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LATENT CLASS CLUSTER ANALYSIS

Jeroen K. Vermunt
Tilburg University

Jay Magidson
Statistical Innovations Inc.

INTRODUCTION

Kaufman and Rousseeuw (1990) define cluster analysis as the classification of similar objects
into groups, where the number of groups, as well as their forms are unknown. The “form of a
group” refers to the parameters of cluster; that is, to its cluster-specific means, variances, and
covariances that also have a geometrical interpretation. A similar definition is given by Everitt
(1993) who speaks about deriving a useful division into a number of classes, where both the
number of classes and the properties of the classes are to be determined. These could also be
definitions of exploratory LC analysis, in which objects are assumed to belong to one of a set
of K latent classes, with the number of classes and their sizes not known a priori. In addition,
objects belonging to the same class are similar with respect to the observed variables in the
sense that their observed scores are assumed to come from the same probability distributions,
whose parameters are, however, unknown quantities to be estimated. Because of the similarity
between cluster and exploratory LC analysis, it is not surprising that the latter method is
becoming a more and more popular clustering tool.

In this paper, we want to describe the state-of-art in the field of LC cluster analysis. Most of
the work in this field involves continuous indicators assuming (restricted) multivariate normal
distributions within classes. Although authors seldom refer to the work of Gibson (1959) and
Lazarsfeld and Henry (1968), actually they are using what these authors called latent profile
analysis: that is, latent structure models with a single categorical latent variable and a set of
continuous indicators. Wolfe (1970) was the first one who made an explicit connection between
LC and cluster analysis.

The last decade there was a renewed interest in the application of LC analysis as a cluster
analysis method. Labels that are used to describe such a use of LC analysis are: mixture
likelihood approach to clustering (McLachlan and Basford 1988; Everitt 1993), model-based
clustering (Banfield and Raftery 1993; Bensmail et. al. 1997; Fraley and Raftery 1998a,
1998b), mixture-model clustering (Jorgensen and Hunt 1996; McLachlan et al. 1999), Bayesian
classification (Cheeseman and Stutz 1995), unsupervised learning (McLachlan and Peel 1996),
and latent class cluster analysis (Vermunt and Magidson 2000). Probably the most important
reason of the increased popularity of LC analysis as a statistical tool for cluster analysis is
the fact that nowadays high-speed computers make these computationally intensive methods
practically applicable. Several software packages are available for the estimation of LC cluster
models.

An important difference between standard cluster analysis techniques and LC clustering is
that the latter is a model-based clustering approach. This means that a statistical model is
postulated for the population from which the sample under study is coming. More precisely,
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it is assumed that the data is generated by a mixture of underlying probability distributions.
When using the maximum likelihood method for parameter estimation, the clustering prob-
lem involves maximizing a log-likelihood function. This is similar to standard non-hierarchical
cluster techniques in which the allocation of objects to clusters should be optimal according
some criterion. These criteria typically involve minimizing the within-cluster variation and/or
maximizing the between-cluster variation. An advantage of using a statistical model is, how-
ever, that the choice of the cluster criterion is less arbitrary. Nevertheless, the log-likelihood
functions corresponding to LC cluster models may be similar to the criteria used by certain
non-hierarchical cluster techniques like k-means.

LC clustering is very flexible in the sense that both simple and complicated distributional
forms can be used for the observed variables within clusters. As in any statistical model,
restrictions can be imposed on the parameters to obtain more parsimony and formal tests can
be used to check their validity. Another advantage of the model-based clustering approach is
that no decisions have to be made about the scaling of the observed variables: for instance,
when working with normal distributions with unknown variances, the results will be the same
irrespective of whether the variables are normalized or not. This is very different from standard
non-hierarchical cluster methods, where scaling is always an issue. Other advantages are that
it is relatively easy to deal with variables of mixed measurement levels (different scale types)
and that there are more formal criteria to make decisions about the number of clusters and
other model features.

LC analysis yields a probabilistic clustering approach. This means that although each
object is assumed to belong to one class or cluster, it is taken into account that there is un-
certainty about an object’s class membership. This makes LC clustering conceptually similar
to fuzzy clustering techniques. An important difference between these two approaches is, how-
ever, that in fuzzy clustering an object’s grades of membership are the “parameters” to be
estimated (Kaufman and Rousseeuw 1990) while in LC clustering an individual’s posterior
class-membership probabilities are computed from the estimated model parameters and his
observed scores. This makes it possible to classify other objects belonging to the population
from which the sample is taken, which is not possible with standard fuzzy cluster techniques.

