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Abstract

Unsupervised Learning with Feature Selection Based on
Multivariate McDonald’s Beta Mixture Model for

Medical Data Analysis

Darya Forouzanfar
Concordia University, 2023

This thesis proposes innovative clustering approaches using finite and infi-
nite mixture models to analyze medical data and human activity recognition.
These models leverage the flexibility of a novel distribution, the multivariate
McDonald’s Beta distribution, offering superior capability to model data
of varying shapes. We introduce a finite McDonald’s Beta Mixture Model
(McDBMM), demonstrating its superior performance in handling bounded
and asymmetric data distributions compared to traditional Gaussian mixture
models.

Further, we employ deterministic learning methods such as maximum
likelihood via the expectation maximization approach and also a Bayesian
framework, in which we integrate feature selection. This integration enhances
the efficiency and accuracy of our models, offering a compelling solution for
real-world applications where manual annotation of large data volumes is not
feasible.

To address the prevalent challenge in clustering regarding the determina-
tion of mixture components number, we extend our finite mixture model to
an infinite model. By adopting a nonparametric Bayesian technique, we can
effectively capture the underlying data distribution with an unknown number
of mixture components.

Across all stages, our models are evaluated on various medical applications,
consistently demonstrating superior performance over traditional alternatives.
The results of this research underline the potential of the McDonald’s Beta
distribution and the proposed mixture models in transforming medical data
into actionable knowledge, aiding clinicians in making more precise decisions
and improving health care industry.
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Chapter 1
Introduction

1.1 Introduction and Related Work

Machine learning and data mining strategies have increasingly garnered inter-
est for their remarkable capability in modelling and deciphering data from a
diverse range of fields, such as pattern recognition, computer vision and image
processing [1, 2]. As an unsupervised learning method, clustering categorizes
data into different groups with similar characteristics. The main idea of
clustering is to group unlabelled data so that data points within a cluster
have more similarities than those in other clusters [3, 4].

Within statistical learning techniques, finite mixture models have show-
cased their effectiveness in modelling complex data sets by theorizing that
each observation originates from one of several distinct groups or compo-
nents [5–9]. However, selecting the most proper probability distribution
is required to characterize the components adequately. Gaussian Mixture
Models (GMMs) have been popularly utilized for clustering tasks and have
demonstrated remarkable fitting capabilities in various applications [10]. How-
ever, GMMs are not the best choice in the presence of non-Gaussian data and
asymmetrical structures [11–15]. In light of this, alternative distributions such
as Beta-Liouville [16–19], Dirichlet [20–22] and generalized Dirichlet [23–25]
have been explored, proving more suitable for data clustering.

This thesis proposes a novel finite mixture model and develops it based
on an extended version of Beta distribution called McDonald’s Beta distribu-
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tion [26]. Our motivation is its flexibility, as this distribution has four shape
parameters that provide good potential to fit asymmetric and non-Gaussian
data that, with promising results on real-world datasets, can be considered
an alternative to Gaussian distribution.
Implementing mixture models involves two challenging aspects: estimating
model parameters and determining the model’s complexity avoiding under-
fitting or overfitting [5]. Various deterministic and Bayesian approaches
have been developed to handle the former challenges. Deterministic ap-
proaches, such as maximum likelihood (ML) estimation via the expectation-
maximization (EM) algorithm, are prized for their simplicity and low com-
putational complexity. However, the EM algorithm does have its drawbacks,
including convergence to a local maximum, dependency on initialization, and
overfitting problems [27]. On the other hand, Bayesian inference, powered by
advancements in computational methods, offers a potential alternative that
can provide more accurate results [28].

The main concept of the Bayesian method is to extract properties of
the probability distribution from data using Bayes’ theorem, updating the
prior beliefs about parameters based on insights drawn from the observations
to determine the posterior [29, 30]. This approach, which relies heavily on
sampling techniques and employs Markov Chain Monte Carlo (MCMC) for
Bayesian inference [31], is the foundation for the framework introduced in
the third chapter of this thesis. Moreover, we utilize Gibbs sampling within
the Metropolis-Hastings algorithm for estimating the parameters of the finite
multivariate McDonald’s Beta mixture model. Furthermore, to address the
second major challenge in implementing mixture models - accurately determin-
ing the number of clusters - we extend our finite model to an infinite mixture
model using a mixture of Dirichlet processes [32–34] for a non-parametric
Bayesian framework which performs simultaneous parameter estimation and
model selection.

In addition, in data mining and machine learning, data clustering presents
multiple challenges when dealing with high-dimensional data due to the issue
of data sparsity and the presence of irrelevant features. As such, feature
selection is critical in enhancing clustering performance in those cases [35,36].
The primary aim of feature selection is to identify and diminish the impact
of irrelevant features, which do not add significant information to the actual
cluster structure [37].
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However, executing the automatic selection of relevant features within
unsupervised learning scenarios is challenging. This complexity arises as
inferences must be made simultaneously regarding the relevant features and
the clustering structure [38, 39]. The fundamental notion suggested in [35]
was that each feature is derived from a mixture of two univariate distributions.
The first distribution is presumed to generate relevant features and varies
for each cluster. Also, the second distribution, common to all clusters and
independent of class labels, is postulated to generate irrelevant features.
Therefore, we have integrated an unsupervised feature selection approach
in the proposed mixture models explained in chapters 3 and 4 to address
high-dimensional data challenges and improve our model performance.

1.2 Thesis Overview

This thesis is organized as follows:

• Chapter 2: We propose a novel finite mixture model based on Mc-
Donald’s Beta distribution to handle asymmetric and non-Gaussian
data. We implement ML via EM to learn our model and introduce the
Minimum Message Length criterion for model [40, 41]. We validated
our model on three challenging medical applications.

• Chapter 3: We tackle the limitations of deterministic methods by
employing Bayesian inference for model parameter estimation. We
utilize the Markov Chain Monte Carlo technique, which includes Gibbs
sampling and the Metropolis-Hastings method, within our FMcDBMM.
In addition, we integrate feature selection to determine feature saliency
and evaluated our model on real world datasets in medical applications
for lung cancer and human activity recognition (HAR).

• Chapter 4: We introduce an extension to our model, the infinite multi-
variate McDonald’s Beta mixture model. This model employs a mixture
of DP to automatically estimate the complexity of the model and de-
termine the number of components. We applied the model on the
same datasets as chapter 3 to compare the results and demonstrate the
enhancement.

• Chapter 5: We bring together our key findings and summarize our
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contributions. We also take the opportunity to underscore some of the
challenges encountered during our research.

1.3 Contributions

In this thesis, our main contributions can be summarized as follows:

• Propose a novel finite and infinite mixture model. This work includes
the introduction of a new finite mixture model based on the extended
version of the Beta distribution, McDonald’s Beta distribution. This
approach offers a more flexible fitting for non-Gaussian and asymmetric
data.

• Focus on deterministic learning methods for finite mixture models
such as ML via EM using Newton Raphson’s method, as well as non-
deterministic methods such as Bayesian inference approaches. We
particularly focus on the use of Markov Chain Monte Carlo (MCMC)
techniques, including Gibbs sampling and Metropolis-Hastings (M-H)
methods.

• Introduce an extension to the finite mixture model, the Infinite Mul-
tivariate McDonald’s Beta Mixture Model (IMcDBMM). This model
utilizes a mixture of Dirichlet processes, enabling automatic estimation
of model’s complexity in clustering tasks.

• Provide a rigorous evaluation of our proposed models using real-world
data sets from medical applications and human activity recognition.
This includes a comparative analysis of our models’ performance against
similar alternatives, demonstrating their effectiveness in diverse practical
scenarios.

