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Preface to ”Sensors and Systems for Indoor
Positioning”

There is an increasing interest in indoor positioning, which is an emerging technology with a

wide range of applications. Accurate and real-time positioning enables augmented and mixed-reality

applications, human–machine and home automation gestural interfaces, and navigation in shopping

centers. Relevant applications include robotics, acquiring the position of flexible arms, the navigation

of unmanned automatic vehicles, security, the virtual fencing of sensitive locations, safety, and

preventing accidents through the recognition of dangerous postures and positions in workers.

Further fields of application include medicine, such as monitoring elderly people’s movements or

rehabilitative exercises; logistics, such as the positioning of goods in warehouses; and sport, such as

monitoring body and limb position during training exercises and in game consoles.

This reprint contains the articles that appeared in {Sensors’} (MDPI) Special Issue on “Sensors

and Systems for Indoor Positioning“. The published original contributions focused on systems and

technologies to enable indoor applications.
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1. Introduction

There is an increasing interest about indoor positioning, which is an emerging tech-
nology with a wide range of applications. Accurate and real-time positioning enables
augmented and mixed reality applications, human–machine and home automation gestu-
ral interfaces, and navigation in shopping centers. Relevant applications include robotics,
acquiring the position of flexible arms, navigation of unmanned automatic vehicles, se-
curity, virtual fencing of sensitive locations, safety, and preventing accidents through the
recognition of dangerous postures and positions in workers. Further fields of application
include medicine, such as monitoring elderly people’s movements or rehabilitative exer-
cises; logistics, such as the positioning of goods in warehouses; sport, such as monitoring
body and limb position during training exercises and in game consoles.

Currently, research effort needs to be directed to new algorithms, architectures, sensor
technologies, coverage, power consumption, size, and increased spatial and temporal
resolution of indoor positioning systems based on the physical and economic constraints of
various applications. In this framework, we are glad to edit this Special Issue on “Sensors
and Systems for Indoor Positioning”. Original contributions focused on systems and
technologies to enable the indoor applications listed above are welcome.

There are many challenges in this area that need to be solved or improved. Research
effort needs to be directed to new algorithms, architectures, sensor technologies, coverage,
power consumption, size, and increased spatial and temporal resolution of indoor position-
ing systems, based on the physical and economic constraints of the various applications.
In this outline, the Special Issue on “Sensors and Systems for Indoor Positioning” of the
Sensors journal seeks to explore original contribution on systems and technologies to enable
the indoor applications listed above are welcome.

From several received manuscripts, eleven original and high-quality papers were
selected to be included in this Special Issue, each one reviewed by multiple expert reviewers
and passed through several rounds of peer review.

2. Relevant Contributions

In [1], a carrier phase technology in wireless orthogonal frequency division multiplex
(OFDM) systems is applied to improve ranging and positioning accuracy. Carrier phase
measurement is a ranging technique that uses the phase difference between the received
signal and the transmitted signal. Compared with positioning systems using only time
of arrival (TOA), carrier phase information has a higher resolution and is more accurate,
providing indoor high-precision positioning. Carrier phase ranging is widely used in
global navigation satellite systems (GNSS) systems but is not yet commonly used in
OFDM systems. Applying this technology can significantly improve positioning accuracy.
However, using the OFDM carrier phase has two problems that the authors intend to
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solve: (1) phase measurements in multipath environments and non-line-of-sight (NLOS)
propagation; (2) integer ambiguity resolution in real-time positioning applications.

The paper presents a ranging scheme based on the carrier phase in a multipath
environment; it analyzes the effect of multipath propagation on phase measurement and
reports a correlation profile-based carrier phase measurement method. An extended
Kalman filter (EKF) algorithm is also presented to estimate the integer ambiguity by SD
carrier and TDOA measurements. The algorithm also considers the effect of NLOS error
and mitigation efforts. Simulation shows that the proposed algorithm quickly solves
the integer ambiguity even when NLOS errors occur. The carrier phase measurements
combined with the accurately valued integer ambiguity led to a positioning error below
30 cm for 90% of the terminals.

The effective implementation of a UHF-RFID Smart Gate, an identification point placed
at warehouse key points for forklift monitoring, is presented in [2]. The system is part of
the I-READ 4.0 project aimed at developing an integrated and autonomous Cyber-Physical
System for the automatic management of large warehouses with a high-stock rotation. The
management of assets and forklifts is possible thanks to a network of Radio Frequency
Identification (RFID) readers operating in the Ultra-High-Frequency (UHF) band.

The UHF-RFID Smart Gate consists of a checkpoint infrastructure based on RFID
technology to identify forklifts and their direction of transit. The authors present an
implementation with a single reader antenna, thus reducing infrastructure complexity and
cost. The action classification method exploits the signal phase backscattered by RFID tags
placed on forklifts, allowing the classification of two movements (entering or leaving a
certain area) that the forklift can perform with respect to the gate.

The proposed system does not require calibration procedures, it does not need long
computational times, and it can be implemented with commercial-off-the-shelf (COTS)
components. The performance and the method capabilities were demonstrated in a real
warehouse, and in 100% of cases, the forklift was correctly detected, and a 98% classification
accuracy was achieved when the forklift speed ranged between 0.5 m/s and 1.5 m/s.

In [3], a new technique was presented to measure the distance between an emitter
and a receiver, which is based on the different attenuation levels that ultrasonic signals of
different frequencies undergo when propagating in the air.

Distance measurements are usually performed by measuring the Time of Flight (TOF)
of an ultrasonic signal traveling from an emitter to receiving sensors. However, this requires
close synchronization between the emitter and the sensors. This synchronization is usually
conducted using a radio or optical channel, which requires additional hardware complexity,
while for many applications, low-cost small lightweight sensors are required.

Intending to reduce the complexity of the measurement process and of the sensors, the
paper proposes an innovative technique that measures the distance between emitter and
receiver from the amount of attenuation suffered by signals emitted at different frequencies,
without the need for any synchronization between them.

Simulation results showed that, using a 0.5 mm diameter emitter aperture, a ranging
error of less than 2.75 cm and a mean error of 1.25 cm can be achieved. The technique
does not reach the level of accuracy of other techniques but works in the absence of
synchronization without limits on the distance measurement rate, with an unlimited
number of sensors using the same emitter and with reduced computational power and
device dimensions.

In [4], the authors compare two methods for the acoustic indoor localization of per-
sons based on the time difference of arrival of the first-order reflection to interpret the
returned signals in a small office room. They draw the approach from bats which can
perceive the incoming reflected wave’s direction. The first method is Direct Intersection,
which determines a coordinate point based on the intersection of spheroids defined by
observed distances of high-intensity reverberations. The second method, Sonogram anal-
ysis, overlays all channels’ room impulse responses to generate an intensity map for the
observed environment.

2



Sensors 2022, 22, 3605

The authors investigate the two algorithms and both approaches yield mean distance
localization errors ranging between 0.3 and 0.9 m. Direct Intersection shows a higher preci-
sion, while the Sonogram Estimation method provides more accurate results. Moreover,
the former method has a lower computational cost and performs faster with comparable
precision and accuracy.

In [5], a deep learning solution involving a clustering processing scheme in a fin-
gerprint indoor positioning system was developed. Wi-Fi fingerprint-based positioning
systems have a simple layout and a low cost; however, the multipath propagation of signals
caused by obstacles, interference of moving objects, and changes in Wi-Fi APs affect the
positioning accuracy based on a received signal strength indicator (RSSI) with traditional
dataset and a deep learning classifier. To overcome this issue, the authors propose a
clustering-based noise elimination scheme (CNES) for RSSI-based datasets, in which the
dataset is preprocessed and noise samples are removed.

Experiments carried out in a dynamic environment showed that applying CNES to
the test database will increase the average positioning accuracy up to 22.4%, archiving
a positioning accuracy of 90.4%, which is much higher than the accuracy of the dataset
without pre-processing.

A smartphone-based navigation and information service for a University library
employing Wi-Fi fingerprinting is developed in [6]. The motivation of this study is to
help students, employees, and visitors of the TU Wien University to find the correct
bookshelf. The authors carried out a study of the availability, performance, and usability
of Wi-Fi in areas of the library using different smartphones in different modes, such as
static, kinematic, and stop-and-go, evaluating positioning accuracies in the various modes.
The investigations showed that Wi-Fi fingerprinting can be used to achieve positioning
accuracies on the meter level. Accuracy can be increased by the installation of additional
access points to provide better distribution and geometry for localization and also by
deploying additional hardware based on low-cost Raspberry Pi units that broadcast and
receive Wi-Fi signals.

In [7], a three-dimensional visible light positioning system with multiple photodiodes
and reinforcement learning (RL) is demonstrated. The system can realize accurate 3D
positioning without the need of data for offline training. The authors propose and compare
experimentally three methods developed to improve the 3D positioning accuracy over a
basic 3D positioning model based on the RSSI trilateration without RL.

The experimental results show that the three RL-based methods outperform the basic
one, providing higher position accuracy. Among the three methods, the third, which is
a combination of the first two, offers the highest positioning accuracy, with an average
positioning error of 2.6 cm and at least 20% improvement compared to the basic model.

In [8], the authors propose an indoor localization system based on an infrared angle-of-
arrival (AoA) sensor network for accurate and inexpensive real-time. The authors attempt
to overcome the disadvantage of state-of-the-art indoor localization systems relying on
complex NLOS signal propagation with multiangulation and multilateration methods that
have high installation costs, computational demands, and energy requirements. The paper
presents a novel sensor utilizing infrared (IR) signal in the line-of-sight (LOS) context using
the AoA technique that avoids NLOS propagation issues by exploiting the concept of the
wireless sensor network (WSN).

To demonstrate the proposal, a supermarket cart navigation system was realized as
a proof-of-concept using an IR-AoA sensor prototype, server-side component, and an
application for smartphones and smartwatches. The localization performance ranged from
centimeter-level accuracy achieved in a static context to 1 m mean error in a mobile cart
context. The implementation demonstrated that inexpensive and easily deployable wireless
sensors nodes can be utilized to provide appropriate localization accuracy.

In [9] an adaptive residual weighted K-Nearest neighbor (WKNN) fingerprint posi-
tioning algorithm based on visible light is proposed. The WKNN algorithm is a commonly
used fingerprint positioning algorithm for which its difficulty consists in the optimization

3
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of K to obtain the minimum positioning error. The authors propose an adaptive algorithm
in which, initially, the target matches the fingerprints according to the RSSI, and K is a
dynamic value according to the matched RSSI residual.

Simulation results show that the proposed algorithm presents a reduced average
positioning error when compared with random forest (81.82%), extreme learning machine
(83.93%), artificial neural network (86.06%), grid-independent least square (60.15%), self-
adaptive WKNN (43.84%), WKNN (47.81%), and KNN (73.36%). Moreover, it achieves a
significant reduction in positioning error while maintaining lower algorithm complexity.

In [10], the use of software Field II is proposed to simulate signal aberration and
ranging error in ultrasonic indoor positioning applications. Ultrasonic systems have
already been demonstrating their effectiveness in achieving high positioning accuracy and
refresh rates, but attention must be paid to certain aspects of signal propagation. In this
paper, Field II, an acoustical simulation software that is well-established in medical imaging,
has been applied to the acoustic field in the air for the evaluation of ranging techniques.

In this study, it is shown how a typical chirp signal used in ultrasonic positioning
systems undergoes a shape aberration depending on the shape and size of the transducer
and on the angle under which the transducer is seen by the receiver. Such signal shape
aberrations produce results affected by a much greater error than expected. The spatial
distributions of the ranging error are provided, showing favorable low error regions. The
work also demonstrates that particular attention must be paid to the design of the acoustic
section of the ultrasonic positioning systems, considering both the shape and size of the
ultrasonic emitters and the shape of the acoustic signal used.

In perspective, the advantages of the proposed approach are the possibility of exam-
inations, while in the design phase, advantages include the acoustic field over time in
the region of interest as a function of the aperture and the type of signal emitted and the
capability to easily test several algorithms in different operating situations.

In [11], a study on a recursive algorithm for indoor positioning using pulse-echo
ultrasonic signals was investigated. Ultrasounds are widely used for real-time applications
in short-range communication systems and one of the parameters widely used is TOF,
which can be evaluated by using different techniques. In the paper, a nonstandard cross-
correlation method is investigated for TOF estimation, with a procedure based on the use
of template signals to improve the accuracy of recursive TOF evaluations.

Experimental results were compared with both the standard threshold and cross-
correlation techniques, showing an average improvement of 30% and 19% in terms of
standard error, and an enhancement in repeatability of about 10%. However, an increase of
70% in computational load has been estimated in the evaluation of TOF.
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Abstract: Carrier phase measurement is a ranging technique that uses the receiver to determine the
phase difference between the received signal and the transmitted signal. Carrier phase ranging has a
high resolution; thus, it is an important research direction for high precision positioning. It is widely
used in global navigation satellite systems (GNSS) systems but is not yet commonly used inwireless
orthogonal frequency division multiplex (OFDM) systems. Applying carrier phase technology to
OFDM systems can significantly improve positioning accuracy. Like GNSS carrier phase positioning,
using the OFDM carrier phase for positioning has the following two problems. First, multipath and
non-line-of-sight (NLOS) propagation have severe effects on carrier phase measurements. Secondly,
ambiguity resolution is also a primary issue in the carrier phase positioning. This paper presents a
ranging scheme based on the carrier phase in a multipath environment. Moreover, an algorithm based
on the extended Kalman filter (EKF) is developed for fast integer ambiguity resolution and NLOS
error mitigation. The simulation results show that the EKF algorithm proposed in this paper solves
the integer ambiguity quickly. Further, the high-resolution carrier phase measurements combined
with the accurately estimated integer ambiguity lead to less than 30-centimeter positioning error for
90% of the terminals. In conclusion, the presented methods gain excellent performance, even when
NLOS error occur.

Keywords: extended Kalman filter; localization; time of arrival; carrier phase; ambiguity resolution

1. Introduction

With the rapid development of industries such as the Internet of Things and industrial
control, high-precision indoor positioning technology has become an important issue
to be solved. It is challenging to receive valid satellite navigation signals in the indoor
environment, and other high-precision positioning technologies need to be studied. In
recent years, positioning services based on wireless communications are rapidly developing.
The mobile cellular network covers a wide area and is one option for dense urban areas and
indoor positioning. Benefit from the advance of 5G technology, high-precision positioning
using the wireless access network has become a hot research direction. In wireless networks,
traditional ranging-based positioning methods include angle of arrival (AOA), received
signal strength (RSS), and time-of-arrival (TOA). Among them, AOA determines location
of the user by measuring the angle between the terminal and the base station (BS) [1].
Since measuring angle often requires a sufficient number of antennas at the receiver,
the application range of AOA technology is limited. RSS technology needs to establish
an accurate signal energy propagation model, making it challenging to achieve high
measurement accuracy [2]. TOA-based positioning technology converts arrival time to a
distance and then uses the distance information for positioning. TOA has been widely used
due to its low requirements of positioning equipment [3]. This paper mainly studies high-
precision TOA measurement and positioning algorithms based on orthogonal frequency
division multiplex (OFDM) systems.
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TOA estimation can be considered as a channel estimation problem. Many documents
carry out channel impulse response (CIR) estimation from the time domain or frequency
domain perspective in the OFDM multi-carrier system [4–9]. Typical schemes are cross-
correlation algorithms based on the pseudo-randomness of the transmission sequence,
including the maximum criterion algorithm and the threshold algorithm[4]. However,
this positioning method is limited by the signal bandwidth and receiver resolution, and it
is challenging to achieve sub-meter accuracy. Besides, TOA-based parameter estimation
techniques have been widely studied, including multiple signal classification algorithm
(MUSIC) [10], Signal Parameters via Rotational Invariant Techniques (ESPRIT) [11], and
Space-Alternating Generalized Expectation maximization (SAGE) [12] algorithms. These
algorithms are not limited by the system sampling rate but are determined by the search
interval for time delay estimation. A smaller search interval will effectively improve the ac-
curacy of TOA estimation but will significantly increase the computational complexity. The
vast computational overhead makes it difficult to apply such algorithms to real-time user
localization scenarios. Other studies have attempted to apply phase ranging techniques to
indoor localization [13–15]. However, specific phase emission and measurement devices
are challenging to reduce the cost of localization effectively. Phase measurement techniques
based on OFDM systems can provide high accuracy positioning measurements while satis-
fying communication requirements, and therefore are a research direction for phase-based
positioning. References [16–18] describe methods for distance measurement through the
phase difference of subcarriers in OFDM systems. Still, such schemes are often only suitable
for LOS propagation or multipath propagation when the Rice factor is high. Carrier phase
localization techniques based on wireless cellular networks have been proposed in the
literatures [19,20]. Furthermore, carrier phase measurement in multipath environments
and the suppression of non-line-of-sight (NLOS) error require further research.

There are two modes for receivers in global navigation satellite systems (GNSS):
pseudorandom code (C/A code or P-code) and the carrier phase [21,22]. The ranging
principle of pseudorandom code mode is similar to TOA, and the measurement error of
pseudorandom code mode is vast. The carrier phase ranging method uses the carrier
phase of the measurement signal to extract the propagation distance information. Under
line-of-sight (LOS) conditions, the carrier phase’s measurement error is a small fraction
of the carrier wavelength and can reach the centimeter range. However, the carrier phase
measurement includes unknown integer ambiguity: the distance between the user and the
BS in terms of carrier wavelength can be divided into an integral part of the wavelength
plus a fractional function. During the initialization of positioning, the phase measurement
is in the range [0, 2π], so only fractional multiples of the distance can be measured, which
causes the problem of integer ambiguity. Once this problem is solved, the carrier phase
positioning can meet the requirements of high accuracy.

Inspired by reference [19], the positioning accuracy might be significantly improved if
the carrier phase technology can be extended in the indoor location system. Compared with
GNSS positioning, wireless networks can work in challenging scenarios and have more
flexible carrier frequency configurations, fewer error sources, and more minor path losses.
These characteristics constitute the advantages of supporting carrier phase technology in
wireless networks. However, despite these advantages, there are many challenges while
applying carrier phase positioning in wireless networks: Multipath and NLOS propagation
in the indoor environment, fast resolution of integer ambiguities in wireless networks, etc.

In summary, this paper proposes a carrier phase-ranging scheme based on the OFDM
system. Under the premise of high accuracy ranging, this paper focuses on two aspects:
carrier phase measurement in a multipath environment and how to solve the integer
ambiguity quickly and accurately. First, we model the carrier phase measurement in
a multipath environment and analyze the integer ambiguity generation. Second, we
propose an extended Kalman filter (EKF) for solving the integer ambiguity. The EKF-based
algorithm can solve the position of the terminal while solving the integer ambiguity. Further,
we describe how to utilize the EKF to mitigate the errors caused by NLOS propagation.
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The overall structure of this study contains five chapters. Section 2 describes the model
for studying TOA and phase estimation in OFDM systems. In Section 3, we propose an
EKF that combines carrier phase and TOA measurements to enhance positioning accuracy
and reduce the impact of NLOS error on mobile positioning. Numerical simulation results
are presented in Section 4 to prove the effectiveness of the new methods. In Section 5, we
summarize conclusions drawn from this paper.

In this paper, vectors and matrices are denoted by boldface lower-case letters and
boldface upper-case letters. The superscript [.]T denotes the transpose. The superscript
[.]ij and the subscript [.]ab represent, respectively, the single-difference (SD) between the
transmitters and between the receivers.

2. Ranging System

Consider OFDM transmission with N subcarriers, subcarrier spacing ∆ fSCS and sam-
pling interval TS = 1/(N∆ fSCS). OFDM transmission is block oriented. Assume N
quadrature-amplitude modulation (QAM) symbols Xm

k , k ∈ {1, . . . , N} are grouped into a

vector Xm =
[
Xm

1 , . . . , Xm
N
]T and transmitted in the m-th OFDM symbol in a slot. A unitary

inverse discrete-time Fourier transform (IDFT) on Xm gives a continuous time representa-
tion of the complex envelope of an OFDM symbol of duration T = NTs = 1/∆ fSCS (note:
here T does not include cyclic prefix).

xm(t) =
1√
N

N

∑
k=1

Xm
k ej2π(k−1)t/T ; 0 ≤ t ≤ T, (1)

the time-domain signal xm(t) is up-converted to the carrier frequency fc for transmission.

sm(t) = xm(t)ej2π fct

=
1√
N

N

∑
k=1

Xm
k e j2π((k−1)/T+ fc)t; 0 ≤ t ≤ T.

(2)

Assume the channel is the quasi-static channel, i.e., the channel does not change during
the transmission of one OFDM symbol, the quasi-static channel can then be described

by a time discrete CIR h =
[

h0(t), h1(t), . . . , hLp−1(t)
]T

, multipath channel model can be
expressed as:

h(t, τ) =
Lp

∑
l=1

hl(t)δ(t− τl(t))+hd(t, τ), (3)

Lp is the total number of paths which include one LOS path and Lp − 1 NOLS paths, hl(t)
is the gain for the l-th path, δ(t− τl(t)) is the Dirac delta function, τl(t) is the TOA of the
l-th path, hd(t, τ) are the diffuse multipath components (DMC) [23], which represent the
non-discrete part of the channel. The received signal after passing through the multipath
channel can be expressed as:

ym(t) = sm(t)⊗ h(t, τ) + wm
n =

∫ ∞

−∞
sm(ξ)h(t− ξ, τ)dξ + wm, (4)

wm is the color noise consisting of wm
n and sm(t)⊗ hd(t, τ), where wm

n ∼ N
(
0, σ2) is the

complex additive noise with zero mean and σ2 variance. If the received signal contains
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color noise, it is necessary to consider the use of whitening filters to convert the color noise
to white noise [24]. Furthermore, the received m-th OFDM symbol can be expressed by:

ym(t) =
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl(t)e
−j2π( fc+

k−1
T )τl(t)

]
ej2π( fc+

k−1
T )t + wm

=
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl(t)e
−j2π( fc+

k−1
T )τl(t) + wm

k

]
ej2π( fc+

k−1
T )t

. (5)

After down-conversion and removal of the samples of the received signal which
belong to the cyclic prefix, the received signal ym(t) is converted into a discrete time
domain signal ym[n]:

ym[n] =
1√
N

N

∑
k=1

Xm
k

[ Lp

∑
l=1

hl [nTs]e−j2π( fc+
k−1

T )τl [nTs ] + wm
k

]
ej2π

n(k−1)
N . (6)

2.1. Conventional Cross-Correlation TOA Estimator

Signal arrival time needs to be obtained from reference signals. In Long Term Evolu-
tion (LTE) Release 9, positioning reference signals (PRS) were used to improve TOA-based
positioning. PRS are pseudo-random sequences with good autocorrelation. With the help
of the autocorrelation characteristics of the PRS sequence, it is easier to find the direct path
in the environment of multipath transmission. The cross-correlation expression is:

Rxy =
N

∑
n=1

xm[n− τ]ym[n]

= h1[nTs]e−j2π fcτ1[nTs ]Rxx
m [τ − τ1[nTs]] +

L

∑
i=2

hi[nTs]e−j2π fcτi [nTs ]Rxx
m [τ − τi[nTs]]

+ Rxw
m [τ], τ ∈ [1, ...N];

(7)

where (.) denotes the complex conjugate function, x[n]is the replica of the transmitted PRS.
Furthermore, based on the autocorrelation of the PRS series, we have:

Rxx
m [τ] =

N

∑
n=1

xm[n− τ]xm[n] = δ[τ]

Rxw
m [τ] =

N

∑
n=1

xm[n− τ]wm[n] ≈ 0

. (8)

where wm[n] is the downsampled additive noise. From Equation (7), it can be seen that
the magnitude of the correlation function is affected by the carrier phase 2π fcτi[nTs]. To
exclude this effect, we use |Rxy[τ]| instead of Rxy[τ] for TOA estimation. Taking the
threshold method as an example, TOA is determined by estimating the time delay of the
first (earliest) peak in the magnitude of the normalized cross-correlation function above a
certain threshold [4].

τ̂ = arg min
τ

{
|Rxy[τ]|

max
{∣∣Rxy

∣∣} ≥ ζ

}
, (9)

here, ζ is the preset threshold. Correlation profile-based methods can estimate the propaga-
tion delay of the first path in a multipath environment. Still, due to the limited sampling
rate of the system, the measurement accuracy of this method is low. Rewriting τ̂ to Ti

r and
introducing terminal r and the BS i, then the estimated TOA can be modeled as [25]:

Ti
r = (di

r + wi
r,T)/c. (10)

10
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• Ti
r (known) is the TOA measurement from terminal r to BS i (unit:s).

• c is the speed of radio waves in vacuum, 299,792,458 (unit: m/s).

• di
r =

√
(xi − x)2 + (yi − y)2 (unknown) is the geometric distance between the anten-

nas of transmitter i and receiver r (unit: m).
• (xi, yi) (known) is the two-dimensional vector giving the coordinates of BS i.
• (x, y) (unknown) is the location of the terminal to be solved.

• wi
r,T ∼ N

(
0, σ2

r,i

)
(unknown) is a random Gaussian variable accounting for the

residual estimation error (unit: m).

2.2. High-Precision TOA Estimation Scheme Based on Carrier Phase

From Equation (5), combine the known PRS signal, the frequency domain channel
response is written as:

Hm(k) =
Lp

∑
l=1

hl [nTs]e−j2π k−1
N τ̇l−jφl + wm

k , (11)

where τ̇l = N∆ fSCSτl [nTs] is the transmission delay in units of sampling interval.
φl = 2π fcτl [nTs] is the phase shift caused by free-space propagation.

As can be seen from Equation (11), the distance between the BS and the terminal
is reflected in each subcarrier phase. However, due to the signal aliasing of multiple
transmission paths, it is difficult to directly estimate phase information of the first path
from the unprocessed subcarrier phase. Therefore, we convert the frequency domain
channel response to the time domain for further analysis. Furthermore, when the distance
(in units of sampling interval) is not an integer multiple of the sampling interval, the time
domain channel response is subject to energy leakage [26]:

hm
n =

sin(πτ̇l)√
N sin

(
π
N (τ̇l − n)

) ∑
Lp

hl [nTs]e−j π
N (n+(N−1)τ̇l)−jφl . (12)

Much of the literature [27,28] describes using Equation (7) or (9) to find the integer
multiple sampling points closest to the transmission delay, denoted as [τ̇1], and [.] is a
rounding function. The time domain signal is processed to eliminate the effects of multipath
effects. The window can be expressed as: for n ∈ [[τ̇1]− W

2 , [τ̇1] +
W
2 ], h̃m

n = hm
n , else h̃m

n = 0.
Furthermore, W is the length of the window.

We use the tapped delay line model to characterize the frequency-selective channel,
and each tap represents a different channel delay in units of the sampling interval of the
receiver. Figure 1 shows a schematic of the window at W = 0. Based on the correlation
of the transmit sequence, the terminal can determine the arrival delay of the direct path.
The manipulation of the power delay profile further eliminates the effects of multipath.
Additionally, it is worth noting that actual distance to the BS in this example is 12.4
sampling intervals. Due to the limitation of the system sampling rate, the TOA obtained
by the cross-correlation algorithm is 12 sampling intervals, which generates a significant
measurement error. Furthermore, as shown in the figure, the distance is a non-integer
multiple of the sampling interval resulting in leakage between taps.

11
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Figure 1. Power delay profile.

For the convenience of analysis, we consider W = 0 and the window can be expressed as:

{
h̃m

n = h1[nTs ] sin(πτ̇1)√
N sin( π

N (τ̇1−n))
e−j π

N (n+(N−1)τ̇1)−jφ1 , n = [τ̇1]

h̃m
n = 0, n ∈ N|τ̇1

, (13)

here, N|τ̇1
= {1, 2, [τ̇1]− 1, [τ̇1] + 1, · · · , N}. The frequency domain channel response after

the window function can be written as:

Hm
k =

h1[nTs] sin(πτ̇1)e−j π
N ([τ̇1]+(N−1)τ̇1)−jφ1−j2π

[τ̇1 ]
N k

√
N sin

(
π
N (τ̇1 − [τ̇1])

) . (14)

The time-domain window eliminates the effect of multipath on the carrier phase, but
introduces additional problems at the same time.

(1) The phase difference between sub-carriers e−j2π
[τ̇1 ]
N can no longer accurately reflect

the distance. The system resolution also limits the time delay measured through the
subcarrier phase due to the effect of the time domain window.

(2) The time-domain window processing introduces some phase noise. For example,
e−j π

N ([τ̇1]+(N−1)τ̇1). Furthermore, the sign of sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

will also affect the phase of

sub-carriers.
It can be proved that the subcarrier phase of k = N/2 can effectively reflect the

distance information from the terminal to the BS. Furthermore, the channel frequency
response of subcarrier k = N/2 can be approximated as:

Hm
k=N/2 =

h1[nTs] sin(πτ̇1)√
N sin

(
π
N (τ̇1 − n)

)e−jπτ̇1−jφ1 + wm
N/2, (15)

the proof is given in the Appendix A. Therefore the phase at k = N/2 can be written as:

φ̂ = −angle
(

e−jπτ̇−jφ1−ŵP
)

; 0 ≤ φ̂ ≤ 2π, (16)

here, ŵP is the phase noise caused by wm
N/2. Due to the trigonometric function properties,

the part beyond 2π cannot be found when solving for the phase; thus, the integer ambiguity
arises. Considering the phase shifts experienced in the channel, e.g., phase noise, base on
τ̇1 = N∆ fSCSτ1[nTs] and φ1 = 2π fcτ1[nTs], the phase-based ranging can be written as:

φ̂ + 2πNI = πN∆ fSCSτ1[nTs] + 2π fcτ1[nTs] + ŵP, (17)

12
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here, NI is the unknown integer ambiguity. Divide Equation (17) by 2π and simplify
the equation:

φ =
N
2

∆ fSCSτ1[nTs] + fcτ1[nTs]− NI + wP

=
d
λ
− NI + wP,

(18)

here, φ = φ̂
2π is the normalized phase measurement, wP = ŵP

2π is the normalized phase
noise, d = cτ1[nTs] is the geometric distance between the antennas of transmitter and
receiver, λ = c

fc+
N
2 ∆ fSCS

is the equivalent wavelength. Further, introducing terminal r and

the BS i, we have:

φi
r =

di
r

λ
− Ni

r + wi
r,P. (19)

• φi
r (known) is the carrier phase measurement (unit: carrier circle).

• λ (known) is the wavelength calculated from c, fc, N, and ∆ fSCS, (unit: m).
• Ni

r (unknown) is the integer ambiguity (unit: carrier circle).

• wi
r,P ∼ N

(
0, σ̃2

r,i

)
(unknown) is the residual estimation error (unit: carrier circle).

The time delay from the user to the BS can be deduced by measuring the phase of the N/2
subcarrier. Equation (16) shows that the system sampling rate does not limit the carrier
phase measurement, and thus the accuracy of the carrier phase-based ranging technique
is high. Furthermore, we use the phase-lock-loop (PLL) [29] to measure the carrier phase.
At the initial locking moment of the PLL, the carrier phase measurement is between [0, 1].
After that, the change of user position will be reflected in the measured phase (continuous
phase tracking allows carrier phase more than 1 or less than 0), thus ensuring that the
integer ambiguity is constant during the user positioning. However, since the integer
ambiguity is unknown, the carrier phase measurements are challenging to be used directly
for user location solutions. Therefore, we propose a location algorithm combining carrier
phase and TOA measurements in the following.

3. Positioning Algorithm

The ambiguity resolution is one of the primary problems in carrier phase mea-
surement. In this section, we propose an EFK algorithm based on TOA and carrier
phase measurements. This algorithm can estimate the position while estimating the
integer ambiguity.

3.1. TOA and Carrier Phase Measurements

According to Equations (10) and (19), further considering the non-ideal factors such
as clock error and NLOS error, the TOA measurements and carrier phase between the i-th
BS and user equipment (UE) r at a specific epoch can be written as:

Ti
r = (di

r + mi
r + wi

r,T)/c + δti − δtr

φi
r =

di
r+c(δti−δtr)+mi

r
λ − Ni

r + wi
r,P

, (20)

• δti (unknown) is the clock error of the transmitter i (unit: s).
• δtr (unknown) is the clock error of the receiver r (unit: s).
• mi

r (unknown) represents the channel bias introduced by NLOS reflections (unit: m).

The SD of the TOA and carrier phase measurements from the receiver r by measuring the
signals from two transmitters i and j can be expressed as:

Tij
r = (dij

r + mij
r + wij

r,T)/c + δtij

φ
ij
r = dij

r +cδtij+mij
r

λ − Nij
r + wij

r,P

, (21)

13
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where the double superscript “ij” indicates the differential operation between transmitters
i and j, i.e., sij

r = si
r − sj

r; s ∈ {T, φ, d, δt, N, m, w}. According to Equations (10) and (19),
the measurement noise wij

r,T and wij
r,P are still independent Gaussian noise with following

distributions, i.e.,

E
[
wij

r,T , wkj
r,T

]
=

{
σ2

r,i + σ2
r,j; i = k

σ2
r,j; i 6= k

. (22)

The SD operation of Equation (21) removes the measurement errors common to the
receiver, e.g., the receiver clock offset δtr. Furthermore, the double-difference (DD) TOA
and carrier phase measurements from two transmitters i and j, and two receivers r and u
can be expressed as:

Tij
ru = (dij

ru + mij
ru + wij

ru,T)/c

φ
ij
ru = dij

ru+mij
ru

λ − Nij
ru + wij

ru,P

, (23)

where the double superscript “ij” indicates the differential operation between transmitters
i and j, and double subscript “ru” indicates the differential operation between receivers r
and u, sij

ru = sij
r − sij

u =
(

si
r − sj

r

)
−
(

si
u − sj

u

)
; s ∈ {T, φ, d, δt, N, m, w}. DD measurement

noise wij
ru,T and wij

ru,P are no longer independent Gaussian noise. Assume the transmitter j
is selected as the reference, we have:

E
[
wij

ru,T , wkj
ru,T

]
=

{
σ2

r,j + σ2
u,j; i 6= k

σ2
r,i + σ2

u,i + σ2
r,j + σ2

u,j; i = k
. (24)

DD operation removes the measurement biases related to the transmitters and the
receivers, such as the transmitter clock offsets and receivers clock offsets. We introduce the
concept of reference device, where it is assumed that u is the reference device and that the
location of terminal u is known. It can be seen by Equation (23) that the introduction of the
reference device helps to eliminate the clock error. We can construct the SD measurements
from the DD measurements, which are not impacted by the receiver and the transmitter
clock biases. Given that dij

u can be obtained from the known locations of the reference
device u and the BSs, we can construct the SD measurements T̂ij

r and Φij
r :

T̂ij
r , cTij

ru + dij
u = dij

r + mij
ru + wij

ru,T

Φij
r , φ

ij
ru +

dij
u

λ = dij
r +mij

ru
λ − Nij

ru + wij
ru,P

, (25)

Equation (25) shows the T̂ij
r and Φij

r are not impacted by the receiver and the transmitter
clock biases. It is worth noting that the reference device can be either a UE with a known
exact location or a BS. For some positioning scenarios, the deployment of additional
hardware can cause a significant overhead; therefore, 3GPP has agreed on selecting the
reference device, i.e., the device with the known location can be a UE and/or a BS (also
known as evolved gNB) [30].

3.2. Extended Kalman Filter

For an EKF design, one needs first to define the unknown EKF states. An EKF for
carrier phase positioning may include the following EKF states:

• UE position. EKF for positioning needs to include the states associated with the
unknown UE position. The EKF may use the 2D (or 3D) UE position coordinates
directly as the EKF states. For example, in the following discussion of the EKF design,
we assume the EKF states include a 2D position.

• UE velocity. With the consideration of UE mobility, the EKF states may also include
the UE velocity. The number of states for UE velocity is generally the same as the
number of states for UE position.
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• Integer ambiguities. The premise of using the carrier phase for location is to solve
integer ambiguities. According to Equation (25), it is necessary to solve the DD integer
ambiguities while solving the user position.

Let the position of the UE at epoch k be s(k). In the absence of other information,
assume that the velocity of UE keeps constant, the position at the next epoch can be
expressed as s(k+ 1) = s(k) + vT. Furthermore, in the case of no cycle slip, the ambiguities
remain consistent in each epoch. Assume the system states include 2D position, 2D
velocity, and the DD integer ambiguities are obtained from m cells, and the system can be
represented as: 




x(k + 1) = x(k) + vx(k)T

vx(k + 1) = vx(k)

y(k + 1) = y(k) + vy(k)T

vy(k + 1) = vy(k)

Nij
ru(k + 1) = Nij

ru(k)

(26)

Assume the j-th cell is selected as the reference cell. The EKF state vector x can be
expressed as follows:

x , [s, v, N]T

=
[

x, y, vx, vy, N1j
ru, . . . , N(j−1)j

ru , N(j+1)j
ru , . . . , Nmj

ru

]T , (27)

where s = (x, y) models the UE position; v = (vx, vy) is the UE velocity, and

N = [N1j
ru, . . . , N(j−1)j

ru , N(j+1)j
ru , . . . , Nmj

ru ] includes the DD integer ambiguities. Based on
the selected EKF states, the state transition equation of the discrete EKF for carrier phase
positioning can be written as:

x(k + 1) = F(k)x(k) + Wx(k). (28)

The one-step state transition matrix is as follows:

F =




I(2× 2) F12 0
0 I(2× 2) 0
0 0 I(m− 1×m− 1)


, (29)

where F12 =

[
∆T 0
0 ∆T

]
, E[Wx] = 0, and Q = E

[
WxWT

x
]

=

diag(Qr; Qv; 0(m− 1×m− 1)), Qr = diag
{

σ2
x , σ2

y

}
, Qv = diag

{
σ2

vx , σ2
vy

}
, I represents

an identity matrix, and 0 represents a zero matrix. ∆T is the time interval of the state
transition of the Kalman filter. σ2

x , σ2
y and σ2

vx , σ2
vy represent the uncertainty in the prediction

of the UE position and velocity.
The measurement equations of the discrete EKF as:

Z(k + 1) = h(x(k + 1)) + WZ(k + 1) (30)

Z(k + 1) =
[

T
Θ

]
, T(k + 1) =




T̂1j
r (k + 1)

...
T̂(j−1)j

r (k + 1)
T̂(j+1)j

r (k + 1)
...

T̂mj
r (k + 1)




(31)
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Θ(k + 1) =




Φ1j
r (k + 1)

...
Φ(j−1)j

r (k + 1)
Φ(j+1)j

r (k + 1)
...

Φmj
r (k + 1)




(32)

Wz(k + 1) =
[

WT(k + 1)
WP(k + 1)

]
, E[Wz] = 0

R = E
[
WzWT

z
]
=

[
RT 0
0 RP

] (33)

Z(k + 1) is the SD measurement vector, WZ(k + 1) is the measurement noises, RT and
RP represent, respectively, the convince matrix of the measurement noises WT and WP.
RT is non-diagonal matrixes due to DD operation on the measurements as shown in
Equation (24). RP can be obtained similarly.

h(x(k + 1))is a nonlinear function that describes the relationship between the state
vector and the measurement vector:

h(x(k + 1)) =
[

h(x(k + 1))T
h(x(k + 1))P

]

h(x(k + 1))T =




h1j
T

...
h(j−1)j

T

h(j+1)j
T

...
hmj

T




, h(x(k + 1))P =




h1j
P

...
h(j−1)j

P

h(j+1)j
P

...
hmj

P




hij
T = hi

T − hj
T ; (i = 1, . . . , m; i 6= j)

hij
P = hi

P − hj
P; (i = 1, . . . , m; i 6= j)

hi
T =

√
(x(k + 1|k)− xi)

2 + (y(k + 1|k)− yi)
2; (i = 1, . . . , m)

hi
P =

√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

λ − Ni
ru; (i = 1, . . . , m)

(34)

There is a need to linearize the measurement Equation (30) around the estimated UE
location to use the EKF algorithm. The Jacobian matrix H can be obtained as:

H(x(k + 1|k)) = ∂h
∂x
|x(k+1|k) =

[
∂hT
∂x |x(k+1|k)

∂hP
∂x |x(k+1|k)

]
(35)

∂hT
∂x |x(k+1|k) =




∂h1j
T

∂x |x(k+1|k)
∂h1j

T
∂y |y(k+1|k)

...
...

∂h(j−1)j
T
∂x |x(k+1|k)

∂h(j−1)j
T
∂y |y(k+1|k) 0(m− 1× 2) 0(m− 1×m− 1)

∂h(j+1)j
T
∂x |x(k+1|k)

∂h(j+1)j
T
∂y |y(k+1|k)

...
...

∂hmj
T

∂x |x(k+1|k)
∂hmj

T
∂y |y(k+1|k)




(36)
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∂hP
∂x |x(k+1|k) =




∂h1j
P

∂x |x(k+1|k)
∂h1j

P
∂y |y(k+1|k)

...
...

∂h(j−1)j
P
∂x |x(k+1|k)

∂h(j−1)j
P
∂y |y(k+1|k) 0(m− 1× 2) −I(m− 1×m− 1)

∂h(j+1)j
P
∂x |x(k+1|k)

∂h(j+1)j
P
∂y |y(k+1|k)

...
...

