9 research outputs found

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Joint Communication and Positioning based on Channel Estimation

    Get PDF
    Mobile wireless communication systems have rapidly and globally become an integral part of everyday life and have brought forth the internet of things. With the evolution of mobile wireless communication systems, joint communication and positioning becomes increasingly important and enables a growing range of new applications. Humanity has already grown used to having access to multimedia data everywhere at every time and thereby employing all sorts of location-based services. Global navigation satellite systems can provide highly accurate positioning results whenever a line-of-sight path is available. Unfortunately, harsh physical environments are known to degrade the performance of existing systems. Therefore, ground-based systems can assist the existing position estimation gained by satellite systems. Determining positioning-relevant information from a unified signal structure designed for a ground-based joint communication and positioning system can either complement existing systems or substitute them. Such a system framework promises to enhance the existing systems by enabling a highly accurate and reliable positioning performance and increased coverage. Furthermore, the unified signal structure yields synergetic effects. In this thesis, I propose a channel estimation-based joint communication and positioning system that employs a virtual training matrix. This matrix consists of a relatively small training percentage, plus the detected communication data itself. Via a core semi- blind estimation approach, this iteratively includes the already detected data to accurately determine the positioning-relevant parameter, by mutually exchanging information between the communication part and the positioning part of the receiver. Synergy is created. I propose a generalized system framework, suitable to be used in conjunction with various communication system techniques. The most critical positioning-relevant parameter, the time-of-arrival, is part of a physical multipath parameter vector. Estimating the time-of-arrival, therefore, means solving a global, non-linear, multi-dimensional optimization problem. More precisely, it means solving the so-called inverse problem. I thoroughly assess various problem formulations and variations thereof, including several different measurements and estimation algorithms. A significant challenge, when it comes to solving the inverse problem to determine the positioning-relevant path parameters, is imposed by realistic multipath channels. Most parameter estimation algorithms have proven to perform well in moderate multipath environments. It is mathematically straightforward to optimize this performance in the sense that the number of observations has to exceed the number of parameters to be estimated. The typical parameter estimation problem, on the other hand, is based on channel estimates, and it assumes that so-called snapshot measurements are available. In the case of realistic channel models, however, the number of observations does not necessarily exceed the number of unknowns. In this thesis, I overcome this problem, proposing a method to reduce the problem dimensionality via joint model order selection and parameter estimation. Employing the approximated and estimated parameter covariance matrix inherently constrains the estimation problem’s model order selection to result in optimal parameter estimation performance and hence optimal positioning performance. To compare these results with the optimally achievable solution, I introduce a focused order-related lower bound in this thesis. Additionally, I use soft information as a weighting matrix to enhance the positioning algorithm positioning performance. For demonstrating the feasibility and the interplay of the proposed system components, I utilize a prototype system, based on multi-layer interleave division multiple access. This proposed system framework and the investigated techniques can be employed for multiple existing systems or build the basis for future joint communication and positioning systems. The assessed estimation algorithms are transferrable to all kinds of joint communication and positioning system designs. This thesis demonstrates their capability to, in principle, successfully cope with challenging estimation problems stemming from harsh physical environments

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Advances in approximate Bayesian computation and trans-dimensional sampling methodology

    Full text link
    Bayesian statistical models continue to grow in complexity, driven in part by a few key factors: the massive computational resources now available to statisticians; the substantial gains made in sampling methodology and algorithms such as Markov chain Monte Carlo (MCMC), trans-dimensional MCMC (TDMCMC), sequential Monte Carlo (SMC), adaptive algorithms and stochastic approximation methods and approximate Bayesian computation (ABC); and development of more realistic models for real world phenomena as demonstrated in this thesis for financial models and telecommunications engineering. Sophisticated statistical models are increasingly proposed for practical solutions to real world problems in order to better capture salient features of increasingly more complex data. With sophistication comes a parallel requirement for more advanced and automated statistical computational methodologies. The key focus of this thesis revolves around innovation related to the following three significant Bayesian research questions. 1. How can one develop practically useful Bayesian models and corresponding computationally efficient sampling methodology, when the likelihood model is intractable? 2. How can one develop methodology in order to automate Markov chain Monte Carlo sampling approaches to efficiently explore the support of a posterior distribution, defined across multiple Bayesian statistical models? 3. How can these sophisticated Bayesian modelling frameworks and sampling methodologies be utilized to solve practically relevant and important problems in the research fields of financial risk modeling and telecommunications engineering ? This thesis is split into three bodies of work represented in three parts. Each part contains journal papers with novel statistical model and sampling methodological development. The coherent link between each part involves the novel sampling methodologies developed in Part I and utilized in Part II and Part III. Papers contained in each part make progress at addressing the core research questions posed. Part I of this thesis presents generally applicable key statistical sampling methodologies that will be utilized and extended in the subsequent two parts. In particular it presents novel developments in statistical methodology pertaining to likelihood-free or ABC and TDMCMC methodology. The TDMCMC methodology focuses on several aspects of automation in the between model proposal construction, including approximation of the optimal between model proposal kernel via a conditional path sampling density estimator. Then this methodology is explored for several novel Bayesian model selection applications including cointegrated vector autoregressions (CVAR) models and mixture models in which there is an unknown number of mixture components. The second area relates to development of ABC methodology with particular focus on SMC Samplers methodology in an ABC context via Partial Rejection Control (PRC). In addition to novel algorithmic development, key theoretical properties are also studied for the classes of algorithms developed. Then this methodology is developed for a highly challenging practically significant application relating to multivariate Bayesian α\alpha-stable models. Then Part II focuses on novel statistical model development in the areas of financial risk and non-life insurance claims reserving. In each of the papers in this part the focus is on two aspects: foremost the development of novel statistical models to improve the modeling of risk and insurance; and then the associated problem of how to fit and sample from such statistical models efficiently. In particular novel statistical models are developed for Operational Risk (OpRisk) under a Loss Distributional Approach (LDA) and for claims reserving in Actuarial non-life insurance modelling. In each case the models developed include an additional level of complexity which adds flexibility to the model in order to better capture salient features observed in real data. The consequence of the additional complexity comes at the cost that standard fitting and sampling methodologies are generally not applicable, as a result one is required to develop and apply the methodology from Part I. Part III focuses on novel statistical model development in the area of statistical signal processing for wireless communications engineering. Statistical models will be developed or extended for two general classes of wireless communications problem: the first relates to detection of transmitted symbols and joint channel estimation in Multiple Input Multiple Output (MIMO) systems coupled with Orthogonal Frequency Division Multiplexing (OFDM); the second relates to co-operative wireless communications relay systems in which the key focus is on detection of transmitted symbols. Both these areas will require advanced sampling methodology developed in Part I to find solutions to these real world engineering problems
    corecore