• Utilize advanced feature extraction techniques such as SIFT and BOVW
in our applications, further enhancing our models’ ability to handle
complex data.
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1.4 Publications

This thesis consists of three manuscripts accepted as conference papers. We
hereby list them:

• Chapter 2: Darya Forouzanfar, Narges Manouchehri, Nizar Bouguila,
Finite Multivariate McDonald’s Beta Mixture Model Learning Approach
in Medical Applications, in proceedings of “The 38th ACM/SIGAPP
Symposium on Applied Computing” [42].

• Chapter 3: Darya Forouzanfar, Narges Manouchehri, Nizar Bouguila,
A fully Bayesian Inference Approach for Multivariate McDonald’s Beta
Mixture Model with Feature Selection, in proceedings of “The 9th Inter-
national Conference on Control, Decision and Information Technologies
CoDIT 2023” [43].

• Chapter 4: Darya Forouzanfar, Narges Manouchehri, Nizar Bouguila,
Bayesian Inference in Infinite Multivariate McDonald’s Beta Mixture
Model, in proceedings of “The 22nd International Conference on Artifi-
cial Intelligence and Soft Computing ICAISC 2023” [44].
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Chapter 2
Finite Multivariate McDonald’s Beta
Mixture Model Learning Approach in
Medical Applications

In this chapter, we first introduce a finite mixture model with a generalization
of Beta distribution called the McDonald’s Beta Mixture Model (McDBMM).
Subsequently, we delve into the estimation of the McDBMM parameters
using the Maximum Likelihood (ML) and Expectation-Maximization (EM)
algorithms. The Newton-Raphson method, serving as an iterative approach,
assists us in the computation of the updated parameters. Moreover, we
also present the Minimum Message Length (MML) as the model complexity
approach used in our work.

2.1 Model Specification

2.1.1 Finite McDonald’s Beta Distribution

McDonald’s Beta distribution (McDBD) is a generalized version of Beta
distribution and has four shape parameters [26]. To describe it, let’s assume a

D-dimensional data point X⃗n =
(
xn1, . . . , xnd

)
following McDBD where 0 ≤

xnd ≤ qjd, qjd > 0 and d = 1, . . . , D. The four shape parameters of McDBD

are as follows: a⃗j =
(
aj1, . . . , ajd

)
, b⃗j =

(
bj1, . . . , bjd

)
, p⃗j =

(
pj1, . . . , pjd

)
,

q⃗j =
(
qj1, . . . , qjd

)
such that ajd > 0, bjd > 0, pjd > 0 for d = 1, . . . , D. So,
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we express the joint density function of this observation as follows:

p(X⃗n | a⃗j, b⃗j, p⃗j, q⃗j) = (2.1)

D∏
d=1

pjdxnd
ajdpjd−1(qjd

pjd − xnd
pjd)bjd−1

qjdpjd(ajd+bjd−1)B(ajd, bjd)

where:

B(ajd, bjd) =

∫ 1

0

tajd−1(1− t)bjd−1dt =
Γ(ajd)Γ(bjd)

Γ(ajd + bjd)
(2.2)

In this chapter, we assume that q = 1 to make the support between zero
and one and we have:

p(X⃗n | a⃗j, b⃗j, p⃗j, q⃗j) = (2.3)

D∏
d=1

pjdxnd
ajdpjd−1(1− xnd

pjd)bjd−1

B(ajd, bjd)

In fact, if we set q and p of McDBD equal to one, we will obtain Beta
distribution. We demonstrate some examples of this distribution in Fig. 2.1.

Figure 2.1: McDonald’s Beta distribution
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2.1.2 Finite McDonald’s Beta Mixture Model

To formulate a finite McDonald’s Beta mixture model for X⃗n assuming that
there are M components, we have:

p(X⃗n | Θ) =
M∑
j=1

wjp
(
X⃗n | θ⃗j

)
(2.4)

wj and θ⃗j = (⃗aj, b⃗j, p⃗j) are respective weight and set of parameters of compo-

nent j, where j = 1, . . . ,M . Θ = {w⃗, θ⃗} is the complete set of mixture param-
eters where w⃗ = (w1, . . . , wM),

∑M
j=1wj = 1 and wj >= 0 for j = 1, . . . ,M

and θ⃗ = (θ⃗1, . . . , θ⃗M).

To model X = {X⃗1, . . . , X⃗N} as a dataset with N D-dimensional independent
and identically distributed observations, we have:

p(X | Θ) =
N∏

n=1

[
M∑
j=1

wjp
(
X⃗n | θ⃗j

)]
(2.5)

=
N∏

n=1

[
M∑
j=1

wj

D∏
d=1

pjdxnd
ajdpjd−1(1− xnd

pjd)bjd−1

B(ajd, bjd)

]

2.2 Model Learning

2.2.1 Maximum Likelihood and Expectation Maximiza-
tion

To tackle the model estimation problem, the parameters which maximize
the probability density function of data are determined using ML and EM
frameworks. EM is an approach to obtain maximum likelihood estimation in
the case of having latent variables. EM has two main steps, The first step is
to estimate the values for the latent variables, and the second is to optimize
the model using ML algorithm. ML is an estimation procedure to find the
mixture model parameters that maximize log-likelihood function which is
defined by:

L(Θ,X ) = log p(X | Θ
)
=

N∑
n=1

log
M∑
j=1

wjp(X⃗n | θ⃗j
)

(2.6)
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Each X⃗n belongs to one of the j components hence, we propose a vector
Z⃗n = (Zn1, ..., Znj) such that Znj = 1 for j = (1, . . . ,M) if X⃗n belongs to

component j, else 0 and
M∑
j=1

Znj = 1. For X , we define a set of membership

vectors Z = {Z1, . . . , ZN}. Also, we should mention that we assign each

vector X⃗n to one of the M clusters by its posterior probability given by:

Ẑnj = p
(
j | X⃗n, θ⃗j

)
=

wjp(X⃗n, θ⃗j
)

M∑
j=1

wjp(X⃗n, θ⃗j
) (2.7)

Therefore, the complete log-likelihood is given as follows:

L(Θ,Z,X ) =
N∑

n=1

M∑
j=1

Ẑnj(logwj + log p
(
X⃗n | θ⃗j

)
) (2.8)

=
N∑

n=1

M∑
j=1

Ẑnj(logwj +
D∑

d=1

[log pjd+

(ajdpjd − 1) log xnd + (bjd − 1) log(1− x
pjd
nd )+

log Γ(ajd + bjd)− log Γ(ajd)− log Γ(bjd)]

In the next step, we are going to maximize the complete log-likelihood
which is computed in (2.8) by calculating the gradient of the log-likelihood
with respect to parameters:

∂L(Θ,Z,X )

∂Θ
= 0 (2.9)

2.2.2 Newton-Raphson Method

As (2.9) doesn’t have a closed-form solution, we use Newton-Raphson as an
iterative approach to update parameters. The Newton-Raphson method is
an effective technique for estimating a function by making a local quadratic
approximation based on information from the current point and then jumping
to the minimum of that approximation. G as the gradients is the first
derivative of L(Θ,Z,X ) with respect to the parameters. H as Hessian
matrix is the second and mixed derivatives of L(Θ,Z,X ) with respect to the
parameters. So, we update parameters as follows:

9



âj
new = âj

old −Hj
−1Gj (2.10)

b̂j
new

= b̂j
old

−Hj
−1Gj

p̂j
new = p̂j

old −Hj
−1Gj

By calculating derivatives with respect to ajd, bjd and pjd where ψ(X) =
Γ′(X)
Γ(X)

, we have:

G(a) =
∂L(Θ,Z,X )

∂ajd
= (2.11)

N∑
n=1

Ẑnj[pjd log xnd +Ψ(ajd + bjd)−Ψ(ajd)]

G(b) =
∂L(Θ,Z,X )

∂bjd
(2.12)

=
N∑

n=1

Ẑnj[log(1− x
pjd
nd ) + Ψ(ajd + bjd)−Ψ(bjd)]

G(p) =
∂L(Θ,Z,X )

∂pjd
(2.13)

=
N∑

n=1

Ẑnj[
1

pjd
+ ajd log(xnd) +

(1− bjd) log(xnd)x
pjd
nd

1− x
pjd
nd

]

To calculate Hessian matrix, we compute second and mixed derivatives of
log-likelihood function.