∂hmj
P

∂x |x(k+1|k)
∂hmj

P
∂y |y(k+1|k)




(37)

∂hij
T

∂x |x(k+1|k) =
∂hi

T
∂x |x(k+1|k) −

∂hj
T

∂x |x(k+1|k); (i = 1, . . . , m; i 6= j)

∂hij
P

∂x |x(k+1|k) =
∂hi

P
∂x |x(k+1|k) −

∂hj
P

∂x |x(k+1|k); (i = 1, . . . , m; i 6= j)

∂hi
T

∂x |x(k+1|k) = λ
∂hi

P
∂x |x(k+1|k) =

x(k+1|k)−xi√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

∂hi
T

∂y |y(k+1|k) = λ
∂hi

P
∂y |y(k+1|k) =

y(k+1|k)−yi√
(x(k+1|k)−xi)

2+(y(k+1|k)−yi)
2

∂hij
P

∂Nij
ru

= −1

(38)

Given the state and measurement equations in previous sections, the EKF algorithm
can be applied to calculate the estimate of x(k + 1) based on the SD measurements. EKF
algorithm [31,32] includes the following time-update and measurement update equations.
Furthermore, the time-update equation are:

x(k + 1|k) = F(k)x(k|k);
P(k + 1|k) = F(k)P(k|k)FT(k) + Q(k);

(39)

where x(k|k) and P(k|k) are, respectively, the estimated state vector and its covariance
matrix at the epoch t = tk. x(k + 1|k) and P(k + 1|k) represent, respectively, the predicted
state vector and its covariance matrix at the epoch t = tk+1, based on x(k|k) and P(k|k).
The matrixes F(k) and Q(k) are defined in Equation (29). Furthermore, the measurement
update equation are:

K(k + 1) = P(k + 1|k)H(x(k + 1|k))
[
H(x(k + 1|k))P(k + 1|k)HT(x(k + 1|k)) + R(k)

]−1;
x(k + 1|k + 1) = x(k + 1|k) + K(k + 1)[Z(k + 1)− h(x(k + 1|k))];
P(k + 1|k + 1) = [I−K(k + 1)H(x(k + 1|k))]P(k + 1|k);

(40)

H(x(k + 1|k)) is the Jacobian matrix given by Equation (35), the measurement equation
h(x(k + 1|k)) is defined in Equation (34), and calculated based on the predicted position
(x(k + 1|k), y(k + 1|k)) at time t = tk+1.

3.2.1. NLOS Error Recognition and Elimination Based on EKF

Equation (25) shows that DD operation may not cancel out the impact of the NLOS.
Furthermore, we propose an EKF-based scheme for NLOS error identification and elimination.

T̂ij
r , cTij

ru + dij
u = dij

r + mij
ru + wij

ru,T

Φij
r , φ

ij
ru +

dij
u

λ = dij
r +mij

ru
λ − Nij

ru + wij
ru,P

. (41)

According to the state and measurement equations at t = tk, EKF can predict the SD
measurements at t = tk+1. Because the NLOS error reaches several meters, if there is NLOS
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propagation at t = tk+1, the SD measurements will deviate greatly from the predicted value
of EKF. NLOS error can be identified and corrected according to the deviation:

if
∣∣∣T̂ij

r − hij
T

∣∣∣ > Λ

then T̂ij
r = hij

T , Φij
r = hij

P

. (42)

The threshold setting depends on the maximum DD measurement noise. For the deviation
greater than Λ, the NLOS error needs to be updated. The predicted measurements of EKF
are used to improve the positioning accuracy.

3.2.2. EKF Initialization

x(0) =
[

x(0), y(0), vx(0), vy(0), N1j
ru(0), . . . , Nmj

ru (0)
]T

. (43)

For the first step of the EKF (t = 0), the estimated initial UE position (x(0), y(0)) is obtained
from the time difference of arrival (TDOA) or other approaches [33]. The initial estimates
of (vx(0), vy(0)) can be set to 0. The initial ambiguities N1j

ru(0), N2j
ru(0), . . . , Nmj

r (0) can be
simply determined based on the initial UE position and known positions of cell, i.e.,

Ni
r(0) =

√
(x(0)−xi)

2+(y(0)−yi)
2

λ − φi
r(0);

Nij
r = Ni

r − N j
r ;

Nij
ru = Nij

r − Nij
u ;

(44)

here, Nij
u is the SD integer ambiguity of the reference device. The initial covariance matrix

P0 can be set as the diagonal matrix as follows:

P(0) = diag
{

Px(0), Py(0), Pvx (0), Pvy (0), PN(0)
}

;

PN(0) =
{

PN1j (0), . . . , PN(j−1)j
(0), PN(j+1)j

(0), . . . , PNmj (0)
}

;
(45)

where Px(0), Py(0) can be set based on the assumed maximum positioning error of the
TDOA. Pvx (0), Pvy(0) can be set based on the expected maximum velocity of the UE;
PN1j(0), . . . , PNmj(0) are set based on the maximum assumed DD measurement error.

3.2.3. Interaction with the Ambiguity Resolution Block

The EKF estimated float DD carrier-phase ambiguities would be sent to ambiguity
resolution block to get integer DD carrier-phase ambiguities to improve positioning ac-
curacy. For this purpose, after each EKF step k, the float solution of the DD carrier-phase
ambiguities N̂(k | k) and the corresponding to covariance matrix PN(k) are provided to
the ambiguity resolution block for searching the DD integer ambiguities N(k | k). To fix
integer ambiguities, we use MLAMBDA, a modified LAMBDA method for integer least
squares ambiguity determination [34,35].

DD integer ambiguities N(k | k) can be used to update N̂(k | k). However, the EKF
performance may be degraded if unreliable N(k | k) is used to update N̂(k | k). Thus,
before using N(k | k) to update N̂(k | k), there is a need to test the reliability of the DD
integer ambiguities N(k | k).

The following approach is used to test the reliability of DD integer ambiguities
N(k | k).

• Initialization: Set a predefined threshold for the ratio test: ε > 0, e.g., ε = 0.5. Set a
predefined maximum count nmax, e.g., nmax = 5. Set counter n(0) = 0.

• Step 1: For each epoch k, requesting the MLAMBDA to output two sets of the DD
integer ambiguities. With the request, MLAMDA will return one group of the best
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estimates and one group of the second-best of the DD integer ambiguities and together
with the corresponding residuals, say r1(k) and r2(k).

• Step 2: Calculate the ratio of r1(k)/r2(k), and compared it with a predefined threshold
ε. The smaller r1(k)/r2(k) indicates that the best DD integer ambiguities estimates and
the second-best estimates are close. If r1(k)/r2(k) < ε, the counter n(k) is increased
by 1, i.e., n(k) = n(k− 1) + 1. Otherwise, set n(k) = 0.

• Step 3: If n(k) > nmax, declared that the N(k | k) is reliable DD integer ambiguity
resolution. Once reliable DD integer ambiguity resolution N(k | k) is obtained, it can
be used to update the EKF.

3.2.4. Interaction with the Pre-Processing Measurement Block

Before each EKF operation, the EKF needs to adjust the state variables and covariance
matrices based on TOA and carrier phase measurements.

If at time t = tk, it is detected that there is a cycle slip for the phase measurements
from i-th cell, the corresponding state, and covariance of the cell need to be reset. Nij

ru

can be reset based on the TDOA measurement T̂ij
r and the SD carrier phase measurement

Φij
r . The diagonal element P(k|k) corresponding to Nij

ru will be set based on the maximum
assumed integer ambiguities measurement error.

Suppose at time t = tk, the measurements associated with an existing i-th cell are no
longer available. In that case, the corresponding state Nij

ru needs to be removed from EKF,
and so the elements of covariance matrix P(k|k) related the Nij

ru. The dimension of the EKF
will be reduced correspondingly.

If t = tk, the measurements associated with a new cell are available, the EKF will
add a new state of integer ambiguity for that cell. The corresponding state of the cell is
calculated based on the TDOA measurement T̂ij

r and the SD carrier phase measurement Φij
r .

The diagonal element of P(k|k) corresponding to Nij
ru will be set based on the maximum

assumed integer ambiguities measurement error.
Figure 2 shows the signal processing diagram for the real-time kinematic positioning

based on TOA and carrier phase measurements.

Figure 2. Flowchart of TOA/Carrier Phase combined Real-Time Kinematic.

4. Numerical Results

In this paper, MATLAB is used to verify the algorithm. Furthermore, one PRS sub-
frame is used in each PRS positioning occasion. Perfect muting is assumed in the simulation.
The positioning scene is shown in Figure 3, where six BSs are regularly distributed in the
building, and the reference device is located in the center of the scene. In the simulation,
it is assumed that there is a synchronization error in Network. Therefore, there are time-
varying synchronization errors at the BS side and the terminal side. The detailed simulation
parameters are listed in Table 1. For other parameters including the number of multipath
in the indoor scenarios, the criteria for generating LOS/NLOS, and the path loss, please
refer to [36].
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Figure 3. Terminal positioning environment.

In the simulation, moving speed of the terminal is 1 m/s, and the position solution
interval is 0.1 s. The terminal moves according to a specific track in which the length is
60 m, and the number of sampling epoch is 600. High accuracy localization using the
carrier phase requires a fast and accurate solution of the integer ambiguity. Therefore, we
use the following perspectives to evaluate the effectiveness of the algorithm:

• The accuracy and convergence speed of the integer ambiguity.
• The terminal that can judge whether the solved integer ambiguity is reliable or not.
• The real-time positioning accuracy of the terminal position.
• The cumulative distribution curve of positioning error.

Equation (25) shows that the SD carrier phase measurement Φij
r contains the DD

integer ambiguity Nij
ru. Therefore, we use the DD integer ambiguity for performance

comparison. Define the integer ambiguity estimation error as:

eN = |Nij
ru,ture − Nij

ru| (46)

Figure 4 illustrates the four DD integer ambiguity estimation errors. When eN = 0, it
represents that the estimated integer ambiguity is the same as the actual ambiguity. Fur-
thermore, the first BS is used as the reference BS in our experiment. All integer ambiguity
errors were significant at epoch 0 due to the sizeable initial position estimation error. In
the 92nd epoch, BS21, BS41, and BS51 all estimate the integer ambiguity correctly and
remain unchanged in the subsequent epochs; BS31 always has an error of 1 circle during
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the experiment. The mistake of BS31 did not affect the localization accuracy because the
other integer ambiguities were correctly estimated.

Table 1. System Parameters.

Parameters Values

Channel model 5G New Radio (NR) channel model (Indoor-Mixed
office[36]).

Carrier frequency 3.5 GHz

Carrier wavelength 0.085 m

Inter-site distance 20 m

Room size 40 m × 20 m

Subcarrier spacing 15 KHz

Reference signal New Radio PRS Structure from [37].

Reference Signal Transmis-
sion Bandwidth

50 MHz

Number of BSs 6

UE-antennas 4

Number of subcarriers 3240

FFT Length 4096 for 50 MHz

Sampling rate 61.44 MHz for 50 MHz

Number of occasions used
per positioning estimate

1

Interference modelling Perfect muting

Clock error between BSs Gaussian distribution with a mean of 25 ns and a variance
of 10 ns.

Clock error of the terminal Gaussian distribution with a mean of 50 ns and a variance
of 15 ns.

Delay spread Exponential distribution with a mean of 22 ns.

Total transmission power 24 dBm

Maximum directional gain
of an antenna element

5 dBi

UE speed 1 m/s

Position solution interval 0.1 s

NLOS error identification
threshold

Λ = 3

Ratio test threshold ε = 0.5

LOS generation probability Table 7.4.2-1 in the literature [36].

Fading model Large scale fading: Table 7.4.1-1 in the literature [36]; Fast
fading: Section 7.5 of [36].

Channel independence The channel model of the reference device and the channel
model of the user terminal are independent of each other.
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Figure 4. Schematic diagram of DD integer ambiguity convergence.

Figure 5 shows the ratio test was used to check whether the DD integer ambiguities
output by the EKF are reliable at the current epoch. The dashed line represents the preset
threshold ε = 0.5. After the 113th epoch, the reliability rates are all below the threshold.
Therefore the algorithm determines that the obtained integer ambiguities are reliable after
the 113th epoch. Combined with Figure 4, it can be seen that it is valid to use the ratio test
to determine whether the DD integer ambiguities converge to the actual value.

Figure 5. Test of the reliability of DD integer ambiguities.

We evaluate the performance of the ‘TOA+CP EKF’ based differential positioning
method as in Figure 6. In addition, we also list two other cases for comparison, wherein
‘GMM EKF’ [31] is a method to perform positioning solution by TDOA measurement,
which eliminates the NLOS error by model NLOS propagation as Gaussian mixture model;
‘EKF’ [32] represents a commonly used EKF location algorithm based on TDOA measure-
ment. To eliminate the effect of clock errors, all three algorithms mentioned above use
TDOA obtained from Equation (25) instead of TOA for positioning, and the algorithm
proposed in this paper also requires SD carrier phase measurements.
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Figures 6 and 7 show the performance of the three algorithms during mobile localiza-
tion. Since all three algorithms use differential measurements for position solving, it can be
seen from the results that the time-varying synchronization errors do not affect the posi-
tioning accuracy. At the initial epoch, the accurate integer ambiguity has not been solved,
so the carrier phase measurement is difficult to determine the initial position. Therefore,
initial positions of all three algorithms are calculated from the Chan algorithm [33] using
TDOA measurements. It can be seen from Figures 6 and 7 that in the first few epochs, the
positioning error of ‘TOA+CP EKF’ is significant, which is caused by the inaccurate integer
ambiguity. In subsequent periods, as the algorithm correctly fix the integer ambiguity, the
positioning error gradually decreases. Furthermore, the carrier phase measurement is not
limited by the system sampling rate, which, combined with the correct integer ambiguity,
makes the carrier phase algorithm suitable for scenarios with high accuracy requirements.
Comparatively, both ‘GMM EKF’ and ‘EKF’ use only TDOA for user position tracking,
which leads to lower positioning accuracy.

Figure 6. Statistic of mobile positioning error.

Figure 7. Localization performance of EKF.
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The cumulative density function (CDF) curves of horizontal positioning errors are
used as performance metrics in positioning evaluations. Define the positioning error as:

epos =

√
(x̂− xture)

2 + (ŷ− yture)
2 (47)

The CDFs for the localization error from both methods are shown in Figure 8. The ‘TOA+CP
EKF’ method has the best performance, with 90% of the horizontal positioning errors within
0.27 m. Therefore, the carrier phase-based localization technique can meet the high accuracy
localization requirements. The ‘GMM EKF’ method has the middle performance due to the
algorithm using TDOA for user location tracking and NLOS elimination. Since the system
sampling rate limits the TDOA measurement resolution, the positioning accuracy is low.
‘EKF’ method has the worst performance because it only uses the TDOA and has limited
effectiveness in eliminating NLOS error.

Figure 8. The CDF of horizontal localization error.

We simulated the localization accuracy of this algorithm with the different number
of BSs. In our experiments, as shown in Figure 9, we set the length of the indoor sce-
nario to 100 m and the width to 20 m. Furthermore, the coordinates of the six BSs are
[0, 0], [40, 0], [100, 0], [0, 20], [40, 20], [100, 20], respectively. The coordinate of the reference
UE is [50, 10]. The actual distance between the user and the BS determines the probability
of LOS. Thus, the expansion of the simulation environment decreases the LOS probability
and equivalently simulates the case of increasing obstacles.
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Figure 9. Layout of Indoor - Mixed office scenario.

When five BSs are used in the experiment, the BS located at [40, 0] is removed. When
four BSs are involved in localization, the two BSs located at [40, 0], [40, 20] are removed.
From Figure 10, it can be seen that the localization accuracy of the algorithm proposed
in this paper decreases as the number of BSs decreases. The decrease in the number of
available BSs leads to a more extended solution period for the integer ambiguity and thus
decreases the localization accuracy. In addition, compared with Figure 8, the decrease
in LOS probability does not cause severe degradation of the localization accuracy, so the
NLOS error suppression scheme proposed in this paper is effective.

Figure 10. The CDF of horizontal localization error with differfent number of BSs.

5. Conclusions

The main research direction of this paper is to apply carrier phase technology in
OFDM systems to improve ranging and positioning accuracy. Compared with single-point
positioning using only TOA measurement, carrier phase information is more accurate
than TOA measurement, and it is a possible choice for indoor high-precision positioning.

25



Sensors 2021, 21, 6731

This paper intends to solve two problems of indoor carrier phase positioning: 1. Phase
measurements in a multipath environment. 2. Fast and precise integer ambiguity resolu-
tion in real-time positioning scenarios. First, this paper analyzed the effect of multipath
propagation on phase measurement in detail, and proposed a correlation profile-based
carrier phase measurement method. Second, this paper presents an EKF algorithm to
estimate the integer ambiguity by the SD carrier and TDOA measurements. In addition
to the integer ambiguity estimation, the algorithm also considers the effect brought by
NLOS error. Experiments show that the algorithm proposed in this paper can quickly
find the integer ambiguity and virtually eliminate the NLOS error, thus improving the
positioning accuracy.
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Appendix A

For interference e−j π
N ([τ̇1]+(N−1)τ̇1) in Equation (14), the following approximation can

be made. Since [τ̇1] ≈ τ̇1 ± 0.5, and ±0.5
N � 1, So we have e−j π

N ([τ̇1]+(N−1)τ̇1) ≈ e−jπτ̇1 . Thus,
the phase of Hm

k can be expressed as:




−πτ̇1 − φ1 − 2πk [τ̇1]

N , if sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1])

≥ 0

−πτ̇1 − φ1 − 2πk [τ̇1]
N − π, if sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1])

< 0
. (A1)

Take [τ̇] = 2ñ as an example, and ñ is an arbitrary natural number. For specific analysis,it
can be divided into two cases, 2ñ− 0.5 ≤ τ̇ ≤ 2ñ, and 2ñ ≤ τ̇ ≤ 2ñ + 0.5.

(1) For 2ñ− 0.5 ≤ τ̇ ≤ 2ñ, we have:
sin(πτ̇) < 0, and τ̇ − [τ̇] < 0, sin

(
π
N (τ̇1 − [τ̇1])

)
≤ 0, so sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0.

(2) For 2ñ ≤ τ̇ ≤ 2ñ + 0.5, we have:
sin(πτ̇) > 0, and τ̇ − [τ̇] > 0, sin

(
π
N (τ̇1 − [τ̇1]) ≥ 0 so sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0.

We know that sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≥ 0 when [τ̇] = 2ñ. Similarly, we can conclude that when

[τ̇] = 2ñ + 1, sin(πτ̇1)

sin( π
N (τ̇1−[τ̇1]))

≤ 0. So (A1) can be simplified to:

{
−πτ̇1 − φ1 − 2πk [τ̇1]

N , if [τ̇1] = 2ñ
−πτ̇1 − φ1 − 2πk [τ̇1]

N − π, if [τ̇1] = 2ñ + 1
, (A2)
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when k = N/2, (A2) can be written as:
{ −πτ̇1 − φ1 − π[τ̇1], if [τ̇1] = 2ñ
−πτ̇1 − φ1 − π[τ̇1]− π, if [τ̇1] = 2ñ + 1

. (A3)

Thus, at k = N/2, the phase processed by the window function is −πτ̇1 − φ1, regardless of
whether [τ̇1] is odd or even. The proof is completed.
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Abstract: The I-READ 4.0 project is aimed at developing an integrated and autonomous Cyber-
Physical System for automatic management of very large warehouses with a high-stock rotation
index. Thanks to a network of Radio Frequency Identification (RFID) readers operating in the
Ultra-High-Frequency (UHF) band, both fixed and mobile, it is possible to implement an efficient
management of assets and forklifts operating in an indoor scenario. A key component to accomplish
this goal is the UHF-RFID Smart Gate, which consists of a checkpoint infrastructure based on RFID
technology to identify forklifts and their direction of transit. This paper presents the implementation
of a UHF-RFID Smart Gate with a single reader antenna with asymmetrical deployment, thus
allowing the correct action classification with reduced infrastructure complexity and cost. The action
classification method exploits the signal phase backscattered by RFID tags placed on the forklifts.
The performance and the method capabilities are demonstrated through an on-site demonstrator in a
real warehouse.

Keywords: cyber-physical system; Industry 4.0; internet-of-reader; IREAD 4.0; radio frequency
identification; RFID classification method; smart gate; smart forklift; smart warehouse

1. Introduction

The term “Industry 4.0” was born in 2013 when the German government promoted
the “High-Tech Strategy 2020 Action Plan” for a planned “4th industrial revolution” [1].
Since then, notable efforts have been carried out toward the implementation of Smart Fac-
tories [2] and Smart Warehouses [3]. The underlying concept concerns the integration of
industrial technologies with information and communication technologies, which leads to
the implementation of a Cyber-Physical-System (CPS) [4]. Each part of the system becomes
able to autonomously exchange information, trigger actions and control each other [5].
In other words, a CPS allows the implementation of a digital and intelligent factory in
order to promote manufacturing to become more digital, information-led, customized, and
green [6]. Furthermore, several enabling technologies have been developed for the Indus-
try 4.0 paradigm, e.g., Internet of Things (IoT) [7], Near-Field Communication (NFC) [8],
Radio Frequency Identification (RFID) [9], Wireless Sensor Network (WSN) [10], and
Block Chain (BC) [11], to name but a few.

The last few years have seen more widespread diffusion of solutions and systems put
into practice for the fourth industrial revolution. The aim is to implement an interconnec-
tion between production facilities, storage systems, and factory machinery in such a way
to allow a real-time interaction between workers, devices and items in the whole supply
chain. Consequently, both factory and warehouse facilities may become smart.
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In such a framework, the implementation of a smart warehouse concerns two dif-
ferent aspects. From one side, the possibility of a real-time inventory of items within the
warehouse allows the definition of a proper company production-plan based on the market
demand, by avoiding excesses of production and warehouse congestion. On the other
hand, the development of a location-based system makes sure of not only the awareness
of the item presence but also of its position within the warehouse, together with the po-
sition of the vehicles employed for procurement operations. It follows the development
of lots of additional functionalities such as the optimization of item placement and of the
vehicle paths during the loading/unloading operations with a consequent improvement of
operator work-quality and safety.

The I-READ 4.0 project, funded by Regione Toscana, Italy, fits into this context. In
particular, it concerns the implementation of an integrated and autonomous CPS for the
automatic management of very large warehouses. The system consists of a network of RFID
readers in the Ultra-High-Frequency (UHF) operating band, which are able to automatically
collect data from the warehouse pallets equipped with UHF-RFID tags and stored within
the tissue-paper warehouse of the Sofidel Italian Company in Porcari, Lucca. Firstly
presented in [12], the I-READ 4.0 system consists of two main technological elements:
UHF-RFID Smart Gate and UHF-RFID Smart Forklift. The Smart Gates use fixed readers
able to detect forklifts/pallets entering or exiting from areas of interest. The Smart Forklifts
are equipped with UHF-RFID readers able to auto-localize themselves by exploiting data
from UHF-RFID reference tags in the scenario and then localize the tagged pallets in the
indoor warehouse. The system is low-cost, reconfigurable, flexible and scalable regardless
of several factors, e.g. warehouse sizes, good typology and spatial resolution required for
item localization.

In this paper, the main idea of the I-READ 4.0 system is a detailed description with
particular focus on the UHF-RFID Smart Gate implementation for the forklift action clas-
sification. In particular, with the term “action”, we refer to two particular movements
that the forklift can do with respect to a UHF-RFID Gate. The IN action represents the
forklift entering a certain area by crossing the gate. The OUT action, instead, refers to a
forklift leaving a certain area by crossing the gate. The UHF-RFID Smart Gate proposed
here is based on an asymmetrical deployment of the reader antenna to allow for a correct
forklift discrimination with no additional sensors. The proposed system does not require
calibration procedures, and it can be implemented with commercial-off-the-shelf (COTS)
hardware. The designed classification method also presents a low computational burden.
The Smart Gate implementation is described together with the performance evaluation of
an on-site demonstrator. The paper is organized as follows: in Section 2, a state-of-the-art
analysis of RFID Gates for good crossing identification is reported; Section 3 describes the
I-READ 4.0 architecture, the UHF-RFID Smart Gate and the proposed phase-based action
classification method; Section 4 shows the performance of the UHF-RFID Smart Gate, and
finally, Section 5 sets conclusions and discusses some future developments.

2. RFID Gates

A UHF-RFID gate is usually composed of a UHF-RFID reader connected to one or
more antennas and possibly with other optional devices. Typically its main task is the
identification of crossing tagged assets, being goods, people, or vehicles, such as forklifts
or pallet trucks. However, an RFID gate able to provide the direction of transit of the
identified object/person, can allow a complete awareness of the asset locations in plants
or warehouses.

Typically, two main problems occur when deploying an RFID gate in an industrial
environment. First, due to the large beamwidth of standard reader antennas and the
multipath effects typical of an indoor scenario with metallic objects and surfaces, the target
assets crossing the gate are identified together with other static or moving tagged items
nearby the gate, so stray read events may occur [13]. Second, the tag reading rate can
be slowed due to the presence of the other tags demanding the communication channel
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resources, thus introducing a non-null probability that the tag on the target asset does not
respond to any interrogation query during the crossing action [14]. The multipath effect
could also affect the correct detection of the target RFID tags due to the fading effect of
the communication channel [15]. To mitigate these issues, solutions relying on shielded
reading zones using tunnel gates [16] were proposed. However, such solutions are required
for a strong modification of the work environment and are not always suitable or easy to
deploy. To avoid shielding structures, other solutions were proposed in [17–19]. In [17],
a localization technique is combined with the gate functionality to solve the problem of
discriminating among moving and static tags. Keller et al. [18] suggested using various
aggregated attributes based on the low-level reader data, e.g., Electronic Product Code
(EPC), Received Signal Strength Indicator (RSSI), timestamp, and reading antenna, to
perform a classification algorithm in forklift truck applications, getting an overall accuracy
of 95.5%. To improve the performance, the same authors extended the method by using
an advanced reader antenna setup [19]. By employing a portal configuration with two
readers and eight antennas, an overall accuracy of around 99% is obtained at the expense
of a relatively high infrastructure cost.

To determine the crossing direction of the assets, additional devices such as light
or ultrasound motion sensors [20] can be used, despite the high complexity and cost of
the system. Moreover, light or ultrasound motion sensors are prone to false-positives
or interruptions as unexpected entities obstruct the sensors. Other systems may employ
Computer Vision (CV) and RFID systems as the concept presented in [21], but CV may
give rise to privacy issues and also suffers from the outage problem if the light conditions
of the environment are not adequate.

To limit cost and complexity of the system, solutions based only on RFID technology
have been proposed. The first systems employed more than one antenna to estimate
the crossing direction of assets by processing the detection information and the RSSI
measurements. In [22], a method was proposed that uses the difference in the crossing
time of two antennas aligned along the gate crossing direction without additional external
sensors. In [23], a similar method was proposed relying on active RFID tags and based on
creating different interrogation zones for each antenna. In [24], a double antenna scheme
to control the access of children at a school door was proposed. The antennas are placed on
the school door, one facing the inside, the other the outside.

Phase-based solutions [25] can be useful as the backscattered signal phase varies
significantly with the motion of tagged assets, and can be profitably used to allow the usage
of a single antenna, thus reducing the infrastructure cost. An example of an RFID phase-
based access control system exploiting a single antenna was presented in [26] for tagged
people crossing-direction discrimination. It is noteworthy that phase-based techniques can
also allow to discriminate tags carried out by a forklift [27] or moving along a conveyor
belt [28] with respect to static tags in the warehouse/plant scenario. The concept of phase
measurements applied to conveyor belts was also explored in [29], where a two-antenna
architecture was proposed for measuring the Direction of Arrival (DoA) of moving RFID
tags for localization purposes. The Doppler Effect can be indeed profitably exploited for
the tag localization on conveyor belts, as demonstrated by [30].

More recently, machine learning techniques were investigated in RFID systems both
for localization purposes [31,32] and RFID Smart Gate implementation [33–35]. In [33], a
single antenna architecture was proposed to determine the direction of people crossing
an indoor RFID gate based on an Artificial Neural Network (ANN). Consecutive RSSI
data are aggregated within frames, and the mean RSSI for each time frame is fed as an
input feature for the neural network. The obtained accuracy is higher than 99%. Machine
Learning solutions were also employed to solve the issue of stray reads [34], where a
97.5% classification accuracy among actual RFID tags crossing the gate and static or other
tags moving close to the gate without crossing it was achieved with a single antenna
architecture. However, such a system does not allow the crossing direction estimation.
In [35], both the RSSI and the phase are processed through different machine learning
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techniques to discriminate among moving and static RFID tags. In fact, when the relative
distance between the reader antenna and the tag changes, both the received power and
phase change significantly.

A concept for asset tracking was proposed in the patent [36] as a device-free user
localization scheme. Basically, a set of antennas is attached at the ceiling facing the floor,
whereas a set of tags is placed on the floor. A moving object can shadow the tags and create
a signature of the motion of the object itself. The same scheme is applicable for RFID gates,
as proposed in [37,38] to solve the problem of pallet trucks crossing a key point (e.g., to
monitor the charging of goods on a truck). In both solutions, an antenna is placed at the
ceiling facing downwards, and a regular grid of 24 tags is placed on the floor. When a
metallic cart crosses the target area, the tags are shadowed. Such information is given in
input to a Long-Short Term Memory (LSTM) [39] Recurrent Neural Network (RNN) [37]
or a convolutional neural network [38]. In both cases, a classification accuracy of 100% is
obtained. Despite the robustness of these solutions, the deployment of the tags on the floor
is unfortunately not always possible in warehouse scenarios, as the tags cannot stand high
pressures caused by the weight and encumbrance of industrial vehicles such as forklifts.

3. Materials and Methods
3.1. The I-READ4.0 System Architecture

The I-READ 4.0 system was conceived by considering large-area warehouses with a
high pallet-handling per day. The demonstrator was designed to operate in the Tassignano
warehouse of the Sofidel paper industry with headquarters in Porcari, Lucca
(https://www.sofidel.com/, accessed on 26 May 2021). It has an area of around 20,000 m2

(Figure 1) with an average handling of 2000–3000 pallets per day. Figure 2 illustrates the
I-READ 4.0 framework, which comprises two main technological elements: the UHF-RFID
Smart Gate (studied in this paper) and the UHF-RFID Smart Forklift.

Area 1Area 2Area 3

Area 4

Manufacturing
area

Loading 
docks

Collection bay

Figure 1. Tassignano warehouse plan.
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Figure 2. The I-READ 4.0 framework.

The general architecture of the system is briefly described here. The proposed solution
uses the passive UHF-RFID technology and particularly an integrated network of RFID
readers, some fixed (UHF-RFID Smart Gates) and other mobile (UHF-RFID Smart Forklifts),
capable of identifying individual pallets, their status (loaded by a forklift or unloaded),
and their location (Figure 2). The tagged objects are pallets containing the final product,
e.g., tissue paper. The pallets exit from the end of the production line and are brought into
the storage warehouse carried by forklifts. Again, when the product must be shipped, a
forklift lifts the pallet and brings it to the loading area (pallet preparation area). Then, each
single pallet is loaded onto the truck manually handled by a pallet truck. For the correct
management of the warehouse, it is essential to trace all these steps. Both the warehouse
entrance at the end of the production line and the exit are equipped with a UHF-RFID
Smart Gate, described later in this manuscript, which is capable of monitoring all the
access/departure of products and forklifts to/from the warehouse. When the UHF-RFID
Smart Forklift moves inside the warehouse, it is localized with a tracking system to allow
the real-time pallet localization. In fact, the pallet location is associated to the forklift
location at the time of the unloading event. In this context, the presence of the UHF-
RFID Smart Gates can be fruitfully exploited to set the initial position of the forklift when
developing tracking systems. Through the Wi-Fi network, the Smart Gate and the Smart
Forklift send the data regarding position and status of each pallet to the warehouse central
server. The knowledge of the position of pallets and forklifts allows to produce a real-
time map of warehouse occupation and therefore enables to implement an optimization
algorithm to improve the management of good flows and the occupation of warehouse
areas. Furthermore, the information on the forklift position, combined with the data of the
collision detection system installed on each forklift, allows to carry out a statistical analysis
about the areas with the highest risk of collision. The detection of these potential collisions
(near miss) will be shown to the forklift drivers and the Warehouse Management System
(WMS) through the Event Server. For the aim of this paper, the design, development and
testing of the UHF-RFID Smart Gate are relevant. That is, we are going to focus on that
component of the global system architecture.

Items coming out from the production lines are assembled in pallets. Each pallet is
around 80 × 120 cm wide, and it has to be equipped with an identification label of size
148 × 105 mm according to the Global Standard GS1 (Figure 3). The label is printed at the
end of the production line and shows the Serial Shipping Container Code (SSCC). Behind
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the label, there is a UH101 tag by LAB-ID measuring 95 × 88 mm and equipped with the
NXP UCODE 7 chip (http://www.lab-id.com/wordpress/wp-content/uploads/2017/06/
UH101.pdf, accessed on 26 May 2021) with −21 dBm sensitivity. The tag on the smart label
is initialized through the CAEN RFID Proton R4320P reader (https://www.caenrfid.com/
en/products/proton-r4320p/, accessed on 26 May 2021) connected to the CAEN RFID
ANT-024 SPIN antenna. A picture of the end of the production line along with the RFID
hardware to write the tag EPC is shown in Figure 4. In particular, the EPC is properly
derived from the translation of the SSCC code according to the GS1 standard (https://www.
gs1.org/sites/default/files/docs/epc/EPC-RTIPalletTagging-ImpGuide-i2.pdf, accessed
on 26 May 2021).

1
2

0
 c

m

80 cm

SSCC 012579 1072345

105 mm

1
4

8
 m

m

(a) (b)

Figure 3. (a) Column composed by two tagged pallets and (b) sketch of the tagged label applied on
the pallet (the tag is on the label rear side).

Figure 4. RFID label printer at the end of the production line.

Pallets are taken from the manufacturing area by Laser Guided Vehicles (LGVs) and
carried at the entrance of the warehouse, which is composed of four storage areas (Figure 1).
Here, workers handle them through the RFID Smart Forklift and bring them to a specific
warehouse area passing through the RFID Smart Gate.

3.2. The UHF-RFID Smart Gate

Within the I-READ 4.0 system, the goal of the UHF-RFID Smart Gate is to monitor
the crossing of goods at a point of interest within the warehouse. The gate must be able to
completely identify the loaded pallets carried out by the forklift, to identify the forklift, and
to understand its crossing direction. In fact, most gates can be crossed in both directions,
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and it is important to correctly determine if a product enters or leaves a certain warehouse
area. That is, the UHF-RFID Smart Gate must implement an action classification method
to understand whether the forklift is entering (IN) or leaving (OUT) a certain zone. The
UHF-RFID Smart Gate is composed of the following hardware:

• An Impinj Speedway Revolution R420 UHF-RFID reader;
• A circularly-polarized (CP) CAEN WANTENNAX019 antenna;
• A linearly-polarized (LP) CAEN WANTENNAX007 antenna;
• Two coaxial cables;
• An ethernet cable to connect the reader to the Event Server;
• A power supply for the reader.

The circularly-polarized (CP) antenna CAEN WANTENNAX019 (https://www.caenrfid.
com/it/products/wantennax019/, accessed on on 26 May 2021) was installed in the upper
part of the gate, at a height of about 4.5 m. It has a gain of 8.5 dBc and a half power beam
width of 65◦ on both planes (HPBWH = HPBWV = 65◦). It was installed with a tilt angle of
about 30◦ with respect to the horizontal plane to create an asymmetrical radiation-pattern
footprint with respect to the gate. Thanks to this particular configuration characterized by
an asymmetrical antenna deployment, the forklift crossing direction can be determined by
using only a single antenna, as described later. Such CP antenna is mainly used to identify
the forklift tags and to perform the action classification method.

With the intention of increasing the reliability of the gate when detecting all the carried
pallets, a second antenna was installed at the gate side. Since the RFID labels on the pallets
are always applied at the same position and parallel to the ground, a linearly-polarized (LP)
antenna was chosen to maximize the power radiated to the tag. The chosen model is the
CAEN WANTENNAX007 (https://pdf.directindustry.com/pdf/caen-rfid/wantennax007
/113435-366469.html, accessed on on 26 May 2021) with gain equal to 8.0± 0.5 dBi, and half
power beam width equal to 65◦ on the horizontal plane (HPBWH = 65◦) and 68◦ on the
vertical plane (HPBWV = 68◦). The antenna was fixed to the wall at a height of about 3 m
from the ground and tilted to about 45◦ with respect to the horizontal plane. In Figure 5,
two of the UHF-RFID Smart Gates installed at the warehouse entrance are shown. It must
be highlighted that the gate infrastructure does not include additional invasive metallic
structures as typical for tunnel gates [16].

Figure 5. RFID Smart Gates installed at two entrances of the Tassignano warehouse.

The forklifts are equipped with two OMNI-ID EXO 2000 on-metal RFID tags
(https://omni-id.com/datasheet/1373, accessed on 26 May 2021) to be identified by the
gate. One tag is placed on the forklift upright at a height of 2.6 m (Figure 6a), while the
second tag is placed on the forklift roof at a height of 2.2 m (Figure 6b) for redundancy
purposes.
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(a) (b)

Figure 6. RFID tags placed on the forklift. (a) Tag placed on the upright, and (b) tag placed on the
forklift top.

Two photocell barrier sensors SICK WTT12L-B2561 are placed in proximity of the
gates to evaluate the performance of the phase-based action classification method and to
get an estimate of the forklift speed v. A picture of the photocells is in Figure 7.

Figure 7. Photocells installed at one of the UHF-RFID Smart Gates.

3.3. Signal Model

The phase-based action classification method proposed here enables a smart-gate
operation with a single antenna to determine the moving direction of the forklift crossing
the gate. When the reader interrogates a tag, the latter backscatters the impinging signal,
thus enabling the reader to measure a phase proportional to the distance between the
reader and the tag. When the tagged forklift crosses the gate, the reader antenna performs
several queries of the moving tag and measures the phase of the signal at different time
steps tn, being n ∈ {0, ..., NR − 1} and NR the number of successful queries of the tag
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during the vehicle crossing. To be more precise, the phase of the signal measured by the
reader at time tn can be resumed as:

φ(tn) = mod
(−4πd(tn)

λ
+ φ0(θR, ψR, θT , ψT , tn) + φm(tn)

)
2π

(1)

where d(tn) is the distance between the tag and the reader at time tn, λ is the carrier
wavelength in free-space, φ0(θR, ψR, θT , ψT , tn) is the phase bias caused by reader and tag
antennas and by the electrical circuitry, where θR and ψR are the elevation and azimuth
angle at time tn, respectively, at the reader antenna side, and θT and ψT are the elevation and
azimuth angle at time tn, respectively, at the tag antenna side. φm(tn) is the contribution to
the phase caused by multipath phenomena at time tn. The distance d(tn) is defined as:

d(tn) = ‖pant − ptag(tn)‖ (2)

where pant is the vector [xant, yant, zant]T ∈ R3 of the reader antenna location, and ptag(tn)
is the vector [xtag(tn), ytag(tn), ztag(tn)]T ∈ R3 of the tag trajectory sample at time tn.

The value of φ0(θR, ψR, θT , ψT , tn) is defined as:

φ0(θR, ψR, θT , ψT , tn) = φTX(θR, ψR, tn) + φRX(θR, ψR, tn) + φtag(θT , ψT , tn) (3)

where φTX and φRX are the phase offsets caused by the transmitting and receiving circuitry
of the reader, and φtag is a phase offset that depends on the tag itself and may be different
even among tags of the same model. The φ0(θR, ψR, θT , ψT , tn) term is almost constant over
consecutive tag query responses within the reader antenna’s main beam, and it will be
indicated in the rest of the paper as φ0.

To overcome the problem of the phase 2π−ambiguity, we can perform phase unwrap-
ping [40]:

φu(tn) =
−4πd(tn)

λ
+ φ0 + φm(tn) (4)

To correctly execute the phase unwrapping, consecutive phase samples must not differ
more than π. If we consider the value of φm(tn)− φm(tn−1) ≈ 0, meaning that the phase
difference caused by the multipath between consecutive time steps is negligible, only the
condition d(tn)− d(tn−1) < λ/4 must be satisfied. This fact is a direct consequence of
the Nyquist–Shannon Sampling Theorem, which states the condition for which a signal is
sampled without aliasing. Further considerations on the topic applied to the RFID field can
be found in [41,42]. As it will be discussed later, a relatively high forklift speed or a poor
RFID reader sampling rate may both lead to errors during the phase unwrapping process
and, therefore, to classification errors.

Now, for the sake of simplicity, the value of φu(tn) is normalized by the first sample
acquired at n = 0. We represent the normalized unwrapped phase with φn(tn):

φn(tn) =
−4π∆d(tn)

λ
+ ∆φm(tn) (5)

where ∆d(tn) = d(tn)− d(t0), and ∆φm(tn) = φm(tn)− φm(t0).

3.4. RFID Gate with Antenna in Symmetrical Configuration

By referring to Figure 8, we consider a bi-dimensional scenario in which the forklift
moves mainly along the x-axis with a constant speed v; such a hypothesis is plausible in a
few-second interval, when considering the forklift weight and inertia. When the forklift
performs an IN action, it moves towards the positive direction of the x-axis with positive
speed, whereas when performing an OUT action, it moves towards the negative direction
with a negative speed. The tag is placed on the forklift top, at a height htag. The gate
antenna is placed in [xant, yant, zant]T = [0, 0, hant]T , and it is facing the floor in such a way
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that its coverage area is symmetrical in the xy-plane with respect to the z-axis. The coverage
area on the tag plane is determined by the antenna HPBW through the following equation:

l = ∆h arctan(HPBW/2) (6)

where ∆h is the height difference between the antenna and the tag: ∆h = hant − htag. This
means that the tag is detectable when the forklift is inside the region |x| < l.
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Figure 8. Sketch of the symmetrical configuration of the RFID Smart Gate.

Let us suppose the forklift is performing an IN action. The time variation of the
x-coordinate is:

x(t) = −l + vt (7)

being t ≥ 0. By considering a constant sampling time T, the acquisition time steps tn can be
written as tn = nT. By denoting x[n] = x(tn) = x(nT), we can also derive the normalized
unwrapped phase sequence φn[n] with (4) as follows:

φn[n] =
−4π

λ

(√
(−l + vnT)2 + ∆h2 −

√
(−l)2 + ∆h2

)
(8)

where we neglected the effect of the multipath for simplicity. Let us consider an RFID gate
operating at the frequency f = 865.7 MHz. The unwrapped normalized phase φn[n], is
depicted in Figure 9 when l = 3 m, v = 2 m/s, ∆h = 2.5 m, and T = 50 ms, for both IN
and OUT actions. As expected, during an IN action, the normalized unwrapped phase
decreases when the forklift (tag) is approaching the antenna in the region x ≤ 0, while it
increases once the forklift (tag) has crossed the gate and gets further from the antenna in
the region x > 0. For the OUT action, instead, the normalized unwrapped phase decreases
when the forklift (tag) is approaching the antenna in the region x ≥ 0, and increases once
the forklift (tag) has crossed the gate and gets further from the antenna in the region x ≤ 0.
It appears straightforward that the time behavior of φn[n] is the same for both IN and
OUT actions, as the antenna coverage area is symmetrical. Therefore, it is not possible to
discriminate between the two actions by using this gate configuration.
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Figure 9. Time behavior of the unwrapped normalized phase in the symmetrical configuration of
the RFID Smart Gate for the following system parameters: f = 865.7 MHz, l = 3 m, v = 2 m/s,
∆h = 2.5 m, and T = 50 ms.

