, i.e.,
Principal Component Analysis (PCA), time-series segmentation,
symbolic assignment, data labeling and HMM training, in order
to reduce the computational effort required for CS recognition.
As a validation example, the PiH assembly was adopted to
demonstrate the efficiency of the proposed approach. Despite
the apparent simplicity of the PiH assembly, it belongs to the
group of parts mating problems that are highly non-linear and
difficult process (Chen, 2011; Kronander et al., 2014). The main
contribution of this paper is to develop amethod that can identify
contact states in an actual assembly process, i.e., PiH assembly.
The development of this method involves the identification of
CS during the PiH process based on symbolic representations
of the force/torque signals (non-vision information). In addition
to that, the relation between the probabilistic model and how
robustly it responds to part variations (clearances) has been
explored in this research.

The remainder of this paper is organized as follows; the
problem description is introduced in section 2. Section 3
introduces the research methodology. The experimental setup is
presented in section 4. The results are described in section 5 and
a set of conclusions are drawn in section 6.

2. PROBLEM STATEMENT

The assembly process is generally split into two sub-tasks: gross
motion and fine motion. In general, a gross motion is subject
to no constraints in the environment, while during fine motion,
the parts’ movements are tightly constrained by the assembled
parts’ geometry. In this motion, a small error in a movement
might cause an extensive force interaction leading to a failure of

the assembly process. Hence, a force-based control is required to
identify the CS and control the robot accordingly. In this context,
the problem of CS recognition can be described as a classification
problem, in which the F/T components are the raw data input
F ∈ R

N×6 (three forces and three torques components in x − y
and z directions) (Equation 1), whereN is the number of samples,
and the output is Y ∈ R

N×1, where Y is a pre-defined CS.
Accordingly, the goal of the CS model is to identify the contact
state of a PiH assembly process.

F =
[

f0, . . . , fN
]

fi =
[

Fx, Fy, Fz ,Tx,Ty,Tz

]

i = 0, . . . ,N
(1)

Accordingly, the classification problem can be described as
identifying a mapping function h(F,Y) that maps the given force

measurements into a CS (F
h(F,Y)
→ Y).

3. METHODOLOGY

The methodology adopted in this research relies on
dimensionality reduction and symbolic representation of
multi-dimensional F/T signals, which aims to recognize the CSs
of an assembly process. In order to capture the CSs of a PiH
insertion, the force/torque time-series data is recorded, filtered,
normalized, its dimensionality reduced and the resulting time-
series is represented in a string of symbols. The mapping of these
time-series data can be performed under the assumption that
the normalized time-series is Gaussian (Lin et al., 2003). Each
symbol in the resultant string is labeled to match a member from
a pre-defined CS set. The resultant strings and their associated
labels set are used to train an HMM to capture the assembly
process sequence.

The training approach adopted for this research is shown in
Figure 1. The first step involves filtering and scaling F/T features
using a low-pass filter andmagnitude normalization, respectively.
The data is projected into a new sub-space which maximizes
the data variation and reduces dimensionality and noise using
PCA. After that, the time-series is transformed to their symbolic
representations. The symbolic representation is being assigned in
two steps. Firstly, the time-series is segmented using Piecewise
Aggregate Approximation (PAA) or K-means. Secondly, each
segment from the previous step is being represented by a symbol
based on its location in a normal distribution.

To verify the resulting models, unseen test sets were used.
The accuracy of the trained models was measured based on a
confusion matrix1. The pre-processing, feature transformation
and symbolic representation stages of the research methodology
are explained in more detail in the following sub-sections.

3.1. Pre-processing
The pre-processing consists of two stages, i.e., filtration and
normalization, which are explained as described below.

1 Performance of classification is commonly evaluated using the data in confusion

matrix.
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FIGURE 1 | Overview of the proposed approach (training and testing phases).

• Filtration: The F/T signals are subject to electromagnetic
noise which severely affects the F/T signal. It is noticeable
that the raw data from the F/T sensor contains random
fluctuations, burrs and spikes. Shielding of sensors and their
wiring can partially solve this problem. However, this is not
always practical. In Wu et al. (2014), a comparison amongst
different filters to alleviate the noise effects on F/T signals is
presented. A performance measure, called stability index, was
used to evaluate those different filters. In conclusion, it was
recommended to use an FIR filter together with a Double-
Threshold Filter (DTF). Hence, in this work, a finite impulse
response (FIR) low-pass filter with DTF was adopted for the
data pre-processing step of the F/T signal. The F/T signal was
sampled at 500 Hz and filtered using a low-pass filter with 35
Hz cutoff frequency and DTF.