- Derivatives with respect to ajd:

∂2L(Θ,Z,X )

∂a2jd
=

N∑
n=1

Ẑnj[ψ
′(ajd + bjd)− ψ′(ajd)] (2.14)

∂2L(Θ,Z,X )

∂ajds∂ajdt
= 0, ds ̸= dt (2.15)
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- Derivatives with respect to ajd, bjd:

∂2L(Θ,Z,X )

∂ajd∂bjd
=

N∑
n=1

Ẑnj[ψ
′(ajd + bjd)] (2.16)

∂2L(Θ,Z,X )

∂ajds∂bjdt
= 0, ds ̸= dt (2.17)

- Derivatives with respect to ajd, pjd:

∂2L(Θ,Z,X )

∂ajd∂pjd
=

N∑
n=1

Ẑnj[log(xnd)] (2.18)

∂2L(Θ,Z,X )

∂ajds∂pjdt
= 0, ds ̸= dt (2.19)

- Derivatives with respect to bjd, ajd:

∂2L(Θ,Z,X )

∂bjd∂ajd
=

N∑
n=1

Ẑnj[ψ
′(ajd + bjd)] (2.20)

∂2L(Θ,Z,X )

∂bjds∂ajdt
= 0, ds ̸= dt (2.21)

-Derivatives with respect to bjd:

∂2L(Θ,Z,X )

∂b2jd
=

N∑
n=1

Ẑnj[ψ
′(ajd + bjd)− ψ′(bjd)] (2.22)

∂2L(Θ,Z,X )

∂bjds∂bjdt
= 0 (2.23)

- Derivatives with respect to bjd, pjd:

∂2L(Θ,Z,X )

∂bjd∂pjd
=

N∑
n=1

Ẑnj[
log(xnd)x

pjd
nd

x
pjd
nd − 1

] (2.24)

∂2L(Θ,Z,X )

∂bjds∂pjdt
= 0, ds ̸= dt (2.25)
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- Derivatives with respect to pjd, ajd:

∂2L(Θ,Z,X )

∂pjd∂ajd
=

N∑
n=1

Ẑnj[log(xnd)] (2.26)

∂2L(Θ,Z,X )

∂pjds∂ajdt
= 0, ds ̸= dt (2.27)

- Derivatives with respect to pjd, bjd:

∂2L(Θ,Z,X )

∂pjd∂bjd
=

N∑
n=1

Ẑnj[
log(xnd)x

pjd
nd

x
pjd
nd − 1

] (2.28)

∂2L(Θ,Z,X )

∂pjds∂bjdt
= 0, ds ̸= dt (2.29)

- Derivatives with respect to pjd:

∂2L(Θ,Z,X )

∂p2jd
=

N∑
n=1

Ẑnj[
(1− bjd)x

pjd
nd {log(xnd)}2

(1− x
pjd
nd )

2
− 1

p2jd
] (2.30)

∂2L(Θ,Z,X )

∂pjds∂pjdt
= 0, ds ̸= dt (2.31)

Our Hessian matrix is a 3D by 3D matrix as shown below:

Hj =

H(ajd,ajd) H(ajd,bjd) H(ajd,pjd)

H(bjd,ajd) H(bjd,bjd) H(bjd,pjd)

H(pjd,ajd) H(pjd,bjd) H(pjd,pjd)

 (2.32)

To estimate the values of mixing proportion we will follow this equation:

wj =

N∑
n=1

p
(
j | X⃗n, θ⃗j

)
N

(2.33)

In order to have an optimal performance of our model, initialization should
be done adequately to avoid convergence to a local maximum which cannot
be guaranteed using the EM method. We use K-means algorithm to initialize
mixing proportions.
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2.3 Model Complexity

Model selection helps to obtain the optimal number of clusters that best
describes the data. Also, We need to identify the number of mixture compo-
nents in the model to implement the EM algorithm. In this section, we will
use a model selection technique called the minimum message length (MML).
Deterministic model selection techniques are based on Bayesian method or
information theory concepts and MML as a model selection approach is taking
advantage of both [45]. According to that, we decided to choose MML as
model selection approach for this work. Regarding information theory, the
optimal number of clusters requires minimum information to transmit the
data from sender to receiver efficiently. MML is based on that idea, and for a
mixture of distributions, it is defined below as:

MML = − log(
h(Θ)p(X | Θ

)√
| F (Θ) |

) +Np(−
1

2
log(12) +

1

2
) (2.34)

h(Θ) is prior probability distribution. Np is the number of free parameters
and equal to (M(2D + 1))− 1. p(X | Θ

)
is the complete data log-likelihood

and |F (Θ)| is the determinant of the Fisher information matrix which is
defined by taking the second derivative of the negative log-likelihood.

2.3.1 Fisher Information for McDonald’s Beta Mixture
Model

Fisher matrix also named the curvature matrix, explains the curvature of
the likelihood function around its maximum and is defined as the expected
value of the negative of the Hessian matrix. In summary, it is the expected
value of the negative of the second derivative of the log-likelihood function.
Considering a mixture model, according to [46], Fisher information matrix
can be calculated after the assignment of data vectors to their specific clusters.
The determinant of the Fisher information matrix is defined below as [47]:

|F (Θ)| = |F (w⃗)|
M∏
j=1

|F (θ⃗j)| (2.35)

|F (θ⃗j)| is the determinant of Fisher information of θ⃗j = (⃗aj, b⃗j, p⃗j) and
|F (w⃗)| is the determinant of Fisher information of mixing parameters wj.
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Therefore, considering generalized Bernoulli process with a series of trials
where each has M possible results for M clusters, determinant of the Fisher
information matrix can be computed as below:

|F (w⃗)| = NM−1∏M
j=1wj

(2.36)

Fisher information for our mixture will be:

log(|F (Θ)|) = (2.37)

(M − 1) log(N)−
M∑
j=1

log(wj) +
M∑
j=1

log(|F (θ⃗j)|)

2.3.2 Calculating Prior Distribution for MML Criterion

For calculating MML criterion, we need to calculate prior distribution h(Θ)
for model’s parameters. Since these parameters are independent, we define
h(Θ) as follow [48]:

h(Θ) = h(w⃗)h(⃗a)h(⃗b)h(p⃗) (2.38)

Regarding the suitability of mixing parameters in modelling proportional

vectors and the fact that
M∑
j=1

wj = 1, we consider probability density of h(w⃗)

to follow a Dirichlet distribution where η⃗ = (η1, η2, . . . , ηM):

h(w1, w2, . . . , wM) =

Γ(
M∑
j=1

ηj)∏M
j=1 Γ(ηj)

M∏
j=1

w
ηj−1
j (2.39)

A uniform prior for the parameter η, (η1 = 1, ..., ηM = 1) allows us to
simplify (2.39), and we can calculate it as follows:

h(w⃗) = (M − 1)! (2.40)
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For calculating h(a), we suppose that dimensions are independent, so we
have:

h(⃗a) =
M∏
j=1

D∏
d=1

h(ajd) (2.41)

We assume that we do not have prior knowledge about parameter ajd. So,
it should have minimal effect on the posterior and we use following simple
uniform prior which proved to have good results [49,50]. The same process
will be done for calculating h(bjd) and h(pjd), and:

h(ajd) = e−6 ajd
||aj||

, h(bjd) = e−6 bjd
||bj||

, h(pjd) = e−6 pjd
||pj||

(2.42)

Log of prior is given by:

log(h(Θ)) = −D
M∑
j=1

log(||aj||) +
M∑
j=1

D∑
d=1

log(ajd) (2.43)

−D
M∑
j=1

log(||bj||) +
M∑
j=1

D∑
d=1

log(bjd)

−D
M∑
j=1

log(||pj||) +
M∑
j=1

D∑
d=1

log(pjd)

+
M−1∑
j=1

log(j)− 18MD
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Algorithm 1 Full Learning Algorithm

1. Input X and the number of clusters M .

2. Use K-Means algorithm to initialize the M clusters.

3. Initialize the parameters.
Repeat

4. EM algorithm

(a) E step: Compute Ẑnj

(b) M step: Update the parameters and weight.