3.5. RFID Gate with Asymmetrical Antenna Deployment and Action Classification Method

To make the φn[n] time behavior different between the two actions, IN and OUT, and
to allow correct action discrimination, the reader antenna is tilted of an angle θ with respect
to the vertical axis (z-axis) to make it point towards the inside of the warehouse in such
a way that the reader cannot detect tags outside the room, as shown in Figure 10. Let
us suppose that the antenna is pointed in such a way that it can only detect tags within
the region l1 ≤ x ≤ l2, with l1 and l2 real positive values and l1 < l2. When the forklift
performs an IN action, the tag will be detected only when it is getting further from the
antenna, so the φn[n] will be a decreasing function. On the other hand, when the forklift
performs an OUT action, the tag will be detected only when it is getting closer to the
antenna, so the φn[n] will be an increasing function. The time behavior of φn[n] for IN (blue
circular markers) and OUT (red squared markers) actions is depicted in Figure 11 when
l1 = 1 m, l2 = 4 m, v = 2 m/s, ∆h = 2.5 m, and T = 50 ms. These results confirm that the
asymmetrical configuration of the gate antenna guarantees the capability of recognizing
the IN and OUT actions, without requiring additional antennas or sensors.
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Figure 10. Sketch of the asymmetrical gate.
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Figure 11. Time behavior of the normalized unwrapped phase in the asymmetrical antenna de-
ployment for IN and OUT actions by varying the speed v when the parameters are the following:
f = 865.7 MHz, l1 = 1 m, l2 = 4 m, ∆h = 2.5 m, and T = 50 ms.

The classification algorithm is straightforward. If the measured φn[n] is a decreasing
function, the estimated action is IN; otherwise, the estimated action is OUT. To do that,
we first interpolate the measured curve with a first-order polynomial function. Then, we
calculate the slope coefficient m and execute the following decision criterion:

{
Classified action: IN if m ≤ 0,
Classified action: OUT if m > 0

(9)

As already said, to operate correctly, this algorithm must rely on a correct phase
unwrapping of the measured phase. When the forklift speed increases, the average spatial
sampling may be greater than λ/4. This effect makes the Nyquist sampling condition not
satisfied, and the slope of the normalized unwrapped phase may change at some points.
By leaving all the other parameters unchanged, Figure 11 also shows the normalized
unwrapped phase for the forklift speed v = 3 m/s, instead of v = 2 m/s. The aforemen-
tioned slope change is strongly evident for both the IN (green diamond markers) and OUT
(black triangle markers) actions. This means that, on the basis of the forklift speed, the
estimation of the curve slope m could fail by leading to a possible classification error. As a
consequence, the reader queries have to be sent with a time interval able to guarantee the
Nyquist sampling condition by knowing the maximum allowed speed for the forklift.

As we will see in the next section, the influence of the environment can also introduce
errors in the classification method.

Moreover, static tagged forklifts or pallet tags nearby the gates can be filtered out from
the classification method, as their measured phase is almost constant. An advantage of this
algorithm is the low-effort computational burden which allows the method implementation
on low-power computers, as it will be shown in the next section. Alternatively, the method
can be directly executed on an RFID reader dedicated PC if this is present. Another solution
is to transmit the data on an external PC that controls all the RFID Smart Gates of the
warehouse, as was done in this proof of concept.

4. Experimental Analysis
4.1. Experimental Results

Figure 12a,b shows an example of a successful and unsuccessful IN classification,
respectively. As apparent in Figure 12b, the unwrapping fails by causing a wrong sign
estimation of the slope coefficient m. Similarly, Figure 12c,d shows an example of a
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successful and unsuccessful OUT classification. In such a case, the slope coefficient m of
Figure 12d is wrongly estimated as negative. Table 1 resumes the principal features of the
showed curves in terms of the number of samples NR, time duration of the crossing action
Td, forklift speed v, average sampling time ∆T , average spatial sampling ∆S and measured
slope m.

There are multiple causes of unsuccessful classification, mainly related to a failed
phase unwrapping in industrial scenarios. First of all, the multipath phenomena can
introduce strong and unpredictable contributions on the phase variation φn[n]. Second,
the presence of multiple tags close to the gate demanding for the communication channel
may slow the forklift-tag reading rate. Finally, the speed of the forklifts, which can move
up to 3.5 m/s, may cause a poor sampling of the phase curve and consequently a wrong
phase unwrapping.

(a) (b)

(c) (d)

Figure 12. Examples of measured normalized unwrapped phase φn[n]. (a) Successful IN classification,
(b) wrong IN classification, (c) successful OUT classification, (d) wrong OUT classification.

Table 1. Main features of the trials represented in Figure 12.

Trial NR Td (s) v (m/s) ∆T (ms) ∆S (cm) m (rad/s)

Successful IN 85 3.7 1.57 44 7 −13.28

Wrong IN 72 3.3 0.98 46 4.5 0.1063

Successful OUT 114 9.1 0.49 80 3.3 0.62

Wrong OUT 76 5.7 0.77 74 5.7 −0.97

To better understand the effect of the forklift speed v and evaluate the classification
accuracy, an experimental campaign was conducted. We analyzed a total of NT = 264
trials acquired from the gate placed at the production line end during the regular forklift
operations. The number of recorded IN and OUT actions is NIN = 164 and NOUT = 100,
respectively. The reason for such difference is due to the exclusion from the experimental
analysis of all the cases where the optical barrier sensors failed, so it was not possible to
determine the forklift speed and recognize the ground truth of the forklift passage. In
100% of the cases, at least one of the two tags placed on the forklift was detected by the CP
antenna at least once.

The classification accuracy computed for different ranges of the forklift speed v is
shown in Figure 13. The overall action classification accuracy of the method is 92% but
reaches a maximum value of 97–98% when the forklift travels at a speed between 0.5 m/s.
and 1.5 m/s. It is apparent that, when the forklift overpasses the speed of 1.5 m/s, the

41



Sensors 2021, 21, 5183

accuracy of the action classification method decreases as the phase unwrapping fails. On
the other hand, a low forklift speed can be detrimental too, since the phase slope could be
too close to zero, making the action classification less reliable. This effect is apparent in
Figure 13 for v < 0.5 m/s.

Figure 13. Classification accuracy vs. forklift speed v.

The number of tag readings is a crucial parameter for the success of the classification
algorithm. Therefore, the average number of samples with respect to the forklift speed is
also reported (Figure 14). As expected, the number of available readings decreases with
the increase of the forklift speed. However, thanks to the proper reader configuration, the
average number of readings never goes under 45 for v < 3 m/s. When this cannot be
guaranteed, ad-hoc interpolation techniques could be adopted.

Figure 14. Average number of samples vs. forklift speed v.

Finally, to demonstrate the low computational burden of the proposed method, the
elaboration time of the NT = 264 trials has been depicted in Figure 15. The analysis was
conducted on a laptop with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz and 16 GB
RAM, showing a mean elaboration time of 0.13 ms with a standard deviation of 0.05 ms.
The case totality required less than 1 ms to be processed. Such a time is negligible with
respect to the acquisition time, which depends on the forklift speed and can be in the order
of 1–2 s. Therefore, we can conclude that the computational burden of the algorithm is not
an issue at all.
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Figure 15. Histogram of the processing time (ms) for the NT = 264 analyzed trials.

4.2. Discussion

A discussion on possible alternatives to this algorithm must be conducted. As reported
in [25], it is possible to measure the radial speed vr of a tag with respect to the reader
antenna through the acquisition of the Doppler frequency shift. Indeed, the tag radial
speed measurements in the asymmetrical antenna deployment can be profitably used for
the forklift action classification similarly to (9). To obtain reliable Doppler frequency shift
data, the reader manufacturer suggests to configure the Impinj Speedway R420 reader
to low reading-rate modes [43]. In such way, the duration of the RFID signal packets is
longer; therefore, the Doppler frequency shift is easier to be measured. However, such a
condition does not fit with our need to have fast readings to ensure both the forklift and
the goods detection and to satisfy the Nyquist–Shannon Sampling Theorem. Therefore,
during the tests, we had to configure the reader to a fast reading-rate mode, so the Doppler
frequency shift measurements were affected by severe detrimental noise. Consequently,
the here proposed signal processing Equation (9) resulted in a more robust, reliable and
accurate action classification method. Additionally, the fast-rate reader configuration
allows minimizing the number of cases where the Sampling Theorem is not met and
phase unwrapping fails. Another aspect that must be considered is the Doppler shift
∆ f = 2 f vr/c, when the forklift travels at high speed, e.g., v = 3 m/s, ∆ f < 17.31 Hz.
Given that the bandwidth for a single RFID channel in the ETSI European lower band
is 200 kHz [44], such ∆ f can be considered negligible and difficult to measure. Finally,
the proposed method does not require any preliminary system calibrations, and can be
implemented with COTS devices.

4.3. Comparison with the State-of-the-Art

Each state-of-the-art solution presented in Section 2 requires a different and custom
architecture, so it is difficult to make a fair comparison by evaluating the classification
performance of other pre-existing solutions directly on-site with the same antenna config-
uration and dataset. In any case, we can compare the proposed system with the others
analyzed in Section 2 in terms of cost, encumbrance, and scalability. The cost of a COTS
RFID system at the UHF-RFID band is mainly determined by the RFID reader, which
may reach more than 1000$ (USD). Each RFID antenna costs around 100–200$ (USD) and,
therefore, can be a significant cost for solutions requiring multiple antennas. The cost of a
passive RFID tag can be considered negligible for small volumes of goods, as RFID inlay
labels usually cost less than 0.1$ (USD). Some passive RFID tags designed for metallic
surfaces can cost around 10–20$ (USD) each, but there are many models that can be bought
for less than 5$. Battery-Assisted Passive (BAP), active, or sensor-equipped tags can reach a
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cost of 30$, but they are usually not necessary. Metallic supports or shields shall be included
in the total cost of the system, and therefore, it turns out that shielded gates [16,18] are quite
expensive solutions due to the large infrastructure required. The encumbrance is relative to
the global volume occupied by the hardware needed to implement the gate, which could
be very significant in the case of shielded gates. Cost and encumbrance together usually
impact the scalability of the solution since a high cost, or alternatively, a high encumbrance,
makes the solution less replicable inside the plant, factory, or warehouse. The scalability
of a solution is also determined by the time required for the installation process. For
instance, mounting several antennas at the ceiling, mounting several shielded gates, or
installing several photocells or ultrasound barriers in addition to the RFID hardware could
be a time-consuming operation, which must be considered as a significant cost. Finally,
solutions based on a machine learning classification algorithm could require a supervised
training process, which can be difficult to achieve in a short time, and huge amounts of
data have to be collected in several operating conditions.

As summarized in Table 2, the solutions based on shielded gates [16,18] have been
considered as “High Cost”, “High Encumbrance” and “Low Scalability” due to the cost
of the metal shields, their volume, and the installation complexity. On the other hand,
shielded gates are the best options to filter out false positive readings.

By referring to [19], we opted for “Medium–High Cost”, “Medium–High Encum-
brance”, and “Low–Medium scalability”. Indeed, the proposed solution requires antennas
aggregated in panels. The cost and the encumbrance are lower than the shielded gates,
but the cost of the antenna panel is not negligible and must be considered when taking
into account the system scalability. The systems proposed in [22–24] have been evaluated
as “Low–Medium Cost”, “Low–Medium Encumbrance” and “Medium–High Scalability”.
Indeed, the three systems require two antennas, which increase the cost with respect to
solutions with a single antenna, and the encumbrance cannot be considered as “low”, too,
as it is required to find enough space for two antennas. On the other hand, the installation
of two antennas is indeed a fast process, and therefore, the scalability of the solutions is
good. The solutions in [26,28] are based on phase processing, such as the one presented in
this paper, and also require a single antenna. Therefore, they are classified as “Low Cost”,
“Low Encumbrance”, and “High Scalability” [33] as they still rely on a single antenna,
but the scalability is considered “Medium” as the proposed solution is based on a neural
network classifier, which requires a time-consuming training stage. Following the same
reasoning, the two solutions exposed in [37,38], both based on neural networks classifiers,
are considered “Medium Scalability” solutions. In this case, however, the presence of the
reference RFID tags on the ground makes the encumbrance of the solution higher with
respect to solutions that do not require reference tags. Finally, the solution proposed in this
paper is considered “Low Cost”, “Low Encumbrance” and “High Scalability”, as it needs
a single antenna and does not require any calibration stages at the installation time. In
comparison with the solutions of the same category in terms of cost, encumbrance, and scal-
ability, e.g., [28], the proposed solution is designed to work in more complex environments
with respect to the conveyor belt, where the speed of the RFID tags is known in advance,
and the tag motion is constrained along assigned paths. Reference [26] is indeed a solution
with low cost, low encumbrance and high scalability, but the proposed method has been
evaluated only in a laboratory/office environment, whereas the solution proposed in this
paper has been verified in a real industrial environment during regular work activities.
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Table 2. Comparison of the proposed solution with the state-of-the-art.

Reference Cost Encumbrance Scalability Architecture

[16] High High Low Shielded Gate

[18] High High Low Shielded Gate

[19] Medium–High Medium–High Low–Medium Antenna Panels

[22] Low–Medium Low–Medium Medium–High One reader and two antennas

[23] Low–Medium Low–Medium Medium–High One reader and two antennas

[24] Low–Medium Low–Medium Medium–High One reader and two antennas

[26] Low Low High One reader and one antenna

[28] Low Low High One reader and one antenna

[33] Low Low Medium One reader and one antenna

[37] Low Low–Medium Medium One reader, one antenna, reference tags

[38] Low Low–Medium Medium One reader, one antenna, reference tags

This paper Low Low High One reader and one antenna

5. Conclusions

This paper presented an effective implementation of a UHF-RFID Smart Gate, a
fixed identification point placed at warehouse key points for forklift monitoring. Each
Smart Gate implements an action classification method that exploits the phase of the
backscattering RFID signal to determine the gate crossing direction of the forklifts with
respect to the gate. Thanks to an asymmetrical deployment of the reader antenna and
the phase acquisition of the signal exchanged by the fixed reader antenna and tags on
the forklifts, a scalable and low-cost solution exploiting only one antenna can be used
for each gate, with no additional sensors. Performance and method capabilities were
investigated through an experimental demonstrator installed in a real warehouse. Data
were gathered during the regular operations of the workers. In 100% of cases, the forklift
was detected by the RFID gate, and a 98% classification accuracy was achieved when the
forklift speed ranged between 0.5 m/s and 1.5 m/s. The accuracy decreases for higher
speeds. The proposed method requires short computational time and is therefore suitable
for the real-time monitoring of the forklift crossings. For future developments, artificial
intelligence techniques will be designed and evaluated to improve classification accuracy
even when forklifts are moving at higher speeds.
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Abbreviations
BC Block Chain
COTS commercial-off-the-shelf
CP Circular Polarization
CPS Cyber-Physical System
CV Computer Vision
EPC Electronic Product Code
HPBW Half-Power Beamwidth
IoT Internet of Things
LGV Laser-Guided Vehicle
LP Linear Polarization
LSTM Long Short-Term Memory
NFC Near-Field Communication
NN neural networks
RFID Radio Frequency IDentification
RNN Recurrent Neural Network
RSSI Received Signal Strength Indicator
SSCC Serial Shipping Container Code
UHF Ultra-High Frequency
WMS Warehouse Management System
WSN Wireless Sensor Networks
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Abstract: Measuring the distance between two points has multiple uses. Position can be geometrically
calculated from multiple measurements of the distance between reference points and moving sensors.
Distance measurement can be done by measuring the time of flight of an ultrasonic signal traveling
from an emitter to receiving sensors. However, this requires close synchronization between the
emitter and the sensors. This synchronization is usually done using a radio or optical channel, which
requires additional hardware and power to operate. On the other hand, for many applications of
great interest, low-cost, small, and lightweight sensors with very small batteries are required. Here,
an innovative technique to measure the distance between emitter and receiver by using ultrasonic
signals in air is proposed. In fact, the amount of the signal attenuation in air depends on the
frequency content of the signal itself. The attenuation level that the signal undergoes at different
frequencies provides information on the distance between emitter and receiver without the need for
any synchronization between them. A mathematical relationship here proposed allows for estimating
the distance between emitter and receiver starting from the measurement of the frequency dependent
attenuation along the traveled path. The level of attenuation in the air is measured online along the
operation of the proposed technique. The simulations showed that the range accuracy increases with
the decrease of the ultrasonic transducer diameter. In particular, with a diameter of 0.5 mm, an error
of less than ±2.7 cm (average value 1.1 cm) is reached along two plane sections of the typical room of
the office considered (4 × 4 × 3 m3).

Keywords: ultrasonic ranging; frequency dependent attenuation; ultrasonic signal

1. Introduction

Emerging technologies such as home automation, augmented reality, and gesture
interfaces rely on the availability of accurate and fast positioning systems [1,2]. Recently,
a large variety of indoor positioning systems (IPS) have proved suitable for many appli-
cations, being able to provide cost-effective positioning with sufficiently high speed and
accuracy [3,4]. Fast and precise IPS can be used for augmented and virtual reality gestural
interfaces [5,6], for navigation in closed places [7,8], for the recognition of human posture
and medical rehabilitation [9,10] for the monitoring and care of elderly and disabled peo-
ple [11], etc. Applications so far recognized for IPS include home automation, robotics,
safety, accident prevention through the recognition of dangerous postures and positions
of workers, logistics, inventory monitoring, monitoring of body and limb position during
sports exercises and training military, game console, monitoring of structures [12], and
monitoring of assets and security [13,14]. Certainly, in the near future, positioning systems
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capable of locating an object with adequate spatial and temporal resolution may enable
new possible applications.

Typically, the positioning of a mobile unit or sensor is calculated through a two-step
process. First, the distances, or ranges, of the mobile unit from some fixed reference
points (RP) are measured. In the second step, these distances are used to geometrically
determine the position of the mobile in the reference system defined by the fixed RPs.
The ranges necessary for the geometric calculation of the sensor position can be obtained
with the desired accuracy and with reasonable cost using the ultrasonic signal time-of-
flight technique. With this technique, an ultrasonic traveling signal is emitted from an
emitter toward a receiver, and the time of flight (TOF) is measured, which is the time
elapsed from the time of emission (TOE) from the emitter to the time of arrival (TOA) at
the receiver. In order to estimate this time interval as TOF = TOA − TOE, some technical
difficulties must be overcome. First, when the calculation is done by the receiver, then it
must know the instant of emission. This implies close synchronization between emitter
and receiver, which requires additional hardware, for example, a radio frequency (RF)
communication channel. Based on radio frequency channels, several techniques have been
proposed in the literature [15,16]. A second difficulty consists in detecting the correct
time of arrival (TOA) at the receiver of the traveling ultrasonic signal. Cross-correlation is
the most widely adopted technique to have an accurate and robust TOA estimate. Cross-
correlation measures the similarity of transmitted and received signals as a function of the
time displacement of one relative to the other. The relative displacement that produces the
maximum value corresponds to the TOA. Thanks to its integral nature, cross-correlation
shows a reduced sensitivity to disturbances [17].

The monotone signal is certainly the easiest to generate and the most suitable for
powering commercially available narrow-band ultrasonic transducers. However, the
ambient noise makes it difficult to detect the cross-correlation peak corresponding to
the TOA since the cross-correlation of a monotone signal shows many adjacent peaks
of similar amplitude. Among the different available techniques [18,19], one of the most
significant performance improvements is achieved by employing the linear chirp since its
cross-correlation shows a very sharp and easily recognizable peak [20–22].

One of the most commonly used methods to derive the sensor position starting from
the emitter-sensor distances is trilateration, or multilateration in the case of more than three
distance measurements. Multilateration uses the distances between RP and the point to
be located as radii of spheres, at the intersection of which is the position sought. In 3D
space, the minimum number of spheres, and therefore of RP, is four, which drops to three if
only calculating position in a half-space is required. On the other hand, information from
additional distance measurements can be used to refine the estimated sensor position, thus
making it less susceptible to measurement errors [23].

Some positioning systems do not require any emitter–receiver synchronization; they
do not estimate directly the single distance between each RP and the mobile unit, but they
measure the time difference between the arrival times of the signals emitted simultane-
ously by several emitters, also called time difference of arrival (TDOA) [24,25]. From the
estimated time differences, the sensor position is calculated as the intersection of three
hyperboloids. However, such a mathematical formulation requires at least four RPs for 3D
positioning within a half-space, which is unfavorable compared to the intersection of the
spheres which only requires three RPs. Furthermore, the hyperboloid intersection-based
solution of the TDOA positioning problem is highly nonlinear and much more sensitive to
ranging errors than the intersection of the spheres. Moreover, it is worth noting that it is
not possible to find the emitter–receiver distance by using only one emitter–receiver pair
without having any kind of synchronization. From what has been described, it therefore
can be seen that to obtain a reliable distance measurement it is necessary to use a technique
that requires shaped signals and a significant computational resource to calculate their
cross-correlation [26]. Inevitably, from the realization point of view, this translates into a
sensor equipped with a processor capable of performing the cross-correlation at three or
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four times the positioning rate, since three or four distances are needed to calculate the
positioning. In addition, the sensor must also have an RF section (or equivalent) to handle
the synchronization signals.

With the aim of reducing the complexity of the measurement process and of the sensor
hardware, an entirely new method is proposed here for obtaining the distance measurement
between the emitter and the sensor. In fact, the proposed distance measurement does not
use the flight time of ultrasonic signals between emitter and receiver, but the new technique
exploits the attenuation profile of the signal traveling in the air [27], which is a function,
among others, of the distance between the emission point and the point of reception. By
measuring the amount of attenuation suffered by signals emitted at different frequencies,
the distance between emitter and receiver is obtained with simple calculations.

The paper is structured as follows. Section 2 presents the ranging method in detail,
while the simulation set-up and numerical results are described in Section 3. Section 4
draws the conclusions of the work.

2. Ranging Technique Based on the Frequency Dependent Attenuation

The purpose of the proposed technique is to measure the distance between two
points in three-dimensional space using an emitter and a receiver of a suitable ultrasonic
signal, without any type of synchronization. The acoustic wave that propagates in the air
undergoes energy losses due to the molecular frictions that develop in the medium itself,
the extent of which depends, in addition to the medium, on the surrounding conditions.
However, the attenuation in air depends mainly on relative humidity (RH). In Bass et al. [27],
an experimentally obtained absorption curve in air is presented, which relates each RH
level and each frequency of the propagating acoustic wave with a value of the absorption
or attenuation coefficient.

Consider a sinusoidal signal with pulsation ω, amplitude A, and initial phase β:

s = Asin(ωt + β) (1)

Furthermore, suppose that there is a line-of-sight (LOS) of length d between the emitter
and receiver, which is a direct path without obstacles. The received signal r by the sensor
at point P (d, θ, ϕ) (see Figure 1) first undergoes geometric attenuation, which depends
point-by-point on the emission diagram of the emitter:

r = D(d, ϑ, ϕ)s = D(d, ϑ, ϕ)Asin(ωt + β) (2)

where D(d, ϑ, ϕ) represents the radiation diagram of the emitter including the effect of
geometric attenuation. Due to the presence of energy absorption in the propagation medium,
an exponential term must be considered in addition [26], included in the following equation:

r = D(d, ϑ, ϕ)Asin(ωt + β)e−αd = Rsin(ωt + β) (3)

where R = D(d, ϑ, ϕ)e−αd is the amplitude of the received sinusoidal signal r and α is
the attenuation coefficient, the latter assumed constant throughout the space of interest
for all the time necessary for completion of ranging operations. This is an acceptable
assumption when considering an air-conditioned home or office without particularly
humid or dry areas.
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Figure 1. The ranging system: the ranging sensor at point P (d, θ, ϕ), equipped with a microphone
and some processing resources, measures the distance d from the emitter thanks to the frequency
dependent attenuation of the air. The attenuation coefficients are measured online along the known
distance l using the auxiliary microphone.

Knowing the signal emitted s and the received signal r after propagation along a
straight path without obstacles of length d, the latter can be estimated with the relationship:

d =
1
α

ln
[

D(d, ϑ, ϕ)s
r

]
(4)

Knowing the amplitude of the emitted signal A and that of the received signal R, the
estimate of d is still obtained:

d =
1
α

ln
[

D(d, ϑ, ϕ)A
R

]
(5)

However, for a correct estimate of d it is also necessary to know with a sufficient degree
of accuracy D(d, ϑ, ϕ), which, for any given emitter, depends on the position P(d, ϑ, ϕ)
of the receiver. Since D(d, ϑ, ϕ) makes the received signal amplitude dependent on the
position P(d, ϑ, ϕ) of the receiver, which is unknown, Equation (5) is not applicable in
practice. Furthermore, in general, the actual radiation pattern D(d, ϑ, ϕ) could be unknown
or known with insufficient accuracy. For example, it may depend on the arrangement of
reflective surfaces in the space region of interest.

Let us now consider two signals emitted simultaneously by the same emitter, for ex-
ample, two sinusoids of amplitude A1 and A2 with two pulsations ω1 and ω2, respectively:

s1 = A1sin(ω1t + β)s2 = A2sin(ω2t + β) (6)

The total emitted signal is s = s1 + s2. It is worth noting that the same reasoning
applies more generally to each pair of sinusoids (h, k), with h 6= k and h, k ∈ {1, 2, . . . n},
formed by choosing them two-by-two from a set of n sinusoids with pulsation ωh and ωk,
respectively. At the receiver, the received signal r is suitably filtered selectively in frequency
to yield two signals r1 and r2, corresponding to the emitted components s1 and s2:

r1 = D1(d, ϑ, ϕ)A1sin(ω1t + β)e−α1d = R1sin(ω1t + β)
r2 = D2(d, ϑ, ϕ)A2sin(ω2t + β)e−α2d = R2sin(ω2t + β)

(7)
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Considering the ratio Q of the signals r1 and r2 received as r at point P, we obtain:

Q(d, ϑ, ϕ, A1, A2, α1, α2, ω1, ω2) =
r1

r2
=

D1(d, ϑ, ϕ)A1sin(ω1t + β)e−α1d

D2(d, ϑ, ϕ)A2sin(ω2t + β)e−α2d (8)

where R1 and R2 are the amplitudes of the signals extracted from the received signal r,
with pulsations ω1 and ω2, respectively. The alteration of the signal in the propagation
channel consisting of emitter, attenuating propagation medium, and receiver (here for
simplicity assumed to have unitary gain) is represented generally for n signals by the
product Di(d, ϑ, ϕ)e−αid, with i = 1, 2, . . . n. Considering only the amplitudes of the signals
involved, we obtain:

Q(d, ϑ, ϕ, A1, A2, α1, α2) =
R1

R2
=

D1(d, ϑ, ϕ)A1e−α1d

D2(d, ϑ, ϕ)A2e−α2d (9)

Knowing a priori the ratio between the amplitudes of the two emitted signals A1/A2 = K,
since it depends on the emission system, we obtain:

Q(d, ϑ, ϕ, K, α1, α2) = K
D1(d, ϑ, ϕ)e−α1d

D2(d, ϑ, ϕ)e−α2d (10)

If ω1 and ω2 are sufficiently close to each other, then D1 ∼= D2, from which it fol-
lows that:

Q(d, K, α1, α2) ∼= K
e−α1d

e−α2d (11)

Solving Equation (11) for d, we obtain:

d =
1

α2 − α1
ln
[

Q(d, K, α1, α1)

K

]
=

1
α2 − α1

ln
[

R1

KR2

]
, (12)

where ω1, ω2, and K are known constants.
Equation (12) shows that, under the hypotheses made, the distance d between the

emitter and the receiver is obtained, known K, ω1, and ω2, from the ratio of the amplitudes
of the two signals r1 and r2, obtained after filtering the received signal r. In practice, r1
and r2 can be calculated with an FFT, which has the same computational cost as a cross-
correlation, but they can also be estimated with a simple narrowband frequency filter, one
for each frequency, which requires significantly less computational effort. Please note that d
cannot assume negative values under the assumption that ω1 > ω2 and that the attenuation
is monotonically increasing over frequency [27], so that R1 > R2. Under these hypotheses,
the argument of logarithm is strictly positive, and d, too.

Equation (12) can be applied to each pair of sinusoidal signals among n sinusoidal
signals emitted simultaneously or in sequence, or by considering n harmonic components
of a single signal of arbitrary shape. In practice, n absorption coefficients αi (i = 1, 2 . . . n)
can be easily measured for each pulsation of interest αi (i = 1, 2 . . . n) in a continuous
manner by having a fixed auxiliary microphone at a known distance l (see Figure 1) placed
in the same environment where the system operates, or obtained from data presented, e.g.,
in Bass et al. [27] having measured the actual RH with a suitable sensor. Note that the
calculation can be done at the desired repetition rate, without the limit determined, for
example, by the flight time of the signal from the emitter to the receiver. The emission of
signals can be continuous over time or for packets of defined duration. In the latter case,
by appropriately choosing the length of the signal packet and the repetition frequency,
unwanted reflection phenomena typical of closed environments can be mitigated. The
approach presented could work, at least in theory, also considering other propagation
media, and could be used for underwater ranging, for example. However, this work is
focused on indoor positioning in the air.

53



Sensors 2021, 21, 4963

3. Simulation Setup and Numerical Results

This section provides an overview of the operating principle underlying the simulation
software and details on simulation configuration and numerical results.

A Setup

The realistic acoustic field emitted by a transducer, including diffractive and attenua-
tion effects, was simulated using the academic acoustic simulation tool Field II. It works
in the MATLABTM environment and it is based on the concept of spatial impulse re-
sponse [28–31]. The ultrasonic field for both the pulsed and continuous wave cases is
obtained through linear systems. In a first step, the emitted ultrasound field at a specific
point in space is obtained as a function of time using the spatial impulse response by
applying to the transducer an excitation in the form of a Dirac delta function. Subsequently,
by convolving the spatial impulse response with the excitation signal, the field generated
by an arbitrary excitation is computed. Any kind of excitation can be considered, based on
the theory of linear systems. This technique owes its name, i.e., “spatial impulse response”,
to the fact that the impulse response is a function of the spatial position, with respect to the
transducer, of the point where the calculated acoustic field is computed [32].

Finally, it is worth noting that, to date, Field II is the only available and reliable acoustic
simulator that is not based on a finite element modeling (FEM) approach (e.g., ANSYS,
COMSOL, etc.). When dealing with spaces hundreds of times more extended than the
typical wavelength considered (less than a couple of cm in the band beyond 18 kHz), as in
the case in question, the FEM approach is computationally too expensive. In such cases,
the number of nodes is enormous and the calculation becomes very extensive. Instead, the
approach used by Field II provides that the calculation of the acoustic field is carried out
only in the points considered. This makes the simulation for large spaces very efficient and
practically feasible.

However, this approach is partially limited. In fact, the software tool used does not
model some important effects in the field of indoor range, such as the phenomenon of reflec-
tion. Therefore, it is not possible to easily simulate the reflection of the signal, for example,
by acoustically reflective walls, and the phenomena caused by multipath propagation, such
as self-interference, typical of even partially reflective environments. Furthermore, the
simulator assumes that propagation occurs in free space without considering any obstacles
and near-line-of-sight situations. For these reasons, as explained, the simulation results
described below are obtained by considering an available line-of-sight between emitter
and receiver, and an environment without reflecting walls.

The transducer is represented as follows. The entire surface of the transducer is
divided into small rectangles, allowing a transducer surface and field approximations
much smaller than the size of the initial element; the smaller the rectangles’ size, the lower
the field approximation error. In fact, the distance to the field point is large compared to
the size of the rectangles. In general, the element size should be much smaller than the
wavelength of the signals used. The calculation is made considering that the rectangular
elements behave as if they were rectangular pistons, and knowing the exact impulse
response of each [32]. The impulse responses produced by each element at each desired
field point is the result of the emission of a spherical wave by each of the small elements [33].
The simulation includes diffractive acoustic phenomena, and the tool gives the possibility
to modify the shape and dimensions of the transducer, the signal emitted and to test any
ranging or positioning technique intended for application.

The effectiveness of the ranging technique proposed here is evaluated in a typical
4 × 4 × 3 m3 room [34]. The simulation results are computed on a grid of points belonging
to a vertical section A and a horizontal section B at an height of 1.5 m from the floor (see
plane Sections A and B of the room volume, Figure 2). The grid pitch is 5 cm in all directions.
In Figure 2, the boundary lines simply represent the extension of the room; however, walls,
ceiling, and floor are not considered, since the simulation tool works as if the emission
were in free space. The simulated setup has a disc transducer positioned in the center of the
ceiling, in position x = 0, y = 0, and z = 0, with the emitting side facing the floor of the room.
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The transducer central frequency is 20 kHz and it is immersed in air at a temperature of 20
◦C, a pressure of 1 atm, and a relative humidity of 55%. Air absorption coefficients of 0.416
dB/m @ 18 kHz and of 0.578 dB/m @ 22 kHz are assumed for the simulation [27]. These
values are purely exemplary, since in a real room they may vary from moment-to-moment
due to the variation, for example, of the RH. Indeed, to cope with this variability, the
proposed system measures the value of ω1 and ω2, online during its operation via, for
example, the auxiliary microphone (see Figure 1). Moreover, it should be noted that in a
real environment three or more digits for the attenuation coefficients are not warranted
and were used here for demonstration purposes only. Finally, it is assumed that the actual
RH, temperature, and pressure of the real room are sufficiently uniform everywhere.
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Figure 2. Simulation setup: horizontal and vertical plane sections of the typical 4 × 4 × 3 m3 room
along which the ranging calculations using cross-correlation are computed. The SNR is considered at
point P, at distance 1 m from the emitter surface center and on its emission axis.

The shape and size of the emission surface of the transducer determine the emitted
and received signals at all points in the space. In this work, circular plane transducers with
diameters of 5, 2.5, 1, and 0.5 mm were considered. The circular planar transducers are
divided into small square elements with sides 0.025 by 0.025 mm that were used for all the
simulations that follow. This element size is a good compromise between the accuracy of
the solution and computational resources involved in the simulations.

B. Numerical Results

A summation signal of two sinusoids at f 1 = 18 kHz and f 2 = 22 kHz and duration
10 ms was used as emitted signal for the simulations. The simulation was carried out
sampling the signal with a sampling frequency fS = 10 MHz, to ensure accurate results. In
a first step, the numerical simulation computes the acoustic pressure over time generated
by the superimposition of the two excitation signals, for each point of the space considered.
Subsequently, an ideal receiver is assumed that linearly transduces the pressure signal into
an electrical signal, which is then suitably down sampled to 100 kHz and quantized nu-
merically, to simulate a sampling process that is feasible in a real-world device. Finally, the
signal amplitudes at each point and the related ranges are calculated through Equation (12).
The coefficients α1 and α2 that appear in Equation (12) are calculated starting from the
attenuation experienced at point P by the two harmonic components of the signal. The
amplitudes A1 and A2 of the two components of the emitted signal were set equal using
a value of 1. In this first analysis, uniform white noise was added to the signals received
with a reference level of SNR 20 dB calculated at 1 m from the transducer on its emission
axis (see point P in Figure 2).

The simulation results are shown in the following figures. Figure 3 shows the ranging
error committed by using Equation (12) along the vertical section A for four decreasing
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transducer diameters: 5, 2.5, 1, and 0.5 mm. Figure 4 shows the ranging errors along
the horizontal section B for the same transducer diameters. Note the decreasing value
ranges reported by the color bars of each subplot when the transducer diameter decreases.
Figure 5 shows the cumulative distribution function CDF, i.e., the percent of readings with
error less than the value of a given abscissa, for the ranging error along the vertical Section
A (blue solid line) and the horizontal Section B (red solid line), respectively. Tables 1 and 2
summarize the ranging results of the four transducer diameters, reporting mean and
maximum ranging errors along the vertical and the horizontal sections, respectively. In
Table 1 it possible to appreciate the fast decrease of the mean and maximum error from
602.3 and 1919.2 mm down to 12.5 and 27.2 mm, respectively, when the transducer diameter
decreases from 5.0 down to 0.5 mm. In Table 2, with the smallest diameter, the mean and
maximum errors reach 11.2 and 27.5 mm, respectively.

C. Discussion

The results obtained clearly show that the proposed numerical method can provide
an estimate of the emitter–receiver distance without using the flight time, since the calcu-
lation of the ranging through Equation (12) considers only the relative amplitude of the
attenuation. The simulation was performed only for two frequencies. By simultaneously
using several sinusoids at different frequencies or a broadband signal, it is theoretically
possible to obtain a better result as an average of several measurements. The decrease in
the ranging error with the decrease in the diameter of the transducer is in agreement with
the hypotheses made. In fact, in deriving Equation (12), it was assumed that for frequencies
sufficiently close to each other it results D1

∼= D2, and this is especially true when the
emitter is reduced in diameter and approaches the isotropic point-like emitter. In fact, by
decreasing the diameter of the transducer, the spatial radiation pattern widens, becoming
increasingly smooth and similar for the two pulsations ω1 and ω2.
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Figure 3. Simulation results: the first column shows the ranging error along the vertical section A for
four decreasing values (5.0, 2.5, 1.0, 0.5 mm) of the transducer diameter. Note the decreasing value
ranges reported by the color bars when the transducer diameter decreases.

56



Sensors 2021, 21, 4963

Sensors 2021, 21, x FOR PEER REVIEW 10 of 13 
 

 

 

  
TRANSDUCER DIAMETER 5.0 mm TRANSDUCER DIAMETER 2.5 mm 

  
TRANSDUCER DIAMETER 1.0 mm TRANSDUCER DIAMETER 0.5 mm 

Figure 4. Simulation results: the ranging error along the horizontal section B for four decreasing 
values (5.0, 2.5, 1.0, 0.5 mm) of the transducer diameter. Note the decreasing value ranges reported 
by the color bars when the transducer diameter decreases. 

Table 1. Mean and maximum ranging error as a function of the transducer diameter along the 
vertical Section A. 

Transducer Diameter (mm) Range Absolute Mean Error 
(mm) 

Range Absolute Maximum Error 
(mm) 

5.0 602.3 1919.2 
2.5 171.5 524.4 
1.0 30.8 89.9 
0.5 12.5 27.2 

Table 2. Mean and maximum ranging error as a function of the transducer diameter along the 
horizontal Section B. 

Transducer Diameter (mm) Range Absolute Mean Error 
(mm) 

Range Absolute Maximum Error 
(mm) 

5.0 603.7 1015.7 
2.5 175.7 297.2 
1.0 32.4 63.4 
0.5 11.2 27.5 

 

-2 -1 0 1 2
x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 
(m

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
AN

G
E 

ER
R

O
R

 (m
)

-2 -1 0 1 2
x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 
(m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
AN

G
E 

ER
R

O
R

 (m
)

-2 -1 0 1 2
x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y 
(m

)

-0.04
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
0.04

R
AN

G
E 

ER
R

O
R

 (m
)

-2 -1 0 1 2
x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
y 

(m
)

-0.02

-0.01

0

0.01

0.02

R
AN

G
E 

ER
R

O
R

 (m
)

Figure 4. Simulation results: the ranging error along the horizontal section B for four decreasing
values (5.0, 2.5, 1.0, 0.5 mm) of the transducer diameter. Note the decreasing value ranges reported
by the color bars when the transducer diameter decreases.
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error less than the value of a given abscissa, for the ranging error along the vertical Section A (blue
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the transducer diameter.
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Table 1. Mean and maximum ranging error as a function of the transducer diameter along the vertical
Section A.

Transducer Diameter (mm) Range Absolute Mean Error
(mm)

Range Absolute Maximum
Error (mm)

5.0 602.3 1919.2
2.5 171.5 524.4
1.0 30.8 89.9
0.5 12.5 27.2

Table 2. Mean and maximum ranging error as a function of the transducer diameter along the
horizontal Section B.

Transducer Diameter (mm) Range Absolute Mean Error
(mm)

Range Absolute Maximum
Error (mm)

5.0 603.7 1015.7
2.5 175.7 297.2
1.0 32.4 63.4
0.5 11.2 27.5

In contrast, as shown in Figures 3 and 4, as one goes into the peripheral regions of
the acoustic field farthest from the emitter axis, the error increases since D1 and D2 differ
increasingly. In fact, the region where the error is minimized is the one where D1 is most
similar to D2, mainly around the axial region. This region, whose three-dimensional shape
resembles a cone, widens in space, decreasing the diameter of the transducer.

Certainly, the proposed method does not reach the level of ranging accuracy of many
proposed methods that use synchronization, but there are applications that will benefit from
the peculiar characteristics of this method, such as personal navigation in malls, airports
etc. Even with the accuracy limits discussed, the method still seems to be sufficiently
valid for a multiplicity of uses where a not too high accuracy is required, and when the
peculiar characteristics of the proposed method take on greater importance: (1) absence
of synchronization, which allows the use of a sensor HW of reduced dimensions, since
it does not have the RF section, and with less energy consumption compared to sensors
that use TOF-based techniques; (2) no limits on the distance measurement rate, since the
emitter can emit its signal to the sensor continuously, or with very frequent cycles—from
this point of view, the ranging rate is limited only by the onboard computing power; (3) no
limitation is imposed by this system architecture on the number of sensors that can coexist
in the region of space insonified by the same emitter; (4) the computation of Equation (12)
is much less onerous than the computation of a cross-correlation, used by the best ranging
techniques based on TOF. On these bases, a wide use of this technique is easily imaginable
on mobile devices such as smartphones, tablets, or even notebooks.

4. Conclusions

In this work, a new technique was presented to measure the distance between an
emitter and a receiver, which is not based on the time of flight, but is instead based on the
different attenuation levels that ultrasonic signals of different frequencies undergo when
propagating in the air.