The remainder of this paper is organized as follows. The next section discusses the LC cluster
model for continuous variables. Subsequently, attention is paid to models for sets of indicators
of different measurement levels, also known as mixed-mode data. Then we explain how to
include covariates in a LC cluster model. After discussing estimation and testing, two empirical
examples are presented. The paper ends with a short discussion. An appendix describes
computer programs that implement the various kinds of LC clustering methods presented in
this paper.

CONTINUOUS INDICATOR VARIABLES

The basic LC cluster model has the form

f(yi|θ) =
K∑
k=1

πkfk(yi|θk) .

Here, yi denotes an object’s scores on a set of observed variables, K is the number of clusters,
and πk denotes the prior probability of belonging to latent class or cluster k or, equivalently,
the size of cluster k. Alternative labels for the y’s are indicators, dependent variables, outcome
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variables, outputs, endogenous variables, or items. As can be seen, the distribution of yi
given the model parameters θ, f(yi|θ), is assumed to be a mixture of classes-specific densities,
fk(yi|θk).

Most of the work on LC cluster analysis has been done for continuous variables. Generally,
these continuous variables are assumed to be normally distributed within latent classes, possibly
after applying an appropriate non-linear transformation (Lazarsfeld and Henry 1968; Basfield
and Raftery 1993; McLachlan 1988; McLachlan et. al. 1999; Cheeseman and Stutz 1995).
Alternatives for the normal distribution are student, Gompertz, or gamma distributions (see,
for instance, McLachlan et. al. 1999).

The most general Gaussian distribution of which all restricted versions discussed below
are special cases is the multivariate normal model with parameters µk and Σk. If no further
restrictions are imposed, the LC clustering problem involves estimating a separate set of means,
variances, and covariances for each latent class. In most applications, the main objective is
finding classes that differ with respect to their means or locations. The fact that the model
allows classes to have different variances implies that classes may also differ with respect to the
homogeneity of the responses to the observed variables. In standard LC models with categorical
variables, it is generally assumed that the observed variables are mutually independent within
clusters. This is, however, not necessary here. The fact that each class has its own set of
covariances means that the y variables may be correlated with clusters, as well as that these
correlations may be cluster specific. So, the clusters do not only differ with respect to their
means and variances, but also with respect to the correlations between the observed variables.

It will be clear that as the number of indicators and/or the number of latent classes in-
creases, the number of parameters to be estimated increases rapidly, especially the number of
free parameters in the variance-covariance matrices, Σk. Therefore, it is not surprising that
restrictions which are imposed to obtain more parsimony and stability typically involve con-
straining the class-specific variance-covariance matrices.

An important constraint model is the local independence model obtained by assuming that
all within-cluster covariances are equal to zero or, equivalently, by assuming that the variance-
covariance matrices, Σk, are diagonal matrices. Models that are less restrictive than the local
independence model can be obtained by fixing some but not all covariances to zero or, equiva-
lently, by assuming certain pairs of y’s to be mutually dependent within latent classes.

Another interesting type of constraint is the equality or homogeneity of variance-covariance
matrices across latent classes, i.e., Σk = Σ. Such a homogeneous or class-independent error
structure yields clusters having the same forms but different locations. Note that these kinds
of equality constraints can be applied in combination with any structure for Σ.

Banfield and Raftery (1993) proposed reparameterizing the class-specific variance-covariance
matrices by an eigenvalue decomposition:

Σk = λkDkAkD
T
k .

The parameter λk is a scalar, Dk is a matrix with eigenvectors, and Ak is a diagonal matrix
whose elements are proportional to the eigenvalues of Σk. More precisely, λk = |Σk|1/d, where
d is the number of observed variables, and Ak is scaled such that |Ak| = 1.

A nice feature of the above decomposition is that each of the three sets of parameters has
a geometrical interpretation: λk indicates what can be called the volume of cluster k, Dk its
orientation, and Ak its shape. If we think of a cluster as a clutter of points in a multidimensional
space, the volume is the size of the clutter, while the orientation and shape parameters indicate
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whether the clutter is spherical or ellipsoidal. Thus, restrictions imposed on these matrices can
directly be interpreted in terms of the geometrical form of the clusters. Typically, matrices are
assumed to be class-independent and/or simpler structures (diagonal or identity) are used for
certain matrices. See Bensmail et al. (1997) and Fraley and Raftery (1998b) for overviews of
the many possible specifications.