(c) If wj < ϵ then delete component j return to E step.

until
Convergence

5. MML

(a) Calculate the criterion of MML(M).

(b) Find the optimal M∗ i.e. M∗ = argminM MML(M).

2.4 Experimental Results

In this section, we test the performance of FMcDBMM and compare it with
Gaussian finite mixture models. To validate the robustness of our proposed
model, we apply it to three real medical applications: Targeting treatment
for heart disease patients, breast tissue analysis and malaria detection. As
one of our distribution assumptions is that all input values are in the range
of (0,1), we normalize our datasets using the min-max method as below:

X =
X −Xmin

Xmax −Xmin

(2.44)

Also, we consider four metrics of accuracy, precision, recall and F1-score
to evaluate model’s robustness, where TP, TN, FP and FN are the respective

16



number of true positives, true negatives, false positives, and false negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.45)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

Table 2.1: Results on Heart Disease dataset

Method Accuracy Precision Recall F1-score
McDBMM 72.05 58.08 58.08 58.08

GMM 64.79 47.19 47.19 47.19
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Figure 2.2: Message length plot for the Heart Disease dataset. The X-axis
defines the number of clusters, and the Y-axis defines the value of the message
length. According to the plot, The optimal number of clusters is 3.

2.4.1 Targeting Treatment For Heart Disease Patients

In this part of our experiment, we are going to cluster anonymized data
of patients who have been diagnosed with heart disease. We analyze data
from V.A. Medical Center in Long Beach, CA [51]. This publicly available 3-
components dataset contains 303 instances and nine attributes plus the target.
The attributes describing the dataset are age of the patient, gender, chest
pain type, resting blood pressure (in mm Hg on admission to the hospital),
Serum cholesterol in mg/dl, fasting blood sugar > 120 mg/dl (1 = true; 0
= false), resting electrocardiographic results, maximum heart rate achieved,
exercise-induced angina (1 = yes; 0 = no). As displayed, our proposed model
provides 72.05% accuracy, which outstands the result of GMM. We present
the results of the model evaluation in Table 2.1. Also, we demonstrate the
outcomes of MML approach in Fig. 2.2 that validate our approach for model
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selection.

2.4.2 Breast Tissue

According to the World Health Organization (WHO) reports in December
2020 [52], there is a significant change in the global landscape of cancer; breast
cancer is now prevalent cancer and is commonly diagnosed with 2.26 million
cases. Over the decades, the incidence of diagnosed cases has risen due to
daily routines, such as lack of sufficient physical activity and tobacco and
alcohol consumption. The strategies presented over these years to reduce this
disease’s mortality rate and management could not stop most cases because
of diagnosis in very late stages. Therefore, early detection is essential in
improving treatment outcomes and survival rates. The steps in diagnosis
are palpation, mammography, or ultrasound imaging check-up. Analyzing
pathological images of breast tissue is required to prevent disease development
in case of any doubt about malignancy. The pathologists assess the biopsy
tissue regarding microscopic structure. Benign and malignant lesions are
differentiated based on dissimilarities in histological characteristics of tissue.
Fig. 2.3 illustrates some samples of breast tissues. CAD techniques and
integration of machine learning methods in decision-making may reduce false
diagnoses and increase efficiency. In this part of our experiment, we tested
our method on a publicly available dataset [53] with malignant and benign
labels. We applied our model to differentiate the tissues into two clusters, each
containing 500 samples. The results in Table 2.2 indicate better performance
of our proposed model compared to GMM which provides lower values in four
metrics. So, choosing McDBMM has more persuading results. Also, Fig. 2.4
proves that our algorithm was able to find the optimal number of clusters.
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Figure 2.3: Samples of benign and malignant breast tissue. Benign and
malignant samples are represented in the first and second rows, respectively.

Table 2.2: Results on Breast Tissue Dataset

Method Accuracy Precision Recall F1-score
McDBMM 98.33 99.87 96.66 98.30

GMM 73.7 82.11 60.6 69.73
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Figure 2.4: Message length plot for the Breast Tissue dataset. The X-axis
defines the number of clusters, and the Y-axis defines the value of the message
length. According to the plot, The optimal number of clusters is 2.

Figure 2.5: Samples of infected cells and uninfected cells. The samples are
represented in the first and second rows.
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2.4.3 Malaria Detection

Medical areas such as cell biology and screening experiments in diagnosing
and predicting illnesses from images obtained by cytological and histological
methods are significant applications of cell image clustering. One common
challenge in image clustering is that large-scale data prevents manual vali-
dations. To face this challenge, image analysis based on machine learning
methods is applied to microscopic images to improve the process of cell fea-
ture extraction with a more elevated speed. In this section, we studied the
performance of our model in malaria detection which is a life-threatening yet
preventable and curable disease caused by parasites. Microscopists normally
examine blood smears to diagnose and calculate parasitemia by finding the
cells infected with malaria. These cells are recognized by the small clot inside
the cellular images, whereas uninfected cells are without any clot. Fig. 2.5
represents some image samples of cells. Finding positive cases and verifying
all samples in the case of a massive volume of smears is a crucial challenge
for humans. In this chapter, we applied our model to a cell image dataset
from NIH 1, [54], including 2000 samples. Results in Table 2.3 indicate the
robustness of our proposed model compared to GMM and Fig.2.6 indicates
the optimal number of clusters.

Table 2.3: Results on Malaria Dataset

Method Accuracy Precision Recall F1-score
McDBMM 98.30 100 96.60 98.27

GMM 83.3 74.96 100 85.68

1https://ceb.nlm.nih.gov/repositories/malaria-datasets
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Figure 2.6: Message length plot for the Malaria dataset. The X-axis defines
the number of clusters, and the Y-axis defines the value of the message length.
According to the plot, The optimal number of clusters is 2.
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Chapter 3
A fully Bayesian Inference Approach for
Multivariate McDonald’s Beta Mixture
Model with Feature Selection

As this chapter builds upon the concepts and model specification introduced
in Chapter 2, we will not reiterate the definitions and construction of the
FMcDBMM. For a comprehensive understanding of the McDonald’s Beta
distribution and the steps involved in constructing the FMcDBMM, please
refer to Chapter 2. In this chapter, we will focus on bayesian framework as
the model learning approach with the integration of simultaneous feature
selection.