The mathematical derivation of the technique was presented together with the valida-
tion of the hypotheses through the use of the Field II acoustic simulator. Simulations were
conducted assuming free space propagation, and with room temperature 20 ◦C, relative
humidity 55%, and atmospheric pressure 1 atm. The ranging error was calculated along
two sections of a typical 4 × 4 × 3 m3 room, one vertical and the other horizontal, at an
altitude of 1.5 m from the ground. The performance variation of the proposed technique as
a function of the diameter of the emitter was shown. Simulation results show that, using a
small diameter emitter aperture, 0.5 mm, and with sufficiently isotropic emission, a ranging
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error less than ±2.75 cm and a mean error 1.25 cm were achieved along the two room
sections considered.

Subsequently, the merits and limitations of the technique were discussed. The tech-
nique works in the absence of synchronization, without intrinsic limits on the distance
measurement rate, and with an unlimited number of sensors using the same emitter.
However, it does not reach, in its first implementation, the level of accuracy of other
measurement techniques based on, for example, cross-correlation. In contrast, this allows
for the design of sensors with reduced computational power and thus with reduced di-
mensions, since they do not require RF sections, and with less computational resources
and energy consumption than sensors that use correlation-based techniques. Above all,
the fact that it does not require synchronization between emitter and receiver makes this
technique imaginable on mobile devices such as smartphones, tablets, or even notebooks,
and embedded in chips for IoT or RFID.
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Abstract: We discuss two methods to detect the presence and location of a person in an acousti-
cally small-scale room and compare the performances for a simulated person in distances between
1 and 2 m. The first method is Direct Intersection, which determines a coordinate point based on
the intersection of spheroids defined by observed distances of high-intensity reverberations. The
second method, Sonogram analysis, overlays all channels’ room impulse responses to generate an
intensity map for the observed environment. We demonstrate that the former method has lower
computational complexity that almost halves the execution time in the best observed case, but about
7 times slower in the worst case compared to the Sonogram method while using 2.4 times less
memory. Both approaches yield similar mean absolute localization errors between 0.3 and 0.9 m.
The Direct Intersection method performs more precise in the best case, while the Sonogram method
performs more robustly.

Keywords: presence detection; passive localization; room impulse response; acoustic localization;
indoor localization

1. Introduction

Acoustic localization systems can provide, partly due to the comparably slower wave
propagation, a high accuracy indoors similar to radio-based solutions, which are not
covered by ubiquitous satellite signals of Global Navigation Satellite Systems (GNSS) [1–3].
For some applications, it may not be desirable to equip persons or objects with additional
hardware as trackers due to inconvenience and privacy reasons. Previously, we reported
coarsely about indoor localization by Direct Intersection in [4]. In this work, we report
in detail on two algorithms for this application and their performances. The proposed
system is categorized as a passive localization system [5] and is implemented solely with
commercial off-the-shelf (COTS) hardware components.

Echolocation, such as the method used by bats to locate their prey, is a phenomenon
where the reflected sound waves are used to determine the location of objects or surfaces
that reflect the sound waves due to a change in acoustic impedance. This concept has been
extensively used for various investigations in the physics and engineering fields, such as
sound navigation and ranging (Sonar) [6,7] and even using only a single transducer for
transmission and reception [8].
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We draw the approach from bats, which can perceive the incoming reflected wave’s
direction due to its precise awareness of head angle, body motion, and timing. While the
exhaustive echolocation method of bats is not completely understood, one of the more
obvious aspects is the back-scattered signals’ difference of arrival in time between left
and right ears, which can be used to calculate the incoming sound wave’s direction [9].
This approach differs from approaches that more generally detect changes in the systems
response of a medium, where the responses act like fingerprints. However, in application,
insignificant changes in a room may lead to distortions in the response. This makes a better
knowledge of the specific room necessary. In contrast, determining times-of-arrival of
back-scattered waves is less dependent on the complete impulse response; we therefore
chose this approach. We investigate two different algorithms based on the time difference
of arrival of the first-order reflection to interpret the returned signals in a small office room
of approximately 3 m× 4 m× 3 m similar to [10], which are characteristic for the strong
multipath fading effects that partially overlap and interfere with the line-of-sight rever-
berations [11]. The signal frequency employed in our experiment is significantly higher
than the Schroeder frequency; therefore, we can assume the sound wave behaves much
like rays of light [12]. The physiological structure and the shape of the binaural hearing
conformation of bats, together with the natural and instinctive ability to perform head
movements to eliminate ambiguities, enhances the echolocation and therefore guarantees
excellent objects spatial localization [13]. Our system setup is a fixed structure, and we
compensate the adaptive bats head movements by adding two additional microphones to
the system. Furthermore, we raise the question of the performance of two approaches and
compare the memory consumption and execution time.

The detection of more than one person or object is not investigated in this work.

2. Related Work

Indoor presence detection may be achieved through a variety of different technologies
and techniques. For one, radio-frequency (RF)-based approaches have been implemented.
In general, these may be classified into two different employed techniques: received signal
strength indicator (RSSI)- and radio detection and ranging (Radar)-based approaches. The
former offers low-complexity systems with cheap hardware [14,15], whereas with the
latter one, higher accuracy may be achieved [16]. The other main concept employed in
indoor presence detection is using ultrasonic waves, which are applied in active trackers
indoors [17,18] and even underwater [19,20]. An entirely passive approach, as in [21],
generally analyzes audible frequencies, which can include speech and potentially violate
privacy regulations, similar to vision-based approaches. Acoustic solutions, which operate
close to or in the audible range, can be perceived by persons and animals alike, which may
cause irritation and in the worst case harm [22]. Therefore, special care has to be invested
in designing acoustic location systems. While radio-based solutions are less critical in this
concern, due to the fact that most organisms lack sensitivity to radio frequency signals,
the frequency allocation is much more restrictive due to licensing and regulations. While
LIDAR systems are highly accurate, but comparably costly, other light-based systems have
gathered interest again, due to their high accuracy potential, with low systems costs and
power consumption [23].

2.1. RF-RSSI

Mrazovac et al. [24] track the RSSI between stationary ZigBee communication nodes,
detecting changes to infer a presence from it. In the context of home automation, this
work is used to switch on and off home appliances. Seshadri et al. [15], Kosba et al. [14],
Gunasagaran et al. [25], and Retscher and Leb [26] analyze different signal strength features
for usability of detection and identification using standard Wi-Fi hardware. Kaltiokallio
and Bocca [27] reduce the power consumption of the detection system by distributed RSSI
processing.
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This technique was then improved by Yigitler et al. [28], who built a radio tomographic
map of the indoor area. The difference from the previously sampled map of RSSI values
is the notification of a presence or occupancy. This general concept is known in the field
of indoor localization as fingerprinting. Hillyard et al. [29] utilize these concepts to detect
border crossings.

2.2. RF-Radar

Suijker et al. [30] present a 24 GHz FMCW (Frequency-Modulated Continuous-Wave)
Radar system to detect indoor presence and to be used for intelligent LED lighting systems.
An interferometry approach is implemented by Wang et al. [16] for precise human tracking
in an indoor environment. Another promising approach in the RF domain is, instead
of using a time-reversal approach (as Radar does), deriving properties of the medium
(and contained, noncooperative objects) by means of wave front shaping as proposed
by del Hougne et al. [31,32]. This approach would also in principle be conceivable in the
acoustic wave domain.

2.3. Ultrasonic Presence Detection and Localization

A direct approach to provide room-level tracking is presented by Hnat et al. [33]. Ul-
trasonic range finders are mounted above doorways to track people passing beneath. More
precise localization can be achieved by using ultrasonic arrays as proposed by Caicedo and
Pandharipande [9,34]. The arrays’ signals can be used to obtain the range and direction-of-
arrival (DoA) estimates. The system is used for energy-efficient lighting systems. Pandhari-
pande and Caicedo [7] enhanced this approach to track users by probing and calculating the
position via the time difference of arrival (TDoA). Prior to that, Nishida et al. [35] proposed a
system consisting of 18 ultrasonic transmitters and 32 receivers, embedded in the ceiling of a
room with the aim to track elderly people and prevent them from experiencing accidents. A
time-of-flight (ToF) approach was proposed by Bordoy et al. [36], who used a static co-located
speaker-microphone pair to estimate human body and wall reflections. Ultrasonic range
sensing my be combined with infrared technology, as has been done by Mokhtari et al. [37],
to increase the energy efficiency. In lower frequency regimes, the resonance modes of a room
start to dominate the measured signals. This fact may be used to deduce source locations as
proposed by Nowakowski et al. [38] (cf. [39,40]).

2.4. Ultrasonic Indoor Mapping

Indoor mapping and indoor presence detection are two views of the same problem. In
both instances, one tries to estimate the range and direction for a geometrical interpretation.
Ribeiro et al. [41] employ a microphone array co-located to a loudspeaker to record the
room impulse response (RIR). The multiple reflections can be estimated from this RIR with
the use of l1-regularization and least-squares (LS) minimization, and a room geometry
can be inferred, achieving a range resolution of about 1 m. A random and sparse array
of receivers is proposed by Steckel et al. [42] for an indoor Sonar system. In addition to
that, the authors use wideband emission techniques to derive accurate three-dimensional
(3D) location estimates. This system is then enhanced with an emitter array to improve
the signal-to-noise-ratio (SNR) [43]. Another approach, implementing a binaural Sonar
sensor, is proposed by Rajai et al. [44]. A sensor was used to detect the wall within a
working distance of one meter. In a recent work by Zhou et al. [45], it is shown that a
single smartphone with the help of a gyroscope and an accelerometer can be used to derive
indoor maps by acoustic probing. Bordoy et al. [46] use an implicit mapping to enhance
the performance of acoustic indoor localization by estimating walls and defining virtual
receivers as a result of the signals’ reflections.

2.5. Algorithms

The first set of methods, which are broadly applied are triangulation algorithms as
described by Kundu [47]. In this work we focus on two Maximum-Likelihood approaches,
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similar to the one proposed by Liu et al. [48]. The first one, Direct Intersection (DI), uses
a Look-up-Table (LUT) and spheres inferred from the sensors delay measurements with
error margin [49], while the other one, the Sonogram method, populates a 3D intensity
map with probabilities to find likely positions of the asset. Since the approaches of the
two methods are different, it is likely to expect different outcomes in accuracy, precision,
computational complexity, and memory requirements.

3. System Overview

The system consists of a single acoustic transmitter, a multi-channel receiver, a power
distribution board, and a central computer to analyze the recorded signals. Four micro-
phones are placed equidistantly around the speaker and connected to the receiver board.
The set-up is shown in Figure 1 as it was used for the experiment reported below.

µC
D

A

D

A

µCPC
A

D

A

D

stx

s1

sK

sfb

Figure 1. Schematic representation of the system.

3.1. Signal Waveform

Due to their auto-correlation properties and the ability to maximize the Signal-
to-Noise-Ratio (SNR) without increasing acoustic amplitude, swept-frequency cosine,
i.e., frequency modulated chirp signals, perfectly fit our case-study [50]. Auto-correlated
frequency-modulated chirps are able to provide compressed pulses at the correlator output,
whose width in time space is defined as follows [51]:

Pw =
2
B

. (1)

The frequency-modulated signal employed in our experiments, xTx(t), is mathemati-
cally defined as follows:

stx(t) =

{
A cos(2πφ(t)), for 0 ≤ t ≤ Ts

0, otherwise
, with (2)

φ(t) =
fend − fstart

2Ts
t2 + fstartt, (3)
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where A denotes the signal amplitude, fstart is the start frequency, fend the end frequency,
B = fend − fstart the frequency bandwidth, Ts is the pulse duration, and φ(t) the instanta-
neous phase. The chirp instantaneous frequency is defined as follows:

f (t) = fstart +
fend − fstart

Ts
t, 0 ≤ t ≤ Ts. (4)

Taking into account the hardware characteristics of our setup, we selected a linear
up-chirp pulse with amplitude A = 1, Ts = 5 ms, fstart = 16 kHz, and fend = 22 kHz,
which result in a time-bandwidth product of T B = 30. The frequency response of a
chirp signal directly depends on the Time-Bandwidth (T B) product. For chirps with
T B ≥ 100, the pulse frequency response is almost rectangular [52]. However, due to the
hardware limitation of our setup, which do not allow a high (T B) product, the frequency
response will be characterized by ripples. In order to mitigate the spectrum disturbances,
we consider a window in the time domain the transmitted chirp pulse with a raised cosine
window [52]. The frequency band, chirp length, and shaping window were chosen to
minimize the system affecting persons and animals in hearing range. We implemented
chirps, due to their property of spreading the signals energy over time compared to a single
pulse to limit the maximal amplitude and resulting harmonics. While young and highly
audio-sensitive people can in principle hear these frequencies, the short signal length of
5 ms compared to the repetition interval of 1000 ms further reduces the occupation of the
low ultrasonic channel. Generally speaking, higher amplitudes and lower frequencies
potentially increase the operation range of the system, but this comes at a health risk for
humans and animals, which we seek to avoid.

3.2. Hardware Overview

To obtain 3D coordinates with static arrangement, a four-element microphone array
is sampled, as well as a feedback signal. This array records the incoming echo wave with
different time of arrival, depending on the incoming signal direction. Since unsuitable
hardware can affect the system’s performance [53], both the microphones and speaker were
tested for correct signal generation and reception in an anechoic box.

3.3. Data Acquisition

Each microphone’s signal was preconditioned before the digitization by the multi-
channel analog-to-digital converter, which was chosen to provide each channel with the
identical sample-and-hold trigger flank before conversion. Each frame consists of the signal
from each microphone and a feedback, which is recorded as an additional input to estimate
and mitigate playback jitter. The first layer of digital signal processing is to compress the
signal, extracting the reverberated acoustic amplitude over time and removing the empty
room impulse response (RIR).

3.3.1. Channel Phase Synchronization

Initially, we calculate the convolution of the feedback channel signal sfb with our
known reference signal sref in its analytic form to obtain the RIR and retrieve the time of
transmission from the compressed signal yfb, as shown in Equation (5), where j denotes the
imaginary unit.

yfb = |(sfb ~ sref) + j · H(sfb ~ sref)| (5)

This compressed analytic form yfb of the feedback signal sfb (see Figure 1) ideally
holds only a single pulse from the transmitted signal, if the output stage is impedance
matched. Searching for the global maximum returns both time of transmission and the
output amplitude.

aout = max
t−→t0

yfb(t) (6)

In the following, we refer to the start time of a transmission as t0, all other channels’
time scales are regarded relative to t0. Therefore, the signals of the microphone channels
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are truncated to remove information prior to the transmission. The ring-down of small
office rooms is in the order of 100 ms, so the repetition interval of consecutive transmissions
is chosen accordingly to be larger. This prevents leakage of late echos into the following
interval, which would result in peaks being recorded after the following interval’s line-of-
sight. The remaining signal frames from all microphones are compressed with the same
approach as the feedback channel, shown in Equations (5) and (6), to extract each channel’s
compressed analytic signal yi and line-of-sight detection time ti.

3.3.2. Baseline Removal

In the following, we refer to the acoustic channel response after the line-of-sight as
the echo profile. An example of such echo profiles is shown in Figure 2. While the line-of-
sight signal ideally provides the fastest and strongest response, large hard surfaces, like
desks, walls, and floors return high amplitudes, which are orders of magnitude above
a person’s echo. For a linear and stable channel, we can reduce this interference from
the environment by subtracting the empty room echo profile from each measurement,
following the approach of [54]. This profile loses its validity if the temperature changes,
the air is moving, or objects in the room are moved, e.g., an office chair is slightly displaced.
A dynamic approach to create the empty room profile is updating an estimation, when
no change is observed for an extended time or alternatively using a very low-weight
exponential filter to update the room estimation. In this work, the empty office room
was sounded N times directly before each test and averaged into an empty room echo
profile ȳ◦i for each channel i as denoted in Equation (7), to assure unchanged conditions
and reduce the complexity of the measurements. The removal itself is then, as mentioned
above, the subtraction of the baseline from each measurement, as in Equation (8), under
the assumption of coherence.

ȳ◦i = mean(y◦i ) (7)

ỹi = yi − ȳ◦i (8)

Figure 2. Exemplary magnitude plot of the compressed analytic signal, i.e., RIR, with (top) the
baseline drawn from an previous recording of the empty room, (middle) the room with a person in
it, and (bottom) the difference of the two above. The red highlighted line in the center marks the area
of interest due to geometric constraints. Note the changed scale of the ordinate in the bottom plot.
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3.3.3. Time-Gating

For our approach we assume some features of the person, such as being closer to
the observing system compared to the distant environment objects, like chairs, tables and
monitors, while another area of reverberations is in the close lateral vicinity of the system,
consisting, e.g., of lamps and the ceiling. This is exploited by introducing a time gate,
which only allows for non-zeros values in the interval of interest as in Equation (9) (also
compare Figure 2).

ỹtg,i =

{
ỹi, for tmin < t < tmax

0, otherwise
(9)

Another assumption is that of a small reverberation area on the person. We assume
the points of observation from each microphone to be sufficiently close on a person to
overlap. The latter assumption introduces an error, which limits the precision of the
system in the order of 10 cm [55], which we deem sufficient for presence detection, as a
person’s dimension is considerably larger in all directions. This estimation is based on
the approximate size of a person’s skull and its curvature with respect to the distance
to the microphones and their spacing. The closer the microphones and the further the
distance between head and device, the more the reflection points will approach each other.
If we regard a simplified 2D projection, where a person with a spherical head of radius
rH ≈ 10 cm moves in the y-plane only, the position of a reflection point R = (xR, zR) on
the head can be calculated by

xR = xC − rH sin (αR), and

zR = zC − rH cos (αR),
(10)

where xC and zC are the lateral and vertical center coordinates of the head and αR is the
reflection angle. The latter is calculated through

αR = tan−1 xC + dM
2

zC
, (11)

with the distance dM between the microphone and sender. The origin is set as the speaker
position. By geometric addition, the distance between two such reflection points can be
calculated and reach the maximum value if the head moves towards the center. In this case,
the reflection points would be on the opposing sides of the head and result in a mismatch
of 2 rh. The other extreme is laterally moving to a infinite distance, which increases the
magnitude of xC, while the distance between microphone and speaker stays constant;
therefore, the reflection points converge to a single point of reflection. In this work, the
distance between head center and speaker remained above 120 cm, with a projected error
distance of about 1.3 cm.

3.3.4. Echo Profile

During the experiment, the reflected signals from the floor, walls, tables, and chairs
have a very high amplitude. This interference can lead to masking the echo from the target
object. To reduce the effect of the interference, the empty room profile is used to subtract
the target impulse response from the input impulse response. If we define the reflection
from objects other than the target object as noise, we can increase the signal-to-noise ratio
with this method. The empty room impulse response is also called empty room echo profile
in this work. In Figure 2, the upper plot is the empty room impulse response, where the
experiment room is cleared of most clutter. The middle plot is the room with single static
object as target, shown in Figure 3. The lower plot shows the result of subtraction between
the the second and first plot, and the scale is adjusted for clarity.
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stx

s2s3

s4 s1

dMM

Figure 3. Experimental setup for K = 4 receivers spaced by dMM ≈ 0.2 m. The transmitted signal stx

is observed as reflected signals si by the system located near the ceiling of the room.

3.3.5. Distance Maps

Look-up tables are calculated before the experiment to estimate the travel distance of a
signal from the speaker to each microphone under the assumption of a direct reverberation
from a point at position ~x in the room and linear beam-like signal propagation. This grid is
formed by setting the center speaker as origin and spanning up a 3-dimensional Cartesian
coordinate system of points ~x through the room in discrete steps. We limit the grid to the
intervals X1 to X3 in steps of 1 cm to decrease the calculational effort and multipath content
under the prior knowledge of the rooms geometry as follows:

~x = (x1, x2, x3) ∈ X, where

X = {X1 × X2 × X3} ⊂ R3.
(12)

The look-up table approach serves to minimize the processing time during execution.
The distance maps provide pointers to convert from binary sampling points to distance
points. Each sub-matrix contains the sum of distance between each point in the room to the
corresponding ith microphone at the position ~xM,i and to the speaker at position ~xS, which
cover the flight path of the echoes, as in Equation (13):

Mi(~x) = ‖~x−~xS‖+ ‖~xM,i −~x‖. (13)

Therefore, the resultant entries in matrices M depend on the geometric arrangement
of speaker and microphones, and the matrix size corresponds to the area of detection, as in
Equation (12).
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3.4. Data Processing
3.4.1. Direct Intersection

The main assumption for this approach (Algorithm 1) is that the highest signal peak in
the observation window of each channel indicates the position of interest, as visualized in
Figure 2. Each channels’ peak index defines the radius ri of a sphere around each microphone,
which is contained in the point cloud Li. While ideally those spheres overlap in exactly
the point of reverberation, in practical application, where noise, interference, and jitters are
present, this is not the case. To compensate this error, we pad the sphere by ∆r additional
points in the radius until all spheres overlap and the unity of valid estimation points UL is not
empty. The sphere radius widening ∆r can be used as an indication of each measurement’s
quality, as a low error case will require little to no padding, while in high-error cases, the
required padding will be large. Another approach is to use a fixed and small padding, which
will ensure only measurements of high quality to be successful, but will fail for high error
scenarios.

Algorithm 1: Direct Intersection Estimation [56,57].
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
∆r ← 0 // initial estimation tolerance
NOL ← 0 // number of overlapping points
for i = 1 to K do

ri ← maxn→ri ỹtg // get index of peak
Ri ← {ri}

while (NOL = 0) & (∆r < ∆rmax) do
∆r++
for i = 1 to K do

Ri ← {ri − ∆r, Ri, ri + ∆r} // recursively add width
Li ← isMember(Mi, Ri) // select points by radius [56]

UL ← (L1 & . . . & LK)
~xOL ← ind2sub(size(UL), find(UL)) // wrap into 3D coordinates [57]
NOL ← min(length(~xOL))

~xest = mean(~xOL)

3.4.2. Sonogram

The Sonogram approach (Algorithm 2) leverages available memory and processing
power to build a 3D intensity map. This approach utilizes the entire echo profile differ-
ence shown in Figure 2 (bottom) and maps them into the 3D distance map explained
in Section 3.3.5, with the assumption that the highest peak corresponds to the source of
reverberation. The multiplication of impulse amplitude that corresponds to the same coor-
dinates is used as an indication of possible reverberation source. Therefore, the maximum
result would have the highest likelihood of being the reverberation source location.
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Algorithm 2: Sonogram Estimation [58,59].
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
ỹ+ ←

{
ỹtg > 0

}
// remove negative intensities

forall ~x do
I(~x)← ∏K

i=1 ỹ+,i(Mi(~x))

Ax1 ← maxx1∈X1(I) // 2D matrix
~ax2 ← maxx2∈X2(Ax1) // 1D vector
x3,est ← maxx3∈X3(smooth(~ax2)) // scalar, moving average smoothed [58]

x2,est ← find(~ax2, x3,est) // select first matching value [59]
x1,est ← find(Ax1, {x2,est, x3,est})
~xest ← (x1,est, x2,est, x3,est)

4. Experiments
4.1. Set-Up

In the experiment, we use a mock-up representing a person’s head as the experiment
target. The hard and smooth surface of the object is intentional for the sake of usability and
to remove unintended movements from our measurements at this early stage. In the set-up
shown in Figure 3, the central speaker emits the well-known signal stx, and the reflected
echoes from the target s1 to s4 are recorded by the microphone array around the speaker.
The depiction in Figure 3 is exaggerated for clarity.

Table 1 shows the spherical coordinates, i.e., radial distance r, azimuth angle θ, and
elevation angle φ of the target inside the room, with the center of the device as the ref-
erence point. The device is positioned on the ceiling, oriented downward. For each
position, we measure the distance for the assumed acoustic path with a laser distance meter
Leica DISTOTM D3a BT for reference. As mentioned above, the coordinate system’s
point of origin is set to the center of the device, the x-axis is set perpendicular to the
entrance door’s wall, and increasing towards the right, the y-axis is parallel to the line of
sight from the door and increasing towards the rear end of the room, and the z-axis is zero
in the plane of the device (upper ceiling lamp level) and decreasing towards the floor. The
two-dimensional depictions are shown in Cartesian coordinates to provide clarity, while
the detection results are done in spherical coordinates.

Table 1. Reference Positions.

Position r (m) θ (◦) φ (◦)

1 1.58 77 59
2 1.70 −92 57
3 1.23 −35 54
4 1.26 169 54

4.2. Results
4.2.1. Room Properties and Impulse Response

In preparation for the later experiments, we sounded the room 100 times as described
in Section 3.3.2 to record the baseline profiles shown in Figures 4 and 5. This recordings
were taken one time and served as a reference for all later experiment runs. During the
recordings, the room was left closed and undisturbed.
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Figure 4. Empty room’s impulse response magnitude of a linear chirp (Ts = 5 ms, 16 to 22 kHz)
in logarithmic scale for all 4 channels s1 to s4. The red line indicates the mean response over
100 measurements, with a linear fit indicated by a black dashed line in the interval between 13 to
94 ms (dotted vertical lines) to approximate the reverberation time constant Trev of the room, given
in the legend of each channel’s subplot. The upper horizontal dotted line indicate the fit’s level at
t = 13 ms, while the lower indicates an additional drop by −20 dB.

Figure 5. First 20 ms of the empty room’s amplitude response for all 4 channels s1 to s4. The red line
indicates the mean response over 100 measurements, the grey envelope the ±3σ region. The first
peak marks the line-of-sight arrival time and is used for time synchronization.

The room exhibits a different room response for each microphone, as illustrated in
Figure 4. We divide the response into four parts: line-of-sight, free space transition, first
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order echoes, and higher order echoes, i.e., coda [60]. The signal remains in the room for
more than 100 ms, before it drops below the noise floor. The definition of the reverberation
time from Sabine requires a drop of the sound levels below −60 dB [61,62], for which
the low signal-to-noise ratio of less than 24 dB does not suffice. Therefore, we adapted a
fractional model and extrapolated the reverberation from a drop of 20 dB. The resulting
mean reverberation time of the room is approximately T̄rev ≈ 445 ms, which corresponds to
a dampening factor δ ≈ 15.5 s−1 and a Schroeder frequency of approximately fsch ≈ 230 Hz,
which is far below the transmission band. In this work, we focus on the response in the
parts-free space transition and first-order echoes to estimate a person’s position. A close-up
of the first three parts of the room response is shown in Figure 5.

The recordings still show significant variances in each channel at varying positions,
e.g., in the uppermost subplot of Figure 5 from 15 to 16 ms. Below 8 ms, these intervals
with increased variances do not occur, indicating a stable channel. The signals’ interval
close to zero contains strong wall and ceiling echos. Note the very strong reverberation
peak at 12.5 to 13.5 ms that is caused by the floor. As our area of interest does not fall within
this distance, we omit it for analysis as well. Hence, the time-gate limits as introduced in
Section 3.3.3 are tmin = 3 ms and tmax = 8 ms.

If we transfer the room dimensions into the wavelength space, hence

Λ =
l

λg
=

` fg

c
, (14)

with c as the speed of sound and l the room dimensions in the respective Cartesian direction,
we can draw an estimator from [63] for the number of modes below the reference frequency
fg as

Nmode =
4 π

3
(
Λx Λy Λz

)
+

π

2
(
Λx Λy + Λy Λz + Λz Λx

)
+

1
2
(
Λx + Λy + Λz

)
. (15)

This lets us calculate approximately 15× 106 modes below 16 kHz and 40× 106 modes
below 22 kHz, which leaves about 25× 106 modes in the sounding spectrum in-between. If
we regard the number of eigenfrequencies below the Schroeder frequency, Equation (15)
yields Nsch ≈ 73 modes that strongly influence the sound characteristics of the room [64].

4.2.2. Direct Intersection

The localization by Direct Intersection from all 100 runs is shown for each of the
four reference positions in Figure 6. While the statistical evaluation is performed in spher-
ical coordinates due to the geometric construction during the estimation, this overview
plots, as well as those for the Sonogram localization are drawn in Cartesian coordinates
that allow for easier verification and intuitive interpretation. The lateral spread of the
estimation point cloud in Figure 6 1 is misleading as the points are situated on a sphere
around the origin. The projected lateral extent is almost entirely due to the angular errors.
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Figure 6. 2D projection of 100 estimations of 3D positions 1 to 4 by Direct Intersection. The single
estimations are indicated by the black circled markers, the red cross marks the Cartesian averaged
position and is highlighted by the red line to the origin, and the green diamond indicates the reference
position. The points’ infill is proportional to the observed intensity relative to the radius spreading
(darker is higher).

Positions 1 and 2 show a distance estimation deviation of σr ≈ 10 cm, as well
as azimuth and elevation angle errors of σθ ≈ σŒ < 5◦ for both Direct Intersection and
Sonogram localization (compare Tables 2 and 3). For positions 3 and 4 , which are
situated closer to the desks, the deviation increases to almost 40 cm in distance and almost
arbitrary azimuth angles with a σθ ≈ 120◦ and more, but a far less affected elevation angle
estimation with a σθ < 10◦. The deviations are calculated around the mean estimator for
each value. For simplicity of interpretation, the mean error for each dimension is shown in
Section 4.2.3.

Table 2. Direct Intersection Estimated Positions.

Position r (m) θ (◦) φ (◦)

1 1.83 ± 0.14 81 ± 4 61 ± 1
2 2.01 ± 0.11 −100 ± 3 61 ± 1
3 1.92 ± 0.37 4 ± 96 59 ± 4
4 2.12 ± 0.25 −58 ± 135 60 ± 3

Table 3. Sonogram Estimated Positions.

Position r (m) θ (◦) φ (◦)

1 1.85 ± 0.10 80 ± 4 58 ± 2
2 2.03 ± 0.11 −100 ± 3 60 ± 2
3 1.77 ± 0.26 −41 ± 69 47 ± 7
4 1.96 ± 0.34 31 ± 119 51 ± 9
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The error distributions for each dimension are shown in Figure 7, where each column
depicts one of the spherical dimensions (radius, azimuth angle, and elevation angle), while
each row represents the results from the reference position indicated to the left of the plot.
For the first two positions, the distributions are almost unimodal, but for the latter two, this
does not hold true, making the mean value and standard deviation unsuitable estimators.

Figure 7. Histograms of the error in estimation compared to the reference over 100 localization
repetitions at each position by DI (blue) and Sonogram (red) estimation. Each row depicts the
3 degrees of freedom for each position.

The distribution of the error in the absolute distance between the estimated positions
and reference positions (see Figure 8) is likewise a few dozen centimeters for the first two
cases, but around 1 m for the latter two. If we recall the reference positions from Table 1,
the true distances are between 1 and 2 m, which puts the error in the same order as the
expected value.

Figure 8. Histograms of the absolute distance error in estimation compared to the reference over
100 localization repetitions at each position by DI (blue) and Sonogram (red). Each row depicts the
3 degrees of freedom for each position.
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The Direct Intersection method allows for an investigation into the time variance of
the detected maximum peak, which is depicted in Figure 9. In the first two cases, we
observe unimodal distributions of around 10 samples in width, while the latter cases show
detected peaks all over the interval.

Figure 9. Histograms of the highest peak position of each microphone’s channel over 100 localization
repetitions at each position by DI. Each row depicts the 3 degrees of freedom for each position.

4.2.3. Sonogram

The Sonogram localization on the same data as before in Section 4.2.2 is shown in
Figure 10 for all four cases. The lateral distribution of the estimated locations is not
following the spherical shape as closely as is the case for those by Direct Intersection
estimations (compare, e.g., Figure 6 1 ).

Figure 10. The same position estimation plot as in Figure 6 for positions 1 to 4 but by Sonogram. The
reference position is given by the green diamond, the averaged estimation by the red cross, and each circle
represents a single estimated position. The circles’ infill is proportional to the observed intensity.
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Similar to before, the method performs well in the cases 1 and 2 , exhibiting small
deviations (see Table 3), but far less precise with the largest deviation increase in the
azimuth angle as well. The corresponding mean errors to the reference positions are listed
in Table 4.

Table 4. Mean Error for Direct Intersection and Sonogram.

Direct Intersection Sonogram
Position r (m) θ (◦) φ (◦) r (m) θ (◦) φ (◦)

1 0.25 3 2 0.27 2 1
2 0.31 8 4 0.34 8 3
3 0.69 39 5 0.53 6 7
4 0.87 47 6 0.70 138 3

The cases 3 and 4 display two larger clusters of estimated positions, which leads to
the bimodal error distributions in Figure 7.

The absolute error is similarly distributed around lower values for the former two cases
and widely spread for the two latter cases (see Figure 8). Note that the error distribution
plots for the Sonogram are of slightly different horizontal scale, as no errors below 20 cm
were observed, while the observed maximal error exceeds 200 cm.

Lastly, the performance of both algorithms with regard to execution time is listed in
Table 5 and mean required memory in Table 6. The distribution of those measures is shown
in Figures 11 and 12. The Direct Intersection method requires roughly 2.4× less memory
than the Sonogram localization. With a best-case mean execution time of 0.66 s, the former
algorithm is almost 1.7× faster than the best case mean of the latter method, while the
worst-case mean—almost unchanged for the Sonogram approach—is with a factor of 7.1
for the Direct Intersection by far slower than the worst case mean execution time of the
Sonogram method.

Table 5. Runtime Performance: Time.

Direct Intersection Sonogram
Position Time (s) Time (s)

1 0.94 ± 0.17 1.14 ± 0.07
2 0.66 ± 0.13 1.20 ± 0.02
3 6.38 ± 6.60 1.10 ± 0.01
4 8.58 ± 7.12 1.10 ± 0.01

Table 6. Runtime Performance: Memory.

Direct Intersection Sonogram
Memory

(×108 bit
)

Memory
(×108 bit

)

1.600 ± 0.004 3.840 ± 0.002
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Figure 11. Histograms of the execution time of 100 localization repetitions at each position by DI
(blue) and Sonogram (red).

Figure 12. Histograms of the memory allocation during 100 localization repetitions at each position
by DI (blue) and Sonogram (red).
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The Direct Intersection execution time varies strongly, as we observe it anywhere
between 0.25 and 25.0 s; thus, without further limitations, it does not allow for a well-
confined prediction of the localization algorithm’s execution time.

5. Discussion
5.1. Localization

The localization methods discussed in Section 4 are based on the time of arrival of the
line-of-sight reflection from the target. This is possible because the frequency-modulated
signal in our experiments is significantly higher than the Schroeder frequency of the room.
The Direct Intersection method provides throughout all cases distance estimations that
are too short, while the Sonogram-based localization returns distance estimations that are
longer than the reference (compare Figure 7). Regarding the absolute error distribution,
we observe that the Direct Intersection method performs more accurately, especially in the
better cases 1 and 2 , as well more precise in the first three of the four observed cases, as
drawn from Figure 8. The possible cause of the degradation of both methods performance
for cases 3 and 4 is in the peak detection algorithm, as Figure 9 shows a wide error range
of detected possible peaks. While this was observed specifically for the Direct Intersection
method, this also implies the low signal-to-noise ratio of the underlying echo profile, and
consequently also affects the Sonogram estimation. Interestingly, the lower estimation
errors for cases 1 and 2 implicate a better performance for the larger distances than
the closer ones, which is counter-intuitive from a power perspective, but if we recall the
empty room impulse responses shown in Figure 5, where noise is included as the curves’
variance, and compare it to the magnitudes of a person’s signal in Figure 2, the difference in
magnitude is in the same order. For higher distances, the variance increases, as fluctuations
in the speed of sound cause phase distortions, but for lower distances, interference effects
dominate. The frequency band of the chirp between 16 and 22 kHz sets the wavelength
range to approximately 2.2 to 1.6 cm, which is close to the distance between reflection
points on a person’s head, as shown above in Section 3.3.3. Proximity to objects increases
interference as well, which explains the lower performance in the closer positions 3 and
4 , where the projected distance onto the sensor system’s aperture between the person and

the wall, screen, and desk is reduced. If we regard the error distributions of each position
in Figure 7 again, the angles and distances roughly fit non-line-of-sight paths, especially
for the Sonogram method.

5.2. Performance

The Direct Intersection method requires less than half the memory for its computations
compared to the Sonogram method, as the information is very early condensed in the peak
selection part of the algorithm. The index look-up is in itself a cheap operation, but due
to the sphere-spreading loop to decrease the probability of the algorithm not returning
any valid position at all, comes at higher execution duration. The observed worst case for
Direct Intersection is with 25 s so high that no real-time tracking is possible anymore. If we
look closer at Figure 6 3 , we see that the estimation point gray scale infill is proportional
to the inverse spreading factor, so darker colors mean less radial spread before intersecting
points could be found. The notion that including strong outliers by allowing the sphere
thickness to be spread so far is not confirmed if we consider Figure 6 4 .

6. Conclusions

Both methods show mean distance estimation errors ranging between approximately
0.3 and 0.9 m for objects in distances between 1.2 and 1.7 m, with angular errors between 2◦

and 138◦ in azimuth, 1◦ and 7◦ in elevation. The Sonogram Estimation allows for analysis
of room response in more detail, and the results are more accurate (i.e., average error) in
three out of four observed cases, but inversely, the precision (i.e., error variance) of the
Direct Intersection is higher in three of the cases. The Direct Intersection method allows for
less expensive computation by reducing maximum radius spreading, while the Sonogram
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method’s cost can be reduced effectively by limiting the vertical search interval, e.g., to
the clutter free area above the desks. For a full-range sounding of the room, we observed
that the locations close to the clutter area are estimated worse regarding both accuracy and
precision. For a pragmatic operation on hardware with higher memory limitations the
Direct Intersection method will perform faster and with similar precision and accuracy, and
can be limited in execution time by restricting the sphere radius spreading at the cost of not
being able to estimate the position for several intervals. We esteem further investigation
into limiting the degradation of the estimation process by single unreliable channels as
most promising for improving passive acoustic indoor localization.
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Abstract: Wi-Fi-based indoor positioning systems have a simple layout and a low cost, and they
have gradually become popular in both academia and industry. However, due to the poor stability
of Wi-Fi signals, it is difficult to accurately decide the position based on a received signal strength
indicator (RSSI) by using a traditional dataset and a deep learning classifier. To overcome this
difficulty, we present a clustering-based noise elimination scheme (CNES) for RSSI-based datasets.
The scheme facilitates the region-based clustering of RSSIs through density-based spatial clustering
of applications with noise. In this scheme, the RSSI-based dataset is preprocessed and noise samples
are removed by CNES. This experiment was carried out in a dynamic environment, and we evaluated
the lab simulation results of CNES using deep learning classifiers. The results showed that applying
CNES to the test database to eliminate noise will increase the success probability of fingerprint
location. The lab simulation results show that after using CNES, the average positioning accuracy of
margin-zero (zero-meter error), margin-one (two-meter error), and margin-two (four-meter error)
in the database increased by 17.78%, 7.24%, and 4.75%, respectively. We evaluated the simulation
results with a real time testing experiment, where the result showed that CNES improved the average
positioning accuracy to 22.43%, 9.15%, and 5.21% for margin-zero, margin-one, and margin-two
error, respectively.

Keywords: fingerprint-based indoor positioning; clustering; RSSI; CNN

1. Introduction

With the increase in demand for location-based services, high-precision indoor posi-
tioning for smartphones has acquired importance internationally. While the global posi-
tioning system (GPS) can be used for positioning in outdoor environments, the reception of
GPS signals is poor indoors. Consequently, indoor positioning is challenging. Scholars at
home and abroad have proposed many indoor positioning systems for solving the indoor
positioning problem, but problems pertaining to their applicability, stability, and expansion
persist. On the basis of technology, indoor positioning methods for smartphones can
be classified into wireless-network-based, measurement-based sensor, and vision-based
positioning methods [1–3]. In particular, wireless network-based positioning methods
mainly use Wi-Fi, Bluetooth, etc. [4–6], among which Wi-Fi positioning is the most widely
used positioning method in the literature. There are two main strategies for positioning
using Wi-Fi. One is to use a signal propagation model to determine the received signal
strength indicator (RSSI), or a channel state information of the Wi-Fi signal to calculate
the distance to the access point (AP) for positioning. Another involves constructing a
Wi-Fi fingerprint map and using the current Wi-Fi signal to match the fingerprint map to
estimate the position [7,8]. This type of fingerprint recognition has notably promoted the
development and the usability of the indoor positioning technology.
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Many publications [9,10] have reported indoor positioning technology based on the
k-nearest neighbor (kNN). Since APs in the environment are significantly displaced from a
certain location, APs in certain locations may not be monitored, and the RSSI vector at each
location may not include the signals received by all APs. Therefore, the adjacent reference
point (RP) may have a similar RSSI vector. Using the kNN algorithm, all RPs on the
wireless map consider identifying the nearest neighbor without taking this phenomenon
into account. On the other hand, the neighbors found through the kNN algorithm may be
scattered in the environment beyond feasible measurement because the signal attenuation
of each AP is not only related to distance, but is also affected by many indoor environmen-
tal factors. This leads to the minimum signal distance between the RSSI mark position
vector and each RP; this distance is not equal to the minimum physical distance between
the actual mark position and the recorded RP position. Considering the limitations of the
kNN algorithm in indoor positioning technology, indoor positioning technology based
on deep learning is an ideal alternative. A previous study [11] experimentally confirmed
the possibility of a convolutional neural network (CNN) applied to complex image clas-
sification to improve accuracy, particularly in the classification of complex pictures in a
dynamic environment. On this basis, another study [12] innovatively utilized the CNN
algorithm as an indoor positioning technology framework. Experiments show that CNN
can effectively address the limitations of the kNN algorithm and improve the accuracy of
indoor positioning.

Hao et al. [13] proposed a fingerprinting technique based on channel state information
(CSI). The CSI information of 25 RPs was collected by one transmitter and one receiver
with three links of the 121 subcarriers in each link. The size of each RP was 1.1 m × 0.96 m
for all 25 RPs. The density-based spatial clustering of applications with noise (DBSCAN)
processing of the CSI data is performed in the offline phase. The noise reduction of the
processed dataset was performed with the endpoint-clipping method. This endpoint-
clipped dataset was used to train the SVM classifier. The DBSCAN processing of the CSI
test data was performed in the online phase. Matching of the test location was done by
matching the link dataset of the training dataset. The training dataset was pre-processed
for DBSCAN. Unnecessary data, marked as noise, were deleted from the training dataset.
The DBSCAN-processed training dataset was augmented and sent to the CNN classifier
(deep learning classifier). The test RSSI value was further converted into a 16 × 16 image
and matched with previously trained datasets. The location of the matched image was the
location of the test file.