• Normalization: In order to capture and compare features that
occur at different force levels on different trials, the force
information during different trials needs to be normalized.
Normalization is a powerful feature scaling method especially
when the extreme values (minimum and maximum) of given
features are unknown (Han, 2005; Jamali et al., 2015). On the
other hand, the test data must be normalized based on the
normalization coefficient of the training data.

3.2. Feature Transformation
Transformation can be perceived as a search algorithm that
attempts to find a new set of features to make the machine
learning problem easier (Liu and Motoda, 1998). PCA is one
of the most common feature transformation tools that rely on
allocating the directions that maximize the variation in the
features’ space (Sophian et al., 2003). The PCA is a mathematical
tool used to analyse data sets based on their variations. One

main characteristic of PCA is a reduction in dimensionality
which often results from this tool. This dimensionality reduction
involves the selection of features with maximum variation
based on the accumulative-variance and a user-defined threshold
(Calinon and Billard, 2008). The PCA threshold defined the
amount of data which can be returned from the PCA after
feature extraction.

3.3. Symbolic Representation
For the symbolic representation, the Symbolic Aggregate
Approximation tool (SAX) was modified and employed in
this research due to its simplicity. The SAX tool is a
symbolic representation tool of time-series data that assigns the
representation of numeric values based on Euclidean distance
and discretization process (Lin et al., 2007). It also allows us
to represent different time-series (various lengths) with the
same number of symbols (Keogh et al., 2005). This property
is of great importance in time-series alignments. The symbolic
representation is achieved in two steps: time-series segmentation
and segments mapping into symbols.

3.3.1. Time-Series Segmentations
Time-series segmentation can be achieved using PAA or K-
means segmentation. In this paper, a brief comparison between
the PAA segmentation and the well-known K-means time-series
segmentation is presented.

3.3.2. Piecewise Aggregate Approximation (PAA)
The PAA splits time-series data with length N into M segments.
This is very useful, especially in encoding temporal data
during human demonstrations, where each trial has its different
temporal properties (e.g., duration of each state). The PAA
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approximates a single time-series S(n) into a vector of segments’
averages; (S̄ = (s̄1, . . . , s̄M)) for any random length (M ≤ N),
where each s̄i is calculated as shown in Equation (2).

s̄i =
M

N

N.i
M

∑

t= N
M (i−1)+1

S(n) (2)

Accordingly, the resulting time-series S̄(n) is shown in
Equation (3).

S̄(t) =































s̄1 0 ≤ t < N
M

...
...

s̄i
N
M (i− 1)+ 1 ≤ n < N

M i
...

...

s̄M
N
M (M − 1)+ 1 ≤ n < N

(3)

The PAA represents a single time-series (1D) data into a sequence
of averages S̄. However, applying the PAA on multi-dimensional
time-series will result in a sequence of vectors (S̄) where each
element in the vector is a D dimension (selected features)
corresponding to each time-series from the PCA. In this research,
it is required to represent the multi-variable time-series with
a single sequence of symbols. Hence, the PAA needed to be
modified for the multi-variable time-series to be represented
using a one-dimensional sequence of averages. Accordingly, a
further dimensionality reduction is needed on the PCA result.
This reduction can be performed using the average of the multi-
dimensional data over different sectors of the PAA. Another
alternative is to employ the norm of the multi-dimension data. In
this paper, the norm method was used since it can be physically
interpreted as the magnitude of the feature vector. Equation (4)
represents the modified PAA using norm, where S̄(n) is a vector
of data at time n.

s̄i =
M

N

N.i
M

∑

n= N
M (i−1)+1

||S(n)||22 (4)

The result from the PCA and its corresponding PAA results are
shown in Figure 11. Then, each segment is mapped into a symbol
as illustrated in the next section.