3.1 Feature Saliency

This section introduces the notion of feature saliency, which involves assigning
weights to features according to their relevance to the model. While utilizing
a large number of features may enhance the model’s potential, noise and
redundancy can undermine its effectiveness. Thus, by assigning saliency
weights, we can improve the model’s accuracy, avoid overfitting, and facilitate
its interpretation. The equations are initially developed based on a single
observation and then extended to apply to all sets of observations for ease of
comprehension. Here, we present all observations as a vector X⃗ where each
vector has a D-dimensional representation X⃗ =

(
x1, . . . , xD

)
and we denote
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each dimension as xd where d = 1, . . . , D. To indicate the relevance of each
feature xd to the jth component of the mixture model, we introduce a set of
binary parameters A = {αjd} [55]. If αjd is equal to one, it indicates that
the dth feature is relevant to the jth component. If the distribution of the dth

feature does not depend on the component labels, it is considered irrelevant.
To represent the common density of such irrelevant features, we use q(. | Λ⃗d).
For the purpose of this study, we assume the McDBD as the common density,
resulting in the following model:

p(X⃗n | w⃗, θ⃗, Λ⃗,A) = (3.1)

M∑
j=1

wj

D∏
d=1

[p((xnd | θjd)]αjd [q(xnd | Λ⃗d)]
1−αjd ]

Equation (3.1) defines Λ⃗d as the parameter of the common density of the

dth feature, where Λ⃗d = (âd, b̂d, p̂d). To describe αjd, we present P = {ρjd},
which is known as the component-based feature saliency. The value of ρjd,
which indicates the degree to which component jth is related to the dth feature,
is defined as p(αjd = 1). It is also possible to infer that p(αid = 0) = 1− ρjd.
Thus, we have:

p(αjd | ρjd) = ρ
αjd

jd (1− ρjd)
1−αjd (3.2)

3.1.1 Feature Selection in McDonald’s Beta Mixture
Model

In this section, we will focus on incorporating feature selection into the
FMcDBMM using the complete set of observations X . The mixture model
can be derived according to (3.1) and (3.2) as follow:

p(X⃗n | ∆) = (3.3)

M∑
j=1

wj

D∏
d=1

(ρjdp( xnd | θjd) + (1− ρjd)q( xnd | Λ⃗d))
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where

∆ = {{wj}, {θjd}, {ρjd}, {Λ⃗d}} (3.4)

Next, we define a membership vector Z⃗n = (Zn1, . . . , ZnM) of dimension

M for each observation X⃗n, where Znj = 1 indicates that X⃗n belongs to com-
ponent j, and Znj = 0 otherwise. Thus, we can consider a set of membership
vectors for X defined by Z = (Z1, . . . , ZN ) and have a complete form of data
as (X ,Z) which follows p(X ,Z | ∆). The density of the complete form of
data can be defined as follows:

p(X ,Z | ∆) = (3.5)

N∏
n=1

M∏
j=1

[wj

D∏
d=1

(ρjdp(xnd | θjd) + (1− ρjd)q(xnd | Λ⃗d))]
Znj

By considering the missing multinomial variable Ẑnj for each X⃗n, such

that Z⃗n ∼ M(1; Ẑn1, . . . , ẐnM), we have:

Ẑnj =
p
(
X⃗n|θ⃗j

)
wj∑M

j=1 p
(
X⃗n|θ⃗j

)
wj

(3.6)

3.2 Model Learning

3.2.1 Bayesian Learning Framework

Estimating model’s parameters poses a challenging topic during the learning
step of mixture models. While several deterministic and stochastic techniques
exist, we present a Bayesian framework for multivariate McDonald’s Beta
mixture models due to its capability to integrate prior knowledge and assump-
tions about the model’s parameters and the associated uncertainties into the
estimation process. Our proposed framework utilizes the Metropolis-Hastings
algorithm and Gibbs sampler technique which will be explained as we proceed.

In Bayesian inference, the initial step involves defining the prior and
posterior probability distributions. Thus, we will compute the posterior
distribution with the help of Bayes’ theorem. Given the complete data
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(X ,Z), the joint distribution of p(X ,Z | ∆) and the prior density function
p(∆), the posterior is defined as follows:

p(∆ | X ,Z) =
p(X ,Z | ∆)p(∆)∫
p(X ,Z | ∆)p(∆)

∝ p(X ,Z | ∆)p(∆) (3.7)

Considering the fact that mixing weight parameters must satisfy the
constraints 0 < wj < 1 and

∑M
j=1wj = 1, a symmetric Dirichlet distribution

with parameters (ζ1, . . . , ζM) is often considered to be the optimal choice for
establishing a prior distribution.

p(w⃗) =
Γ(
∑M

j=1 ζj)∏M
j=1 Γ(ζj)

M∏
j=1

w
ζj−1
j (3.8)

Furthermore, we have:

p(Z | w⃗) =
N∏

n=1

p(Zn | w⃗) =
N∏

n=1

wZn1
1 , . . . , wZnM

M

=
N∏

n=1

M∏
j=1

w
Znj

j =
M∏
j=1

w
nj

j (3.9)

where nj =
∑N

n=1 IZnj=j . Therefore, using (3.8) and (3.9) and based on Bayes
theorem, the posterior is defined as:

p(w⃗ | Z) =
Γ(
∑M

j=1 ζj)∏M
j=1 Γ(ζj)

M∏
j=1

w
ζj−1
j

M∏
j=1

w
nj

j (3.10)

=
Γ(
∑M

j=1 ζj)∏M
j=1 Γ(ζj)

M∏
j=1

w
ζj+nj−1
j ∝ D(ζ1 + n1, . . . , ζM + nM)

where D is a Dirichlet distribution with (ζ1 + n1, . . . , ζM + nM ) as it’s param-
eters.

Afterward, we must establish a prior for ρjd, representing the feature
saliency probabilities. As per its characteristics, our preferred initial prior is
the Beta distribution.
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p(ρjd) =
Γ(tjd + ηjd)

Γ(tjd)Γ(ηjd)
ρ
tjd−1

jd (1− ρjd)
ηjd−1 (3.11)

Based on (3.11), The posterior is defined as below:

p(P | X ,Z,A)

=
∏M

j=1

∏D
d=1 Beta(n

∗
jd + tjd, nj − n∗

jd + ηjd)
(3.12)

In (3.12), n∗
jd =

∑N
n=1 znjϕnjd and ϕnjd ∈ {0, 1} satisfying following

conditions:

ϕnjd = { 1 h ≥ 1
0 else ,

h =
ρjdp(xnd | ajd, bjd, pjd)

(1− ρjd)q(xnd | âd, b̂d, p̂d})
. (3.13)

Furthermore, Given the positivity constraints imposed on all of the parameters,
the Gamma distribution would be a proper choice for the prior distribution
of each parameter. As a result, the prior distributions can be expressed in
the form of the following equations:

p (⃗a | u, v) =
M∏
j=1

D∏
d=1

v
ujd

jd

Γ(ujd)
a
ujd−1

jd e−vjdajd (3.14)

p
(⃗
b | r, s

)
=

M∏
j=1

D∏
d=1

s
rjd
jd

Γ(rjd)
b
rjd−1

jd e−sjdbjd (3.15)

p (p⃗ | f, g) =
M∏
j=1

D∏
d=1

g
fjd
jd

Γ(fjd)
p
fjd−1

jd e−gjdpjd (3.16)

p(θ⃗ | u⃗, v⃗, r⃗, s⃗, f⃗ , g⃗) = p (⃗a | u, v)

p
(⃗
b | r, s

)
p (p⃗ | f, g) (3.17)
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p
(
⃗̂a | û, v̂

)
=

D∏
d=1

v̂ûd
d

Γ(ûd)
âûd−1
d e−v̂dâd (3.18)

p
(⃗
b̂ | r̂, ŝ

)
=

D∏
d=1

ŝr̂dd
Γ(r̂d)

b̂r̂d−1
d e−ŝdb̂d (3.19)

p
(
⃗̂p | f̂ , ĝ

)
=

D∏
d=1

ĝf̂dd
Γ(f̂d)

p̂f̂d−1
d e−ĝdp̂d (3.20)

p(Λ⃗ | ⃗̂u, ⃗̂v, ⃗̂r, ⃗̂s, ⃗̂f, ⃗̂g) = p
(
⃗̂a | û, v̂

)
p
(⃗
b̂ | r̂, ŝ

)
p
(
⃗̂p | f̂ , ĝ

)
(3.21)

where all the hyper-parameters u⃗ = {ujd}, v⃗ = {vjd}, r⃗ = {rjd}, s⃗ = {sjd}, f⃗ =

{fjd}, g⃗ = {gjd} and ⃗̂u = {ûd}, ⃗̂v = {v̂d}, ⃗̂r = {r̂d}, ⃗̂s = {ŝd}, ⃗̂f = {f̂d}, ⃗̂g =
{ĝd} of the above priors are positive.