In our previous paper [14], an indoor positioning technology framework based on
deep learning classifiers was proposed as shown in Figure 1. In the paper, the positioning
system framework was described as two phases: the offline phase and the online phase. The
offline phase primarily involves the collection and processing of indoor positioning data.
For example, the RSSI data are collected in the test environment, the resulting database is
established and trained, and deep learning classifiers are trained. The result at this stage
will directly affect the actual positioning accuracy. The online phase primarily involves the
actual test, where the real-time positioning test is performed through the deep learning
classifier obtained in the previous stage. Although the use of deep learning can improve
the accuracy of indoor positioning, deep learning has not been effectively used due to
insufficient database capacity. Therefore, we proposed a deep learning indoor positioning
framework based on data augmentation in another manuscript [15]. In the offline phase, the
program used data augmentation to increase the capacity of the RSSI fingerprint database to
improve the training effect of the deep learning model. Experiments demonstrated that this
method can further improve the positioning accuracy. In the last step of the online phase,
the “majority rule” was used to select the most frequent positioning results returned by the
server. This method is termed as the data post-processing algorithm [16]. This method can
reduce the error in real-time positioning results to improve the positioning accuracy.
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A previous study [17,18] showed that in a Wi-Fi fingerprint-based indoor positioning
system, changes in a dynamic environment such as the multipath propagation of signals
caused by obstacles near the user’s location, fading, and the addition or removal of Wi-Fi
APs affect the indoor positioning accuracy. Furthermore, another study [19] noted that
for an indoor positioning system in a dynamic environment, the error caused by the dy-
namic environment should be reduced through appropriate methods. Meanwhile, the
latest research shows that the interference of moving objects and co-frequency interference
in a dynamic environment may cause the Wi-Fi signal pattern to be changed over time,
which reduces the positioning accuracy [20]. This paper presents a database pre-processing
method based on a clustering-based noise elimination scheme (CNES) to effectively im-
prove the real time positioning accuracy. The proposed CNES scheme is based on the
DBSCAN method, and clustering and noise reduction processing were performed for the
RSSI fingerprint data at each RP. The pre-processing of RSSI data with a clustering-based
noise elimination scheme (CNES) is a novel concept. The proposed method successfully
achieved the highest lab simulated positioning accuracy of 92.01% and a real time testing
experimental positioning accuracy of 90.42%, which was much higher than the accuracy
of the dataset without CNES pre-processing. Furthermore, the proposed method is an
infrastructure-free method that does not require any additional infrastructure for imple-
mentation. The remainder of this paper is organized as follows. Section 2 presents the
background; Section 3 discusses the proposed CNES data pre-processing scheme; Section 4
describes the numerical analysis and presents the laboratory simulation and experiments
results; and finally, Section 5 summarizes the conclusions.

2. Background
2.1. Environment Setup

Both data collection and experiment were performed on the seventh floor of the new
engineering building at Dongguk University, Seoul, Korea. In Figure 2, the target area with
the size of 52 m × 32 m and the roof height of 3 m is divided into 74 grids with 2 m × 2 m
squares as the RP. Since each RP was assumed to be the center of the grid, any point in
the grid was regarded as the RP. That is, the distance between any two adjacent RPs was
considered as 2 m. The RPs such as 1, 25, 36, 40, and 67 were at the corner and their sizes
varied between 2 m to 3 m (i.e., +1 m difference). Meanwhile, the RPs such as 10, 11, 18,
50, and 71 were at the ending spot and their sizes varied between 1 m to 2 m (i.e., −1 m
difference). The positioning server used in this study was a Dell Alienware Model P31E
(Alienware, hardware subsidiary of Dell, Miami, FL, USA), and the smartphone for data
collection and testing was a Samsung SHV-E310K (chip fabrication Yongin-si, Gyeonggi-do,
Korea). The fingerprint database construction, classification (i.e., position prediction), and
online experimental setup were developed with Python.

The data read by an Android device were stored in a buffer. If there was an error
in the recorded data, an error message was displayed on a serially connected console.
Otherwise, the RSSI data were stored in the buffer, and after a complete scan, they were
transferred by the Android console, which was connected by an interface cable to the server,
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to the server through a Wi-Fi AP. The server determines the Android device’s location by
comparing the measured RSSI values with the reference data. It was serially connected to
the Android console and processed the RSSIs obtained from the surrounding APs with its
CPU (Figure 3). The operating frequency of the Wi-Fi device was 2.412–2.480 GHz for the
802.11 bgn wireless standard. Additionally, the input/output sensitivity was 15–93 dBm.
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2.2. CNN Model and Data Augmentation

The collected RSSI data were converted into a comma-separated-value (CSV) file and
then forwarded to the deep learning model. The structure of the generated CSV file is
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shown in Figure 4. The CSV file contained all the acquired RSSI information including the
media access control (MAC) address from different APs, the RSSI value corresponding to
each RP, and the number of RPs. The blue box shows the MAC address information area,
which contained a total of 256 MAC information.
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The CNN classifier described in Figure 5 was proposed in our previous study [14],
which was composed of five layers. The first layer had input grayscale images of size
16 × 16 × 1, rectified linear unit (ReLU), and dropout. Due to the small size of the input
data set, max pooling was not used in the first layer. The second layer consisted of a 16 × 16
convolution with ReLU and then an 8 × 8 max pooling layer with a total of 18,496 parame-
ters, which produced the output for the third layer with an 8 × 8 convolution with ReLU
and then a 4 × 4 max pooling layer. The output was fed directly to a fully connected (FC)
layer with 3072 nodes, which led to the next hidden FC layer with 1024 nodes. Finally, the
output was calculated using a softmax layer with 74 nodes, which was the total number of
RPs in our setup. The inner width was 1024, and the dropout of 0.5 was used for the first
four layers. The learning rate was 0.001. The total number of parameters was 2,266,698.
This calculated output was the total number of RPs in the current setup. The purpose of
data enhancement is to obtain more training data by effectively transforming the existing
data, thereby reducing the problem of under-fitting or over-fitting caused by the data
quality or the amount of data being too small [21]. The input image was generated from
the RSSI values received at 74 RPs during the experiment. At each RP, the RSSI value
was recorded for 256 APs, though only a small subset of these APs was visible at each
RP. Then, the RSSI values from different APs created a 16 × 16 image. For example, in
Figure 6a, there are a total of nine visible RSSI values between 25 to 70 from 256 APs,
with the other values of 0. As shown in Figure 6b, the RSSI values were converted into a
grayscale image. The image had different levels of brightness depending on the recorded
RSSI values, with higher RSSI values being brighter. The highest RSSI value was 70, which
produced the brightest spot in the grayscale image, while the lowest value was 25, which
is represented as the darkest nonblack spot. The RSSI values of 0 produced no brightness,
so the remaining 247 spots were black. Similarly, the input RSSI files at the other 73 RPs
produced different images as an input to the deep learning network.

Before providing the training data to the CNN model, we performed data augmenta-
tion for the training database by using the method presented in [21]. The augmentation
scheme was operated using only the RSSI values collected at each RP. The RSSI value
at each RP was randomly selected and written in a new CSV, which resulted in a large
data size compared to the original CSV. The robustness lies in the fact that the pattern
of augmented data well mimicked that of the RSSI data before augmentation. For the
24 dataset with 8880 images for each RP after augmentation, the total number of images at
each RP was 532,800 with the size of 350 MB. Total number of test files was 1480.
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2.3. RSSI Dataset Generation

To collect the RSSI data, we used a smartphone in the user’s hand and collected
data five times on each RP. Each measurement comprised the RP label, the time, the date,
the number of available APs, the MAC address, and the corresponding RSSI value at
each RP. The RSSI measurement may contain noise, which seriously affects the positioning
accuracy due to the time-varying channel characteristics. Moreover, indoor electromagnetic
environments are complex and are characterized by multipath fading and other noise. We
examined the RSSI fluctuation effects on prediction accuracy in [22]. In this work, the
different directions (forward/backward) and times (morning/afternoon) were considered
for seven-day data collection. A specific data collection procedure is as follows. The
collector holds the smartphone at their waist position (about 1.2 m to 1.3 m height from
the ground) and measures the data as stationary at each RP. In the morning, we conducted
forward and backward data collections, respectively, which were repeated in the afternoon.
Forward refers to the direction to collect the RSSI values from RP1 to RP74 in sequence.
Meanwhile, backward means the opposite direction to collect the RSSI value from RP74 to
RP1 sequentially. For a seven-day data collection, we collected 28 data files.
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Table 1 shows the dataset types. The data collected in the morning and afternoon
are denoted by M and A, respectively. The data collected in the forward and backward
directions are labelled with F and B, respectively. The number represents the day number
when the data were collected, as shown in Table 2. We divided 28 datasets into two parts.
One part contained 24 datasets to construct the training database. The other part contained
the remaining four datasets to build the test database. The RSSI values were measured five
times at each RP in the forward as well as in backward directions. The sampling time for
each RSSI measurement was 5 s, which was a total of 25 s for a total of five measurements.
For 74 reference points, the total time consumed was 31 min in each direction and 62 min
in both directions. For the training data, the measurements were made in the morning and
the afternoon for seven days, which resulted in 15 h approximately. For the trial data, the
measurements were made for two days in the same manner.

Table 1. Database information and augmentation size.

Database Type Collection
# of Images

Before Augmentation After Augmentation

Training 24 sets 8880 532,800
Test 4 sets 1480 –

Table 2. Types of dataset.

Dataset Forward Backward Number of Data Files

Morning MF1, MF2, ..., MF7 MB1, MB2, ..., MB7 14
Afternoon AF1, AF2, ..., AF7 AB1, AB2, ..., AB7 14

Number of Data Files 14 14 28

3. Proposed Scheme
3.1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Previous approaches to indoor positioning technology focused on the study of small
positioning areas. This was because it is necessary for noise samples to appear in the origi-
nal data as the positioning area expands, especially in a dynamic environment. It has been
confirmed [23] that the existence of noise would reduce the waste of computing resources
and thus affect the accuracy of indoor positioning. Several studies have [22–25] used a
clustering algorithm to cluster and divide the RSSI samples. These studies demonstrated
that clustering could reduce the impact of noise in large-area positioning experiments.
Density-based spatial clustering of applications with noise (DBSCAN) is a type of clus-
tering that is well-known to the public. It is mainly based on the density of data, and it
is highly representative. In this idea, a cluster is a large set, and all objects in it may be
densely connected. The algorithm can be unconstrained in the sample database and is able
to find clusters of any shape, which are major advantages. The DBSCAN process may be
expressed concisely. In simple terms, the core point of a given dataset may be determined
arbitrarily. Clustering around this point, all points with reachable density were included in
the core point cluster. If many data have not been included, then re-clustering around a
new core point is repeated in the cluster. Given a sample dataset, circle the given object
with eps radius and count the data objects in this circle. Figure 7 uses a two-dimensional
point set to illustrate the concept of core points, border points, and noise points. If there
is a point with MinPts or greater in the eps radius around it, the other points will gather
around that point, which is called the core point. Points that belong to a cluster but are not
core points are called boundary points, and they are primarily points that form the outer
edge of the cluster. Points that do not belong to any class become noise points.
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3.2. Proposed Clustering-Based Noise Elimination Scheme (CNES)

This paper proposed the CNES algorithm based on DBSCAN. The purity of the
database was improved by detecting and deleting the noise points of each RP. The algorithm
was run in the offline phase of the indoor positioning framework. After using CNES, the
training database achieved the results shown in Figure 8. We performed the analysis of
effective MinPts value and epsilon ‘eps’ of DBSAN for RSSI data noise elimination. The
effective suitable MinPts value was 4. The value of eps could then be chosen by using a
k-distance graph and plotting the distance to the k = minpts − 1 nearest neighbors ordered
from the largest to smallest value. Furthermore, the best eps value was analyzed between
60 to 75 points. These points were further used to generate the final eps value.
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Figure 8. Clustering-based noise elimination scheme (CNES)-based training dataset with the high-
lighted and deleted noise points.

Figure 8 shows the RSSI values of MAC addresses ranging from 1 to 20, taking the
five sets of RSSI data samples for RP1, RP2, and RP74 as examples. The RSSI sample was
the original CSV file generated from RSSI data collected in the experimental environment,
which contained noise samples. When CNES is not used, direct use of the database will
reduce the accuracy of indoor positioning. The grey, highlighted segments in Figure 8
represent noise samples such as the fifth group of RP1 samples, the third group of RP2
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samples, and the fourth group of RP74 samples. The database was first imported into
the CNES algorithm for processing; the processing marked and removed noise samples.
Post-processing, the new database without noise samples was created. Finally, the new
database processed data augmentation and deep learning model training and testing.
Figure 9 shows the effect of CNES for eps = 70 and MinPts = 4. The dotted line represents
the number of RSSI samples collected at each RP. The solid line represents the number
RSSI samples after CNES for eps = 70 and MinPts = 4 at each RP. Figure 10 presents the
complete flow graph for the proposed CNES database position estimation. In addition, the
pseudocode of the proposed scheme is shown in Algorithm 1.

Algorithm 1: Pseudocode for Clustering-Based Noise Elimination and Position Estimation

1. Input: Original CSV fingerprint training dataset
2. Define: CSV dataset:
3. for density calculation
4. Define eps; minpts;
5. for each reference point calculate density ‘D’
6. if RP == core point; \\ Keep the RP data;
7. elseif RP == edge point; \\ Keep the RP data;
8. else RP 6= core point || RP 6= edge point; \\ Delete the RP data;
9. end if
10. end for
11. end for
12. Generate new CSV with density-based noise elimination point;
13. Augment the output CSV file;
14. Train the CNN classifier with new CSV file;
15. Test the file for real time online position estimation;
16. end for
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4. Numerical Results

A total of 74 RPs was arranged in the positioning environment, as shown in Figure 2.
Due to the dynamic environment, uncontrollable factors such as changes in the number of
routers, the activation of telecommunication equipment and the movement of pedestrians
can generate abnormal information such as noise in the collected RSSI information. DB-
SCAN recognizes the impact of noise and is robust to outliers. In the experiment, DBSCAN
cluster analysis was performed for each RP point to reduce the influence of noise on the
data during the data collection process, thereby improving the positioning accuracy. RSSI
information was collected five times at each RP point, and a total of 24 datasets were
collected in the experiment. Therefore, each RP point had 5 × 24 kinds of information, as
shown in Figure 4. Then, for the total training set (comprising 74 RPs), there were a total of
74 fixed clusters because of the 74 RP labels. However, for each RP, the clustering algorithm
marked and eliminated abnormal information, and therefore, there were two clusters for
each RP. In the experiment, DBSCAN was used to cluster each RP point. This is because
each RP was tagged when collecting RSSI information. The value of eps can be chosen by
using a k-distance graph and plotting the distance to the k = minpts − 1 nearest neighbors
ordered from the largest to the smallest value. Good eps values exist where the plot shows
an ‘elbow’ (i.e., the threshold value above which the number of RSSI samples remains
approximately the same), as shown in red circle in Figure 11. For example, eps = 70 in
Figure 11. In general, for the suitable eps, a rule of thumb is to select the eps number with
only a small fraction of RSSI samples.

4.1. Analysis of Eps

As mentioned, in order to find the best eps value, eps = {60: 75} was used to cluster
the training database, and the database was then input into the deep learning model
for indoor positioning simulation. In order to accurately verify the simulation accuracy
corresponding to different eps values, when performing indoor positioning simulation,
we chose the maximum positioning error acceptable in our indoor positioning system
for analysis. Assuming the error distance was 4 m, the objective was to choose the eps
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value most suitable for our indoor positioning system. The simulation results are shown in
Table 3, and the indoor positioning accuracy was as high as 94.191% when eps = 70.
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Table 3. Simulation accuracies for different eps values (training epochs number = 1000, MinPts = 4).

Eps Value Lab Simulation Accuracy Eps Value Lab Simulation Accuracy

60 93.594% 68 93.491%
61 93.193% 69 92.889%
62 93.293% 70 94.191%
63 92.789% 71 93.189%
64 93.889% 72 92.893%
65 92.593% 73 92.292%
66 92.490% 74 93.093%

In the experiment, DBSCAN was used to cluster the RSSI samples of each RP in
the training database, and the RSSI samples outside the core point neighborhood could
be eliminated by using the best eps value. The eliminated samples were also the so-
called errors. Information samples were not suitable for positioning reference information.
Therefore, in the training set clustered by different eps values, the number of RSSI samples
retained by each RP was inconsistent, as shown in Figure 12. Among the lines, the top
dashed line represents the original training set, that is, with all original RSSI samples
retained. As the eps value increases, the curve approaches closer to the original curve. At
RP = [10, 11, 19, 20, 21, 22, 41, 42, 43, 44, 45, 56, 64, 65, 66, 67], the range of change becomes
larger. In particular, at the point RP = [41, 43, 44], the range of change exceeded 70. This
is because these points show the areas where the Wi-Fi signals and people were dense,
which may cause RSSI degradation. The red line in Figure 12 denotes eps = 70, which
was the best eps value in Table 3. For eps = 70, the average number of removed samples
was six, which was lower than 10 for all eps values, which means that more samples were
removed in Figure 12. Furthermore, for eps = 70, it was shown that all reference samples
were retained at RP = [32, 33, 36, 37, 38, 54, 55, 58] when the environment was better less
than the external interference.
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4.2. Lab Simulation Results

In the CNN model, the lab simulation results with the highest accuracy were selected
for real time testing. In terms of the accuracy of both models, the lab simulation results are
shown in Table 4.

Table 4. Summary of lab simulation results.

Lab Simulation Model
Margin (%)

0 1 2

CNN 43.50 75.95 87.26
CNES + CNN 61.28 83.19 92.01

Difference 17.78 7.24 4.75

When the RP number is accurately predicted by the CNN trained model, it is called
Margin-0 (i.e., 0 m error). When the predicted test RP matches the neighboring RP, it is
called Margin-1 (i.e., 2 m error). Similarly, when the test RP matched with difference of
two RPs, it is known as Margin 2 (i.e., 4 m error). A comparison of the accuracies of the
CNN mode for different margins and for the two techniques is presented in Table 4. As
shown in Table 4, the CNES scheme can improve positioning accuracy. Without CNES,
the positioning accuracy of Margin-0 was 43.50% only. At the same time, Margin-1 was
75.95%, and Margin-2 was 87.26%. However, the positioning accuracy was significantly
improved after using the CNES scheme. The positioning accuracy of Margin-0 exceeded
60%, which was 61.28%. In this way, the positioning effect of Margins-1 and -2 using the
CNES solution was also obvious. In particular, the simulation result of Margin-1 reached
83.15%, which was close to the result of Margin-2 without CNES. In addition, the result of
Margin-2 exceeded 92%. In addition, we compared the difference between with and without
CNES under the same margin. The simulation positioning accuracy after using CNES
was improved by 17.78% (Margin-0), 7.24% (Margin-1), and 4.75% (Margin-2). Through
a comparison, it can be seen that CNES can significantly improve the accuracy of indoor
positioning. In terms of Margin-0, the improvement effect was significant, which means
that indoor positioning using CNES can achieve an error of zero-meters in most cases.

The effectiveness of the proposed CNES was also evaluated in terms of positioning
accuracy, which is defined as the cumulative distribution function (cdf) of the location error
within a specified distance in Figure 13. It was shown that the CNES outperformed that
without CNES over the entire range. Note that when the cdf exceeded 94%, the distance
error with the CNES was only 4.76 m. Meanwhile, the distance error without CNES was
6.70 m. In addition, it was shown that the cdf with CNES was 73.21% for a one-meter error,
but that without CNES was only 58.47%.
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4.3. PCA

Principal component analysis (PCA) diagrams for the training database and test
database for the five cases are shown in Figure 14, and the blue points in the figure represent
the RPs in the training data without data augmentation, and the green points represent the
unknown location points, that is, the points in the test data. From Figure 14, (a) represents
the analysis of data before CNES was applied, and (b) represents the analysis of data after
CNES was applied. Furthermore, it is evident that after the CNES was applied, the RP
points in the training data were more compact than those in the training data to which
the CNES was not applied. This is because the discrete points in Figure 14a are caused by
incorrect RSSI fingerprint information, and the use of the CNES reduces wrong information
in the training set, thereby improving the accuracy of the deep learning simulation.
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4.4. Experimental Results with Real Time Testing

In the experiments, we used the trained classifier for real time testing. The specific
process involves passing the measured RSSI values at RPs into the CNN model to obtain
the features. Then, the obtained features were compared with those in the trained classifier.
The RP with the most similar features was determined as the final position. In addition, we
compared two cases for real time testing, namely, CNN and CNES + CNN. “CNN” means
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CNN without CNES, and “CNES + CNN” denotes CNN with CNES. For real time testing,
we made experiments four times with the plan in Table 5. The experiments were made for
two working days (D-1 and D-2), and four times (Test 1, 2, 3, and 4) a day.

Table 5. The experimental plan for real-time testing.

Day Test 1 Test 2 Test 3 Test 4

D-1 CNN CNES + CNN CNN CNES + CNN
D-2 CNES + CNN CNN CNES + CNN CNN

When processing the experimental results, we stipulated that the test results with
measurement errors less than or equal to 2 were successful, which means that only the po-
sitioning result and the current position error distance of less than four meters can be used,
and the data represent the probability of successful results obtained in the measurement
results. An example of the experimental results is shown in Table 6. As shown in Table 6,
for each RP positioning test in an experiment, five positioning decisions were performed
continuously for the same RP.

Table 6. The example of real time testing experimental results.

RF #
Positioning Decision # # of Success Decisions

#1 #2 #3 #4 #5 Margin-0 Margin-1 Margin-2

1 1 1 2 1 1 4 5 5
2 2 3 2 4 2 3 4 5
3 3 3 2 3 4 3 5 5

••••••
72 72 73 73 74 72 2 4 5
73 73 73 73 73 26 4 4 5
74 73 74 74 26 26 2 4 5

Experiment Success Rate (%) 61.71 83.35 91.62

In order to facilitate the comparison of the experimental results of CNES, we merged
all experimental results into Table 7. Meanwhile, the results were rearranged and are
shown in Table 8. It can be seen that the CNES scheme can effectively improve the indoor
positioning accuracy, especially in the case of Margin-0 (zero-meter error), the average
positioning success rate increased by 22.43%. Without the CNES scheme, the Margin-0
(zero-meter error) positioning success rate was only 39.45%, and after using the CNES
scheme, the Margin-0 (zero-meter error) positioning success rate exceeded 60%, which was
61.88%. Meanwhile, the CNES scheme had outstanding positioning accuracy in Margin-1
(two-meter error), and the positioning success rate was 82.77, which was close to the
positioning success rate in Margin-2 without the CNES scheme. In addition, in the case
of Margin-2 (four-meter error), it exceeded the highest success rate of 90.42% without the
CNES scheme. Therefore, the above data show that the CNES pre-processing scheme can
indeed greatly improve the accuracy of indoor positioning without changing the hardware.

Table 7. Summary of real time testing of experimental results.

Day Database
(Test Number)

Margin Database
Test Number)

Margin

0 1 2 0 1 2

D-1 CNN (Test 1) 38.97 73.78 85.13 CNN (Test 3) 39.12 72.95 84.81
CNES + CNN (Test 2) 61.71 83.35 91.62 CNES + CNN (Test 4) 62.28 82.47 89.69

D-2 CNES + CNN (Test 1) 62.03 82.73 90.11 CNES + CNN (Test 3) 61.48 82.51 90.27
CNN (Test 2) 40.23 74.06 85.79 CNN (Test 4) 39.47 73.69 85.14
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Table 8. Difference of experimental average results (%).

Database
Average Margin

0 1 2

CNN 39.45 73.62 85.22
CNES + CNN 61.88 82.77 90.42

Difference 22.43 9.15 5.21

It is generally known that the multipath effect of the channel will increase the abnormal
information (such as noise) in the RSSI dataset. Therefore, the abnormal information in
the original training dataset can be eliminated by using the CNES scheme, and then
the purity of the training dataset can be improved. According to the simulation and
actual experiments, the databases with CNES can adapt to various databases and different
environments, thereby improving the positioning accuracy.

5. Conclusions

In this work, a deep learning solution involving a clustering processing scheme was
developed. The results showed that the use of pre-processed data along with the CNES
could effectively improve the indoor positioning accuracy. The simulation results showed
that when the CNES was used as the clustering algorithm, the best effect was obtained for
eps = 70. For the indoor positioning simulation, with the CNES RSSI dataset, a positioning
accuracy of 92.01% was achieved. The experimental results in the real environment also
showed that the CNES pre-processing scheme could increase the positioning accuracy by
22.43%, 9.15%, and 5.21 in Margin-0 (zero-meter error), Margin-1 (two-meter error), and
Margin-2 (four-meter error), respectively. Furthermore, the CNES scheme could reduce the
effect of interference factors in the dynamic environment on the positioning accuracy and
improve the adaptability of indoor positioning accuracy.
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Abstract: A guidance and information service for a University library based on Wi-Fi signals using
fingerprinting as chosen localization method is under development at TU Wien. After a thorough
survey of suitable location technologies for the application it was decided to employ mainly Wi-Fi for
localization. For that purpose, the availability, performance, and usability of Wi-Fi in selected areas of
the library are analyzed in a first step. These tasks include the measurement of Wi-Fi received signal
strengths (RSS) of the visible access points (APs) in different areas. The measurements were carried out
in different modes, such as static, kinematic and in stop-and-go mode, with six different smartphones.
A dependence on the positioning and tracking modes is seen in the tests. Kinematic measurements
pose much greater challenges and depend significantly on the duration of a single Wi-Fi scan. For the
smartphones, the scan durations differed in the range of 2.4 to 4.1 s resulting in different accuracies
for kinematic positioning, as fewer measurements along the trajectories are available for a device with
longer scan duration. The investigations indicated also that the achievable localization performance
is only on the few meter level due to the small number of APs of the University own Wi-Fi network
deployed in the library. A promising solution for performance improvement is the foreseen usage of
low-cost Raspberry Pi units serving as Wi-Fi transmitter and receiver.

Keywords: Wi-Fi positioning; navigation; location fingerprinting; RSSI-based positioning; probabilis-
tic approach; information service; book tracking

1. Introduction

In recent years, a number of technologies and methods have been developed and
improved for indoor positioning. One of these technologies is based on the use of Wireless
Fidelity (Wi-Fi). As such infrastructure is already installed in most public buildings and
therefore costs are low, it is one of the most researched technologies for indoor position-
ing. Thereby positioning can be made either cell-based, as well as using lateration or
fingerprinting. In particular, location fingerprinting has proven itself in practice. It is an
approach to pattern recognition and based on received signal strength indicator (RSSI)
measurements of the surrounding Wi-Fi Access Points (APs) in an off-line training and an
on-line positioning phase. During the training phase, the RSSIs of the surrounding APs are
measured in the area of interest at reference points to build-up a fingerprinting database,
which can be visualized by signal strength radio maps. For the positioning in the on-line
phase, the measured fingerprint is then compared at an unknown location with those in the
empirically determined radio map. Finally, the position in the radio map that best matches
the on-line RSSI measurement is returned. A major disadvantage of the empirical method,
however, may be the time required to set up and maintain the database. In addition, the
measurements must be carried out again during the installation of new transmitter or other
structural changes. Another challenge is the large variation of the observed RSSI values
due to signal fluctuations [1]. Despite these disadvantages, fingerprinting is nowadays one
of the most popular method for an indoor positioning system (see e.g., [2,3]).
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TU Wien (Vienna University of Technology) is the largest scientific-technical research
and education institution in Austria. With its four inner-city locations as well as a science
center further away from the city center, the University has more than 12,000 rooms in
30 buildings on an available area of approximately 269,000 m2. With such a large number of
buildings and rooms, a positioning and navigation system can be a helpful tool. Especially
in the large library building which has six levels with an area of 1160 m2 the localization
and tracking of the books is a challenging task. The motivation of this study is therefore to
help students, employees, and visitors of the University to find at least the correct bookshelf.
Furthermore, the individual books shall be located and tracked. For that purpose, also the
use of Radio Frequency Identification (RFID) is foreseen. It was seen in the tests that not
all areas in the library can be covered with Wi-Fi to guarantee the required localization
accuracy. Thus, also the integration of Bluetooth is considered for the positioning and
navigation system.

The paper is structured as follows: Section 2 provides a comprehensive survey of suitable
indoor positioning techniques leading hereto to the chosen technical solution for the library
navigation and information system. In Section 3 the specifications and characteristics of the
test site and measurement procedures are introduced followed by a description of the analyses
carried out for the off-line fingerprinting training phase in Section 4. Section 5 then deals
with the impact on the results of different times required for the measurement of a single
Wi-Fi scan, referred to as scan duration in the paper, in the kinematic measurement mode. In
the following, Section 6 addresses the localization performance and achievable positioning
accuracies in the on-line positioning phase. Section 7 pinpoints a useful strategy towards the
development of a library navigation and information system. Finally, the paper is concluded
and outlook on future work is given in Section 8.

2. Suitable Indoor Positioning Techniques Survey

At the beginning of the study at hand a survey was carried amongst solutions for
indoor positioning to be able to select the overall best absolute positioning technology
for the library navigation and information service. In this section first the requirements
for an indoor positioning system (IPS) in general and in particular for the service at TU
Wien are discussed. Suitable technologies are identified and assessed in a compendium
where their characteristics and physical properties are analyzed in detail. Moreover, the
selection process of the chosen technique is exemplified. An IPS should not only provide
a certain required positioning accuracy, but also function reliably and be designed to be
user-friendly. Moreover, attention should also be paid to data protection and costs.

2.1. General Aspects

An IPS is a wireless location system used to navigate, locate and position people and
objects inside buildings. It usually consists of at least two hardware components, i.e., a
transmitter and a receiver. One of the two components is always the mobile device to be
located. Depending on the functionality of these two components, a first classification of
positioning systems can be made into self- and remote-positioning [3]. In a self-positioning
system, the receiver represents the mobile device that measures the signals of transmitters
which coordinates are known. The position is then calculated on the mobile device. It is
also possible that the measurement results are sent from the receiver to a master station.
If the position at the master station is calculated, the positioning mode is referred to as
indirect remote-positioning. In a remote-positioning system, the transmitter represents
the mobile device and the receivers are fixed at known locations. Then the results of
all measurements are collected in a master station and the position of the transmitter is
calculated. If the measurement results are sent back from the receiver to the transmitter so
that the position is determined on the mobile device, it is called indirect self-positioning.
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2.2. Technological Requirements

Due to the complexity of the environment in a building, the limitation of direct line-of-
sight (LoS), blocking of signals and multipath effects but also due to reliability, availability
and cost of the required equipment, indoor positioning is a big challenge. Both in terms of
accuracy, which ranges from the sub-meter level to several meters, and in terms of cost, the
systems exhibit a wide range.

The required positioning accuracy of an IPS depends on the application. While po-
sitioning accuracy in the meter range is sufficient for many applications, it may be too
inaccurate for a warehouse or a library, for example. The achievable accuracy depends,
among other things, on the position determination method and technology used. The
number of transmitters and receivers plays an essential role. Furthermore, attention should
be paid to the dimension in which the position is to be determined. In a multi-story building,
in addition to the location (horizontal accuracy), the floor (vertical accuracy) must also be
determined. For a library such type of accuracy is needed so that the user is able to find a
certain bookshelf. With a bookshelf distance of 2 to 3 m the accuracy should be at least in
this range. Since the building has several floors, it should be possible to determine the floor
in addition to the location.

In terms of reliability and coverage of the positioning system it should always be
available and consist of stable components so that localization can be performed in real-
time. In addition, smaller signal failures should be compensated and a seamless transition
between outdoor and indoor areas should be possible. This requires a sufficient number
and a good distribution of transmitters or receivers. Due to the widely distributed locations
of the TU Wien, the positioning system should work on the entire inner-city campus, both
outside and inside buildings. The aim is to identify the building in which the user is located
or whether he/she is outside the campus.

Any student, staff member or visitor of the University should be able to operate the
positioning system easily. With the use of a smartphone being ubiquitous these days, an
application for these devices is a useful solution for the navigation and information service.
The presentation of information should be adapted to the user and consideration should
also be given to physically impaired persons. In addition, care should be taken to ensure
that the application consumes as little energy as possible. The power consumption depends,
among other things, on whether the position is calculated on the smartphone or externally.
If the position is determined on an external server, it can usually be calculated much faster.
Positioning should also not take too long, but should be performed in real-time if possible.
This means that the latency—the time it takes for the user to see their location—must be
also as short as possible.

Privacy is a major challenge for an IPS, as not all people want to share their current
location. Therefore, it is also important to consider the privacy and security of IPS users.
Therefore, the IPS operator should ask how the user can trust the system [4]. The decisive
factor here is where the position is determined, i.e., either on the mobile device or in a
master station or on an external server. If the location is determined directly at the mobile
device, no forwarding of information to the IPS operator is required, thus ensuring the
privacy of the mobile user. However, determining the position on the mobile device again
consumes a lot of energy and requires sufficient computing power, so it is significant to
reduce the computational complexity of the IPS [5]. In [6], different IPS are compared and
it was found that most of the commonly employed technologies present data protection
problems. Only remote positioning technologies, such as the use of inertial sensors, provide
a high level of data protection. Their disadvantages, however, are their low precision due
to accumulation of errors leading to high sensor drift rates. Furthermore, they require an
absolute positioning method in addition for determining the start location and an update
of the only relatively determined positions.

Last but not least, the cost of an IPS is one of the basic decision criteria and depends
on several factors, such as available money, time, infrastructure and energy. The time
factor is related to installation and maintenance. Also the costs for software, server and
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maintenance of databases have to be considered. The number of transmitters or receivers
are thereby considered as infrastructure costs. However, it is not always obvious what
the actual cost of an IPS will be. For example, it can be assumed that a Wi-Fi-based IPS
does not incur hardware costs because the required Wi-Fi APs are already available. This
is valid, however, for RSSI-based solutions at TU Wien only. New approaches based on
measurement of the ranges to the Wi-Fi APs require the installation of new hardware.

Power consumption is also a decisive cost factor of a positioning system. Some devices
are completely energy passive, such as passive RFID tags. These devices only respond
to external fields and can therefore have an unlimited lifetime. Other mobile devices, on
the other hand, only have a few hours of battery life without recharging [3]. For TU Wien
the positioning system should not cause any costs for the user, so he/she should not have
to buy new hardware. For indoor applications, technologies should be used that are not
too expensive to purchase and install. For outdoor use, GNSS positioning can be used if
enough satellite signals are available.

2.3. Compendium of Common Technologies

Different signals and technologies can be used for positioning of a mobile device. In
order not to go beyond the scope of this work these technologies are presented briefly in
the following, with a closer look at their characteristics and physical properties as well as
their advantages and disadvantages. A first division can be made into optical, sound-based
and radiofrequency technologies, magnetic fields and inertial sensors.

Optical technologies work with signals that are in the visible or infrared range. This
corresponds to electromagnetic radiation with wavelengths from 380 nm to 10 µm. Unlike
radio signals, infrared signals and visible light cannot penetrate walls and other obstacles,
limiting positioning to enclosed spaces. Transmitter identification can be modulated on
the infrared signal, which allows different transmitters to be distinguished. Therefore, the
position determination can be carried out with all common measuring principles. One of
the first IPS to use infrared signals is Active Badge [7]. Technologies that use visible light
for data transmission are also called Visible Light Communication (VLC) [8,9]. For instance,
light-emitting diodes (LEDs) can be used. The transmission of data using LED is possible
because the light source can be switched on and off again in very short intervals. This
flickering can be so fast that it cannot be perceived by human eyes. A variety of modulation
methods can be used. The principle for VLC is that each fixed LED lamp has a different
flicker coding, so that the mobile sensor (e.g., the smartphone camera) receives the light
and compares the modulation with the known coding scheme [10].

The position of a user can also be determined by using acoustic signals. The time
of the broadcast can be determined by simultaneously sending a radio and an acoustic
signal. Since the radio signal arrives earlier than the acoustic signal at the receiver, the
difference between these two times can be used to calculate the range. For this process,
however, an exact synchronization of the transmitter and receiver clocks is necessary [11].
Due to the fact that acoustic signals travel with slower speed than infrared or radio
frequency signals the acoustic signals travel time measurement allows for higher accuracy.
The propagation velocity thereby depends on the energy of the signal as well as on the
density and temperature of the medium it penetrates. The sound-based technologies
can be divided into audible [12] and non-audible sound (ultrasonic signals) [13]. The
position can be determined by all range-based measurement principles (see Section 2.4).
Nakashima et al. [14] determine the position using a digital watermark that they inserted
into the audio track of each speaker. However, this technology is difficult to implement in
reality, as it can be assumed that there is a lot of noise in a building, making it difficult to
determine the position. In addition, audible noise—especially in Universities libraries—
can be very annoying in everyday life. Thus, ultra-sonic signals are usually employed for
sound-based positioning. With this technology, the travel time of emitted ultrasonic pulses
is usually measured and the position subsequently determined by means of lateration.
For example, in [13] the position is determined using Time of Arrival (ToA), while in [15]
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localization is performed using Time Difference of Arrival (TDoA). The signals can be
either transmitted by the mobile device and received by permanently installed receivers
or vice versa. The mobile device can also be a transmitter and receiver at the same time,
so that the distance can be determined by Round Trip Time (RTT) measurements, which
means that no additional infrastructure is required. In addition to the multipath effect,
another problem with this technology is that ultrasonic systems are very sensitive, since
even a low noise already generates ultrasonic waves and thus interferes with the system.
Among the commonly known systems are the Active Bat [16], Dolphin [17] and Cricket [18].
Lopes et al. [15] proposed a reliable acoustic indoor positioning system fully compatible
with a conventional smartphone. Thereby acoustic ranging in the audio band based using
non-invasive signals is carried out using the smartphone audio I/O. In order to support the
positioning system a Wireless Sensor Network (WSN) of synchronized acoustic beacons is
used for TDoA ranging. They achieved an absolute positioning error of less than 10 cm on
the 95% significant level in their tests.

Unlike infrared signals and visible light, radio signals can penetrate walls and other
obstacles, making positioning not limited to enclosed spaces. Each station that transmits
radio frequency (RF) signals has a unique address by which it can be identified. The most
popular RF technologies are Wi-Fi, Bluetooth, Radio Frequency Identification (RFID) and
Ultra-wide Band (UWB).

A Wireless Local Area Network (WLAN) transmits electromagnetic signals over the
free 2.4 and 5 GHz Industrial, Scientific and Medical (ISM) band with wavelengths of
12.5 and 6.0 cm, respectively. WLAN or Wi-Fi is based on the IEEE 802.11 standard. Indoors
the signals have a range of 20 to 100 m [19] and can also pass through walls. Positioning
can be performed using time-based methods (ToA and RTT), Angle of Arrival (AoA) or
RSSI. The specifics of Wi-Fi are further discussed in Section 2.6.

Bluetooth is also an electromagnetic signal, which has a wavelength of approximately
12.5 cm in the frequency range between 2.402 and 2.480 GHz. The latest Bluetooth version
(5.1) now has a range of approximately 200 m. In addition, from this version onwards, the
direction angle of the received or transmitted signal can also be measured using AoA [20].
Position determination via Bluetooth can also be time-based or RSSI-based. However, since
Bluetooth transmits in the same spectrum as Wi-Fi, it is susceptible to interference. Advan-
tages of Bluetooth are availability as it is supported by most smartphones, low cost, and
low power consumption, which allows transmitters to run on battery for several months or
even years [21]. It has been considered by the IT Department of TU Wien to use Bluetooth
Low Energy (BLE) Beacons in addition on the campus for areas with limited or no Wi-Fi
coverage. However, one must also take into account the signal attenuation, the multipath
effect and the fluctuations in signal strength while using Bluetooth. Zhao et al. [22] demon-
strate that BLE is more accurate than Wi-Fi for localization when lateration approaches are
employed where RSSI values have to be converted into ranges.

Typical RFID frequency ranges are 125–134 kHz for low frequency, 13.56 MHz for
high frequency and 860–890 MHz for ultra-high frequency (UHF) [23]. In RFID, a reader
communicates with one or more transponders (so-called tags) using radio waves. If a tag
comes near a reader, the two start communication and can exchange information with each
other, such as the location of the permanently mounted component. The tags or readers are
then mounted at strategically important locations inside the building (e.g., at entrances).
Communication takes place either by inductive coupling or electromagnetic waves [11].
RFID tags can be classified according to whether they are passive, semi-passive or ac-
tive [24]. Passive tags do not have their own power supply and respond with the energy
the reader releases with the help of a small antenna. They are much lighter, smaller and
cheaper than active tags, so they only have a range of 1 to 2 m. A passive tag can be
attached to a mobile device or a book, for example, which is read by permanently installed
readers. Thus, they can be used for cheap book labelling, e.g., also to replace barcodes.
In the TU Wien library it is thought to use this technology. RFID can then also serve as a
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security function by installing readers at the building exits, which give an alarm signal if a
book leaves the library unauthorized.

UWB is based on the transmission of electromagnetic waves by a sequence of very
short pules (less than 1 ns) with a wide bandwidth of larger than 500 MHz. This allows
reflected signals to be better filtered, minimizing the multipath effect and improving
positioning accuracy, which is one of the major advantages of this method [25]. Unlike
other RF-based technologies, UWB devices can also transmit signals in multiple frequency
bands simultaneously. Another advantage is the lower power consumption. However,
UWB devices are still more expensive to purchase and install. Position determination can
be performed using lateration (ToA and TDoA) and/or angulation (AoA) [11,19].