3.3.3. K-means Time-Series Segmentation
One of the simplest and most popular methods to overcome
the clustering problem is the K-means algorithm (De la Torre
and Kanade, 2006). K-means clustering splits a set of N samples
(e.g., time-series) into M groups by maximizing the ratio
amongst different clusters and the variation of each cluster.
A K-segmentation of a time-series S is a sequence of mean
values S̄. Under consideration of the given context, the K-
means problem can be described as the problem of allocating
a segments boundaries (temporal information) (Vlachos et al.,
2003). Equation (5) depicts the interval definition over all
segments. The input for the K-means algorithm is the norm value

of the multi-dimensional data from the PCA and the temporal
information. The output is a time-series S̄(n), where each data
point is represented by the centroid of the ith cluster/segment.
The drawback of using K-means is its dependence on the initial
estimation of the centroid and the number of clusters, which
means that K-means might have different segmentation results
for different initialization.

s̄i ∈ {s(ta), . . . , s(tb)}
(ta)i = min

t
s̄i

(tb)i = max
t

s̄i

(5)

Where s̄i is the ith segment that starts at (ta)i and ends at (tb)i. The
accuracy of the K-means was tested under a different number of
clusters (as explained in section 5), and the number of segments
with the best accuracy was selected. Based on PAA and K-means,
the different time-series (trials) with different length N were
represented using the same number of segments. The resulting
segments have a unity magnitude. After that, each segment is
represented by a single symbol based on its location in the normal
distribution. It is worth mentioning that the number of K-means
centroids and segments in the PAA were determined based on
the elbow method, where classifier accuracy was tested with a
different number of centroids and segments.

3.3.4. Segmentation Mapping
Having transferred the time-series data into segments (PAA or
K-means), a further transformation must be applied to achieve
the symbolic representation. Under the assumption that the
normalized time-series is Gaussian as highlighted in section 3,
the mapping of segments into symbols adopted in this paper
has been introduced in Lin et al. (2007). In which, the outputs
from the PAA and K-means are mapped into a series of symbols
using predetermined “breakpoints” that produce equal-sized
areas under a Gaussian curve with (N (0, 1)). The maximum
number of breakpoints supported by the tool developed in Lin
et al. (2007) is 12, these were adopted in this research to reduce
the effect of the discretization error.

Figure 2 shows how a segmented signal based on subsection
3.3.1 mapped into symbols based on their location with respect
to the predetermined breakpoints. Then, the force-time-series
for the different trials are represented in a single sequence of
symbols; e.g., (Symbols : = {jjjiihcbaafff }), where a sequence
of symbols encodes the CSs (hidden). From Figure 2, any
segment that appears lower than the break line at −0.84 will
have the symbol a throughout the trials, the force/torque time-
series were represented using the same number of segments,
even though the insertion process durations were different
for each trial. Similar stages were represented using similar
symbols using a normal distribution. For example, J and I are
representing no-contact stage and H, and C are representing
Chamfer-Crossing stage. Accordingly, different trials can be
aligned using their corresponding symbols. The goal is to capture
the relation between the recognized pattern (symbols) and
the CSs. One possible solution for such a problem is to use
an HMM.
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FIGURE 2 | Segments mapping into a symbolic representation of time-series data. For example, the time-series is segmented into six segments and each segment

mapped into a symbol based on its location with respect to the Gaussian distribution (breaklines).

3.3.5. Manual Labeling of PiH Insertion
The resulting sequence of symbols introduced in the previous
section is vague, and an expert should manually label it. A
manual labeling process was performed based on analysing the Fz
component of the data sets, because the F/T sensor is stationary
and most of the force variation occurs on z direction. Figure 3
illustrates the Fz component and the corresponding process stage
based upon specific features of the Fz trend. The red circles
indicate the start of a new stage and the end of the previous stage.
The first circle highlights the force trend as the first contact occurs
and the Chamfer-Crossing starts, as shown in stage 1 of Figure 4.
After this, the operator starts correcting the angular error (the
angle between the hole axis and insertion force direction). Once
the angular error approaches zero (approximately), the friction
force reaches its maximum due to further contact, which causes
an overshoot in the force trend. This overshoot is highlighted
in the second circle in Figure 3. Stage 1 of Figure 5 shows the
force analysis when the first contact point occurs and Equation
(6) explores the force analysis at this stage. Stage 2 of Figure 4
outlines the initial alignment, where the friction force Ffr is
doubled whilst the insertion force FIn stays relatively constant
as shown in Equation (7). This alignment explains the spike at
the end of the Chamfer-Crossing (Figure 3, second circle). The
insertion process then commences, and the peg is pushed fully
into the hole. Once the peg is fully inserted in the hole, the
operators release the peg causing a relaxation in the insertion
force. This results in the small spike in the third circle in Figure 3

which indicates the end of the insertion process. It is worth
mentioning that these characterizations were observed in all PiH
insertion trials. Therefore, the CS set (Y) is defined based on the
PiH assembly stages as follow: (Y = {NC,CC, I, FI}); where NC
is No Contact State, CC is Chamfer-Crossing, I is Insertion, and
FI is Full Insertion.