Rather than by a restricted eigenvalue decomposition, the structure of the Σk matrices can
also be simplified by means of a covariance-structure model. Several authors have proposed
using latent class models for dealing with unobserved heterogeneity in covariance-structure
analysis (Arminger and Stein 1997; Dolan and Van der Maas 1997; Jedidi et. al. 1997). The
same methodology can be used to restrict the error structure in LC cluster analysis with contin-
uous indicators. An interesting structure for Σk, that is related to the eigenvalue decomposition
described above, is a factor analytic model (Yung 1997; McLachlan and Peel 1998); that is,

Σk = ΛkΦkΛk + Uk . (1)

Here, Λk is a matrix with factor loadings, Φk is the variance-covariance matrix of the factors,
and Uk is a diagonal matrix with unique variances. Restricted versions can be obtained by
limiting the number of factors (for instance, to one) and/or fixing some factor loading to zero.
Such specifications make it possible to describe the correlations between the y variables within
clusters or, equivalently, the structure of local dependencies, by means of a small number of
parameters.

MIXED INDICATOR VARIABLES

In the previous section, we concentrated on LC cluster models for continuous indicators as-
suming a (restricted) multivariate normal distribution for yi within each of the classes. Often
we are, however, confronted with other types of indicators, like nominal or ordinal variables or
counts. LC cluster models for nominal and ordinal variables assuming (restricted) multinomial
distributions for the items are equivalent to standard exploratory LC models (Goodman 1974;
Clogg 1981, 1995). Böckenholt (1993) and Wedel et. al. (1993) proposed LC models for Poisson
counts.

Using the general structure of the LC model, it is straightforward to specify cluster models
for sets of indicators of different scale types or, as Everitt (1988, 1993) called it, for mixed-mode
data (see also Lawrence and Krzanowski 1996; Jorgensen and Hunt 1996; and Vermunt and
Magidson 2000: 147-152). Assuming local independence, the LC cluster model for mixed y’s is
of the form

f(yi|θ) =
K∑
k=1

πk
J∏
j=1

fk(yij|θjk) , (2)

where J denotes the total number of indicators and j a particular indicator.
Rather than specifying the joint distribution of yi given class membership using a single

multivariate distribution, we now have to specify the appropriate univariate distribution func-
tion for each element yij of yi. Possible choices for continuous yij are univariate normal, student,
gamma, and log-normal distributions. A natural choice for discrete nominal or ordinal variables
is the (restricted) multinomial distribution. Suitable distributions for counts are, for instance,
Poisson, binomial, or negative binomial.
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In the above specification, we assumed that the y’s are conditional independent within
latent classes. This assumption can easily be relaxed by using the appropriate multivariate
rather than univariate distributions for sets of locally dependent y variables. It is not necessary
to present a separate formula for this situation. We can just think of the index j in equation
(2) to denote a set of indicators rather than a single indicator. For sets of continuous variables,
we can again work with a multivariate normal distribution. A set of nominal/ordinal variables
can combined into a (restricted) joint multinomial distribution. Correlated counts could be
modeled with a multivariate Poisson model. More difficult is the specification of the mixed
multivariate distributions. Krzanowski (1983) described two possible ways of modeling the
relationship between a nominal/ordinal and a continuous y: via a conditional Gaussian or via
a conditional multinomial distribution, which means either using the categorical variable as a
covariate in the normal model or the continuous one as a covariate in the multinomial model.
Lawrence and Krzanowski (1996) and Hunt and Jorgensen (1999) used the conditional Gaussian
distribution in LC clustering with combinations of categorical and continuous variables. Local
dependencies with a Poisson variable could be dealt with in the same way, i.e., by allowing its
mean to dependent on the relevant continuous or categorical variable(s).

The possibility to include local dependencies between indicators is very important when
using LC analysis as a clustering tool. First, it prevents that one ends with a solution that
contains too many clusters. Often, a simpler solution with less clusters is obtained by including
a few direct effects between y variables. It should be stressed that there is also a risk of allowing
for within-cluster associations: direct effects may hide relevant clusters.

A second reason for relaxing the local independence assumption is that it may yield a
better classification of objects into clusters. Saying that two variables are locally dependent is
conceptually the same as saying that they contain some overlapping information that should
not be used when determining to which class an object belongs. Consequently, if we omit a
significant bivariate dependency from a LC cluster model, the corresponding locally dependent
indicators get a too high weight in the classification formula (see equation (3)) compared to
the other indicators.