Other RF-based localization technologies include Zigbee and Long-range Wide-area
Network (LoRaWAN). Zigbee is a common low power technology, often used in Internet
of Things (IoT) applications with same ranges and coverage as the aforementioned tech-
nologies. LoRaWAN, on the other hand, can reach ranges of up to 15,000 m transmitting
at 915 MHz, which may allow a significant reduction of transmitters in order to cover an
environment. In the tests conducted by Sadowski and Spachos [26] it was seen, however,
that this technology showed the worst performance for indoor localization. Zigbee has
a similar low energy requirement to LoRaWAN, while its performance is much higher.
The authors further mention that BLE is a low power and cost efficient solution for IoT
localization in small crowded areas. Wi-Fi, however, consumes the most power out of
all the examined technologies, but is advantageous because of its high ubiquity. It also
achieved the highest positioning accuracies in their tests. These results confirm that a
localization service based on Wi-Fi is the way to go ahead for our application.

An indoor position determination can also be performed by measuring the magnetic
field strengths. Both the geomagnetic field [27] and an artificially generated magnetic
field [28] can be used. Although there are some approaches using the later, most modern
systems use the Earth’s magnetic field strength [11]. Using the embedded magnetometer
in a smartphone magnetic field fluctuations can be measured as the magnetic field shows
local anomalies, which are caused by objects, such as electrical devices and cables and
building structures, such as concrete reinforcement. Assuming that these anomalies within
a building are nearly static and have sufficient variability, they provide a unique magnetic
fingerprint such that localization can be carried out with fingerprinting (see Section 2.5) [29].
A drawback, however, is that magnetic fields are already disturbed by small changes in the
environment, e.g., caused by people, which complicates localization.

Global Navigation Satellite Systems (GNSS) chipsets are an integral part of every
smartphone. At least the US Navstar Global Positioning system (short GPS) is supported
in smartphones. In addition, more and more smartphones include the measurements from
the Russian GLONASS, the European Galileo and the Chinese Beidou. The GNSS signals
are in the L-band, i.e., in the frequency range from 1.164 to 1.300 MHz with a wavelength
from 25.7 to 23.1 cm and 1.559 to 1.610 MHz with 19.2 to 18.6 cm wavelength. In this work
GNSS, is used only for outdoor positioning, but it is out of the scope of this paper to further
discuss its application in the TU Wien localization service.

The users’ location can also be determined relatively from a given start position with
the help of inertial sensors, which are embedded in every smartphone. They include
Micro-Electro-Mechanical Systems (MEMS)-based accelerometers and gyroscopes. The
measurements of the accelerometer can be used to obtain the distance travelled, such as
from step counting, and the gyroscope is used to estimate the direction of movement of
the user. The employed location technology is dead reckoning and in case of pedestrian
navigation it is referred to as Pedestrian Dead Reckoning (PDR). Due to the large error
drift of MEMS-based sensors, which accumulates over time, a combination with absolute
positioning techniques is required to update the measurements (see e.g., [30,31]). Using
filtering, such as with a Kalman or particle filter, is another popular approach to reduce
sensor drift rates and estimate the current users’ location (see e.g., [32]). In this work, the
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use of inertial sensors is not foreseen at this stage as the sole use of an absolute positioning
technology is evaluated.

Additionally, it is worth mentioning that more and more smartphones also have a
pressure sensor built in, which can be used to measure the air pressure and thus determine
the altitude. This can be particularly useful in multi-storey buildings as the sensor can be
used to determine the current floor (see e.g., [33,34]).

Smartphone cameras provide visual information in addition to the position, but
computational-intensive image recognition software is required for localization. One
approach for smartphone positioning is scene analysis. Similar to the fingerprinting
method, a database is first filled with images of the environment and linked to the respective
location. After that, a photo can be taken from the smartphone user’s point of view and
this is then compared with the images from the database to determine the position [35].
The big advantage thereby is that no signals are used for position determination and
therefore the effects of signal propagation do not play a role. Moreover, no additional
infrastructure needs to be installed. A disadvantage, however, is the large amount of time
required to set up and maintain the database, which has to be updated when structural
changes occur. If the position is not determined on the mobile device, the image must
first be transferred to the master station, which means a large data transfer. On the other
hand, if the position is to be computed on the mobile device, it requires a large amount
of RAM since the image recognition software packages are computationally intensive.
However, due to the recent technical developments with improved image recognition
algorithms and computational capabilities as well as greater data transmission rates, these
drawbacks have been minimized [36]. Another method is called visual odometry [37,38]
where the self-motion (translation and orientation) of a person or object is determined
using single or multiple cameras attached to the mobile object. Thereby the images must
contain sufficient meaningful information, such as color, texture, shape, etc., to estimate the
movement of the camera. Visual odometry offers a good trade-off between cost, reliability,
and implementation complexity [39] and is widely used in mobile robotics [40].

Table 1 provides a comparison of the most commonly employed technologies in terms
of their advantages and disadvantages as well as respective costs and Table 2 summarizes
the characteristics of different suitable positioning methods. As with these technologies,
however, it is somewhat difficult to give an exact positioning accuracy figure, as it depends
heavily on the measurement principle, method and infrastructure used, and is therefore
not mentioned. Table 3 provides rough ranges of achievable positioning accuracies for the
different useable positioning methods. The cost of each technology here depends mainly
on the infrastructure already in place. From the user’s point of view, it is assumed that
a smartphone is used for positioning and therefore no costs are incurred. The costs in
Table 1 therefore relate only on the installation and maintenance of the infrastructure in the
building. Since an IPS is used in various applications, there is no one method or technology
that is superior to the others, but only one that best meets the requirements set, both
technically and economically. As each of the techniques presented has different advantages
and disadvantages, a combined solution is the best way to overcome the drawbacks of each
individual method and reduce measurement errors. If several positioning technologies are
combined, the system is also referred to as hybrid IPS.

105



Sensors 2021, 21, 432

Table 1. Positioning technologies comparison.

Technology Advantages Disadvantages Costs

optical
infrared low power consumption do not penetrate walls; susceptible

to interference; low range low

visible light low power consumption;
high accuracy

do not penetrate walls; susceptible
to interference low

acoustic-based
audible no costs disruptive in everyday life none

ultra-sonic high accuracy susceptible to interference medium

radio frequency

Wi-Fi use of available infrastructure;
accuracy on the m-level

susceptible to signal fluctuation;
high power consumption medium

Bluetooth low power consumption susceptible to signal fluctuation
and interference low

RFID cheap passive tags can be mounted
everywhere low range and accuracy medium

UWB
multipath resistant;

low energy consumption;
high accuracy

expensive hardware high

magnetic natural no costs susceptible to interference low
artificial low fluctuations susceptible to interference high

smartphonesensors
GNSS freely available not useable in buildings none

inertial work independently high sensor drift none

camera works independently;
visual information computationally high costs none

Table 2. Characteristics of positioning methods.

Measurement Principle Advantages Disadvantages Positioning Accuracy

CoO cell-based simple algorithm relative positioning to
location of transmitter cell size dependent

Lateration ToA, TDoA, RTT,
RSSI-based

no off-line
training phase

susceptible to multipath;
LoS requirement dm–m

Angulation AoA no off-line
training phase

susceptible to multipath;
LoS requirement;

antenna array needed
dm–m

Fingerprinting RSSI no multipath influence;
no LoS requirement off-line training phase m

Scene Analysis - no multipath influence

off-line training phase;
high data transfer

rates required;
computationally

intensive

dm–m

Dead Reckoning - only smartphone
sensors used

relative positioning;
large drift rates m

Table 3. Characteristics and properties of range-based localization techniques for lateration.

ToA RTT TDoA RSSI-Based

signal propagation does not matter does not matter does not matter matters

LoS required required required not required

multipath matters matters matters partially matters

time synchronisation transmitter
and receiver

transmitter
and responder

transmitter
and receiver not required

positioning accuracy dm–m dm dm–m m
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From Table 2 the following conclusions can be drawn: Cell-of-Origin (CoO) based
positioning is only suitable for determining a first approximate solution. Unlike location
fingerprinting and scene analysis, lateration and angulation do not require an off-line train-
ing phase. With these two methods, however, care must be taken that the receiver measures
the LoS signal and not a reflected signal. Angulation also requires an antenna array or a
directional antenna to measure the incident angles. The major advantage of fingerprinting
is that it is more resistant to multipath than lateration and angulation. In addition, there is
no need LoS between the transmitter and receiver. The major disadvantage, however, is
the time required to set up and maintain the training fingerprint database. The advantages
and disadvantages of scene analysis are similar to those of fingerprinting. An additional
disadvantage is the large amount of data that has to be transmitted if the position is to be
calculated on an external server. If the position is determined on the smartphone, however,
sufficient computing power is required, since the image recognition software packages
are computationally intensive. Dead Reckoning (DR) is the only method based on relative
positioning included in the Table. The big advantage over the other methods is that it only
requires a smartphone whit its embedded inertial sensors. As already aforementioned,
smartphone sensors show high drift rates leading to low positioning accuracies which are
steadily increasing in time.

2.4. Range-Based Localization Operational Principle

The most common measuring principles for position determination using ranges
between a transmitter and a receiver are briefly reviewed in the following. Mostly it is
assumed, however, that only the horizontal position coordinates must be determined.
As aforementioned it is also important to locate the user on the correct floor in a multi-
storey building. The techniques have in common that the mobile device can be either the
transmitter or the receiver. These measurement principles form the basis for the methods
of localization.

To derive the ranges between a transmitter and receiver several methods are applicable,
such as Time of Arrival (ToA) (also referred to as Time of Flight (ToF)), Time Difference
of Arrival (TDoA) and Round Trip Time (RTT) measurements [36]. In addition, ranges
may be derived from RSSI measurements using so-called path loss models (see e.g., [41]
for examples of common path loss models). These models are describing the relationship
between RSSI values and distance by assuming that the RSSI decreases with increasing
range from the transmitter.

For lateration, the individual ranges between the transmitters and the mobile device
are first estimated. The methods ToA, RTT, TDoA and RSSI can be used for this purpose.
At least three ranges must be measured for unambiguous localization in 2D. This is referred
to as trilateration. If more ranges are used it is called multi-lateration. For the position
determination the intersection is calculated from the distance radii. The location of the
transmitter is in the center of a circle in 2D and a sphere in 3D (see e.g., [1]).

Table 3 summarizes the main properties of range-based localization techniques. The
main disadvantage of the time-based methods (ToA, RTT and TDoA) are that an accurate
time synchronization is required and such an error would have a large impact on the position
determination. In addition, care must be taken not to measure the reflected signals, but rather
the LoS signals, in order to obtain accurate results. The largest disadvantage of the RSSI-based
lateration method is that the measured signal strengths can vary by a large extent. However,
there is no need for a LoS between transmitter and receiver and that the multipath does
not play a major role. Furthermore, no time synchronization between the two components
is necessary. The levels of achievable positioning accuracies provided in the Table are also
representative for the use of Wi-Fi in RSSI- and RTT-based lateration solutions.

2.5. Location Fingerprinting

Fingerprinting is a pattern recognition approach based on the RSSI measurement
principle. The method consists of the training phase (or off-line phase) and the positioning
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phase (on-line phase). During the training phase the RSSIs of the surrounding transmitters
are measured at several reference points in space and saved in a multi-dimensional database
which can visualized in radio maps. The radio maps can be stacked into so-called datacubes
as proposed by Retscher [1]. The radio map datacubes are the 3D arrays of the radio maps
of the sensed APs at a certain location. The datacube has two spatial axes and a vertical
AP axis. It is created by stacking radio maps vertically onto each other allowing the
examination of the interrelations of the three quantities easily. For positioning in the on-line
phase, the measured fingerprint at an unknown location is then compared with those in
the empirically determined radio map datacubes. Finally, the position in the radio map
that best matches the on-line measurement is returned. The radio map can also be created
using simulated models taking into account the signal propagation in the area of interest;
but this can be very complex.

In contrast to lateration, fingerprinting uses the signal attenuation and the multipath
effect to determine the position. In addition, there is no need for a direct LoS between
transmitter and receiver. One disadvantage of this method is the time required to set
up and maintain the fingerprint database. In addition, training measurements must be
carried out again when a new transmitter is installed or when structural changes are
made [42]. Another challenge is the large variation in the observed RSSI values due to
signal fluctuations. Despite these drawbacks, fingerprinting is now one of the most popular
methods for an IPS. The specifics regarding the use of Wi-Fi fingerprinting are reviewed in
the following section.

2.6. Specifics of Wi-Fi Positioning

Smartphone-based positioning using Wi-Fi plays a dominant role in the indoor posi-
tioning field and thus, it has become increasingly popular. This section presents briefly the
Wi-Fi specifications and the properties of the two most commonly employed techniques in
Wi-Fi positioning, i.e., the location fingerprinting and lateration-based approaches.

A Wi-Fi AP broadcasts small packets, i.e., the beacons, containing the Service Set
Identifier (SSID) and the Media Access Control (MAC) address approximately every 100 ms.
This ensures continuous data transmission. An AP can also transmit several signals
simultaneously, with each signal belonging to its own Wi-Fi network. Furthermore, it
is important that different channels are assigned to the APs, otherwise interference will
occur [43]. The mobile device receives the signal and can identify the AP by the MAC
address. The RSSI can additionally be sensed with various smartphone applications.
Since the RSSI, the SSID and the corresponding MAC addresses can be accessed without
any authenticated connection, this information is freely available. This allows wireless
positioning to be performed autonomously, avoiding also privacy concerns that typically
arise with other positioning technologies [31]. The size of the covered radio cell depends
on the transmission power and the spatial conditions of the environment. Here, fluctuating
influences such as the humidity in the air and in the building structure play a major role.

Wi-Fi is based on the IEEE 802.11 standard, which was developed by the Institute
of Electrical and Electronics Engineers (IEEE). Since its introduction, several extensions
have been developed, each with its own characteristics, such as the frequency band used
or the range. Two frequency bands, i.e., the 2.4 and 5 GHz band, are available for Wi-Fi.
The frequency range in the 2.4 GHz band (2400–2483.5 MHz) is divided into 14 channels,
with only the first 13 channels used in Austria. Although the channel spacing is 5 MHz,
a radio connection requires a bandwidth of 20 MHz (or at 802.11b 22 MHz). In order to
avoid interference, therefore, in the case of spatially overlapping cells, overlapping-free
frequency ranges with a distance of four channel numbers must be selected. The legally
regulated maximum transmission power for the 2.4 GHz band in Austria is 100 mW. A total
of 19 channels are freely available in the 5 GHz band. The frequency range 5150–5350 MHz
may only be used with a maximum transmission power of 200 mW. The lower frequency
range of 5150–5250 MHz may also be used with automatic power control, i.e., Transmit
Power Control (TPC). TPC reduces the transmission power depending on the need. For
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example, if there is good connection between the devices, the transmission power is
reduced. The 5470–5725 MHz frequency range may only be used outside buildings using
TPC and Dynamic Frequency Selection (DFS) and with a maximum transmission power
of 1000 mW. With the help of DFS, the AP automatically detects other radio systems and
can switch to another frequency. This ensures that radar installations, satellite positioning
services are not interfered [44]. The combination of TPC and DFS thus allows APs to
determine the channels with the best availability and to use the lowest possible transmission
power. The user therefore only receives the transmission power required for the current
distance to the AP.

Each frequency band has its own advantages and disadvantages. In principle, the
higher the frequency, the shorter the range (due to the higher signal attenuation). The
2.4 GHz band thus theoretically has a larger range, as it overcomes shielding materials
with a lower loss. However, it has the disadvantage that the frequency band is compatible
with other electronic devices or needs to be shared with other radio techniques, such
as Bluetooth, microwave ovens, radio remote controls, etc., making it more prone to
interference. The advantage of the 5 GHz band is the significantly higher data transmission
rate, which does not matter with an IPS, since no data is transmitted as only the RSSI are
measured. The big disadvantage of the 5 GHz band is that the signal is more shielded by
walls. In the conducted tests it is seen that the 5 GHz Wi-Fi signals have a shorter range
than the 2.4 GHz signals due to these properties (see Section 4.3). The Wi-Fi antennae in
the APs bundle the electromagnetic waves and can thus influence the signal. Depending
on the design of the antenna, the range and direction of the signals can be controlled and
thus also the size of the radio cell. Commercially available APs have usually a range of
20 to 100 m within a building.

Due to signal damping and attenuation as well as signal fluctuations and noise,
Wi-Fi positioning is normally not robust against dynamic changes in the environment.
Thus, location fingerprinting is most commonly employed localization technology. For
fingerprinting deterministic and probabilistic approaches can be employed. On the other
hand, for lateration methods based on the measurement of the RSSI and RTT can be used.
In the case of RSSI-based lateration, however, lower positioning accuracies are achievable
in comparison to the RTT measurements with the new Wi-Fi IEEE 802.11mc standard. In
Retscher [1] a comprehensive review of these techniques and the common mathematical
models may be found. In this study, the available Wi-Fi AP hardware in the library of TU
Wien supports only RSSI-based solutions. Thus, the chosen localization technique in this
work is fingerprinting. A probabilistic fingerprinting approach is employed as they usually
provide higher positioning accuracies than deterministic methods (see Section 6.1).

3. Test Site and Measurement Procedures
3.1. Test Site

The University library of TU Wien is a multi-storey building and is connected with
another large office building referred to as ‘campus Freihaus’. The chosen trajectory in
the library with its waypoints on the ground and second floor is shown in Figure 1. It
starts from outdoors in front of the main entrance (waypoints 1 to 5, not shown in the
Figure) and has a length of around 379 m. Partly on the ground floor (points 10 to 19) and
on the second floor (points 27 to 42) the trajectory runs along bookshelves. The reading
room on the second floor is an open space of a size of approximately 830 m2. The layout of
the bookshelves is illustrated with grey lines in Figure 1. The trajectory waypoints, also
referred to as checkpoints, were placed at important passages and at the bookshelves on
every second row. The distances between the checkpoints are therefore approximately
3 to 8 m. The number of visible APs was quite low as on the ground floor only two APs and
on the second floor only four APs of the University Wi-Fi network are located (see yellow
stars in Figure 1 for their location). Throughout the whole library, only four APs which
are almost at the same location in the reading rooms as on the second floor can be found
on each of the five floors. That is why, the second floor was chosen as major study area as

109



Sensors 2021, 21, 432

this floor is representative for the whole library building apart from the ground floor. The
low number of APs results in challenging conditions for matching of the fingerprints in the
on-line positioning phase due to the small number of AP in close proximity.
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Measurements were carried out during normal opening hours of the library with
many people around. The users walked along the trajectories with an average walking
speed of 1 ms−1 in both ways back and forth taking around four minutes each for the
whole trajectory. Apart from measurements in kinematic mode, also stop-and-go and static
observations were carried out along the trajectory and on the checkpoints. For the analyses,
also cells (denoted with blue Roman numbers in Figure 1) were defined consisting of
different numbers of checkpoints in dependence of the local spatial conditions. If several
checkpoints are part of these cells a higher localization performance can be achieved as
demonstrated in Section 6.2.

3.2. Wi-Fi Signal Availabilities

Apart from the Wi-Fi University network in total six APs on the ground floor and
41 APs on the entire second floor providing signals could be sensed. Figure 2 shows the
average number of visible Wi-Fi signals per scan on all checkpoints of the trajectory leading
from outside through the ground floor to the reading room on the second floor. Note,
that these numbers represent the different MAC addresses per scan and not the physical
APs. In the Figure, the ratio of the University owned APs of the TUnet network (orange
bars) and all visible signals (blue bars) is shown. On average, 19 stationary AP signals
from the University network per scan could be measured in the library and outside. At
checkpoints 1 to 6 the difference between the signals from the TUnet and other signals is
the largest. These points are located outdoors and many other external signals are received.
When considering the frequency distribution, checkpoints 5 and 6 stand out, where an
above-average number of signals per scan is observed. These two checkpoints are located
directly in front of the library entrance, which is why many signals of the TUnet from the
adjacent office building can also be received here. The low number of signals at checkpoint
19 results from the fact that this point is located at a corner of the room on the ground floor.
Checkpoints 20 to 25—with the exception of point 23—also show a lower number of signals
per scan. These checkpoints are located in the staircase, where there are no APs. Especially
at checkpoint 24, very few signals with an average of 4.7 signals per scan were received.
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3.3. Test Measurement Procedures

Test measurements were carried out in three different modes, i.e., static, stop-and-go
and kinematic. In the case of static measurements, individual signal strengths measure-
ments were carried out in several user orientations at the checkpoints. The necessary
orientation measurements were performed in the possible movement directions. For ex-
ample, only two orientations were measured in the corridors and four orientations at
nodes (where two corridors intersect). At least 50 single Wi-Fi scans with several different
smartphone models were measured at each checkpoint.

In the kinematic measurement mode, the Wi-Fi RSSIs were continuously recorded
along the defined trajectory while the user walked along with a usual walking speed of
1 ms−1 back and forth. The obvious advantage of this mode is that the time required for
the off-line training phase is much shorter than for the static measurements, in which a
measurement cycle took approximately 40 min compared to 4 min only in kinematic mode.
However, this measurement procedure does not exactly carry out a Wi-Fi scan on every
checkpoint due to time taken for a single Wi-Fi scan. Thus, the result significantly depends
on the scan duration [1,4]. For the creation of the radio maps (see Section 4.2), however,
the signal strengths on the checkpoints must be known, which is why the RSSI values of a
measurement run have to be interpolated in time. Therefore, a timestamp was set on each
checkpoint while passing by. The linearly interpolated RSSI values on the checkpoints can
then be saved in the fingerprint database. Figure 3 illustrates a kinematic measurement
process and the linear interpolation of signal strengths. If the signal of an AP is not
measured during the scan, then a RSSI value of −102 dBm was assigned for the missing
value. This value was chosen as, since the lowest value measured in the test site was −101
dBm. As already mentioned, each smartphone takes a certain amount of time to perform a
Wi-Fi scan (compare Table 4). In Figure 3, therefore, the two smartphones with the shortest
and the longest scanning time are presented, whereby the two smartphones performed
the measurement simultaneously. Although higher number of scans, i.e., 201 scans, can
be performed during the same time interval with the OnePlus 5T smartphone due to the
shorter scanning time than with the Sony Z3 (115 scans), there is a great similarity between
the two signal series. The signal strengths are derived from the 5 GHz Wi-Fi signal of the
AP DDEG-2 in the case shown.
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Table 4. Average scan durations and sensed AP signals per scans for the six available smartphones.

Scan Duration [s] Average AP Signals per Scan

Nexus 5X 3.8 40.8
OnePlus 5T 2.4 42.6

Samsung S3A 3.5 33.7
Samsung S3B 3.5 27.5
Samsung S7 2.5 39.5

Sony Z3 4.1 39.3

In the stop-and-go mode, measurements were carried out at each checkpoint for a
certain period of time of approximately 20 s so that at least five Wi-Fi scans are available.
Thus, in contrast to the kinematic mode no interpolation must be performed. As an
example, Figure 4 shows a measurement run for the same two smartphones and AP as in
Figure 3. Again a great similarity between the signal sequences of the two smartphones
can be seen. For a more detailed analysis, the scans on selected checkpoints are magnified
in Figure 5. Checkpoints 3 and 24 are the ones where the signal could be at first or at
last received along the trajectory. These two checkpoints are also those with the lowest
RSSIs. However, only with the OnePlus 5T smartphone the signal could be measured with
RSSI values −94.9 dBm or −92.9 dBm, respectively. At checkpoint 10 the highest RSSI
values can be measured with average signal strength of −44.7 dBm with the OnePlus 5T
and −43.2 dBm with the Sony Z3. At checkpoint 19 it is noticeable that the signal could
not be measured during a scan, although it was measured shortly before and after with
approximately −62 dBm. Furthermore, it can be observed at all checkpoints that the signal
strengths are not always stable, but differ slightly from scan to scan. In order to investigate
how the RSSI values behave within this short period of time, the standard deviations were
calculated. The largest signal fluctuations occurred at checkpoints 4 with ±4.3 dBm and
6 with ±3.3 dBm. Viewed over all measurements and checkpoints, the average standard
deviation of the signal strengths during the stopping phase is only ±1.5 dBm.
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4. Analyses of the Off-Line System Training Phase

Training measurements were carried out in front of the main building of the University,
in the library and the Freihaus building along predefined trajectories with reference waypoints
at decision points, such as trajectory crossings, and at irregular intervals depending on the
local conditions. During the kinematic measurements, a time stamp was set at the waypoints
when the user passed, in order to be able to interpolate the RSSI values at these points.

4.1. Measurement Mode Comparison

The fingerprint databases were created from the RSSI measurements of all smart-
phones either separately or combined. However, not every measurement is used separately,
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but the average RSSI values are collected for each checkpoint in a vector. In order to obtain
a combined device-independent fingerprint database, a calibration with a multivariate
linear regression as in [1] was carried out in the form of:

yRSSI = aS·xS + bS (1)

where xS is the measured RSSI value from the smartphone S which should be calibrated,
yRSSI the averaged reference vector calculated from all average RSSI values that are es-
timated with the linear regression model and aS and bS are the calibration coefficients.
To obtain a gradient which is equal for each smartphone, aS = const. is assumed in the
linear regression model. The adjusted RSSIs using these calibration coefficients can then be
used for a combined fingerprint database. Applied to these datasets, the variation range
could be reduced from 27 to 16 dBm using the calibration. Overall, the average standard
deviation of all measurements could be reduced from 4.2 to 3.0 dBm (for further details
see [1]). In order to compare these measurement modes and the databases, the differences
between the mean RSSI values were calculated for each checkpoint and AP.

Figure 6 shows the mean signal strengths and their standard deviations of one AP
where the largest differences between the database values were found in the library for the
three databases from the static, stop-and-go and kinematic off-line training measurements.
Thereby the 2.4 GHz signal from the AP DD02-2 showed the largest difference at checkpoint
34. The average difference for this AP resulted in 0.8 dBm between the databases derived
from static and kinematic training measurements, 1.0 dBm between the static and stop-
and-go database and 1.5 dBm between the kinematic and stop-and-go database. The
largest difference between the stop-and-go and the kinematic database reached 11.3 dBm.
For further comparison, the correlation coefficients between pairs of the same APs were
calculated. For this purpose, on the one hand, the database from the averaged RSSI
was used, and on the other hand, their variances. The results for the mean correlation
coefficients and differences between the databases are presented in Table 5. With regard
to the RSSI values, the databases show nearly no differences and are highly correlated.
The average difference between pairs of the same AP is also very low. In the case of the
variances, the correlation with the kinematic measurements is somewhat weaker. This is
probably due to the lower number of off-line measurements, i.e., 60 scans per checkpoint,
in this measurement mode. All in all, however, the databases are very similar, which is
why the databases are now combined for the subsequent creation of the radio maps and
the analyses of the positioning results.

Table 5. Mean correlation coefficients and variances for the comparison of the different
fingerprint databases.

RSSI Variances

r d [dBm] r d [dBm]

static—kinematic 0.96 0.3 0.93 3.9
static—stop-and-go 0.99 0.3 0.97 2.8

kinematic—stop-and-go 0.96 0.4 0.94 3.4
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4.2. Radio Map Generation

In order to know the RSSIs and variances of the APs not only at the waypoints, but
also in the whole test site, an area-wide interpolation is carried out for each AP for both
the RSSI values and the variances. Different interpolation methods can be used for this
purpose (see e.g., [45]). An interpolation by natural neighbors, also referred to as Voronoï
interpolation, is used in this work [46–48]. The grid width of the interpolated radio maps is
set to 1 m, which results in that positioning can be carried out within meter accuracy. In a
multi-storey building, when creating the radio maps, it must be kept in mind that a separate
radio map for each AP is created for each floor, always using only the RSSI measurements
on those checkpoints that are located on the respective floor. The different radio maps
of a floor can be combined into a three-dimensional array in the form of datacube (see
Section 2.5), with the first two dimensions resulting from the extent of the floor and the
third dimension from the number of APs.

The creation of an empirically determined radio map starts with the classification of
reference points on the basis of a building map. Care should be taken to ensure that the
reference points are well distributed throughout the building. In the off-line training phase,
the signal strengths—derived from different APs—are then measured at each reference
point. A fingerprint respective scan sRPi ,t, which was carried out at the reference point RPi
at time t, is thus composed of the measured RSSI values RSSIAPj of the N APs [1]:

sRPi ,t =




RSSIAP1
RSSIAP2

...
RSSIAPN


 (2)

The measured signal strengths are then assigned to the corresponding APs in the
fingerprint database. To do this, however, it first has to be determined which APs are
to be used for localization. If several scans are performed at a reference point, then the
database consists of all the scans at each reference point. It can happen that the number of
signals strengths received for each scan is different, because for example an AP temporarily
does not broadcast a signal, or the signal is too weak to be sensed. This leads to problems
in determining the position when RSSI values of different APs occur in the observed
fingerprint and in the fingerprint in the radio map. Therefore, a constant RSSI value is used
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for the missing fingerprint in this work, which means that the signal of the AP was not
measurable. As aforementioned here a constant minimum value of −102 dBm was used,
since the lowest value ever sensed in the area was −101 dBm.

Not every scan is used separately for localization, but the RSSI averages of the mea-
surements are collected in the vector given in Equation (2). A suitable reference value
for the sensed RSSI values must be found for this purpose. If the measured values are
assumed to be normally distributed and contain only random errors, then the mean value
is an optimal reference value. The database’s fingerprint fRPi consists of all the mean RSSI
values sensed at that reference point in the form:

fRPi =
(

fAPj

)
=

1
N

N

∑
t

RSSIt,APj =




RSSIAP1

RSSIAP2
...

RSSIAPN


 (3)

Each reference point generally has a unique characteristic and therefore acts like a
RSSI fingerprint (therefore also the name fingerprinting for the localization approach).
Thereby each RSSI is measured with a certain precision at each reference point. The value
for the precision of a measurement series is the variance or standard deviation. This
information can also be used for fingerprinting by providing each fingerprint with its
covariance matrix. The measurements are assumed to be uncorrelated, which means that
the empirical covariance matrix C f f contains only the variances s2

RSSIAPj
of the APs APj in

the diagonals as given in:

C f fRPi
=




s2
RSSIAP1

0
...
0

0
s2

RSSIAP2
...
0

· · ·
· · ·
. . .
· · ·

0
0
...

s2
RSSIAPN




(4)

The fingerprinting database thus contains a fingerprint fRPi for each reference point
and is thus a two-dimensional array with the reference points as columns and the APs as
rows. To determine the position, either the database can be used directly, or a radio map
for each AP can be created by means of surface interpolation of the RSSI values. For that
purpose, however, the coordinates of the reference points must be known. The interpolated
radio map of an AP then contains the mean RSSI values on the reference points as well as
the interpolated RSSI values between them. Since an individual radio map is created for
each AP, the radio maps can be combined into a three-dimensional array, with the first two
dimensions resulting from the length and width of the building and the third dimension
from the number of APs. For complex buildings, however, it is not necessary to create a
single radio map array for the entire building, but it is also possible to create single arrays
for certain areas (e.g., floors). The size of the radio maps depends on the grid size as well as
the spatial conditions and influences the quality and duration of localization. The larger a
radio map is, the longer it takes to determine the position of the user. The accuracy of the
position determination depends mainly on the density of the APs and the quality of the
radio maps. The quality of the radio maps deteriorates over time due to the fluctuations in
the AP signals and changes in the environment, such as changes in the position of furniture
or other objects. Therefore, it is important that new fingerprints are collected regularly
in order to keep the radio maps up-to-date. In a previous study, the authors [45] have
developed a continuous kinematic training of the fingerprint database where measurements
along walked trajectories are used to update the database. An important finding in the
investigation of the radio maps is that the database created either from static, stop-and-go
and kinematic measurement modes show a great similarity in both RSSIs and variances. For
future work, this also means that continuous kinematic system training can be carried out,
which means that the training phase is much shorter.
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As examples, Figures 7 and 8 show the radio maps of the two APs on the ground
floor and the four APs on the second floor, respectively. Thereby only the 5 GHz frequency
band of the Wi-Fi signals is presented. In addition, own radio maps were created for the
outdoor area. Since there is only one checkpoint on the first floor, no surface interpolation
can be performed, which is why the radio map on this floor consist only of the fingerprint
of checkpoint 23. The signals of 77 APs were used in total, which is why the radio map
datacubes have the sizes presented in Table 6. From Figure 7 can be seen that the Wi-Fi
signals can be received at all checkpoints on the ground floor. AP DDEG-1 can be sensed
at checkpoints 7, 8 and 43 with the highest signal strength of approximately −60 dBm.
Surprisingly, however, the RSSI values are quite low under this AP. This is most likely
not the case, but is due to the fact that no measurements were carried out in this area
around the AP. The signals of the AP DDEG-2 can be well received in the entire area. Since
checkpoint 15 lies directly under this AP, the signal is received with a high average value
of −48.6 dBm. The radio maps for the 5 GHz Wi-Fi signals of all four APs on the second
floor are shown in Figure 8. All of them can be received at all checkpoints. However, the
signals in the diagonally opposite corners are very weak, i.e., only −91 to −98 dBm. While
cross-comparing Figures 7 and 8 it is seen that the RSSI values are much lower on the
second than on the ground floor. From Figure 8 can also be seen that the signal strengths
were only interpolated between the checkpoints, which is why localization can only be
performed in the inner area of the reading room between these bookshelves. If one would
extrapolate the RSSI values outside this area, this would result in none realistic RSSI values
as the signals could be determined either very strong or weak with high or low RSSI values,
respectively. In order to have a radio map for the whole reading room, measurements
not only on the selected checkpoints along the trajectory but also at additional points at
room boundaries need to be carried out. The investigation in this paper, however, dealt
with measurements in kinematic mode along the predefined trajectories to minimize the
workload for system training. From the results presented in Section 4.3 one can see that the
similar low signal strength values from all four APs led to lower positioning accuracies.
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Table 6. Sizes of the radio map datacube arrays.

Outdoor 32× 172× 77

Ground floor 34× 28× 77
1st floor 1× 1× 77
2nd floor 13× 30× 77

4.3. Visibility and Range of the Wi-Fi Signals

As aforementioned, not all APs are detected at every scan. Figure 9a,b show, for
example, the signal strengths and visibility of the APs at those checkpoints where to lowest
and highest number of APs could be sensed. At checkpoint CP20 (Figure 9a), the signals of
nine different APs were measured, of which only two were visible more than in 75% of

118



Sensors 2021, 21, 432

the observations. CP20 is located quite remotely in a room corner on the ground floor of
the staircase (compare Figure 1a). The two frequency bands of the AP DDEG-2 were most
visible and were also received with higher signal strength. The 5 GHz signal was visible in
96% of the scans and had and average RSSI value of −77.4 dBm. Although the 2.4 GHz
signal has a slightly lower visibility, i.e., 94%, it could be received with average RSSI values
of −75.2 dBm. At checkpoint CP06 (Figure 9b), 47 different APs could be sensed at least
once, of which many APs were visible in more than 75% of cases. CP06 is directly located
at the library entrance. Here, the 5 GHz signals of the APs DCEG-3 and DC01-3 were the
most visible with 99%. The 2.4 GHz signals of DCEG-3 have a visibility of 98% with the
highest signal strength on average of −65.0 dBm. The 5 GHz signal, on the other hand,
showed a−5.2 dBm lower mean signal strength of−70.2 dBm. Thus, a correlation between
the visibility and the RSSI values is obvious. Therefore, the correlation coefficient of these
two measured values was determined for each checkpoint; it resulted in 0.96. This means
that the higher the signal strength of an AP, the more often this AP is also visible.

Sensors 2021, 21, x FOR PEER REVIEW 22 of 39 
 

 

 
(a) 

 
(b) 

Figure 9. Checkpoints with (a) the lowest (CP20) and (b) highest (CP06) visibility. 

A further correlation exists between the two frequency bands 2.4 and 5 GHz that all 

APs provided. Across all checkpoints, the 2.4 GHz signals were on average 3.6 dBm 

higher than the 5 GHz signals. The average standard deviations resulted in ±4.5 dBm for 

the 2.4 GHz and ±3.5 dBm for the 5 GHz frequency band. In terms of signal range, the 2.4 

GHz has a longer range from an AP compared to the 5 GHz band as it penetrates 

shielding materials with less loss and also has less free space path loss (FSPL), although 

the 5 GHz band has a 3.0 dBm higher transmitting power. The FSPL describes the reduc-

tion of the power density of an electromagnetic wave in free space, i.e., without inter-

ference from damping media, such as air or interference caused by reflections. As shown 

in [1], the attenuation thereby depends on the signal frequency and the signal weakens 

with increasing distance from the transmitter, also in terms of the signal-to-noise ratio. 

The FSPL in the unit dB is usually described on a logarithmic scale by means of the Friis 

transference equation [49]: 

𝐹𝑆𝑃𝐿 [𝑑𝐵] = 10 ∙ 𝑙𝑜𝑔10 (
4 ∙ π ∙ 𝑑 ∙ 𝑓

c
)

2

 (5) 

where 𝑑 is the distance between the transmitter and receiver in [m], 𝑓 is the frequency 

of the signals in [Hz], and 𝑐 is the propagation speed in [ms-1]. Thus, the power de-

creases with the square of the distance to the transmitter. This applies for direct LoS 

signals. In practice, an empiric logarithmic distance model can be derived from Equation 

Figure 9. Checkpoints with (a) the lowest (CP20) and (b) highest (CP06) visibility.

A further correlation exists between the two frequency bands 2.4 and 5 GHz that all APs
provided. Across all checkpoints, the 2.4 GHz signals were on average 3.6 dBm higher than
the 5 GHz signals. The average standard deviations resulted in ±4.5 dBm for the 2.4 GHz
and ±3.5 dBm for the 5 GHz frequency band. In terms of signal range, the 2.4 GHz has a
longer range from an AP compared to the 5 GHz band as it penetrates shielding materials
with less loss and also has less free space path loss (FSPL), although the 5 GHz band has a
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3.0 dBm higher transmitting power. The FSPL describes the reduction of the power density
of an electromagnetic wave in free space, i.e., without interference from damping media,
such as air or interference caused by reflections. As shown in [1], the attenuation thereby
depends on the signal frequency and the signal weakens with increasing distance from the
transmitter, also in terms of the signal-to-noise ratio. The FSPL in the unit dB is usually
described on a logarithmic scale by means of the Friis transference equation [49]:

FSPL [dB] = 10· log10

(
4·π·d· f

c

)2
(5)

where d is the distance between the transmitter and receiver in [m], f is the frequency of
the signals in [Hz], and c is the propagation speed in [ms−1]. Thus, the power decreases
with the square of the distance to the transmitter. This applies for direct LoS signals. In
practice, an empiric logarithmic distance model can be derived from Equation (5), because
also with LoS signals, reflections and damping due to physical objects occur. Thereby, a
Wi-Fi signal is already considerably attenuated within a few meters from an AP and the
attenuation increases with the increasing frequency [1]. This mathematical relationship
proves that the 5 GHz Wi-Fi signals have a shorter range that the 2.4 GHz signals.

Furthermore, the use of an AP from a different floor in the building was analyzed. For
this purpose, one AP from the first floor of the library (between the two test areas) visible
on most checkpoints was selected. The RSSI values of the AP DD01-2 for both the 2.4 and
5 GHz frequency bands are presented in Figure 10. They were received on 36 checkpoints
with varying RSSI values. With an average of 79.7 dBm for the 2.4 GHz band and 88.0 dBm for
the 5 GHz band the highest Wi-Fi signals were measured at checkpoint CP32 which is located
directly above the AP on the second floor. This proves again that that there is a significant
difference between the two frequency bands in terms of signal strength and range.
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4.4. Kinematic System Training

Retscher and Hofer [50] introduced the checkpoint concept for Wi-Fi positioning.
System training for fingerprinting is usually carried out in static mode on reference points
distributed in a regular grid in the area of interest. The main disadvantage of this training
procedure is therefore the required high workload. With trajectory checkpoints, the time
needed for system training can be reduced by three quarters as shown in [50]. In the follow-
ing steps of development, static training was replaced by kinematic measurements while
walking along the trajectories [45]. Without stopping at reference points the user walks
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along predefined trajectories throughout the building. These kinematic measurements,
however, pose much greater challenges than the usual static training measurements. As
discussed in Section 3.3, the RSSI values on the checkpoints need to be interpolated from
the whole RSSI time series. The reason for the required interpolation is that the RSSIs are
continuously recorded and a single Wi-Fi scan takes some time. The scan duration depends
heavily on the number of sensed APs and mostly on the hardware of the smartphone. In
the following Section 5 this impact is discussed in further detail. Table 4 shows average
scan durations for the employed smartphones in the test. One might think that the long
times occurred only because of the fact that the smartphones used in the tests are quite
old. The obtained different range of scan durations, however, is representative for a great
variety of smartphones which are available on the market. They also cover a wide range of
different hardware. As can be seen from Table 4, the scan durations varied between around
2.5 to over 4 s. The average number of sensed APs per scan was in the range of around
30 to 40 AP signals. The analysis of the system training measurements showed that there
are sufficiently stable signals available everywhere on the campus to carry out a position
determination using Wi-Fi fingerprinting. Retscher and Leb [45] could demonstrate that
the achieved positioning accuracies for the kinematic system training are not much worse
than with static measurements. The big advantage, however, is that the training phase is
much shorter and continuous system training can also be carried out if needed.