With conditioning the likelihood on A and Z to facilitate the implemen-
tation of further Bayesian inference computation, we will have the following:

p(X | Z, θ⃗, Λ⃗,A) =

N∏
n=1

D∏
d=1

[p((xnd | θjd)]αjd [q(xnd | Λ⃗d)]
1−αjd ] (3.22)

The conditional posterior distributions are computed using the priors and
likelihood defined above as follows:
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p(θ⃗j | Z,X , θ⃗, Λ⃗,A) ∝ p(θ⃗j)
∏

znj=1

p(Xn | Z, θ⃗j, Λ⃗,A)

∝ p(θ⃗j)
∏

znj=1

D∏
d=1

[p((xnd | θ⃗jd)]αjd [q(xnd | Λ⃗d)]
1−αjd ]

]
∝

D∏
d=1

[
(
v
ujd

jd

Γ(ujd)
a
ujd−1

jd e−vjdajd)

× (
s
rjd
jd

Γ(rjd)
b
rjd−1

jd e−sjdbjd)

× (
g
fjd
jd

Γ(fjd)
p
fjd−1

jd e−gjdpjd)

×
∏

znj=1

D∏
d=1

[
pjdxnd

ajdpjd−1(1− xnd
pjd)bjd−1

B(ajd, bjd)
]αjd

× [
p̂jdxnd

âjdp̂jd−1(1− xnd
p̂jd)b̂jd−1

B(âjd, b̂jd)
]1−αjd ] (3.23)

p(Λ⃗ | Z,X , θ⃗, Λ⃗,A) ∝ p(Λ⃗)
∏

znj=1

p(Xn | Z, θ⃗j, Λ⃗,A) (3.24)

The process of computing p(Λ⃗ | Z,X , θ⃗, Λ⃗,A) will be the same as p(θ⃗j |
Z,X , θ⃗, Λ⃗,A) which was explained above only with it’s own defined parame-
ters.

Once we have computed all our posteriors, the next step is to estimate
the parameters of our model. One efficient method to achieve this is using
MCMC techniques, and Gibbs sampling is considered one of the most effective
approaches. Using Gibbs sampling, we can approximate the model param-
eters by sequentially deriving them from their posteriors based on earlier
approximated values.

To simulate θ⃗j from its posterior distribution, we utilize the Metropolis-
Hastings approach. This approach requires us to specify a proposal distribu-
tion which considering the fact that all the parameters are positive, We have
used a random walk M-H with the following proposal distribution:

θ̃jd ∼ LN (log(θ
(t−1)
jd ), σ2) (3.25)
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This is considered the first phase in the M-H algorithm. To elaborate,
LN (log(θ

(t−1)
jd ), σ2) is the log-normal distribution with mean and variance of

log(θ
(t−1)
jd ) and σ2 where d = 1, . . . , D.

Afterward, as the second phase of the M-H algorithm, we will establish
an acceptance ratio π to determine whether the new samples generated at
iteration t are eligible to be accepted or not. The acceptance ratio is a
key component in the M-H algorithm, which controls the exploration of
the parameter space and the algorithm’s convergence. Mathematically, the
acceptance ratio is defined as the ratio of the proposed sample’s posterior
density to the current sample’s posterior density.

π =
p(θ̃j | Z,X )

∏D
d=1 LN ((θ

(t−1)
jd ) | log(θ̃jd), σ2)

p(θ⃗
(t−1)
j | Z,X )

∏D
d=1 LN (θ̃jd | log(θ(t−1)

jd ), σ2)

=
p(θ̃j | Z,X )

∏D
d=1 ãjdb̃jdp̃jd

p(θ⃗
(t−1)
j | Z,X )

∏D
d=1 a

(t−1)
jd b

(t−1)
jd p

(t−1)
jd

(3.26)

Algorithm 2 Complete Algorithm

1. Initialization

(a) Apply K-means and initialize the parameters

Repeat

2. Gibbs Sampling

(a) Generate Z⃗n ∼ M(1; Ẑn1, . . . , ẐnM)

(b) Generate w⃗, P from (3.10), (3.12)

3. Metropolis-Hastings

(a) Generate θ̃jd from (3.25)

(b) Compute π from (3.26)

until
Convergence
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Table 3.1: Results on Lung Cancer Dataset

Method Accuracy Precision Recall F1-score
FMcDBMM 87.95 88.1 87.96 88.02

GMM 83.33 79.88 80.43 81.59

3.3 Experimental Results

In this section, we evaluated our proposed model for two real-world applica-
tions: Lung cancer analysis and Human activity recognition. To evaluate its
effectiveness, we compared the performance of our model with GMM. The
model’s performance was assessed using four standard metrics: accuracy,
precision, recall, and F1-score and the min-max method to normalize our
datasets.

Accuracy =
TruePositives+ TrueNegatives

Total number of observations

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

F1− score =
2× precision× recall

precision+ recall
(3.27)

3.3.1 Lung Cancer Analysis

we applied our model to a dataset of lung histopathological images [56]
as our first experiment. This dataset contains 2500 images classified into
three varieties of lung cancer: benign, adenocarcinoma, and squamous cell
carcinoma. Fig. 4.1 represents some image samples of cells.

Moreover, The results in Table 4.1 indicate better performance of our
proposed model with an accuracy of 87.95% compared to GMM with an
accuracy of 83.33%. Also, we have illustrated the feature saliencies of eight
random features in Fig. 3.2, where according to the chart the eighth feature
has the most relevancy among the other seven features across all components.
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Figure 3.1: Lung Cancer cell image samples

Table 3.2: Results on Human Activity Recognition Dataset

Method Accuracy Precision Recall F1-score
FMcDBMM 89.27 89.18 89.34 89.25

GMM 86.71 86.39 86.41 86.39

3.3.2 Human Activity Recognition (HAR)

In our second experiment, we use a publicly available dataset with 2220
samples [57] consisting of four activities - laying, sitting, standing, and
walking. The data was collected from the activities of 30 participants aged
between 19 and 48 while they wore a waist-mounted Samsung Galaxy S II
smartphone. Two sensors, an accelerometer, and a gyroscope were embedded
in the smartphone to record the data. Note that, the complexity and instability
of sensor-based data make it challenging to analyze human activity.

Additionally, attributes including triaxial acceleration derived from the
accelerometer (overall acceleration), the approximated body acceleration, and
triaxial angular velocity obtained from the gyroscope were utilized. The
results presented in Table 4.3 show that our proposed model achieved a
promising performance compared to GMM. Correspondingly, Fig. 3.3 illus-
trates the feature saliency among components for eight sample features.
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Figure 3.2: Feature relevancy of eight random features in Lung cancer dataset
across all components

Figure 3.3: Feature relevancy of eight random features in Human activity
recognition dataset across all components
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Chapter 4
Bayesian Inference in Infinite
Multivariate McDonald’s Beta Mixture
model

As this chapter is an extension of the concepts and methods introduced in
Chapter 3, we will not provide a detailed account of model specifications
and feature selection process here. For a thorough understanding of model
specification as well as the feature selection employed, we kindly direct the
reader to Chapter 3.