COVARIATES

The LC cluster modeling approach described above is quite general: It deals with mixed-mode
data and it allows for many different specification of the (correlated) error structure. An
important extension of this model is the inclusion of covariates to predict class membership.
Conceptually, it makes very much sense to distinguish (endogenous) variables that serve as
indicators of the latent variable from (exogenous) variables that are used to predict to which
cluster an object belongs. This idea is, in fact, the same as in Clogg’s (1981) LCM with external
variables.

Note that in certain situations we may want to use the latent cluster variable as a predictor
of an observed response variable rather than as a dependent variable. For such situations, we
do not need special arrangements like the ones needed with covariates. A model in which the
cluster variable serves as predictor can be obtained by using the response variable as one of the
y variables.
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Using the same basic structure as in equation (2), this yields the following LC cluster model:

f(yi|zi, θ) =
K∑
k=1

πk|zi

J∏
j=1

fk(yij|θjk) .

Here, zi denotes object i’s covariate values. Alternative terms for the z’s are concomitant
variables, grouping variables, external variables, exogenous variables, and inputs. To reduce
the number of parameters, the probability of belonging to class k given covariate values zi, πk|zi ,
will generally be restricted by a multinomial logit model; that is, a logit model with “linear
effects” and no higher order interactions.

An even more general specification is obtained by allowing covariates to have direct effects
on the indicators, which yields

f(yi|zi, θ) =
K∑
k=1

πk|zi

J∏
j=1

fk(yij|zi, θjk) .

The conditional mean of the y variables can now be directly related to the covariates. This
makes it possible to relax the implicit assumption in the previous specification that the influence
of the z’s on the y’s goes completely via the latent variable. For an example, see Vermunt and
Magidson (2000: 155).

The possibility to have direct effects of z’s on y’s can also be used to specify direct effects
between indicators of different scale types by means of a simple trick: one of the two variables
involved should be used both as covariate (not influencing class membership) and as indicator.
We will use this trick below in our second example.

ESTIMATION

The two main methods to estimate the parameters of the various types of LC cluster models are
maximum likelihood (ML) and maximum posterior (MAP). Wallace and Dowe (forthcoming)
proposed a minimum message length (MML) estimator, which in most situations is similar of
MAP. The log-likelihood function required in ML and MAP approaches can be derived from the
probability density function defining the model. Bayesian MAP estimation involves maximizing
the log-posterior distribution, which is the sum of the log-likelihood function and the logs of
the priors for the parameters.

Although generally there is not much difference between ML and MAP estimates, an impor-
tant advantage of the latter method is that it prevents the occurrence of boundary or terminal
solutions: probabilities and variances cannot become zero. With a very small amount of prior
information, the parameter estimates are forced to stay within the interior of the parameter
space. Typical priors are Dirichlet priors for multinomial probabilities and inverted-Wishart
priors for the variance-covariance matrices in multivariate normal models. For more details on
these priors see Vermunt and Magidson (2000: 164-165)

Most software packages, use the EM algorithm or some modification of it to find the ML or
MAP estimates. In our opinion, the ideal algorithm is starting with a number of EM iterations
and when close enough to the final solution, switching to Newton-Raphson. This is a way to
combine the advantages of both algorithms, that is, the stability of EM even when far away
from the optimum and the speed of Newton-Raphson when close to the optimum.
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A well-known problem in LC analysis is the occurrence of local solutions. The best way to
prevent ending with a local solution is to use multiple sets of starting values. Some computer
programs for LC clustering have automated the search for good starting values using several
sets of random starting values, as well as solutions obtained with other cluster methods.

In the application of LC analysis to clustering, we are not only interested in the estimation
of the model parameters. Another important “estimation” problem is classification of objects
into clusters. This can be based on the posterior class membership probabilities

πk|yi,zi, =
πk|zi

∏
j fk(yij|zi, θjk)∑

k πk|zi
∏
j fk(yij|zi, θjk)

. (3)

The standard classification method is modal allocation, which amounts to assigning each object
to the class with the highest posterior probability.

MODEL SELECTION

The model selection issue is one of the main research topics in LC clustering. Actually, there
are two issues: the first one concerns the decision about the number of clusters, the second one
concerns the form of the model given the number of clusters. For an overview on this topic see
Celeux et. al. (1997).

Assumptions with respect to the forms of the clusters given their number can be tested using
standard likelihood-ratio tests between nested models, for instance, between a model with an
unrestricted covariance matrix and a model with a restricted covariance matrix. Wald tests and
Lagrange multiplier tests can be used to assess the significance of certain included or excluded
terms, respectively. It is well-known that these kinds of chi-squared tests cannot be used to
determine the number of clusters.