Fz = (Ffr + FNo − FIn) cos(φ) (6)

Fz = 2 Ffr − FIn (7)

The manual labeling of the symbolic representation was applied
to enhance the process of obtaining human skills and to highlight

FIGURE 3 | Manual labeling of the PiH insertion process based on Fz force

component.

FIGURE 4 | Chamfer-Crossing stage.

the physical meaning of the discovered patterns. Also, the labeled
data is only used for training and testing purposes and is not
required for later interpretation of new PiH processes once the
model has been verified.
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FIGURE 5 | Chamfer-Crossing PiH stage: force analysis.

FIGURE 6 | HMM topology of the PiH insertion process based on the given

dataset in Equation (8).

3.3.6. Hidden Markov Model (HMM)
Once the F/T information is transformed into strings of
symbols which represent the temporal information of the PiH
assembly process, an HMM was used to encode the temporal
information and detect the pattern of each CS. Accordingly,
each assembly trial (human demonstration) was represented in
a string of symbols. The resulting strings were manually labeled
by combining each symbol in the strings with one element from
the CS set as explained in subsection 3.3.5. This resulting dataset
can be represented as shown in Equation (8), which is used
to train the HMM models. The same data set were used to
initialize emission and transition matrix of the HMM using the
Baum-Welch (BM) algorithm (Hochberg et al., 1991).

XTraining Data = ...(d,CC)(e,CC)(b, I)(c, I)(a, I)... (8)

Figure 6 depicts the typology of the HMM used for the symbolic
representation of each trial. This HMM encoded the PiH
assembly skills, which was represented in a sequence of symbols.
The HMM was trained using the string of symbols (as the
observation) and CSs (as hidden states) to predict the new cases.

To summarize, the proposed approach is composed of three
main stages. The first stage is segmentation which discovers

the spatial structure within the data. Secondly, the symbolic
representation reduces the high dimensional time-series data into
one-dimensional data. The third stage captures the temporal
knowledge embedded in the symbolic representation. For testing
purposes, the labels for the randomly chosen test data sets were
generated based on the trained model without using manual
labeling. The results were then compared with the manual labels
to evaluate the accuracy of the trained model.

4. EXPERIMENTATION SETUP AND DATA
ACQUISITION

The experimental setup shown in Figure 7 was used to collect
data from different human operators performing a PiH assembly
process. This setup was composed of a six-axis F/T sensor, a hole
with a diameter D of 16.20mm, and two round mating parts
with different diameters (Peg 1 and Peg 2). Where, the diameter
of Peg 1 is 15.98mm and the diameter of Peg 2 is 15.87mm.
Figure 8 depicts one trial of the insertion process. The F/T data
has been recorded while the human operators performed the
assembly task.

A total number of 60 experiments were carried out with three
different operators. Each operator performed 20 trials, to capture
a wide range of human skills and variation in the initial position
of the peg. Each trial contains on average 1,500 data points of
F/T signals. The collected data were randomly split into training
data (80% ≈ 48 trials) and test data (20% ≈ 12 trials). The
six-dimensional time-series data (features) recorded by the F/T
sensor was reduced to two-dimensional data using PCA. Then,
the two-dimensional time-series data were reduced to 1D data
by taking their norm value in the modified form of the PAA or
K-means. After that, the segmented data were represented by a
string of symbols. Those strings were labeled and used to train an
HMM to discover the temporal aspects of the assembly process.

The quality of the classifier based on the HMM was evaluated
using an unseen test set. This process was repeated four
times to get an average performance of the classifier based on
the proposed approach (see section 3). Figure 1 depicts the
evaluation process using the test set. It is worth mentioning here
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FIGURE 7 | Hole and F/T sensor.

FIGURE 8 | The experiment setup during PiH insertion.

that the same mixing matrix ζ and the normalization coefficients
of the training stage were used to pre-process test data; under
the assumption that statistical properties of the test data are
unknown, during the evaluation process. Then, the accuracy of
the HMMmodel calculated with respect to the label data.