In the present chapter, our primary focus will be on expanding the finite
McDonald’s Beta Mixture Model into an infinite mixture model, discussing
its potential implications and applications within the medical data analysis
and human activity recognition domain.

4.1 Model Learning

4.1.1 Bayesian Learning Framework

As discussed in Chapter 3where we delved into the details of the Bayesian
framework for model learning, Given the complete data (X ,Z), the joint
distribution of p(X ,Z | ∆) and the prior density function p(∆), we will define
the posterior distribution for P as below:

p(P | X ,Z,A) =
∏M

j=1

∏D
d=1 Beta(n

∗
jd + tjd, nj − n∗

jd + ηjd) (4.1)
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where n∗
jd =

∑N
n=1 znjϕnjd and ϕnjd ∈ {0, 1} meets the following conditions:

ϕnjd = { 1 h ≥ 1
0 else ,

h =
ρjdp(xnd | ajd, bjd, pjd)

(1− ρjd)q(xnd | âd, b̂d, p̂d})
. (4.2)

As mentioned before in chapter 3, we calculate the model parameter posteriors
as follows:

p(θ⃗j | Z,X , θ⃗, Λ⃗,A) ∝
D∏

d=1

[
(
v
ujd

jd

Γ(ujd)
a
ujd−1

jd e−vjdajd)× (
s
rjd
jd

Γ(rjd)
b
rjd−1

jd e−sjdbjd)

× (
g
fjd
jd

Γ(fjd)
p
fjd−1

jd e−gjdpjd)×
∏

zn,j=1

D∏
d=1

[
pjdxnd

ajdpjd−1(1− xnd
pjd)bjd−1

B(ajd, bjd)
]αjd

× [
p̂jdxnd

âjdp̂jd−1(1− xnd
p̂jd)b̂jd−1

B(âjd, b̂jd)
]1−αjd ] (4.3)

p(Λ⃗ | Z,X , θ⃗, Λ⃗,A) ∝ p(Λ⃗)
∏

znj=1

p(Xn | Z, θ⃗j, Λ⃗,A) (4.4)

p(Λ⃗ | Z,X , θ⃗, Λ⃗,A) will be computed in the same way as p(θ⃗j | Z,X , θ⃗, Λ⃗,A).

4.1.2 Extension to Infinite Mixture Model

Determining the number of components M to accurately represent data is
essential but difficult. As the need to set M beforehand is a major drawback,
researchers have suggested nonparametric Bayesian techniques, which can
automatically figure out the number of clusters and expand them indefinitely
based on a specific choice of prior for mixing weights [58]. Unlike finite

mixture models, where each vector X⃗n is derived from one of M undefined
McDBD, we present that a Dirichlet process of McDBD to model our data. In
the following, we will demonstrate the fundamentals of the Dirichlet process
mixture model and its ability to create or eliminate components. consider a
symmetric Dirichlet with a concentration parameter τ

M
as the prior for mixing

weights:

p(w⃗ | τ) = Γ(τ)∏M
j=1 Γ(

τ
M
)

M∏
j=1

w
τ
M

−1

j (4.5)
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where w⃗ is the vector of mixing weights defined by (w1, . . . , wM) :
∑M−1

j=1 wj < 1.
In addition, for Zn as the latent variable to show which cluster does Xn belongs
to, such that wj = p(Zn = j), j = 1, . . . ,M we have the following:

p(Z | w⃗) =
M∏
j=1

wj
nj (4.6)

where nj =
∑N

n=1 IZnj=1. Since the Dirichlet distribution is a conjugate prior
for the multinomial distribution, we can calculate the prior distribution for
Z by integrating out the mixing proportions vector w⃗ as follows:

p(Z | τ) =
∫
w⃗

p(Z | w⃗)p(w⃗ | τ)dw⃗ =
Γ(τ)

Γ(N + τ)

M∏
j=1

Γ( τ
M

+ nj)

Γ( τ
M
)

(4.7)

Therefore using (4.5) to (4.7), we obtain:

p(w⃗ | Z, τ) = Γ(τ +N)∏M
j=1 Γ(

τ
M

+ nj)

M∏
j=1

w
nj+

τ
M

−1

j ∝ D(n1 +
τ

M
, . . . , nM +

τ

M
)

(4.8)

where D is a Dirichlet distribution with parameters (n1 +
τ
M
, . . . , nM + τ

M
).

According to [59], the conditional prior for a single indicator is defined as
below:

p(Znj = 1 | τ,Z−n) =
n−nj +

τ
M

N − 1 + τ
(4.9)

where Z−n is Z excluding Zn and n−nj is the number of observations excluding

X⃗n which belongs to cluster j. To tackle the model’s complexity challenges, we
will supposeM → ∞ and by applying that on (4.9), we have the following [59]:

p(Znj = 1 | n;Z−n) =

{
n−nj

N−1+τ
if n−nj > 0 (j ∈ R)

τ
N−1+τ

if n−nj = 0 (j ∈ U)
(4.10)

Note that R and U indicate the sets of represented and unrepresented com-
ponents. It is worth noting that the conditional prior distribution for the
members of R is dependent on the number of observations assigned to the
component, whereas, for the members of U , it only depends on the parameters
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τ and N [60]. Therefore having (4.10) as the priors, we present the conditional
posteriors [61]:

p(Znj = 1 | θ⃗j, Λ⃗, αj, τ ;Z−n) =


n−nj

N−1+τ
p(X⃗n | θ⃗j, Λ⃗, αj) if j ∈ R∫ τp(X⃗n|θ⃗j ,Λ⃗,αj)p(θ⃗j ,Λ⃗)

N−1+τ
da⃗jdb⃗jdp⃗jdΛ⃗ if j ∈ U

(4.11)
Equation (4.11) represents a DP mixture model [62]. Each observation is
assigned to a cluster based on a set of mixing proportions, with the number of
clusters determined automatically from the data. One of the key advantages
of this model is its ability to adapt to the data and generate new clusters as
needed, avoiding overfitting and allowing for a flexible representation of the
data. If an observation is assigned to an unrepresented cluster, a new cluster
is generated to accommodate it, while a represented cluster may become
unrepresented if all its observations are assigned to other clusters during the
sampling process.

4.2 Algorithm Overview

To estimate the parameters of our mixture model as our final step, we
have used the M-H algorithm and Gibbs sampler technique [63], which
are widely used in Bayesian inference to sample from complex posterior
distributions and avoid direct sampling. For the choice of the proposal
distribution, we have used a random walk M-H with the following proposal
distribution:θ̃jd ∼ LN (log(θ

(t−1)
jd ), σ2), where LN (log(θ

(t−1)
jd ), σ2) is the log-

normal distribution with mean and variance of log(θ
(t−1)
jd ) and σ2 where

d = 1, . . . , D.
To summarize the algorithm, first, we initialize the algorithm by assigning
all observations to the same cluster. We then generate the vector Z⃗n and
update the number of represented clusters based on the generated vector.
Since the integral in equation (4.11) is not analytically tractable, we employ
the technique proposed in [64] to approximate it and enable sampling from

the vector Z⃗n.
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Algorithm 3 Nonparametric Bayesian learning of IMcDBMM

1. Initialization

2. Repeat

3. Generate Z⃗n from (4.11) and then update nj.

4. Update the number of represented components.

5. Update the mixing weights for the represented components by wR =
nj

N+τ
.

6. Update the mixing weights for the unrepresented components by wU =
τ

N+τ
.