The most popular set of model selection tools in LC cluster analysis are information criteria
like AIC, BIC, and CAIC (Fraley and Raftery 1998b). The most recent development is the
use of computationally intensive techniques like parametric bootstrapping (McLachlan, et. al.
1999) and Markov Chain Monte Carlo methods (Bensmail et. al. 1997) to determine the
number of clusters and their forms. Cheeseman and Stutz (1995) proposed a fully automated
model selection method using approximate Bayes factors (different from BIC).

Another set of methods for evaluating LC cluster models is based on the uncertainty of
classification or, equivalently, the separation of the clusters. Besides the estimated total num-
ber of misclassifications, Goodman-Kruskal lambda, Goodman-Kruskal tau, or entropy based
measures can be used to indicate how well the indicators predict class membership. Celeux
et. al. (1997) described various indices that combine information on model fit and information
on classification errors; two of them are the classification likelihood (C) and the approximate
weight of evidence (AWE).

TWO EMPIRICAL EXAMPLES

Below LC cluster modeling is illustrated by means of two empirical examples. The analyses are
performed with the LCA program Latent GOLD (Vermunt and Magidson, 2000), which imple-
ments both ML and MAP estimation with Dirichlet and inverted-Wishart priors for multinomial
probabilities and error variance-covariance matrices, respectively. A feature of the program that
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was extensively used in the analyses described below is the possibility to add local dependencies
using information on bivariate residuals. Model selection was based on BIC, where it should
be noted that the BIC we use is computed using the log-likelihood value and the number of
parameters rather than using the L2 value and the number of degrees of freedom.

Diabetes data

The first empirical example concerns a three-dimensional data set involving 145 observations
used for diabetes diagnosis (Reaven and Miller 1979). The three continuous variables are labeled
glucose (y1), insuline (y2), and sspg (y3). The data set also contains information on the clinical
classification in three groups (normal, chemical diabetes, and overt diabetes), which makes it
possible to compare the clinical classification with the classification obtained from the cluster
model. The substantive question of interest is whether the three indirect diagnostic measures
yield a reliable diagnosis; that is, whether they yield a classification that is close to the clinical
classification.

This data set comes with the MCLUST program and is also used by Fraley and Raftery
(1998a, 1998b) to illustrate their model-based cluster analysis based on the eigenvalue decom-
position described in equation (1). The final model they selected on the basis of the BIC
criterion was the unrestricted three-class model, which means that none of the restrictions that
can be specified with their approach holds for this data set.

We used six different specifications for the variance-covariance matrices: class-dependent
and class-independent unrestricted, class-dependent and class-independent diagonal, as well as
class-dependent and class-independent with only the y1-y2 error covariance free. With unre-
stricted we that all covariances are free and with diagonal that all covariances are assumed to
be zero. The models with only the y1-y2 error covariance free were used because the bivariate
residuals of both diagonal models indicated that there was only a local dependency between
these two variables. Moreover, the results from the unrestricted models indicated that the y1-y3

and y2-y3 covariances did not differ significantly from zero.

[INSERT TABLE 1 ABOUT HERE]

Table 1 reports the BIC values for the estimated one to five class models. The 3-class model
that only includes the error covariance between y1 and y2 and with class-dependent variances
and covariances has the lowest BIC value. Its BIC value is slightly lower than of the class-
dependent unrestricted three-class model, Fraley and Raftery’s final model for this data set.
The BIC values in table 1 show clearly that models with too restrictive error structures for
a particular data set overestimate the number of clusters. Here, this applies to the models
with class-independent error variances and the class-dependent diagonal model. Therefore, it
is important to be able to work with different types of error structures. Note that the most
restrictive model that we used – the model with class-independent diagonal error structure
– can be seen as a probabilistic variant of k-means cluster analysis (McLachlan and Basford
1988).