5. RESULTS AND DISCUSSION

The proposed approach was designed to recognize CSs during
the assembly task efficiently, and then it was evaluated using
PiH insertion problem as discussed before. Next, fitted models
were evaluated as described in section 4. At the beginning,
the collected during PiH insertion were six-dimensional (X ∈

R
6) as shown in Figure 9, while the transformed data is two-

dimensional (Xred ∈ R
2) as illustrated in Figure 10, which

indicates the PCA selected features from the raw data in
Figure 9. The resulting PCA components were signals that

have an accumulative variance that is higher than 90% of the
total variance. The selected features were segmented using the
modified PAA and K-means. The modified PAA and symbolic
representations of the time-series data are shown in Figure 11.
Figure 12 depicts the symbolic representation results based
on the PAA segmentations. Figure 13 illustrates the K-means
segmentations and the corresponding symbolic representation,
where each color represents a segment.

In order to compare the segmentation approaches (PAA and
K-means) and to determine the suitable number of segments for
each segmentation approach, the symbolic representation was
carried out based on PAA andK-means separately with a different
number of segments. A critical difference between the PAA
and the K-means segmentation is that the temporal and spatial
features are crucial for the K-means segmentation. In contrast,
PAA splits data into segments of equal length (temporal length)
without taking spatial data into account. After that, temporal
knowledge can be captured using HMM.

Figure 14 shows the accuracy of the HMM model based
on PAA segmentation. The highest accuracy is 94% using
30 segments with 0.88 s computational time. In comparison
Figure 15 illustrates the accuracy of the HMM model based
on K-means segmentation. The highest accuracy is 95% using
10 segments with 11.86 s. Those results indicate that models
generated based on K-means segmentation do not require a
large number of segments to achieve high accuracy. The models
created using PAA require a large number of segments to
improve the accuracy of themodel. Themodel based on K-means
segmentation achieved higher accuracy with a lower number of
segments. This requires an extensive search until it converges to
the optimal segmentation with resulting segmentation depending
on the initial estimation of the segments’ centroids. Surprisingly,
the accuracy decreased dramatically with an increased number
of segments. This shows there is no linear relationship between
the number of segments and the accuracy. Therefore, an
optimal number of segments needs to be identified requiring an
additional iterative process. Conversely, the models generated
using the PAA are more robust and do not request an iterative
search. Also, the PAA segmentation returns the same segments
for the same trial repeatedly. The results presented so far
correspond to the data collected during the insertion of Peg 1
without considering the variation in clearance.

Another important aspect in the PiH assembly process is the
clearance, where assembly of tight clearance parts is more difficult
than loose clearance parts. In order to test themodels for different
clearances, two models; model 1 and model 2, were trained
separately using the sequences captured during the assembly of
Peg 1 (tight) and Peg 2 (loose), respectively (see section 4). Both
the models were tested to explore the relationship between the
accuracy of CS recognition and the clearances.

To evaluate the classification accuracy of the two models both
models were tested with unseen labeled data (for assembling Peg
1 and Peg 2). The resulting accuracy is shown in the confusion
matrices in Tables 1, 2. Table 1 shows the confusion matrix of
the HMM trained using the PAA with 30 segments (model 1). It
can be observed from the table that the CC stage is being the least
accurately classified.
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FIGURE 9 | Six-dimensional F/T signal during PiH assembly (original input data R
6).

FIGURE 10 | The transformed F/T data (R2) after features transformation in the latent space using PCA. The accumulative-variance threshold was 90% of the total

variance of all signals.

Table 2 shows the confusionmatrix of the HMM trained using
the PAA with 30 segments (model 2). An analysis of the result
reveals that the misclassification of the CC stage that happens
due to the static friction that occurs directly after the first contact.
Also, the force level during this stage overlaps with the force level
at the full-insertion stage which means that the mapping process
will assign the same symbols for both stages (CC and FI).

The overall accuracy of model 1 and model 2 are 94
and 64%, respectively. Therefore, the trained models derived
from the insertion of the larger clearance peg have a lower
accuracy than the model based on the tighter clearance peg.
The reason behind this is that the tighter clearance creates a

stronger boundary amongst the CSs. Nevertheless, parts with
larger clearances can partially change their contact state without
causing distinguishable variation in the F/T signal which makes
the recognition of distinct CS more difficult.