5. Impact of Different Scan Durations on the Positioning Results

Every smartphone needs a certain amount of time to perform a single Wi-Fi scan.
These can be very different in length, as has been the case with the six different smartphones
used (see Table 4). In Figure 3 the series of the two smartphones with the shortest and
longest scan duration were presented in Section 3.3. A great similarity between the two
time series can be observed although more scans along the trajectory can be performed with
the OnePlus 5T smartphone than with the Sony Z3. As shown in this section, however, the
scan duration has a significant influence for kinematic positioning in the on-line phase. If
one looks at the whole collected dataset irregular scan durations were found for individual
smartphones. They can deviate quite significantly from the mean scan durations presented
in Table 4. Figure 11 shows such a case where two smartphones, i.e., the Nexus 5X and
the Sony Z3, are compared. It can be seen that the Sony Z3 can have very long scanning
times of even up to 15 s. The Nexus 5X, on the other hand, performs many scans with a
measuring time of only a few milliseconds. These irregular scanning times are examined in
more detail in the following.
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The short scan durations of the Nexus 5X are shown in Figure 12 together with the
measured signal strengths. Again the results of the 5 GHz signal of the same AP as in
Figure 3 are presented. As shown in Figure 12a, the irregular scanning periods start
between the checkpoints 6 and 7. The pattern is always similar as first slightly longer scan
duration occurs followed by a series of scans with a short scan duration, whereby the total
duration of these scans corresponds to the average scan duration. After that, two scans
occur with average scan duration and then a series of short scans starts again. A closer
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look indicated that during these short scan durations the RSSI values do not change which
causes then problems in localization of the user. To reduce their effect, these scans were
eliminated from the dataset. However, as a result a gap of one scan is present in the dataset
as indicated in the Figure 12b. The reason for this effect, however, could not be clarified. It
was only found with the Nexus 5X.
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Figure 13a shows the long scan durations of the Sony Z3 together with one of the
Samsung S3, i.e., the S3A (Figure 13b). Both smartphones carried out the measurements at
the same time. The Sony Z3 showed the longest scan durations near checkpoints 7, 9 and
16, which results that no Wi-Fi scan was performed along a distance 15 m while walking
with an average speed was 1 ms−1. This leads to the fact that no scans are performed
near checkpoints 8, 10, 11, 17 and 18. The interpolation can still provide similar values
for the kinematic measurements as with the Samsung S3A phone. However, this does not
apply in general. If, for example, no Wi-Fi scans were carried out between checkpoint
11 and 14, the interpolation would estimate too high RSSI values for the checkpoints in
between. It was found that the smartphone tried to connect automatically to known Wi-Fi
networks although it was first disconnected from the network. The connection function
was disabled in order to have no influence from the signal strength changes while trying to
connect on the positioning result. In the following, the maximum allowable scanning time
for a meaningful interpolation was investigated. If there is long scan duration between
two checkpoints then it has no influence on the interpolation. The maximum allowable
scanning duration therefore depends on the spatial conditions, i.e., essentially on the
distance between the checkpoints. If two checkpoints are located close to each other, it can
be assumed that the signals show similar high values. If they are several meters apart, the
RSSI values can vary significantly depending on the environment and the interpolation may
no longer provide meaningful values. Since the fingerprint database in this work consists
of many scans and these irregular scan durations only occurred in a few measurement
runs, these scanning delays have no significant effect on the presented positioning results.
If a long scan occurs in the on-line positioning phase, it is clear that no positioning can be
carried out during this time, as no Wi-Fi RSSI values are available.
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6. Localization in the On-Line Positioning Phase

For localization in the on-line positioning phase, RSSI measurements are carried
out and matched to the fingerprint database. Most commonly either deterministic or
probabilistic fingerprinting techniques based on pattern recognition are employed [2]. In
this study, a probabilistic approach is applied as it provides, in general, higher positioning
accuracies than deterministic methods in indoor positioning [51–54]. The main reason
for this is that probabilistic fingerprinting accounts better for signal fluctuations. For
the analyses of the achievable positioning accuracies, on-line measurements were carried
out with all three measuring modes, i.e., in static, stop-and-go and kinematic mode. In
the following, the operational principle of a simple and straightforward probabilistic
fingerprinting approach is briefly reviewed and then the results for static and kinematic
positioning modes are presented.

6.1. Probabilistic Fingerprinting Approach

A probabilistic fingerprinting approach was selected where the basic idea is to
compute a conditional probability density function (PDF) of the unknown position (see
e.g., [1,55]). Starting from Bayesian filtering, a dynamic system with measurement noise
can be dealt with. The posterior PDF of the unknown positions can be derived using Bayes’
theorem (see e.g., [56,57]) and the measurements because of the fact that the fingerprints
contain information about the signal characteristics. In this work, a probabilistic approach
based on the derivation of the Mahalanobis distance is applied [58]. The Mahalanobis
distance dM has the form [1]:

dM
(

f i
map, fobs

)
=
(

fobs − f i
map

)T
C−1

f fmap,i

(
fobs − f i

map

)
(6)

where fobs is the current on-line RSSI measurement at the position f i
map in the fingerprint

database (or radio map) and C f fmap,i
its empirical covariance matrix.

Equation (6) means that the estimated reference point with the highest probability
density is the point at which the Mahalanobis distance dM between the observed fingerprint
and the fingerprint of the corresponding point in the fingerprinting database is the smallest.
The advantage of using the Mahalanobis distance is the additional use of the covariance
matrix C f fmap,i

, since the distance metric is adjusted using the covariance matrix. This is also
a distance criterion for the fingerprint matching. As the inverse of the covariance matrix
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is the weight matrix, the weighted square sum of the RSSI differences (between off-line
training and on-line positioning phase) is calculated for the Mahalanobis distance. Then the
weights are inversely proportional to the variances of the corresponding fingerprints. In
fact, the Euclidean vector distance most commonly used in the deterministic fingerprinting
approach (see e.g., [58,59]) is a special case of the Mahalanobis distance, which occurs when
the covariance matrix becomes the unit matrix. In a previous study of the authors of this
contribution it was seen that the simple and straightforward calculation of the Mahalanobis
distance while using kinematic system training yielded to comparable results as algorithms
where a static or stop-and-go mode for localization is applied.

Its principle of operation is reviewed by giving a simple example. Figure 14 illustrates
the position estimation for five on-line measurements. For each measurement at a check-
point (CP), the Mahalanobis distance is estimated for each individual CP in the fingerprint
database. The CP with the shortest distance is then the desired position. As shown in
the Figure, the positions at CP01, CP02, CP04 and CP05 have been correctly determined.
The on-line measurement at CP03, however, has its minimum at CP05, which means that
the position in this on-line measurement has been indirectly determined. If one defines a
so-called matching success rate (MSR) it would be zero for this checkpoint. This example
shows the advantages of using the Mahalanobis distance for probabilistic fingerprinting.
It is based on the knowledge of its covariance matrix. Standard deviations of each finger-
print must be known. In general, however, not all APs can be received anywhere in the
measuring area, which can lead to problems with distance calculation if RSSI values are of
different APs in the on-line and off-line fingerprint. As already mentioned, in the case a
value of −102 dBm is used for the non-receivable AP. In the event that the signals of an AP
could not be received at a single off-line measurement at a certain checkpoint—i.e., only
values of −102 dBm are set at the corresponding location in the database—the variance is
zero. However, the variance must not be zero, otherwise the determinant of the covariance
matrix is also zero and thus the covariance matrix is singular and not invertible. However,
the matrix must be inverted when calculating the Mahalanobis distance, see Equation (6).
To avoid this problem, a variance of 0.0001 dBM is used in this case. If a signal from an
AP can now be received in the on-line measurement at a point that could not be measured
in the off-line phase, then the weighting becomes very large as the weighting is inversely
proportional to the variance, which also increases the distance between the two fingerprints.
As a result, then the likelihood that this point is the location one is looking for decreases.
If the position is determined using interpolated radio maps, then the deviations of the
calculated positions from the true position can be specified. The Mahalanobis distance
between each point in the radio map and the on-line fingerprint is calculated first. Then,
from the position in the radio map where the shortest distance was calculated (the nearest
neighbor), the deviation from the true position is calculated using the Euclidean distance.
Ideally, the Mahalanobis distances near the respective checkpoint are very short and grow
with increasing distance. However, a set of K-smallest distances can also be selected to
determine the position. This is referred to as K-nearest neighbor (KNN) approach. The
searched position is then derived from the center of gravity of the K-nearest neighbors.
Therefore, the static measurements were used to determine at which K the smallest devia-
tions from the true position occur. In the library, the arithmetic mean of all deviations for
K = 1 is 2.9 m and the median 2.0 m. As shown in Figure 15, the arithmetic mean and the
median of all deviations in the measuring area increases the more neighbors for position
determination are included. Therefore, only the nearest neighbor approach with K = 1 was
applied in the further evaluation.
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6.2. Static Positioning

For static localization, five RSSI scans were carried out in two different orientations—
usually in the possible direction of movement along the trajectory—at each checkpoint.
For the analysis, a matching success rate (MSR) was defined, i.e., how often the correct
checkpoint in the on-line positioning phase was assigned. The achieved MSR was quite
low of only 61% on average for all 43 checkpoints. Especially checkpoints at room borders
and edges were determined with low MSRs. In addition, most of the incorrectly matched
points were assigned to neighboring checkpoints. The test site was then divided into cells
for cell-based localization (Figure 1 shows the cells with blue Roman numbers). If cell-based
positioning is carried out then the MSRs can be significantly increased as indicated in Table 7.
The two worst results were achieved in cells X and XI, which are either in the staircase or at
the entrance to the second floor near the staircase. Here the adjacent cells are determined
frequently. The two cells VI and VII located on the ground floor also showed low MSRs. In
fact, this is caused by the usage of only two APs from the network of the University.
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Table 7. Matching success rates (MSR) in the cells in the library (for the location of the cells see Figure 1).

Cell Checkpoints Location MSR

I 1, 2 outdoor 1 100.0%
II 3, 4 outdoor 2 100.0%

III 5, 6 entrance area
(outdoor) 100.0%

IV 7, 8 entrance area (indoor) 66.7%
V 9, 43 ground floor lobby 87.5%
VI 10–15 ground floor area 1 56.9%
VII 16–19 ground floor area 2 54.2%
VIII 20–22 ground floor staircase 77.8%
IX 23 first floor staircase 100.0%
X 24, 25 second floor staircase 50.0%
XI 26, 27, 39, 40 second floor area 1 39.6%
XII 28, 29 second floor area 2 91.7%
XIII 30, 31 second floor area 3 66.7%
XIV 32–34 second floor area 4 100.0%
XV 35, 36 second floor area 5 70.8%
XVI 37, 38 second floor area 6 87.5%
XVII 41, 42 second floor area 7 66.7%

For the following analyses, the positions were estimated on the basis of the interpo-
lated radio maps, allowing the deviations of the calculated location to the ground truth
to be determined. On the ground floor of the library, the average deviations from the
ground truth resulted in 3.4 m and the median in 2.2 m. In particular, checkpoints CP11
to CP19 show above-average deviations of up to 5.0 m, as was also seen when looking
at the MSR. This is caused again by the fact that there are only two APs on the ground
floor and that there are no building structures that influence the Wi-Fi signals in such
a way that the RSSI varies significantly on each checkpoint. On the second floor of the
library, the positioning accuracies are better with mean deviations of 2.2 m and a median
of 2.0 m. The largest deviations of 8.3 m resulted on CP42 in one measurement run with
the Samsung S3B. Figure 16a shows the worst and Figure 16b the overall best result in
localizing of this checkpoint. The estimated location resulted in a deviation of 1.4 m from
the ground truth for the best solution. Here the difference of the Mahalanobis distance
between the true location and the estimated position is approximately only 0.3 dBm. In
the worst case, the Mahalanobis distances differ with values as large as 20 dBm. Further
significant average deviations on this floor were seen at the two checkpoints CP27 and
CP40. These two checkpoints have already achieved poor results when one looks at the
MSR. CP27 and CP40 are located in the entrance area of the second floor near the staircase.

If one looks at the achieved results of the different smartphones, differences can be
seen. Table 8 shows the statistical values for each of the six used smartphone in two
orientations in the possible movement directions. As can be seen, the orientation of the user
does not always play a major role for the resulting positioning accuracies. This is because
of the fact that several orientations were measured for the off-line training measurements
and thus the influence of the human body could be minimized. Table 8 also shows no
major differences between the smartphones as they were calibrated with a linear regression
model using the coefficients aS and bS obtained from Equation (1) (see Section 4.1).

126



Sensors 2021, 21, 432

Sensors 2021, 21, x FOR PEER REVIEW 29 of 39 
 

 

and XI, which are either in the staircase or at the entrance to the second floor near the 

staircase. Here the adjacent cells are determined frequently. The two cells VI and VII lo-

cated on the ground floor also showed low MSRs. In fact, this is caused by the usage of 

only two APs from the network of the University. 

For the following analyses, the positions were estimated on the basis of the inter-

polated radio maps, allowing the deviations of the calculated location to the ground truth 

to be determined. On the ground floor of the library, the average deviations from the 

ground truth resulted in 3.4 m and the median in 2.2 m. In particular, checkpoints CP11 

to CP19 show above-average deviations of up to 5.0 m, as was also seen when looking at 

the MSR. This is caused again by the fact that there are only two APs on the ground floor 

and that there are no building structures that influence the Wi-Fi signals in such a way 

that the RSSI varies significantly on each checkpoint. On the second floor of the library, 

the positioning accuracies are better with mean deviations of 2.2 m and a median of 2.0 

m. The largest deviations of 8.3 m resulted on CP42 in one measurement run with the 

Samsung S3B. Figure 16a shows the worst and Figure 16b the overall best result in local-

izing of this checkpoint. The estimated location resulted in a deviation of 1.4 m from the 

ground truth for the best solution. Here the difference of the Mahalanobis distance be-

tween the true location and the estimated position is approximately only 0.3 dBm. In the 

worst case, the Mahalanobis distances differ with values as large as 20 dBm. Further sig-

nificant average deviations on this floor were seen at the two checkpoints CP27 and 

CP40. These two checkpoints have already achieved poor results when one looks at the 

MSR. CP27 and CP40 are located in the entrance area of the second floor near the stair-

case. 

  
(a) (b) 

Figure 16. Two static positioning results on checkpoint 42 with the Samsung S3B with (a) worst and (b) overall best re-

sult. 

Table 7. Matching success rates (MSR) in the cells in the library (for the location of the cells see 

Figure 1). 

Cell Checkpoints Location MSR 

I 1, 2 outdoor 1 100.0% 

II 3, 4 outdoor 2 100.0% 

III 5, 6 entrance area (outdoor) 100.0% 

IV 7, 8 entrance area (indoor) 66.7% 

V 9, 43 ground floor lobby 87.5% 

VI 10–15 ground floor area 1 56.9% 

Figure 16. Two static positioning results on checkpoint 42 with the Samsung S3B with (a) worst and (b) overall best result.

Table 8. Deviations in [m] from the ground truth in dependence of the smartphone for the static
measurements.

Smartphone Orientation Mean Median Standard Deviation
1 4.2 3.0 4.0

Nexus 5X 2 3.1 2.2 2.6

OnePlus 5T
1 3.5 3.0 3.5
2 3.1 2.0 4.1
1 1.8 1.0 2.3Samsung S3A
2 2.1 1.0 3.6

Samsung S3B 1 2.6 1.0 3.8
2 2.9 1.0 4.4
1 3.3 2.2 3.4Samsung S7
2 2.8 1.4 3.1

Sony Z3 1 3.1 2.0 6.4
2 2.1 1.0 4.2

6.3. Kinematic Positioning

In the case of the on-line kinematic measurements, the user walked along the trajecto-
ries back and forth with usual step speed of approximately 1 ms−1. In the following, the
results of 12 measurement runs are presented. Because each smartphone requires a certain
amount of time to perform a single Wi-Fi scan, i.e., its scan duration, a fingerprint could
not be taken exactly at every checkpoint as the user pressed only an event button when
passing by at a certain checkpoint and did not stop at this point. In order to determine
the deviations at the checkpoints, the RSSI values had to be interpolated linearly. In ad-
dition to the deviations of the estimated positions from the ground truth, the kinematic
measurements also determine the positions along the whole trajectory for each single scan.
This allows that the walked trajectories can be reconstructed. Figures 17 and 18 therefore
visualize the trajectories of two different measurement runs on the ground and second
floor, respectively. Table 9 summarizes the deviations from the ground truth for the six
different smartphones while walking back and forth. The deviations resulted in 2.7 m on
average and a median of 1.4 m. As can be seen from Table 9, the largest mean deviation
occurred with the Sony Z3 smartphone during the first measurement run with a value of
4.3 m. The reason for this large deviation is found in the long average scan duration of 4.1
s (compare with Table 4). Also the deviations of the Nexus 5X smartphone are larger which
is also caused by the scan duration. As a result, the mesh points in the interpolation are
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lying further apart and their number is lower than as with short scan durations. Thus, the
interpolation yield to a poorer approximation results in respective to the measured RSSI
values. These results show that the time needed for a single Wi-Fi scan has a significant
influence on the kinematic positioning results.
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Figure 17. Trajectories of two measurement runs on the ground floor with estimated positions in red and ground truth in
blue. (a) worst result; (b) good result.
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Figure 18. Trajectories of two measurement runs on the second floor with estimated positions in red and ground truth in
blue. (a) worst result; (b) good result.
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Table 9. Deviations in [m] from the ground truth in dependence of the smartphone for the kinematic
measurement runs.

Smartphone CP Start-End Mean Median Standard Deviation

Nexus 5X
1-40 3.0 2.1 3.0
40-1 2.9 2.2 2.7

OnePlus 5T
1-40 2.1 1.0 2.4
40-1 1.9 1.0 2.7

Samsung S3A 1-40 1.6 1.0 2.3
40-1 3.3 2.0 3.7

Samsung S3B 1-40 2.2 1.0 4.5
40-1 2.9 1.0 5.0

Samsung S7 1-40 2.7 1.5 3.1
40-1 2.0 1.0 2.4

Sony Z3 1-40 4.3 3.6 5.2
40-1 3.9 3.0 3.9

6.4. Cramér-Rao Lower Bound

To investigate the deviations from the ground truth in more depth the Cramér-Rao
Lower Bound (CRLB) was calculated. The CRLB is defined as the inverse of the Fisher
information matrix (FIM) F [60–62]:

Cov(θ) ≥ F(θ)−1 (7)

The FIM F can be expressed as:

F(θ) =
[

Fxx Fxy
Fyx Fyy

]
(8)

with:

Fxx(θ) =
m

∑
i=1

ρ
(xi − x0)

2

d4
i0

Fxy(θ) = Fyx(θ) =
m

∑
i=1

ρ
(xi − x0)

(
yi − y0

)

d4
i0

Fyy(θ) =
m

∑
i=1

ρ

(
yi − y0

)2

d4
i0

and the channel constant ρ:

ρ =

(
10·np

σi· ln 10

)2
(9)

where np is the path-loss exponent (typically between 2 and 4), σi is the standard deviation
of the RSSI of APi, m is the number of APs and di0 represents the true distance between
APi and the unknown mobile device, which is numbered as 0.

Finally, the lower bound on Root Mean Square Error (RMSE) can be computed by,

RMSE ≥
√

trace(F(θ)−1) (10)

Figure 19 shows a visualization of the resulting Cramér-Rao Lower Bound (CRLB) on
the RMSE for the ground and the second floor in the library. Low CRLB values visualized
in dark blue indicate higher positioning accuracies during the on-line phase, while higher
values in red mean lower accuracy. Especially on the ground floor, one can see two areas
where the CRLB is 2 to 3 m (green-yellow areas), while in the other parts of the area it has
only values of 0.5 to 1 m.

129



Sensors 2021, 21, 432

Sensors 2021, 21, x FOR PEER REVIEW 34 of 39 
 

 

of all involved APs and Raspberry Pi units (see also [1]). In Martínez-Gómez [64] Raspberry 

Pi units were employed as mobile devices. In our future research, it is planned to replace 

the smartphones by these devices in addition to the APs. 

(a) 

 

(b) 

 

Figure 19. Visualization of the Cramér-Rao Lower Bound (CRLB) on the RMSE for (a) the ground 

and (b) the second floor. 

7. Path towards the Development of a Library Navigation and Information System 

To assist students, staff and University visitors finding auditoriums and classrooms, 

offices and other rooms faster and easier, the positioning and navigation system can be 

combined with the in-house information system of TU Wien (TU Wien Information Sys-

tem & Services TISS) and with the e-learning platform TUWEL which is based on Moo-

dle. Furthermore, additional application possibilities for location-related services are 

created. For instance, students could share their current location in order to be found 

faster by colleagues. A positioning system can also help to control and analyze people 

flows. These analyzes can later be a useful tool for, e.g., sustainable building develop-

ment. In addition, short-term changes to the venue can be communicated more easily. 

The implementation of the presented positioning service at TU Wien can therefore lead to 

many new areas of application and thus contribute to an improvement of everyday life at 

the University. Especially for the library a navigation and information service is a very 

useful tool. To find a certain bookshelf it was seen in this study, however, that the inte-

Figure 19. Visualization of the Cramér-Rao Lower Bound (CRLB) on the RMSE for (a) the ground
and (b) the second floor.

6.5. Disscussion and Proposal for Performance Improvement

The results of the kinematic positioning tests indicate that the measured trajectories
could be well reconstructed. Problems were seen only at the edges and in the corners on
the ground floor and in the entrance area near the staircase on the second floor. If one
compares the obtained results between the ground and second floor, however, differences in
achievable positing accuracies can be seen. They are mainly caused by the existing building
structures as the RSSI values do not vary significantly at the neighboring checkpoints
on the ground floor. A significant difference on neighboring locations would facilitate a
better matching success result. Although the second floor is a large reading room with
many bookshelves, the resulting deviations on the checkpoints are smaller. The higher
localization accuracies achieved could result from, on the one hand, the location of the
bookshelves itself, which provide a significant variation of the RSSI values on the different
checkpoints, and, on the other hand, due to the higher number of visible APs.

One major impact on the achievable positioning performance has not been considered
so far. It relates to an optimization of the AP locations throughout the library. The current
AP deployment enables only sufficient Wi-Fi communication services in most areas of the
building. The APs are located in a rectangular shaped deployment at the same location on
top of each other in every floor (apart from the ground floor). With AP rearrangement and
additional deployment, it can be expected that higher positioning accuracies are achievable
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and a better service provided. Thus, future work will focus on this key point. It is proposed
to deploy low-cost Raspberry Pi units serving as APs in addition. Retscher and Tatschl [63]
have used Raspberry Pi units serving as APs and reference stations broadcasting as well
as scanning and recording RSSI values at the same time. They introduced the Differential
Wi-Fi (DWi-Fi) approach where reference stations as in Differential GNSS are deployed
in the area of interest to derive correction parameters from the continuous sensed RSSI
values of all involved APs and Raspberry Pi units (see also [1]). In Martínez-Gómez [64]
Raspberry Pi units were employed as mobile devices. In our future research, it is planned
to replace the smartphones by these devices in addition to the APs.

7. Path towards the Development of a Library Navigation and Information System

To assist students, staff and University visitors finding auditoriums and classrooms,
offices and other rooms faster and easier, the positioning and navigation system can be
combined with the in-house information system of TU Wien (TU Wien Information System
& Services TISS) and with the e-learning platform TUWEL which is based on Moodle.
Furthermore, additional application possibilities for location-related services are created.
For instance, students could share their current location in order to be found faster by
colleagues. A positioning system can also help to control and analyze people flows. These
analyzes can later be a useful tool for, e.g., sustainable building development. In addition,
short-term changes to the venue can be communicated more easily. The implementation
of the presented positioning service at TU Wien can therefore lead to many new areas
of application and thus contribute to an improvement of everyday life at the University.
Especially for the library a navigation and information service is a very useful tool. To
find a certain bookshelf it was seen in this study, however, that the integration with other
technologies for positioning is required. Wi-Fi localization could be significantly improved
if the new Round Trip Time (RTT) measurement protocol [65,66] is applied. In this case the
double range between the transmitter, i.e., the AP, and the receiver, i.e., the smartphone, is
derived by travel time measurement. Using RTT measurements ranges to the APs can be
obtained with precisions on the decimeter level leading to higher localization accuracies
than with common Wi-Fi fingerprinting [1,67]. The hardware of the APs, however, would
need to be upgrade to be able to perform RTT measurements. Furthermore, currently not
many smartphones on the market support these measurements. Another requirement
would be to know the location of the AP precisely. If only the upgraded APs of the in-house
Wi-Fi networks are used the location of the APs has to be surveyed once to obtain their
3D coordinates. The knowledge of the AP locations is not a requirement for location
fingerprinting. Thus, a meaningful combination and integration of the RTT technology
with fingerprinting is a promising solution. For further investigations the usage of low-cost
Raspberry Pi units is foreseen. They should serve as APs and mobile devices enabling
fingerprinting as well as RTT measurements.

Another improvement of localization performance in the kinematic positioning mode
shall be achieved by the additional usage of the inertial sensors of the mobile devices. With
smartphone accelerometers the distance travelled can be derived and with a gyroscope
together with a magnetometer the direction of movement. Further developments are
therefore focused on the integration of these sensors for continuous user localization.

Furthermore, other ways for the calibration of the RSSI recordings of different smart-
phone will be addressed in our future research. Apart from the calibration using a multivariate
linear regression model the use of an in-motion calibration approach as in [68] shall be applied
in order to cope with the inherent noise of Wi-Fi signals. Applying a window moving average
filter to the raw RSSI recordings would lead to an improvement of the results.

A further task of investigation in this study is the integration with other technologies,
such as Bluetooth LE beacons for areas with limited Wi-Fi coverage and serving as a backup
solution as well as the usage of the RFID (Radio Frequency Identification) technology for
book labeling and tracking. Thus, it is then possible to locate the correct book in the
bookshelf itself and even detect if a book is taken out of the library without permission.
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RFID can be easily used for book location and tracking as books can be labeled with very
cheap passive tags.

At TU Wien, however, it is a requirement that the navigation and information system
should not cause high additional costs for, e.g., for installation of new hardware. Further-
more, a wide variety of mobile devices should be capable to use the service. These two
requirements were the main reasons why so far only Wi-Fi fingerprinting was considered
in the first stage of this study.

8. Concluding Remarks and Outlook

The investigations in this study have shown that Wi-Fi fingerprinting can be used
to achieve positioning accuracies on the meter level in the library building of TU Wien
and that the direction taken is useful for the development of navigation and information
services. It is expected that the positioning accuracies in the library can be increased
by installation of additional APs under consideration of their deployment to provide a
better distribution and geometry for localization. Since the APs on the upper floors of the
library are all arranged in a rectangle deployment, the question can also be asked whether
a rearrangement can improve positioning accuracy. The optimization of the geometry
of the AP locations is especially a crucial requirement if new technologies, such as Wi-
Fi RTT measurements, shall be employed for increasing the positioning accuracies and
service performance. Additional deployment of hardware is foreseen in the future by using
low-cost Raspberry Pi units broadcasting and receiving Wi-Fi signals.

To overcome a major disadvantage of location fingerprinting concerning the required
labor-intensive system training, new approaches, such as the usage of crowdsourced RSSI
data (see e.g., [69–72]) from all service users, will be employed. For crowdsourcing, users
can provide their scanned Wi-Fi RSSI values to build-up and continuously update the
fingerprinting database. As the comparison of the different measurement modes—static,
stop-and-go and kinematic—in the off-line training phase has shown, the database creation
in kinematic mode and the achievable positioning accuracies differ not much from the
other two measurement modes. This means, that continuous system training can be carried
out, which reduces the time required.
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Abstract: To provide high-quality location-based services in the era of the Internet of Things,
visible light positioning (VLP) is considered a promising technology for indoor positioning. In this
paper, we study a multi-photodiodes (multi-PDs) three-dimensional (3D) indoor VLP system enhanced
by reinforcement learning (RL), which can realize accurate positioning in the 3D space without any
off-line training. The basic 3D positioning model is introduced, where without height information of
the receiver, the initial height value is first estimated by exploring its relationship with the received
signal strength (RSS), and then, the coordinates of the other two dimensions (i.e., X and Y in the
horizontal plane) are calculated via trilateration based on the RSS. Two different RL processes,
namely RL1 and RL2, are devised to form two methods that further improve horizontal and vertical
positioning accuracy, respectively. A combination of RL1 and RL2 as the third proposed method
enhances the overall 3D positioning accuracy. The positioning performance of the four presented 3D
positioning methods, including the basic model without RL (i.e., Benchmark) and three RL based
methods that run on top of the basic model, is evaluated experimentally. Experimental results verify
that obviously higher 3D positioning accuracy is achieved by implementing any proposed RL based
methods compared with the benchmark. The best performance is obtained when using the third
RL based method that runs RL2 and RL1 sequentially. For the testbed that emulates a typical office
environment with a height difference between the receiver and the transmitter ranging from 140 cm
to 200 cm, an average 3D positioning error of 2.6 cm is reached by the best RL method, demonstrating
at least 20% improvement compared to the basic model without performing RL.

Keywords: reinforcement learning; 3D indoor positioning; visible light positioning

1. Introduction

The developments of location-based mobile services and the Internet of Things urgently need
stable and precise indoor positioning technologies [1]. As the widely deployed global positioning
system (GPS) has poor coverage and accuracy in the indoor environment, indoor positioning systems
(IPS) that employ alternative radio frequency (RF) technologies (e.g., Bluetooth, RFID, iBeacon,
Wi-Fi, and near-field communication [2–4]) have been investigated. However, the RF-based IPS
(e.g., 1–3/5–15/0.1–0.3 m with Bluetooth/Wi-Fi/UWB, respectively [5]) can be largely affected by
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electromagnetic interference and multipath effect in a congested environment [6]. Compared with RF
technologies, the visible light positioning (VLP) system has features with immunity to electromagnetic
interference and high tolerance to multipath interference thanks to the domination of the LOS
signal [7–11]. By simultaneously providing illumination and positioning services with the existing
indoor lighting equipment (e.g., light-emitting diode (LED)), VLP with high positioning accuracy
(e.g., in the order of centimeters [7]) is considered as one low cost and high energy efficiency solution
for localization in the indoor environment.

Comparing with the two-dimensional (2D) positioning on a horizontal plane at a known height,
three-dimensional (3D) positioning using the same setup is more challenging. In such a case, one needs
to map the received signal to one more dimension (i.e., height) which increases the search space for the
positioning process. To find the correct position in a larger searching space, the positioning algorithm
and/or the hardware in 3D VLP systems are more complex than the 2D ones. From the hardware
perspective, 3D VLP systems based on either a single photodiode (PD) or multiple PDs have been
proposed. In the single-PD system, 3D positioning has been achieved by combining information
from both the PD and the other hardware either at the receiver (e.g., accelerometer [12], rotatable
platform [13]) or at the transmitter (e.g., steerable laser [14,15]), which is not necessarily simpler than the
multiple-PD system from the system complexity perspective. 3D positioning based on a low complexity
receiver with one PD only has also been proposed, which has additional requirements for the radiation
patterns or geometric arrangement of LEDs to avoid ambiguity in height estimation [16,17]. 3D VLP
systems using multiple PDs have also been proposed, in which the spatial or angular diversity of
PDs are explored to estimate the 3D position of the receiver [18–20]. Though it needs more PDs at
the receiver, it does not have any special requirement for the transmitter [16,17] and has shown the
potential to reduce the number of LEDs for a simpler transmitter [13].

For the 3D positioning algorithm, trilateration and triangulation based methods are widely
employed, in which the geometric relationship between the receiver and light sources (e.g., distance [19],
incidence/irradiance angles [18,20]) is estimated from the received signal. One popular way to evolve
from a 2D VLP algorithm to a 3D one is to conduct a brute-force search on several parallel 2D layers at
various heights. After obtaining the horizontal positions on all candidate layers at a pre-defined height
set, the estimated 3D position is determined as the one that most likely fulfills the constraint among
the coordinates of the three dimensions [16,21,22]. To improve the efficiency in height estimation,
a fast search method based on the golden section search (GSS) algorithm has been proposed which
can significantly reduce the running time [16]. To further improve the positioning accuracy, machine
learning (ML) techniques with outstanding nonlinear fitting capability have been introduced to the
VLP systems. Supervised learning (SL) based VLP systems (e.g., neural network [23–25], random
forest [26], and K-nearest neighbor [27]) have been proposed. However, the SL based VLP systems
require sufficient training data to be prepared in advance, which increases the system complexity [27].
The performance of the SL positioning algorithms is also largely affected by the quality of the training.
To avoid the above drawbacks, training-data-free ML techniques, such as reinforcement learning (RL),
have been employed. Previous studies show that the application of RL in 2D VLP offers high and
robust positioning accuracy [28,29]. Though the RL based 2D positioning algorithm has shown a
higher tolerance to the error of a priori height information than the conventional one, the height of
the object is still assumed to be known in advance under the 2D VLP framework. Moreover, in many
applications with mobile devices, the exact height of the receiver is often unknown and could vary
dynamically in a range much larger than the height error tolerance of the RL based 2D VLP algorithm.

In this paper, a 3D VLP system using multiple PDs and reinforcement learning is proposed
which realizes high accuracy for 3D positioning without needs of data for off-line training. In the
3D VLP system, we first make a coarse estimation of the receiver height by exploring its relationship
with the received signal strength (RSS) and then calculate the other two coordinates in the horizontal
plane using trilateration [30]. To achieve high 3D positioning accuracy, three methods based on RL
with different height update strategies are proposed. Experiments are carried out to evaluate the
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performance of the proposed methods under different receiver sizes. The results show that when the
height difference between the receiver and the transmitter is within [140, 200]-cm, compared with the
case without machine learning (i.e., the Benchmark), all three proposed RL based methods can improve
3D positioning accuracy robustly. Unlike our previous 2D VLP work [28,29] that only estimates the
position on a horizontal plane and still requires the height information as an input, this paper is an
extension, include three new major contributions: (i) methods for 3D positioning are investigated that
output coordinates in all three dimensions without a priori information about any dimensions; (ii) two
novel reinforcement learning processes are devised specifically for 3D VLP, which target accuracy
enhancement in the horizontal plane and the vertical dimension, respectively, and a combination of
them offers the highest 3D positioning accuracy; (iii) the effectiveness of the proposed RL based 3D
positioning methods are demonstrated experimentally.

The remainder of the paper is organized as follows. The operation principles of different 3D
positioning methods, including the basic model and three RL based methods (i.e., Method 1/2/3) are
explained in Section 2. Section 3 shows the experimental setup for 3D VLP, compares the performance
of different positioning methods, and analyze the impact of the receiver size. Finally, Section 4
draws conclusions.

2. Operation Principle

A multi-PD VLP system with M (M ≥ 3) LEDs at the same height on the ceiling is considered
in this study. Figure 1 shows the considered 3D VLP system setup and the signal processing flow,
including the basic model without RL (later referred to as the benchmark), and three proposed methods
that employ RL to improve positioning accuracy.
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Figure 1. The 3D VLP system setup and the signal processing flow. The green, red, purple, and yellow
lines represent the flow for the Benchmark, Method 1, Method 2, and Method 3, respectively. The inset
shows the picture of our testbed.

The i-th (i = 1, 2 . . . M) LED is located at
(
Lx

i , Ly
i , Lz

)
and transmits a sinusoidal modulated signal

with frequency fi. At the receiver, N PDs are facing up at the same height, and the n-th (n = 1, 2 . . .
N) PD is located at (xn, yn, z). The received signal of the nth PD from all the LEDs is represented by
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sn(t), whose power spectrum consists of M peak components at fi (i = 1, 2, . . . , M) [31]. After Fourier
transformation, it can be expressed as [31]:

S fi
n =

(Pi)
2(m + 1)2A2β2h2(m+m′)

4π2dn, i2(2+m+m′)
(1)

in which Pi is the transmitted optical power of the ith LED, A is the PD area, β is the PD responsivity,
h = Lz

− z is the height difference between the receiver and LEDs, m (m’) is the Lambertian radiation
pattern order of the LED (PD) and dn,i is the distance between the nth PD and the ith LED. Note that
the irradiance angle and incidence angle are assumed to be the same in (1) as the PDs (LEDs) are facing
up (down). The RSS of these components obtained by the N PDs from the M LEDs can be represented
by a vector.

Rec =
[
S f1

1 , . . . , S fM
1 , . . . , S f1

N , . . . , S fM
N

]
(2)

According to the location of the LEDs and PDs, we have:(
xn − Lx

i

)2
+

(
yn − Ly

i

)2
+ h2 = d2

n,i (3)

2.1. Basic 3D Positioning Model

We first introduce a basic 3D positioning model, which is also referred to as benchmark later to
show the accuracy improvement brought by the proposed reinforcement learning methods. Unlike the
2D VLP, the height of the receiver z, which equals to Lz

− h, is unknown in the 3D VLP system and
needs to be estimated. According to (1) and (3), the relationship between h and S fi

n can be written as:

h ≤ dn, i =

 C

S fi
n

(
h

dn, i
)

2(m+m′)
1/4

≤

 C

S fi
n

1/4

(4)

where C =
(Pi)

2(m+1)2A2β2

4π2 .
According to Equation (4), h is no more than the minimum value of dn,i. We denote a coarse

estimation of h as h0, which equals dmin (i.e., the minimum value of the rightest term in Equation (4)
among all possible combinations of N PDs and M LEDs) and is expressed as:

h0 = dmin = mininum

 C

S fi
n

1/4

∀n ∈ [1, N],∀i ∈ [1, M] (5)

With h0, the 2D coordinates on the horizontal plane of the N PDs can be estimated by the
conventional trilateration method using (1) and (3). Specifically, we estimate the nth PD’s 2D
coordinates by solving the following equations: 2xn(Lx

b − Lx
a) + 2yn(L

y
b − Ly

a ) = d2
n,a − d2

n,b + (Lx
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− (Lx
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2
− (Ly

a )
2

2xn(Lx
c − Lx
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2
− (Lx
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2 + (Ly
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2
− (Ly

a )
2 (6)

where a/b/c are the indexes of three different LEDs. As there are M LEDs on the ceiling, C3
M different

pairs of equations can be established [30]. The output of trilateration is obtained by averaging these
estimations to mitigate the impact of noise. Our positioning target is the coordinate of the center of the
receiver. Assuming the PDs locate symmetrically at the corners of the receiver, the receiver position is
obtained by averaging the estimated locations of the N PDs. The above 3D VLP system is referred to as
the benchmark, whose output is (x0, y0, z0 = Lz

− h0) (see Benchmark Output in Figure 1).
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2.2. Reinforcement Learning To Enhance 3D Positioning Accuracy

h0 derived from (5) is a coarse estimation of the actual height h. The difference between h0 and h
may not be minor, particularly when the PD is not right below any LED. Since the estimation of the
other two coordinates requires the height information as an input, the coarse estimation of h causes
error propagation in the benchmark, which results in low positioning accuracy in all three dimensions.
Inspired by our previous study [29] that RL can offer high tolerance to inaccurate h in the 2D VLP
system, we propose to use RL to improve the positioning accuracy of the 3D VLP system.

The RL mechanism is shown in Figure 2, in which the Agent learns knowledge in the
action-evaluation Environment and improves the Action by adapting to the Environment [32]. In the
3D VLP system, if the RSS and height are free from the impact of noise in RSS or height estimation
error, we can get the exact 3D coordinates by using trilateration. Therefore, the Environment to be
learned in the 3D VLP system is the error in RSS measurement and the height estimation (see the
red box in Figure 2). In other words, the aim of RL is to learn and compensate for the above errors
contained in the Environment to get a better estimation of the receiver position. As we have multiple
PDs available at the receiver, the relative distances between PDs are fixed and can be used to assess the
positioning error for reward calculation in RL. The relative distance error vector Edis is used by the
Agent to evaluate the State of Environment, which is defined as:

Edis =
{
dis(i, j) − dîs(i, j)

∣∣∣∣i , j; i, j = 1, 2.., N
}

(7)

The dis(i, j)(dîs(i. j)) in Equation (7) denotes the real (calculated) distance between the i-th and j-th
PDs. The dis(1, 2) of a four-PD receiver is shown in Figure 3 as an example. The State and Reward in
the interaction between the Agent and Environment are defined as the maximum and average value of
Edis, respectively:

State =
{

i, if αi−1 < max(Edis) ≤ αi for 1 ≤ i < G
G, ifmax(Edis) ≥ αG−1

, (8)

Reward =

{ K−i
K−1 ∗100, if ri−1 < average(Edis ) ≤ ri for 1 ≤ i < K
0, if average(Edis) ≥ rK−1

, (9)

where (α0, α1, . . . , αG-1) and (r0, r1, . . . , rK-1) are pre-determined constants based on accuracy
requirements, G and K are the numbers of possible values for the State and Reward, respectively.
The learning process in RL uses an action-evaluation strategy, where the consequences of actions
(i.e., Reward) is used as the metric to help find the optimal action at a certain State of Environment. If the
current State is not the target state (e.g., 1 in our study), the Agent takes an action to adjust the RSS and
height coordinate.

There are different ways to conduct 3D positioning incorporating the RL. Pseudocode 1 shows the
pseudocode for two methods with different height update strategies, namely RL1 and RL2. The RL1

is used in Method 1 that adjusts the RSS without changing h except for the last action in learning
(i.e., h is fixed to be h0 when adjusting the RSS and only gets updated after the final RSS is obtained),
while the RL2 is used in Method 2 that adjusts RSS and h sequentially in each action. Specifically,

in Method 2, (xnew
n , ynew

n ) is obtained by using the updated RSS and d̂n,i = (Ch2(m+m′)/S fi
n )

1
2(2+m+m′)

based on trilateration in Equation (3), and then height difference is updated as ĥ by averaging the N
height differences between each LED and the receiver’s plane, which can be expressed as:

ĥ =
1
N

∑
N
n=1

√(
Ch2(m+m′)/S fi

n

) 1
2+m+m′

−

(
xnew

n − Lx
i

)2
−

(
ynew

n − Ly
i

)2
(10)
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For the RSS adjustment in the RL1/RL2, each time one element of the RSS vector Rec is increased 
or decreased by step which is a minimum step to adjust the RSS values. After taking an action that 
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It is worth noting that the two methods concentrate on positioning accuracy improvement in the 
horizontal plane and height, respectively. In the RL1, the learning process only puts the efforts to 

dis(1,2)

PD1

PD2

PD3

PD4
Receiver  

centre

* zRL corresponds to zRL1 and zRL2 for Method 1 and Method 2, respectively.
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For the RSS adjustment in the RL1/RL2, each time one element of the RSS vector Rec is increased
or decreased by step which is a minimum step to adjust the RSS values. After taking an action that
modifies Rec (in RL1 or RL2) and h (in RL2), the 3D coordinates of all PDs are obtained via trilateration
and used to calculate its Reward based on a new Edis according to Equation (9). The Agent chooses the
Action with the maximum Reward, and update the State according to Equation (8).

Both methods continue the learning process until the target state or the maximum number
of iterations. After learning, the estimated 3D coordinates of PDs after the last action in RL are
saved. The receiver’s 3D coordinates (i.e., (xRL1, yRL1, zRL1=Lz-hRL1) in Method 1 and (xRL2, yRL2,

zRL2=Lz-hRL2) in Method 2) are obtained by averaging the coordinates of PDs and used as the final
outputs (see Method 1 Output and Method 2 Output in Figure 1).