[INSERT TABLE 2 ABOUT HERE]

Table 2 reports the parameters estimates for the three-class model with class-dependent
variance-covariance matrices and with only a local dependence between y1 and y2. These pa-
rameters are the cluster sizes (πk), the cluster-specific means (µjk), the cluster-specific variances
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(σ2
jk), as well as the cluster-specific covariance between y1 and y2 (σ12k). The overt diabetes

group (cluster 3), has much higher means on glucose and insuline and a much lower mean on
sspg than the normal group (cluster 1). The chemical diabetes group (cluster 2) has somewhat
lower means on glucose and insuline and a much lower mean on sspg than the normal group.
The reported error variances show that the overt diabetes cluster is much more heterogeneous
with respect to glucose and insuline and much more homogeneous with respect to sspg than
the normal cluster. The chemical diabetes group is the most homogeneous cluster on all three
measures. The error covariances are somewhat easier to interpret if we transform them to cor-
relations. Their values are .69, .21, and .93 for cluster 1, 2 and 3, respectively. This indicates
that in the overt diabetes group there is a very strong association between glucose and insuline,
while in the chemical diabetes group this association is very low, and even not significantly
different from zero (σ̂12k/SEσ̂12k

= 1.60). Note that the within-cluster correlation of .93 is very
high, which indicates that, in fact, the two measures are equivalent in cluster 3.

[INSERT TABLE 3 ABOUT HERE]

Not only the BIC of our final model is somewhat better than Fraley and Raftery’s, also our
classification is more in agreement with the clinical classification: our model “misclassifies” 13.1
percent of the patients while the unrestricted models misclassifies 14.5 percent. Table 3 reports
the cross-tabulation of the clinical and the LC cluster classification based on the posterior class-
membership probabilities. As can be seen, some normal patients are classified as cases with
chemical diabetes and vice versa. The other type of error is that some overt diabetes cases are
classified as normal.

Prostate cancer data

Our second example concerns the analysis of a mixed-mode data set with pre-trial covariates
from a prostate cancer clinical trial. Jorgensen and Hunt (1996) and Hunt and Jorgensen
(1999) used this data set containing information on 506 patients to illustrate the use of the LC
cluster model implemented in their MULTIMIX program. The eight continuous indicators are
age (y1), weight index (y2), systolic blood pressure (y5), diastolic blood pressure (y6), serum
haemoglobin (y8), size of primary tumor (y9), index of tumor stage and histolic grade (y10), and
serum prostatic acid phosphatase (y11). The four categorical observed variables are performance
rating (y3; 4 levels), cardiovascular disease history (y4; 2 levels), electrocardiogram code (y7, 7
levels), and bone metastases (y12, 2 levels). The research question of interest is whether on the
basis of these pre-trial covariates it is possible to identify subgroups that differ with respect to
the likelihood of success of the medical treatment of prostate cancer.

The categorical variables are treated as nominal and for the continuous variables we assumed
normal distributions with class-specific variances. We estimated models from one to four latent
classes. The first model for each number of classes assumes local independence. The other four
specifications are obtained by subsequently adding the direct relationships between y5 and y6,
y2 and y8, y8 and y12, and y11 and y12. This exploratory improvement of the model fit was
guided by Latent GOLD’s bivariate residuals information, as well as the results reported by
Hunt and Jorgensen (1999).

To give an indication about the computation time needed for these kinds of models: all
two-class models took less than 5 seconds to converge and all four class models less than 20
seconds on a Pentium II 350 Mhz. Note that here we have a data set with almost 500 cases
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and 12 indicators. The estimation time increases linearly with the number of cases and, as
long as we do not include too many local dependencies, also almost linearly with the number
of indicators.

[INSERT TABLE 4 ABOUT HERE]

Table 4 presents the BIC values for the estimated models. As can be seen, the two-class
model that includes all four direct relationships has the lowest BIC. Comparison of the various
models given a certain number of classes shows that inclusion of the direct relationship between
y5 and y6 (the two blood pressure measures) improves the fit in all situations. The other
bivariate terms improve the fit in the one-, two-, and three-class models, but not in the four-
class model. If we compare the models with different number of classes for a given error
structure, the four-class model performs best when assuming local independence, the three-
class model when including the y5 and y6 covariance, and the two-class model when including
additional bivariate terms. Thus, if we are willing to include the y5-y6 effect, a model with no
more than three classes should be selected. If we are willing to include more direct effects, the
two-class model is the preferred one. This shows again that the possibility to work with more
local dependencies may yield a simpler final model.

[INSERT TABLE 5 ABOUT HERE]

Table 5 reports the parameters estimates for the two-class model containing all four direct
effects. Wald tests for the difference of the means and probabilities between classes indicate
that only the mean ages (µ1k) are not significantly different between classes. Cluster 2 turns
out to have somewhat higher means on weight (µ2k), blood pressure (µ5k and µ6k), and serum
haemoglobin (µ8k), and lower means on size of tumor (µ9k), index of tumor stage (µ10k), and
serum prostatic acid phosphatase (µ11k). If we look at the nominal indicators, we see a large
difference between the two classes in the distribution of bone metastases (y12), somewhat smaller
differences in performance rating (y3) and cardiovascular disease history (y4), and a very small
difference in electrocardiogram code (y7). The direct effects between the indicators are quite
strong. They all have a positive sign except for the effect of y12 on y11.