Additionally, the model with higher accuracy (model 1) was
used to recognize the assembly CSs of Peg 2 to examine the
robustness against clearance variation. The performance of CS
recognition based on model 1 is illustrated in the confusion
matrix as shown inTable 3. The overall accuracy reduced from 96
to 82.4%. Though, the accuracy of model 1 on Peg 2 is still better
than the accuracy of model 2 on Peg 2, this shows that model 1 is
quite robust against clearance variation.
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FIGURE 11 | PCA and corresponding PAA result.

FIGURE 12 | Symbolic representation with five segments using PAA.

The results generated were compared with the most relevant
work from the literature. In this regard, the method introduced
by Jamali et al. (2014) achieved an overall accuracy of 81%, and
85% for rotation about the x-axis and the y-axis, respectively. The
HMM-PAA models proposed in this paper has an accuracy of
94% and is, therefore, an improvement. However, to ensure that
the accuracy is not due to chance, the datasets from all users for
Peg 1 and Peg 2 have been combined and then randomly split 100
times into train and test data. The confusion matrices of the 100
times split using HMM-PAA and HMM-K-means are shown in
Tables 4, 5, respectively. The average accuracy of the HMM-PAA
model is (90 ± 1.38)%, while it was only (76 ± 1.45)% for the
HMM-K-means model. Table 6 illustrates the overall accuracy,

precision, and F-score of both HMM-PAA and HMM-K-means
models. These numbers show better accuracy and robustness
(precision) of the HMM-PAA in comparison with the HMM-K-
means. The overall accuracy of the HMM-PAA was 90% with
σ equals to 8.4%, while HMM-K-means has an accuracy of
76% with σ equals to 8.2%. This shows that the accuracy of
both approaches has similar standard variation with different
overall accuracy.

The proposed approach greatly reduces the required
computation time, although it relies on multi-stage processes.
Table 7 shows the computational complexity of the proposed
approach in comparison with three similar research approaches,
namely Jamali et al. (2014), Jasim et al. (2017), and Hannaford
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FIGURE 13 | Symbolic representation with five segments using K-means.

FIGURE 14 | Classifier accuracy with PAA segmentation using different

number of segments. The best accuracy was achieved with 30 segments.

and Lee (1991), where Nsymbols is the number of symbols, K
is the number of original dimensions before the PCA, M is
the number of segments, Nsample is the number of samples
within the time-series and D is the number of selected features
(selected dimensions based on the PCA). For the proposed
approach with PAA, the worst case scenario occurs when the
Nsymbols is 12, and M is 30. In this case, the complexity of
the HMM is the bottleneck; hence, the total complexity is
O(2K Nsamples D). On the other hand, the worst case for the

FIGURE 15 | Classifier accuracy with K-means segmentation using different

number of segments. The best accuracy was achieved with 10 segments.

proposed approach with K-means occurs when the Nsymbols

is 12, and M is 10; however, the time complexity of the K-
means is quadratic of the Nsamples, which was on average 1500
samples. Henceforth, the K-means is the bottleneck for this
case, which explains the long execution time to recognize
the CS in comparison with PAA. In comparison with the
method introduced in Jamali et al. (2014), the complexity
of MML-GMM, that was used to cluster the Force/Torque
data), was O(MNsamples D). Nevertheless, the complexity of
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TABLE 1 | Confusion matrix of model 1 for Peg 1 clearance c = 0.11mm, where

NC, no contact; CC, Chamfer-Crossing; I, insertion; FI, full insertion.

NC CC I FI

NC 83 7 0 0

CC 0 14 1 0

I 0 0 50 0

FI 0 0 0 78

TABLE 2 | Confusion matrix of model 2 for Peg 2 with clearance c = 0.17mm.

NC CC I FI

NC 82 5 0 12

CC 0 10 0 36

I 0 21 31 0

FI 0 0 12 31

TABLE 3 | Confusion matrix of model 1 validated using observation of Peg 2.

NC CC I FI

NC 82 12 0 0

CC 0 9 1 0

I 0 21 31 0

FI 0 0 11 71

TABLE 4 | Confusion matrix of HMM trained with PAA 30 segments.