7. Generate the model parameters from (4.3) using M-H algorithm.

8. until Convergence

4.3 Experimental Results

We evaluate our proposed model on two real-world applications: lung cancer
analysis and HAR. We compared its performance with the widely-used GMM
and FMcDBMM using accuracy, precision, recall, and F1-score metrics to
assess its effectiveness.

4.3.1 Lung Cancer Analysis

We conducted our first experiment on a dataset of lung cancer images [56],
which contains 2500 images classified into three categories: benign, adeno-
carcinoma, and squamous cell carcinoma. Examples of cell image samples
are shown in fig.4.1. We compared the performance of our proposed model
with GMM using the mentioned metrics. The results in Table 1 indicate that
our model achieved better accuracy of 90.84% than GMM and FMcDBMM.
In addition, we analyzed the feature saliencies of eight random features, as
shown in Table 4.2. The analysis indicated that the eighth feature was the
most relevant among the other seven features across all components.
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Figure 4.1: Sample of each type of lung cancer images

Table 4.1: Results on Lung Cancer Dataset

Method Accuracy Precision Recall F1-score
IMcDBMM 90.84 91.02 90.88 90.94
FMcDBMM 87.95 88.1 87.96 88.02

GMM 83.33 79.88 80.43 81.59

Table 4.2: Feature Relevancy Across All Components for Lung Cancer dataset

Feature F1 F2 F3 F4 F5 F6 F7 F8
Relevancy 0.1092 0.1142 0.1074 0.0965 0.0891 0.0747 0.1083 0.1163

4.3.2 Human Activity Recognition (HAR)

As our second experiment, we used a publicly available dataset of 2220 sam-
ples [57] collected from 30 participants aged between 19 and 48 performing
four activities (laying, sitting, standing, and walking) while wearing a waist-
mounted Samsung Galaxy S II smartphone with two embedded sensors. We
employed features such as triaxial acceleration, the estimated body accel-
eration, and triaxial angular velocity to analyze the data. Our proposed
model achieved promising performance compared to GMM and FMcDBMM,
as shown in Table 4.3. Additionally, we analyzed the feature saliency among
components for eight sample features, as illustrated in Table 4.4.
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Table 4.4: Feature Relevancy Across All Components for HAR dataset

Feature F1 F2 F3 F4 F5 F6 F7 F8
Relevancy 0.5275 0.4327 0.4350 0.8949 0.8794 0.9001 0.9340 0.8709

Table 4.3: Results on HAR Dataset

Method Accuracy Precision Recall F1-score
IMcDBMM 93.14 91.32 91.27 91.29
FMcDBMM 89.27 89.18 89.34 89.25

GMM 86.71 86.39 86.41 86.39
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Chapter 5
Conclusion

In this thesis, we developed various unsupervised methods and applied them
to medical problems with a primary aim of providing potent alternatives to
commonly utilized models such as the Gaussian Mixture. Our models were
grounded on a novel distribution, the multivariate McDonald’s Beta distribu-
tion. This choice was driven by the reality that the assumption of Gaussianity,
which many approaches rely on, often does not hold for many datasets across
different fields of science and various real-world applications. The multivariate
McDonald’s Beta distribution offers a more flexible alternative, capable of
modeling symmetric, asymmetric, and skewed data.

First we proposed a novel finite mixture model based on McDonald’s Beta
distribution, showcasing its flexibility and suitability for real-world appli-
cations. Employing maximum likelihood via the expectation maximization
algorithm, we managed to estimate the parameters of our model, with the
minimum message length (MML) criterion assisting in determining the op-
timal number of clusters. The superior performance of our method, when
tested on multiple medical datasets and compared with the Gaussian Mixture
Model (GMM), indicated the robustness and viability of our model as an
alternative to traditional methods.

We then focused on a Bayesian learning framework, incorporating Markov
Chain Monte Carlo techniques and simultaneous feature selection. This model
was rigorously tested on real-world applications like lung cancer image analysis
and human activity recognition. The experimental results showed our model’s
superior performance over GMM, laying the groundwork for future expansion
to an infinite mixture model.
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Lastly, we expanded our finite model to an infinite one, by using a
nonparametric Bayesian framework. This extension allowed us to determine
the best number of components, adding to the model’s flexibility. Our
proposed framework outperformed both the GMM and the FMcDBMM in
real-world applications, highlighting its effectiveness.

In conclusion, The results from our real-world experiments demonstrate
the robustness and flexibility of our proposed models.

Future works could be devoted to integrate the proposed generative
models within discriminative ones or to integrate them within deep learning
techniques.

Appendix

Determinant of the Fisher information

According to the method presented by [46], we suppose that data samples

Xj = (X⃗s, . . . , X⃗s+nj−1) are assigned to the jth cluster, where s ≤ N and nj

is the total number of data samples assigned to cluster j. The negative of
the second derivative of complete log-likelihood defines F (θ⃗j).

− log p(X | Θ
)
= − log(

s+nj−1∏
n=s

p(X⃗ | θ⃗M)) (1)

= −(

s+nj−1∑
n=s

log p(X⃗ | θ⃗M))

We calculate second and mixed derivative with respect to the parameters
ajd, bjd, pjd:

−
∂2 log p(X | Θ

)
∂a2jd

= −nj(ψ
′(ajd + bjd)− ψ′(ajd)) (2)

−
∂2 log p(X | Θ

)
∂ajdsajdt

= 0, ds ̸= dt (3)
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−
∂2 log p(X | Θ

)
∂ajdbjd

= −nj(ψ
′(ajd + bjd)) (4)

−
∂2 log p(X | Θ

)
∂ajdsbjdt

= 0, ds ̸= dt (5)

−
∂2 log p(X | Θ

)
∂ajdpjd

= −(
N∑

n=1

log xnd) (6)

−
∂2 log p(X | Θ

)
∂ajdspjdt

= 0, ds ̸= dt (7)

−
∂2 log p(X | Θ

)
∂bjdajd

= −nj(ψ
′(ajd + bjd)) (8)

−
∂2 log p(X | Θ

)
∂bjdsajdt

= 0, ds ̸= dt (9)

−
∂2 log p(X | Θ

)
∂b2jd

= −nj(ψ
′(ajd + bjd)− ψ′(bjd)) (10)

−
∂2 log p(X | Θ

)
∂bjdsbjdt

= 0, ds ̸= dt (11)

−
∂2 log p(X | Θ

)
∂bjdpjd

= −
N∑

n=1

log(xnd)x
pjd
nd

x
pjd
nd − 1

(12)

−
∂2 log p(X | Θ

)
∂bjdspjdt

= 0, ds ̸= dt (13)

−
∂2 log p(X | Θ

)
∂pjdajd

= −(
N∑

n=1

log xnd) (14)

−
∂2 log p(X | Θ

)
∂pjdsajdt

= 0, ds ̸= dt (15)
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−
∂2 log p(X | Θ

)
∂pjdbjd

= −
N∑

n=1

log(xnd)x
pjd
nd

x
pjd
nd − 1

(16)

−
∂2 log p(X | Θ

)
∂pjdsbjdt

= 0, ds ̸= dt (17)

−
∂2 log p(X | Θ

)
∂p2jd

= −
N∑

n=1

(1− bjd)x
pjd
nd {log(xnd)}2

(1− x
pjd
nd )

2
− 1

p2jd
(18)

−
∂2 log p(X | Θ

)
∂pjdspjdt

= 0, ds ̸= dt (19)

The F (θ⃗j) is a 3D by 3D matrix as shown below:

Fj =

F(ajd,ajd) F(ajd,bjd) F(ajd,pjd)

F(bjd,ajd) F(bjd,bjd) F(bjd,pjd)

F(pjd,ajd) F(pjd,bjd) F(pjd,pjd)

 (20)

Finally, we calculated the determinant of this block matrix, using the method
presented in [65].
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