To investigate the usefulness of the applied technique, Jorgensen and Hunt (1996) and
Hunt and Jorgensen (1999) investigated the strength of the relationship between the obtained
classification and the outcome of the medical trial. They showed that their two-class solution,
which is similar to the two-class model with local dependencies obtained here, predicted very
well the success of the medical treatment.

CONCLUSIONS

This paper described the state-of-art in the field of cluster analysis using LC models. Two
important recent developments are the possibility to use various kinds of meaningful restrictions
on the covariance structure in mixtures of multivariate normal distributions and the possibility
to work with mixed-mode data.

The first example demonstrated the use of different types of specifications for the covariance
structure. It showed that too restrictive models may yield too many latent classes. The second
example illustrated LC clustering with mixed-mode data using models with and without local
dependencies.
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Table 1: BIC values for diabetes example

Number of clusters
Model 1 2 3 4 5
1. Class-dependent unrestricted Σk 5138 4819 4762 4788 4818
2. Class-independent unrestricted Σk 5138 5014 4923 4869 4858
3. Class-dependent diagonal Σk 5530 4957 4833 4805 4815
4. Class-independent diagonal Σk 5530 5170 4999 4938 4895
5. Class-dependent Σk with only σ12k free 5156 4835 4756 4761 4784
6. Class-independent Σk with only σ12k free 5156 5008 4920 4862 4859
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Table 2: Parameter estimates for diabetes example

Cluster
1= Normal 2 = Chemical 3 = Overt

Parameter Estimate S.E. Estimate S.E. estimate S.E.
πk 0.27 0.05 0.54 0.05 0.19 0.03
µ1k 104.00 2.85 91.23 1.06 234.76 14.87
µ2k 495.06 22.74 359.22 6.63 1121.09 58.70
µ3k 309.43 28.06 163.13 6.37 76.98 9.47
σ2

1k 230.09 62.96 76.48 12.93 5005.91 1414.43
σ2

2k 14844.55 3708.65 2669.75 506.55 73551.09 22176.29
σ2

3k 22966.52 5395.90 2421.45 476.65 2224.50 616.43
σ12k 1279.92 420.93 96.46 60.30 17910.71 5423.37
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Table 3: Clinical versus LC cluster classification in diabetes example

Clinical LC cluster classification
classification normal chemical overt total
normal 26 10 0 36
chemical 4 72 0 76
overt 5 0 28 33
total 35 82 28 145
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Table 4: BIC values for cancer example

Number of clusters
Model 1 2 3 4
1. Local independence 23762 23112 23089 23088
2. Model 1 + σ56k 23529 22889 22883 22887
3. Model 2 + σ28k 23502 22872 22875 22893
4. Model 3 + β8.12 23473 22861 22866 22895
5. Model 4 + β11.12 23322 22845 22855 22888
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Table 5: Parameter estimates for prostate cancer example

Cluster 1 Cluster 2
Parameter Estimate S.E. Estimate S.E.
πk 0.45 0.03 0.55 0.03
µ1k 71.38 0.51 71.70 0.43
µ2k 97.51 0.98 100.26 0.83
π1,3k 0.85 0.02 0.94 0.02
π2,3k 0.09 0.02 0.05 0.01
π3,3k 0.05 0.02 0.01 0.01
π4,3k 0.01 0.01 0.00 0.00
π1,4k 0.65 0.03 0.49 0.03
π2,4k 0.35 0.03 0.51 0.03
µ5k 14.18 0.16 14.54 0.16
µ6k 8.00 0.09 8.29 0.10
π1,7k 0.35 0.03 0.33 0.030
π2,7k 0.05 0.02 0.05 0.01
π3,7k 0.14 0.02 0.07 0.02
π4,7k 0.04 0.01 0.06 0.02
π5,7k 0.30 0.03 0.31 0.03
π6,7k 0.12 0.02 0.17 0.02
π7,7k 0.00 0.00 0.00 0.00
µ8k 128.01 1.38 132.21 1.80
µ9k 4.11 0.12 2.88 0.08
µ10k 12.02 0.11 8.88 0.08
µ11k 4.00 0.12 2.11 0.11
π1,12k 0.65 0.03 0.99 0.01
π2,12k 0.35 0.03 0.01 0.01
σ2