NC CC I FI

NC 1,115 90 0 0

CC 65 180 25 0

I 0 20 500 130

FI 0 0 15 1,160

the proposed approach was O(M), that only depends on M,
while the complexity of MML-GMM depends on M multiplied
by Nsamples and D. The overall performance appears similar
in both methods. However, the method proposed in Jamali
et al. (2014) requires additional exploration stage (set of
random movements on x and y direction) before starting the
recognition stage. Henceforth, it might require a longer time
until it converges. In Jasim et al. (2017) the EM-GMM were
utilized without dimensionality reduction, which means that the
complexity is O(MNsamples D). While in the proposed approach
the dimensionality reduction greatly reduced the number of
features and the samples. Also, as shown in Table 7 the total
complexity of the proposed approach is O(2K Nsamples D) which
is less than the complexity of the EM-GMM utilized in Jasim
et al. (2017) as long as 2K < M. Finally, the computational
complexity of the HMM presented by Hannaford and Lee (1990)
was O(N2

samples
D), which is higher than the total complexity of

the proposed approach.

TABLE 5 | Confusion matrix of HMM trained with K-means 10 segments.

NC CC I FI

NC 290 30 5 0

CC 90 60 10 0

I 0 55 135 65

FI 0 0 10 345

TABLE 6 | Overall accuracy (100 times split) of the HMM models with PAA and

K-means.

Method Accuracy (%) Precision (%) F-score (%)

HMM-PAA µ 90 85 84

σ 8.4 7.5 7.5

HMM-K-means µ 76 73 72

σ 8.2 7.5 7.3

6. CONCLUSIONS

This paper proposed a method to capture human skills during
the PiH assembly process utilizing a learning algorithm to
encode the assembly process. The proposed algorithm was based
on a symbolic representation of F/T signals in the presence of
geometrical variation of the assembled parts. This approach is
capable of recognizing the CSs of PiH assembly process based
on a symbolic representation of force and torque information.
It can accommodate variations in the insertion force levels
and compensate for process noise. The main benefits of
this method are its simplicity and minimal pre-knowledge
requirements about the geometrical information of the
mating parts.

During the symbolic representation, two segmentation
approaches, i.e., the K-means and the PAA, were investigated
for their effectiveness. It was found that a higher accuracy of CS
recognition can be achieved with a small number of segments
when using K-means to segment the F/T time-series whereas the
models trained based on the PAA segmentation require a higher
number of segments. The model which was trained based on
the K-means resulted in an accuracy of 70% with 10 segments
with an 12 s computational time. The model generated based
on the PAA resulted in an accuracy of 90% accuracy with 30
segments with 0.95 s computational time. The K-means requires
more computational effort due to its iterative nature, whereas the
PAA is a simpler and faster segmentation procedure. The use
of the PAA in the symbolic representation reduces the required
computational effort and increases the robustness of the model
against process noise.

In this research, the robustness of the trained models was
examined by varying part mating clearances. The results showed
that the CS recognition is more accurate for tight clearance
mating. This observation implies that there is an inverse
relationship between the clearance and the accuracy of the
CS recognition. This is due to the higher physical constraints
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TABLE 7 | Computational complexity comparison.

Proposed

approach (PAA)

Proposed

approach

(K-means)

MML-GMM

(Jamali et al.,

2014)

EM-GMM (Jasim

et al., 2017)

HMM (Hannaford

and Lee, 1990)

PCA (after training) O(2K Nsamples D) O(2K Nsamples D) O(2K Nsamples D) – –

GMM – – O(MNsamples K) O(MNsamples D) –

PAA O(Nsamples) – – – –

K-means – O(N2
samples) – – –

HMM O(MN2
symbols) O(MN2

symbols) O(MN2
symbols) – O(DN2

samples)

Total O(2K Nsamples D) O(N2
samples) O(2K Nsamples D) O(MNsamples D) O(DN2

samples)

in a tight clearance insertion process, providing a better-
defined boundary that separates the consecutive CSs. The model
trained based on tight clearances peg is more robust against
geometrical variation.

The availability of robust and computational efficient
representations is an essential precursor for imitation learning.
The proposed approach achieves those two goals. However, it
heavily relies on approximation and dimensionality reduction
that might remove essential features from the force trend.
Accordingly, the proposed approach might be not suitable
for applications that require high accuracy, such as textile
recognitions. Future work will consider the transformation of
the trained models to an industrial robot by extending the
proposed approach to a complete imitation learning framework.
It is believed that humans often rely on visual perception to
perform handling task. Hence, the proposed methods can be
extended to include visual features that might improve the
models’ accuracy.
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