1k 52.35 5.36 43.97 4.15
σ2

2k 186.60 19.82 166.73 15.89
σ2

5k 4.98 0.50 6.60 0.59
σ2

6k 1.79 0.18 2.40 0.21
σ2

8k 355.82 35.44 325.52 29.47
σ2

9k 2.91 0.29 1.40 0.14
σ2

10k 2.05 0.21 1.25 0.13
σ2

11k 2.56 0.25 0.25 0.03
σ28k 61.98 19.14 47.56 15.12
σ56k 1.82 0.25 2.52 0.30
β8.12 5.76 1.35 5.76 1.35
β11.12 -0.49 0.11 -0.49 0.11
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Table 6: Computer programs and their most important features

Multivar. Mixed- Estimation
Name normal mode Covar. method Algorithm System / source
NORMIX yes no no ML EM DOS
EMMIX yes no no ML EM DOS + Fortran code
MCLUST yes no no ML EM S-plus
LEM no yes yes ML EM +NR DOS + Windows
Classmix no yes no ML EM unknown
Autoclass yes yes no MAP EM DOS + C code
MULTIMIX yes yes no ML EM Fortran code
Mplus yes yes1 yes ML EM DOS
Latent GOLD yes yes yes ML + MAP EM + NR Windows

1. In MPLUS, categorical indicators must be dichotomous
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SOFTWARE

Several computer programs are available for estimating the various types of LC cluster models
discussed in this paper. Table 6 lists the most important packages and gives information on the
types of cluster models they implement (multivariate normal distributions and/or mixed-mode
data); whether they allow users to include covariates in the model; the estimation method
they use; the algorithm (EM or NR=Newton-Raphson) they use; and the system for with an
executable version and/or the type of source code that is available.

[INSERT TABLE 6 ABOUT HERE]

We will not repeat all the information listed in table 6 but describe the main special features
of some of the programs. NORMIX (Wolfe, 1970), EMMIX (McLachlan et. al., 1999), and
MCLUST (Fraley and Raftery, 1998a) are programs for LC clustering with continuous variables
using multivariate normal distributions. Special features of EMMIX are that it uses of multiple
sets of starting values to prevent local solutions and that it performs likelihood-ratio tests
for the number of clusters using parametric bootstrapping. MCLUST allows users to restrict
the class-specific variance-covariance matrices using the eigenvalue decomposition described in
equation (1).

LEM (Vermunt, 1997) and Classmix (Moustaki, 1996) are LC analysis programs that can
be used for clustering with mixed-mode data. LEM cannot only deal with (ordinal) categorical
and continuous variables, but also with Poisson counts. In LEM, it is possible to include local
dependencies between categorical variables.

MULTIMIX (Hunt and Jorgensen, 1999), Mplus (Muthen and Muthen, 1998), Autoclass
(Cheeseman and Stutz, 1995), and Latent GOLD (Vermunt and Magidson, 2000) can deal with
multivariate normal distributions, as well as with mixed-mode data. MULTIMIX allows users
to specifying local dependencies between categorical and continuous variables using conditional
Gaussian distributions. Both Mplus and Latent GOLD are very flexible with respect to the
specification of the structure of the error-covariance matrices: any covariance can be included
or excluded from the model. Two weak points of Mplus are that the categorical variables should
be dichotomous and that the user has to provide starting values for all parameters. Autoclass is
a program that has automatized model selection using multiple sets of starting values (also for
the number of classes). Latent GOLD is the only fully Windows based program, which make
it very easy to use. Like LEM, it cannot only deal with (ordinal) categorical and continuous
variables, but also with Poisson counts. Its multiple sets of random starting values help users to
prevent ending with a local solution and its bivariate residual measures make it easy to detect
local dependencies to be included in the model.
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SYMBOLS

K number of classes or clusters
J number of indicator variables
i index to denote a particular case
j index to denote a particular indicator variable
k index to denote a particular class or cluster
y vector of indicator variables
y value of an indicator variable
z covariate vector
f(..) density function
π probability
θ parameter vector
µ mean vector
Σ variance-covariance matrix
σ2
j variance of variable j
σj` covariance between variables j and `
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FURTHER READING

Further reading on cluster analysis by means of latent class or finite mixture models can be
done with McLachlan and Basford (1988) and Everitt (1993).