It is worth noting that the two methods concentrate on positioning accuracy improvement in
the horizontal plane and height, respectively. In the RL1, the learning process only puts the efforts to
optimize the X and Y coordinates in the horizontal plane, while the RL2 does one-step refinement for
both the height and RSS in each action. It is also shown in the results (see Section 3), the two methods
cannot achieve positioning accuracy improvement in all three dimensions simultaneously. Therefore,
we combine the RL1 and the RL2, which is referred to as Method 3. Since our previous research in [29]
shows that reinforcement learning can tolerate the inaccuracy of h to some extent, in Method 3 we use
the RL2 to update h and RSS, which are followed by the RL1 to update the X and Y coordinates. Finally,
the height estimation is refined according to Equation (10), and (xRL3, yRL3, zRL3=Lz-hRL3) is obtained
(see Method 3 Output in Figure 1). The pseudocode for Method 3 is shown in Pseudocode 2.

Pseudocode 2: Pseudocode for Method 3

1. Input: the RSS vector Rec
2. Output: Coordinate of the receiver (xRL3, yRL3, zRL3).
3. Estimate h0 with (5) and z0=Lz

−h0
4. Run RL2 to obtain RecRL and ẑ
5. Update Rec← RecRL , z0

← ẑ
6. Run RL1 to obtain the 3D coordinate of the receiver (xRL3, yRL3, z0)

7. Refine height zRL3

8. Obtain the final 3D coordinates of the receiver (xRL3, yRL3, zRL3)

To better illustrate the RL processes in different 3D VLP methods, Table 1 summarizes the features
of the three proposed methods. The RL-based 2D VLP method (i.e., PWRL in [29]) is also listed
for comparison.

Table 1. Summary of different RL-based VLP methods.

Method
RL Element

3D VLP 3D VLP 3D VLP 2D VLP

Method 1 Method 2 Method 3 PWRL [29]

Input (1) Measured RSS and
(2) height estimated based on the basic 3D positioning model

(1) Measured RSS
and

(2) exact height

Environment Errors in RSS measurement and height estimation RSS error

Action
RSS adjustment

under an estimated
height(RL1)

RSS and height
adjustments (RL2)

RSS adjustment (in
both RL1 and RL2)

and height
adjustment (in RL2)

Only RSS adjustment,
where height is known.

State Determined by the relative distance error with (8)

Reward Determined by the relative distance error with (9)
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3. Experiment Investigation

3.1. Experimental Setup

The performance of the proposed 3D VLP methods is investigated experimentally. Figure 1 shows
the experimental setup. There are four LEDs (Cree CXA2435) on the ceiling with coordinates of (24.2,
19.8, 218.9), (83.5, 19.7, 218.9), (22.7, 78.1, 218.9), (82.6, 77.8, 218.9) in centimeter (cm), respectively.
Four sinusoidal signals of frequency (400/500/600/700 kHz) from four signal generators are amplified
and then combined with direct current (DC) signals via Bias-Tees (ZFBT-4R2GW+) to drive the four
LEDs, respectively. As shown in Figure 3, the receiver consists of four PDs (PDA100A2) on the four
corners. To ensure that the signal from all four LEDs can be received by the PD (field of view: ~60◦) in
the 120 cm × 120 cm area, the height difference between the PD and the LED of our test space should
be larger than 71 cm. To investigate the impact of receiver size on the performance of the proposed 3D
VLP methods, the distance between adjacent PDs is adjusted (i.e., dis(1,2) = 10/20/30/40 cm). In order to
get ground truth locations of PDs and LEDs, we divide the area of a solid aluminium plate into many
10 cm × 10 cm grids with a ruler/tape measure which has the resolution of 1 mm and use the lower left
side as the origin. The PD is mounted with an optical mounting post on a base which is moved on the
grid to change the 2D coordinates on horizontal planes (see Figure 4a). The height of the PD is adjusted
by changing the length of the optical mounting post on the base, and is measured manually with a ruler.
The horizontal and height coordinates of LEDs are determined by finding their projections on the solid
aluminium plate and their distance to this plate with the help of a plumb bob (see Figure 4b,c). To lower
the measurement error, the averaged value of multiple measurements is used as ground truth locations.
We take measurements at four test planes of different heights with 20 cm spacing, whose Z coordinates
are 18.95/38.95/58.95/78.95 cm, corresponding to 199.95/ 179.95/159.95/139.95 cm for h, respectively.
The height difference between the receiver and the ceiling in the testbed is about [140, 200]-cm, which
emulates the cases of positioning a hand-held device in a typical office environment. Note that the
tilt of a hand-held device could severely affect the positioning accuracy as Equation (1) no longer
holds. As the average elbow height for a mixed male/female human population is 104.14 cm when
he/she stands up [33], this offers about ± 30 cm margin for a room with a ceiling height of 270 cm.
In case the height difference is larger, a stronger light source is needed to guarantee a reasonable
signal-to-noise ratio (SNR) for high accuracy positioning [30]. For each test plane, four PDs are adjusted
to the same height, and samples are taken at 49 uniformly distributed locations in the 120 cm × 120 cm
area. The RSS at the receiver is measured using a spectrum analyzer (8593E, Agilent, Elgin, IL, USA)
with a sweep time of 30 ms and averaged over 10 measurements. For example, the measured RSS in
the center of Plane 4 are 0.354-µW, 0.292-µW, 0.309-µW, 0.319-µW for the sine wave signals from the
four LEDs, respectively. For a practical receiver of small form factor, discrete Fourier transform of the
temporal samples from an analog-to-digital converter can be conducted to measure the signal strength
at different frequencies. The detailed parameters of the experimental setup are listed in Table 2.
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Table 2. Experimental parameters.

Parameter Value

Space size(length ×width × height) 120 × 120 × 220 (cm)

Coordinates of LED1/LED2/LED3/LED4

(24.2, 19.8, 218.9)/
(83.5, 19.7, 218.9)/
(22.7, 78.1, 218.9)/

(82.6, 77.8, 218.9) (cm)
f1/f2/f3/f4 400/500/600/700 (kHz)

LED voltage 18.0 (V)
LED current 0.32 (A)

Lambertian order of LED (m) 1.78
Lambertian order of PD (m’) 3.56

Distance between PD1 and PD2 (dis(1,2)) 10/20/30/40 cm
Heights of Plane 1/2/3/4 18.95/38.95/58.95/78.95 (cm)

Height difference between receiver 1/2/3/4 to LEDs (h) 199.95/179.95/159.95/139.95 (cm)

To balance running time and positioning accuracy, we set Mstep to 0.1 µw to adjust Rec in each
action during the learning process. K = G = 5, (α0, α1, α2, α3, α4) = (0, 0.2, 0.5, 1, 2) in cm, and (r0,
r1, r2, r3, r4) = (0, 0.05, 0.125, 0.25, 0.5) in cm. In general, the accuracy performance is improved
when the number of iterations increases and exhibits a trend of convergence when the number of
iterations exceeds a certain value. The number of iterations shall not be too small to achieve the state
of convergence. On the other hand, since the processing time and computational complexity of the
algorithm increase with a larger number of iterations, the number of iterations shall not be too large.
Therefore, the maximum allowable number of iterations in RL based methods is set to 1000 empirically
in this experiment to balance the complexity and positioning accuracy.

3.2. Performance Evaluation

We run Method 1/2/3 off-line with MatLab (MathWorks, Natick, MA, USA) on a desktop computer
(i5 processor @2.29 GHz (Intel, Santa Clara, CA, USA) with 16 GB RAM) and the measured average
processing time is 0.96/0.44/0.69-s, respectively. Figure 5 shows the spatial distribution of 3D positioning
error for four different positioning methods (i.e., the benchmark and methods 1/2/3) when dis(1,2)

equals to 40 cm. The 3D/2D positioning errors are the Euclidean distance between the real coordinates
and the calculated coordinates of the receiver in the 3D/2D space, respectively. To illustrate the 3D
positioning accuracy intuitively, we take the actual position of the sampling point as the center of the
sphere and the 3D positioning error as the radius of the sphere. The radius rsphere is defined as:

rsphere =

√
(x− xreal)

2 + (y− yreal)
2 + (z− zreal)

2, (11)

where (x, y, z)denotes the output of the positioning algorithms and (xreal, yreal, zreal) is the real coordinate
of the receiver. The non-uniform distribution of errors is observed, which is the interplay of there
location-dependent factors: (a) SNR which is higher at the center of test plane, (b) inaccurate a priori
information about the VLP system (e.g., m and m’ in (1)) that may cause significant overestimation or
underestimation of the distance between PD and LED, and (c) the error in approximating the actual
height difference with h0 in Equation (5) which varies for different incidence/irradiance angles of the
PD-LED pair used in the calculation of h0.
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for the (a) Benchmark, (b) Method 1, (c) Method 2, and (d) Method 3.

At the edges of test planes where the SNR is lower, the 3D positioning error is larger than that
in the central of test planes with higher SNR. If the overestimation of the distance between the PD
and LED happens (e.g., a result due to factor (b)), the approximation error in Equation (5) will be
larger. For example, we find that the Lambertian model for LED1/LED2 with the parameters in
Table 2 causes overestimation of the distance between LED and PD. This leads to significant larger
positioning errors in the region with smaller Y which uses LED1/LED2 to calculate h0. In general,
all three RL based methods achieve higher 3D positioning accuracy than the benchmark in the test
planes. Method 2 can reduce the error of some points to very small (e.g., test points on the left half of
Figure 5c). However, the positioning error with Method 1 is more uniformly distributed in some planes
(e.g., h = 139.95/159.95 cm in Figure 5b,c). Regardless of the height of the receiver’s plane, Method 3
offers the best performance among the four methods.

To further analyze the impact of RL on positioning errors in different dimensions, Figure 6a–c
give the cumulative distribution function (CDF) of height/2D/3D error, respectively. Here, 2D error
represents the error in the horizontal plane. Plane 2 (i.e., h = 179.95 cm) is used as an example in
Figure 6. As shown in Figure 6a–c, all three RL based methods can reduce the height/3D positioning
error. For the height dimension, the improvement in Method 3 is most significant, which can reduce
the height error from ~5.4 cm to ~3.5 cm for 90% of the test points. Thanks to the additional height
update procedure, Method 2 outperforms Method 1 in terms of height estimation accuracy. As shown
in Figure 6b, Methods 1 and 3 perform similarly and reduce the 2D positioning error significantly
when compared with the Benchmark. For Method 2, though more points are having lower positioning
error when compared with the Benchmark, the number of points with larger positioning error also
increases. For example, the ratios of points with 2D positioning error of ≤1.76 cm (≥3.0 cm) are 71%
and 57% (25% and 17%) for Method 2 and the Benchmark, respectively. This is consistent with the
enhanced non-uniformity by Method 2 shown in Figure 5c. In Figure 6c, the 3D positioning error of
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90% test points with the Benchmark is less than ~5.4 cm, which can be reduced to less than ~4.9 cm,
~4.0 cm, and ~3.6 cm by Methods 1–3, respectively. As Method 3 exhibits superior performance in both
the height dimension and the XY plane, it offers the best 3D positioning performance among the four
tested algorithms.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 14 

 

~4.9 cm, ~4.0 cm, and ~3.6 cm by Methods 1–3, respectively. As Method 3 exhibits superior 
performance in both the height dimension and the XY plane, it offers the best 3D positioning 
performance among the four tested algorithms. 

 
Figure 6. The cumulative distribution function of (a) height, (b) 2D, and (c) 3D positioning errors at 
Plane 2 in the case of dis(1,2) = 40 cm. 

Figure 6 implies that Method 2 outperforms Method 1 in the height dimension, while Method 1 
outperforms Method 2 in the horizontal plane. Method 3 inherits the advantages of Method 1 and 
Method 2, performing the best in all dimensions. The performance superiority of the different RL 
based methods at different dimensions can be attributed to their unique learning mechanisms (see 
Figure 2 and Pseudocodes 1 and 2). The RL1 focuses on optimization of the 2D positioning error, and 
updates the height estimation only at the end of the learning process, while the RL2 updates the height 
estimation in each action, which improves the height estimation accuracy but no further optimization 
in the horizontal plane. For Method 3, it first uses RL2 to get a better estimation of the height and then 
uses RL1 to optimize the rest two coordinates (see Pseudocode 2). For the CDF, the tested error is a 
continuous random variable. As we keep each measured point as an individual test, there are always 
some steps in the CDF curves. As shown in Figure 6, we always give the upper bound of test errors 
for the proposed RL based algorithms (i.e., Methods 1–3) but the lower bound of test errors for the 
Benchmark. It is a conservative way to show the benefits brought by the RL. More test points might 
help to estimate more accurate improvement but would not make the concluding results not true. 

Figure 7a shows the mean 3D positioning error obtained by the Benchmark and Method 3 for 
dis(1,2) = 10/20/30/40 cm at different heights. 80% confidence intervals of the positioning error are also 
given in Figure 7a (i.e., the vertical bars). The improvement of 3D positioning accuracy with RL is 
obvious. The upper bounds of Method 3 are even smaller than the lower bounds of the Benchmark. 
Under different distances between adjacent PDs, Method 3 obtains a mean 3D positioning error below 
3.2 cm regardless of the size of the receiver. The results also indicate that the performance of the two 
methods varies randomly in small ranges with respect to the height of test plane. Figure 7b shows 
the mean 3D positioning error obtained by the Benchmark and Method 3 for dis(1,2) = 10/20/30/40 cm 
in the entire test space. The average 3D positioning errors with different receiver sizes are within 
[2.51, 2.69] cm and [3.15, 4.02] cm for Method 3 and the Benchmark, respectively, revealing an obvious 
reduction of the average 3D positioning error by at least 20%. Moreover, it also clearly indicates that 
the positioning performance is more stable (i.e., less variation of positioning errors) when the RL is 
implemented. 

Figure 6. The cumulative distribution function of (a) height, (b) 2D, and (c) 3D positioning errors at
Plane 2 in the case of dis(1,2) = 40 cm.

Figure 6 implies that Method 2 outperforms Method 1 in the height dimension, while Method 1
outperforms Method 2 in the horizontal plane. Method 3 inherits the advantages of Method 1 and
Method 2, performing the best in all dimensions. The performance superiority of the different RL based
methods at different dimensions can be attributed to their unique learning mechanisms (see Figure 2
and Pseudocodes 1 and 2). The RL1 focuses on optimization of the 2D positioning error, and updates the
height estimation only at the end of the learning process, while the RL2 updates the height estimation
in each action, which improves the height estimation accuracy but no further optimization in the
horizontal plane. For Method 3, it first uses RL2 to get a better estimation of the height and then
uses RL1 to optimize the rest two coordinates (see Pseudocode 2). For the CDF, the tested error is a
continuous random variable. As we keep each measured point as an individual test, there are always
some steps in the CDF curves. As shown in Figure 6, we always give the upper bound of test errors
for the proposed RL based algorithms (i.e., Methods 1–3) but the lower bound of test errors for the
Benchmark. It is a conservative way to show the benefits brought by the RL. More test points might
help to estimate more accurate improvement but would not make the concluding results not true.

Figure 7a shows the mean 3D positioning error obtained by the Benchmark and Method 3 for
dis(1,2) = 10/20/30/40 cm at different heights. 80% confidence intervals of the positioning error are also
given in Figure 7a (i.e., the vertical bars). The improvement of 3D positioning accuracy with RL is
obvious. The upper bounds of Method 3 are even smaller than the lower bounds of the Benchmark.
Under different distances between adjacent PDs, Method 3 obtains a mean 3D positioning error below
3.2 cm regardless of the size of the receiver. The results also indicate that the performance of the two
methods varies randomly in small ranges with respect to the height of test plane. Figure 7b shows
the mean 3D positioning error obtained by the Benchmark and Method 3 for dis(1,2) = 10/20/30/40 cm
in the entire test space. The average 3D positioning errors with different receiver sizes are within
[2.51, 2.69] cm and [3.15, 4.02] cm for Method 3 and the Benchmark, respectively, revealing an obvious
reduction of the average 3D positioning error by at least 20%. Moreover, it also clearly indicates that
the positioning performance is more stable (i.e., less variation of positioning errors) when the RL
is implemented.
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4. Conclusions 
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4. Conclusions

A 3D indoor VLP system with reinforcement learning to enhance the positioning accuracy
is proposed and experimentally investigated. The three proposed RL based methods share the
Agent-Environment interaction framework with properly defined State/Action/Reward, but employ
different height update strategies. The experimental results show that thanks to the learning process,
all three RL based positioning methods outperform the Benchmark in terms of 3D positioning accuracy.
The results also verify that Method 1 (Method 2) with RL1 (RL2) offers a significant improvement in
the horizontal plane (height dimension) over the Benchmark. By combining RL1 and RL2, Method 3
offers the highest positioning accuracy not only in the 3D space but also in the height dimension and
the horizontal plane, respectively. For the test planes with height difference from 140 cm to 200 cm,
the mean 3D positioning error has been significantly improved (>20%) by Method 3 compared with
the Benchmark. Moreover, the RL also reduces the variation of the 3D position error compared to the
Benchmark with receivers of different sizes.
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Abstract: Accurate, inexpensive, and reliable real-time indoor localization holds the key to the full
potential of the context-aware applications and location-based Internet of Things (IoT) services.
State-of-the-art indoor localization systems are coping with the complex non-line-of-sight (NLOS)
signal propagation which hinders the use of proven multiangulation and multilateration methods, as
well as with prohibitive installation costs, computational demands, and energy requirements. In this
paper, we present a novel sensor utilizing low-range infrared (IR) signal in the line-of-sight (LOS)
context providing high precision angle-of-arrival (AoA) estimation. The proposed sensor is used in
the pragmatic solution to the localization problem that avoids NLOS propagation issues by exploiting
the powerful concept of the wireless sensor network (WSN). To demonstrate the proposed solution,
we applied it in the challenging context of the supermarket cart navigation. In this specific use case,
a proof-of-concept navigation system was implemented with the following components: IR-AoA
sensor prototype and the corresponding WSN used for cart localization, server-side application
programming interface (API), and client application suite consisting of smartphone and smartwatch
applications. The localization performance of the proposed solution was assessed in, altogether, four
evaluation procedures, including both empirical and simulation settings. The evaluation outcomes
are ranging from centimeter-level accuracy achieved in static-1D context up to 1 m mean localization
error obtained for a mobile cart moving at 140 cm/s in a 2D setup. These results show that, for the
supermarket context, appropriate localization accuracy can be achieved, along with the real-time
navigation support, using readily available IR technology with inexpensive hardware components.

Keywords: infrared sensor; angle of arrival; indoor localization; wireless sensor networks; navigation

1. Introduction

In recent years, we have been witnessing a rapid increase in the availability of commercial
indoor localization solutions. This is not a surprise as smartphone users are already accustomed
to outdoor location-based services. Precise indoor localization is the only significant technological
obstacle to extend these services to the area where many users spend most of their time. Indoor
localization is, therefore, the Holy Grail problem in ubiquitous computing, context-aware applications,
and, specifically, location-based Internet of Things (IoT) services.

The outdoor localization problem is solved by Global Positioning System (GPS), a satellite-based
navigation system consisting of a network of 24 satellites placed into orbit. The basis of the outdoor
localization method is the combination of the line-of-sight (LOS) radio propagation from the satellite
transmitter to the receiver and the fact that it can be predicted and even real-time calibrated using
information from the referent stations on the ground. Distance from the satellites with known locations
can be precisely estimated based on the time it takes for the signal to reach the receiver; therefore, the
receiver can be positioned using the multilateration method.
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Unlike in the open spaces, signal propagation indoors is affected by complex interactions with a
large number of fixed and moving obstacles through reflection, refraction, and scattering. Hence, it is
very difficult or even not possible to predict the signal path and to correlate distance from the receiver
with the propagation time, signal strength, or any other signal parameter. As noted in the following
subsection, where we give an overview of the commercial systems and research solutions to the indoor
localization problem, non-line-of-sight (NLOS) and multipath propagation is the main problem that
various authors try to solve or even avoid. For example, Belloni et al. [1] target their application to
obstacle-free open indoor spaces since the angle-of-arrival (AoA) method is very sensitive to multipath
propagation, resulting in poor localization accuracy. On the other hand, the LOS signal propagation is
characterized by the fact that the intensity of the LOS component of the signal is significantly higher
than other components. Thus, the signal propagation path between transmitter and receiver can be
modeled with a straight line, allowing for precise and accurate transmitter location estimation.

Indoor positioning systems (IPS) face an interesting technical challenge due to the wide variety
of promising sensor technologies that can be applied, each one with different pros and cons. Brena
et al. [2] provided a helpful systematization of the respective field, by introducing a comprehensive
review of the literature that involves the technological perspective of IPS evolution, a classification
scheme for different technological approaches, and a presentation of the existing research trends. In
the related survey, authors concluded that “there is not yet an overall satisfying solution for the IPS
problem”, and, while addressing the specific problem of locating merchandise in retail stores, they
argued that “not a single technology or combination of technologies is both feasible and satisfying”.
Shang et al. [3] have also presented a detailed survey in this field, however, they focused on a review
of the improvement schemes for indoor mobile location estimation. Among many methods and
techniques for enhancing location estimation, they analyzed the possibility of fusing spatial context.
Namely, they tackled graph-based motion models of an indoor space, an instance of which we utilized
in our research.

The indoor localization field is broad and there are many different solutions but their performance
is very difficult to evaluate without the proper context. Therefore, in the following overview, we
specifically focus on systems that target or can be used in our showcase application: supermarket
aisle-level localization, which itself has been given a lot of attention, specifically cart localization within
high shelves surrounded corridors.

1.1. Related Work: Indoor Localization Methods and Solutions

In this subsection, we present current state-of-the-art indoor localization systems, both in the
research and development phase, as well as those that are already commercially available. Presented
systems are roughly divided into two groups, based on the type of signal used, and one additional
group consisting of infrastructure-free systems that require no signal (Table 1).

Table 1. Taxonomy of the existing indoor localization methods.

Infrastructure
RF

WiFi, Bluetooth Low Energy (BLE),
Ultra-wideband (UWB),

Radio-frequency identification (RFID)

Light Visible Light Positioning (VLP), Infrared (IR)

Infrastructure-free Magnetic, Sensor fusion, OCR

Infrastructure based methods are using either radio frequency (RF) signals or modulated visible
light sources to be able to estimate the position and, as such, require specific infrastructure to be
installed on-site. Infrastructure, in this sense, consists of highly available WiFi access points (AP) or
specialized equipment that has to be installed with specific localization intent, such as radio-frequency
identification (RFID) scanners, Bluetooth Low Energy (BLE) beacons, Ultra-wideband (UWB) beacons,
or modulated light sources.
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1.1.1. Systems Using RF Signal

WiFi is the dominating wireless technology for indoor data transfer and, as such, the WiFi signal
is the ideal candidate to exploit for localization purposes. WiFi localization systems are predominantly
using Received Signal Strength (RSS) as the principal method for the estimation of the distance between
WiFi AP and mobile nodes. Standard indoor NLOS multipath propagation decreases the correlation
between distance and RSS to the point where, using estimated distances, only basic proximity-based
localization is possible. On the other hand, short range and the abundance of different available
WiFi APs are enabling a pattern matching method or fingerprinting to become the de-facto standard
localization technique for indoor location-based services on consumer devices [4]. However, this
method requires a site survey fingerprint in advance and localization performance is highly sensitive to
changes in the environment, i.e., in a supermarket with moving people. The most common algorithm
utilized for WiFi fingerprinting is weighted K-nearest neighbors (WKNN), which calculates K-nearest
neighboring points to a mobile user. Typical problems associated with the WKNN involve a difference
in observed AP sets during offline and online stages, and a possibility for some of the K neighbors to
be physically far from the user. Enhancements of the default WKNN have thus been proposed, that
change the number of considered neighbors dynamically—either by using RSS-based filtering [5], or a
more sophisticated clustering algorithm [6]. Issues and requirements of the WiFi-based localization
systems are furthermore alleviated by the incorporation of inertial motion unit (IMU) data readily
available on modern smartphone devices and by using the Simultaneous Localization and Mapping
(SLAM) technique. Systems based on this technique, such as Apple WiFiSLAM [7], achieve localization
accuracy around 2 m. Yang and Shao [8] obtained even more promising results by using multiple
antennas on WiFi APs and the combination of distance and AoA estimation along with the capability
of filtering NLOS measurements. The authors report localization error from 2.2 m up to 0.5 m by
using one or several WiFi access points, respectively. WiDeo system, introduced in Reference [9],
represents one of the most encouraging efforts in providing WiFi-based indoor motion tracking. It
utilizes specially developed WiFi AP with antenna array, as well as backscatter analysis, i.e., composite
reflected signal examination wherein the amplitude, time-of-flight (ToF), and AoA parameters are
all estimated. The WiDeo thus provides a possibility to trace subject motions without the need for
any accompanying device, with reported median localization accuracy of 0.8 m and motion tracking
accuracy of 7 cm. Since WiDeo’s accuracy is in line with the localization accuracy of the solution
proposed in this paper, an appropriate comparison is given in the Discussion section, highlighting the
pros-and-cons for using the related systems in the target supermarket environment.

Systems using Bluetooth Low Energy (BLE) technology are commercialized under different brand
names, such as iBeacon by Apple or Eddystone by Google. They consist of a number of beacons with
known positions publishing their ID and mobile nodes that are localized through estimated distances
from beacons using the multilateration method. This method is somewhat similar to the WiFi RSS
method, but a low range warrants smaller cells and lower distance estimation errors. Just like with
WiFi, the advantage of this method is its availability on all present-day smartphones, while, at the
same time, deployed devices are cheaper, smaller, more portable, and energy-efficient. Nevertheless, it
is hard to achieve sub-meter precision, i.e., Faragher and Harle [10] report tracking accuracies of <2.6
m in 95% of the time with a density of one beacon in 30 m2. Currently, these systems are mostly used
for proximity-based localization and point-of-interest services.

Furthermore, BLE and WiFi can be combined. Kriz et al. [11] report sub-meter localization error
median in a 52 × 43 m office building equipped with 4 WiFi access points and 17 BLE beacons. The
downside of their method is a relatively long scan and measure delay taking from 6 to 10 s to reach
stated localization accuracy. There are many commercial systems present relying on WiFi and BLE,
such as AisleLabs, and those that are combining BLE, WiFi, and SLAM methods, such as indoo.rs.
The latter combination has reported accuracy from 2 to 5 m, depending on the density and placement
of beacons.
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Ultra-wideband (UWB) is an RF technology for a short-range, high bandwidth communication
with a high temporal resolution, resulting in centimeter-level accuracy [12]. Localization systems based
on UWB are mostly using time-of-arrival (ToA) and time-difference-of-arrival (TDoA) of RF signals to
estimate the distance between the transmitter and the receiver. To be able to use ToA methods they
need to perform precise time synchronization of anchor nodes, somewhat similar to GPS satellites.
Although there are techniques that mitigate this synchronization challenge [13], this requirement
further complicates the overall system. Commercial UWB systems, such as Sewio, utilize many anchor
nodes in the LOS range of mobile nodes they are tracking. Although the accuracy of UWB systems is
very competitive, the limited range of the anchor nodes in the supermarket configuration, along with
their specialized hardware design, and consequently high price, results in prohibitive installation costs.

Radio-frequency identification (RFID) is fairly mature and available technology mainly used for
object tagging and identification, but there are also many examples of using RFID in indoor localization
scenarios. One of the first usages was the LANDMARC system [14] that consisted of a small number of
RFID readers with a high range and a large number of active RFID tags divided into two sets: landmark
tags with known locations and mobile tags with unknown locations. Landmark tags were used for
continuous calibration providing partial resistance to changes in the environment, thus enabling more
accurate mobile tag location estimation. Reported accuracy is from 1 to 2 m, but authors did note
several important issues, such as long scan time (7.5 s interval between readings) and inconsistent
emitting signal strengths of RFID tags. Ryoo and Das [15] utilized RFID to enable supermarket cart
localization. They report a median of localization error limited to 5 cm with a 90-percentile error of 15
cm. This method is using carts equipped with passive RFID tags, while RFID readers are installed
directly above the aisle on a fixed height 2 m above the cart. The localization algorithm is based on a
distance estimation between the reader and the tag. Distance is estimated using ∆φ/∆ f slope obtained
from phase response measurements through different interrogation channels. The problematic aspect
of this method is long measurement time, around 400 ms for each channel. Since there is a minimum
of 5 channels, it adds up to 2 s during which the cart has to remain stationary in order to estimate
distance and location. Other drawbacks of this system include the high cost of multiple RFID readers,
each with multiple antenna setup and appropriate cabling.

1.1.2. Systems Using Light Sources

Another signal source that can be exploited for localization purposes is light, either infrared or
visible. With light-emitting diode (LED) technology becoming the new standard in ambient illumination
there are numerous possibilities to harness its properties, such as Visible Light Communication (VLC)
and Visible Light Positioning (VLP) [16]. The basic principle of VLP operation is that each light source
serves as a beacon whose modulated radiation can be captured by a light sensor, usually a front-facing
smartphone camera. Radiation from each light source is modulated (e.g., by fixed frequency or
by transmitting Manchester-encoded data), and can be uniquely identified by a mobile node. The
identification of multiple light sources in an image allows the positioning of a smartphone using AoA.
There are many examples of VLC and VLP systems both in research and development and in the
commercial phase. Kuo et al. [17] present the Luxapose system which, in a laboratory environment,
achieves decimeter-level localization accuracy using a high resolution 33 MP smartphone camera and
5 LED beacons. On the other hand, Qiu et al. [18] are using simple and inexpensive external light
sensors in a 4.7 m × 8.6 m indoor environment with 12 modulated LEDs, attaining sub-meter precision.
Their approach requires a data collection phase similar to the WiFi fingerprinting method. Among
commercially available systems, we can highlight those from companies, like ByteLight, GE Lighting,
and Philips [19]. Typical drawbacks of VLP systems are considerable computational requirements for
real-time image processing and location estimation and high energy demands, as well as high initial
installation cost.

Infrared (IR) communication technology is widely adopted, inexpensive and readily available.
IR signals are used in many different applications ranging from consumer remote controls to data
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transfer (IrDA). One of the first indoor localization systems Active Badge [20] was using IR signals.
This system was intended for personnel tracking using a set of tags each emitting IR signal with a
unique code every 15 s. Signals are picked up by Badge Sensors installed at various rooms inside the
building providing room-level accuracy. Badge Sensors were powered and connected to a network
using a special 4 wire system using telephone twisted-pairs cable and RS232 data-transfer format.

In more recent research [21], IR beacons are detected using a low-resolution CCD camera fitted
with an IR filter on a mobile robot, a method similar to the already mentioned VLP solution [17].
Although the setup seems simple, and only a small number of LEDs in a field-of-view (FoV) is required
to achieve decimeter-level precision, the problem is that the beacon signal is not identifiable; thus, their
positions are hardcoded. To be able to identify beacons, a large number of modulated LED sources
needs to be installed and powered full time. This requires an adequate energy source, either through
separate cabling or battery, both options being rather expensive.

The problem of multipath (MP) propagation is the most prominent among the indoor positioning
systems based on optical signals. Namely, the receiver in such systems usually senses the line of sight
component of the signal, as well as other MP components, due to light reflections and refractions in
the indoor environment. Since the received signal components can vary in power strength and phase,
the localization accuracy of the underlying system can be significantly reduced.

A model of IR signal reflections on any kind of surface material is proposed in Reference [22] that
can be applied to characterize the multipath behavior of optical signals in applications, such as indoor
positioning and VLC communications. The respective model is derived according to the experimental
measurements on three different materials (terrazzo, foam board, and plasterboard). In Reference [23],
authors propose a model to determine the multipath effect in indoor environments when the shape
and characteristics of the environment (e.g., reflection features of the materials) are known a priori.
The related model can be applied for indoor positioning, irrespectively, of both the underlying system
and the utilized measurement type (e.g., RSS, phase of arrival (PoA), differential phase of arrival
(DPoA)). For example, when analyzing the MP effect in AoA-based systems, wherein the signal phase
information is not relevant, it is necessary to know the signal strength reaching the detector from each
element in the environment after a certain number of rebounds. The mentioned model comes with
an algorithm that calculates the signal strength in the MP scenario. In recent research [24], a Position
Sensitive Device (PSD) sensor was used for experimental testing of MP effects in IR-based indoor
positioning. The positioning has been calculated using AoA and PoA techniques, and the errors caused
by the MP have been analyzed. The obtained results showed that the MP effects for AoA, unlike for
PoA, have little impact on the indoor positioning accuracy.

1.1.3. Infrastructure-Free Systems

Unlike systems that are based on specific installed infrastructure providing RF or light signals and
allowing estimation of distance, angle, and consequently position, some systems demand no specific
equipment to estimate indoor location.

The first system of that kind uses the fact that the Earth’s magnetic field is distorted by structural
steel elements in a building and that this distorted field has a certain temporally stable signature
that can be mapped. Related methods are somewhat similar to the WiFi fingerprinting, the key
difference being that the Earth’s magnetic field is stable and undisturbed even by large moving metal
objects (i.e., elevator cabin) on distances above 1 m from the magnetic sensor. Chung et al. [25] report
accuracy within 1.64 m for 90% of the time using a simple RMS-based nearest neighbor searching
algorithm for the localization. On the other hand, they also note that the chance of error increases
with the size of the fingerprint map and propose a hybrid solution with WiFi fingerprinting that can
complement repeating magnetic signatures and set upper bound on localization error for larger maps.
This method is further investigated by Shu et al. [26], along with the more sophisticated augmented
particle filter (APF) localization algorithm and IMU-based tracking used to help in the proper timing
of the magnetic field measurements. The interesting fact in the context of this paper is that the authors
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describe the supermarket environment as the most challenging one (others being office building and
underground parking garage). Their experimental results verify that description since they report that
their system achieves 90 percentile localization accuracy of 8 m in the supermarket environment using
the magnetic field alone. Finally, it is worth noticing that although the infrastructure is not required, this
method requires mapping the magnetic field which can take significant effort and time. Representative
commercial implementation of the magnetic field sensing is one by the brand IndoorAtlas.

Another innovative system that requires no infrastructure is Google Tango Project. Three key
features of the Tango Project system are (1) motion tracking, (2) area learning, and (3) depth perception.
Tango can be used both to map indoor spaces and to estimate location within by using a standard
gyroscope, accelerometers along with the wide-angle camera and depth techniques, such as Structured
Light, Time of Flight, and Stereo Vision. The project is still in its research and development phase, and
Tango-enabled devices are becoming available on the market only recently. Tango-enabled devices can
be used in indoor localization and navigation context, and, currently, besides the unavailability of the
hardware, the main obstacle is the power required for computation.

Finally, it is worth mentioning the Monocular localization system [27] that can be used as a
complement to Google Tango. This system uses real-time video camera-based optical character
recognition (OCR) and building floor plan with a mapping of prominent signs locations, such as store
logos above entrances. Using this information, it is possible to estimate location relative to a detected
visual cue.

Based on the research review presented above, a comparison of indoor localization systems’
main characteristics is summarized in Table 2. Along with the characteristics of different localization
methods (typical accuracy, installation costs estimate, energy consumptions, and main drawbacks),
we highlight the representative commercial solutions that can be considered as readily available for
applying in the supermarket context. By outlining the commercial examples, we point out the fact that
some of the largest (and the most influential) companies, such as Apple, Philips, and Google, recognize
the importance of indoor localization, and actively contribute in the respective field.
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1.2. The Overview of the Proposed Solution

In this paper, we present a novel infrared (IR) sensor and AoA estimation algorithm relying on
low range LOS signal propagation. The sensor is furthermore applied in a novel localization method
based on tracking mobile IR transmitters. In order to provide LOS signal sensing throughout the
environment and gather measurements from mobile nodes, we exploit the powerful concept of the
wireless sensor network (WSN). We believe that this combination has the potential to overcome some
of the issues within current state-of-the-art indoor localization systems.

Although the proposed method can be utilized in many different applications, in this paper, we
tackle the specific aisle-level cart navigation use case. The environment in this use case is characterized
by many narrow corridors, high or moving obstacles, such as shelves or customers. Many current
systems fall short in this kind of environment, specifically because of the unpredictable and changing
signal propagation. In this context, our showcase system is using WSN nodes which are equipped
with IR AoA sensors and distributed above the aisles. WSN measures a signal from the infrared
transmitters installed on the carts and delivers those measurements to the localization server, thus
enabling real-time cart localization. The key advantages of this system are inexpensive installation and
maintenance, and competitive localization precision as demonstrated in conducted experiments.

The related research efforts most often focus exclusively on the design of a specific sensor with an
attempt to enhance indoor localization accuracy but without further utilization within a system that
would assist the end-user to navigate in the target indoor environment. In other words, the related
work often lacks the well-rounded solution built upon the underlying localization technology. In this
sense, our contributions are based on the development of all modules required for indoor navigation
and their successful integration into the proof-of-concept system. The system targets the supermarket
navigation context and involves the following:

• Novel IR AoA sensor, made of inexpensive off-the-shelf components, enabling AoA estimation
with an error around 1◦,

• Wireless sensor network, based on the proposed IR AoA sensor, which provides infrastructural
support for real-time navigation,

• Localization strategy/method/algorithm, utilizing the proposed WSN and a spatial context (aisle
graph), with suitable localization accuracy,

• Supermarket navigation model based on shelves graph and aisles graph,
• Server, API, and client applications suite, demonstrating both the features and the look-and-feel

of the proposed system.

2. Materials and Methods

2.1. Angle-of-Arrival Sensor

As with every conventional outdoor navigation system, the integral component of the indoor
navigation system is the one used for mobile node localization. The proposed method consists of
measuring the strength of the IR signal on the IR phototransistors placed on a specifically constructed
sensor and the estimation of the angle-of-arrival of the IR signal from the measurement data. This
localization method achieves high accuracy with simple low-cost hardware, while requiring LOS
between the IR transmitter and IR sensor. Therefore, the key technical properties are novel sensor
design and angle-of-arrival estimation algorithm.

In our research, we opted for IR-based technology, with two main goals in mind: (1) to propose a
LOS-based sensor design that would be inexpensive to produce—using cheap off-the-shelf components,
and (2) to develop the proof-of-concept solution, utilizing the network of such sensors, that would be
fittingly accurate in the target (supermarket) context.

When it comes to the already available sensors that provide AoA measurements, we can outline
devices used in the Cricket Compass System [28] working with ultrasound signals, different antenna
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array systems [29], and rotating laser systems [30]. Furthermore, a PSD (Position Sensitive Device)
sensor has been successfully utilized for indoor positioning using AoA techniques, with the obtained
localization error below 1 cm [31]. QADA (Quadrant Photodiode Angular Diversity Aperture) sensor
also showed to be a part of the promising angle-based localization apparatus, as it was used in an IR
indoor positioning system that provides the absolute error of 0.9◦ in the estimation of the polar angle,
and 12 cm of absolute localization error [32].

However, all these mentioned solutions are neither simple nor low-priced nor fully adequate for
straightforward installation in the supermarket venue. For example, some of them require appropriate
cabling, which we wanted to avoid from the very beginning. Regarding the sensor costs, we can
outline PSD and QADA devices that were used in the abovementioned research (Hamamatsu S5991-01
PSD, and QADA receiver QP50-6-18u-TO8) and which hold a price level of USD 180–200 and USD
120, respectively. Following our main idea, we opted for a novel design of a much more affordable
AoA sensor.

2.1.1. Design

The inspiration for the creation of a new type of sensor was drawn from the research by Song et
al. [33], in which authors introduce a new type of digital camera. The camera has a size of 1 cm in
diameter and contains a total of 180 micro-lens oriented in different directions [34].

The key idea of the proposed design is to utilize an array of IR phototransistors placed on the
circular rim and directed outwards to detect the angle of arrival (AoA) of the incoming infrared
signal. AoA could be estimated using measured data and known specific radiant sensitivity of
IR phototransistors.

Initial advantages of this method are the usage of small and inexpensive off-the-shelf components,
such as IR phototransistors, along with the readily available dedicated ATtiny45 microcontroller and
the 16-channel multiplexer, as well as the fact that the principle of the operation of the hardware part is
rather simple. The sensor is controlled via a one-wire protocol that is used to select the appropriate
channel on the multiplexer, allowing the measurement of selected IR phototransistor output by the
host node AD converter.

The first-generation prototype was our preliminary design of the novel target IR AoA sensor, which
showed to be only a “debugging” step in the process of building the final, i.e., the second-generation
prototype. Namely, the first-generation prototype used a simple design with through-hole components
and was able to estimate AoA with an average error of around 10◦. We found this error to be
quite large, so we did not consider the related prototype for further work on the localization
system. Instead, we tackled the unfitting size and imprecise positioning of IR phototransistors (in the
first-generation prototype) by introducing surface mounted (SMT) components and pick-and-place
automated assembly. By doing so, we developed the second-generation prototype (shown in Figure 1)
with the lower AoA estimation error. We were able to further reduce this error, up to 1◦, by utilizing a
specific calibration procedure and the corresponding estimation algorithm (described in the following
subsections). The second-generation prototype was thus used in our WSN-based localization solution
and related experiments.
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Figure 1. Infrared (IR) angle-of-arrival (AoA) sensor prototype.

2.1.2. Calibration

The main source of estimation error proved to be the relative radiant sensitivity of each SMT IR
phototransistor, which is unique (Figure 2) and significantly different from the ideal characteristic
specified in the datasheet [35]. This fact presented an issue since radiant sensitivity characteristic is the
principal parameter for enabling AoA estimation.
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Figure 2. AoA phototransistors’ IR irradiance measurements with varying angle of arrival of the
incoming IR signal. Each curve corresponds to one of 12 phototransistors on the AoA sensor. Maximal
values for each phototransistor are achieved when the transmitter is positioned near the phototransistor
axis, i.e., directly in front of the phototransistor. IR irradiance is measured as a voltage drop on resistors
serially connected to phototransistors. The phototransistor collector current and the corresponding
voltage drop are proportional to the measured irradiance. The voltage is displayed as a 10-bit A/D
converter readout.

The solution to the estimation error induced by the unique radiant sensitivity of each
phototransistor was to implement an automated calibration platform (Figure 3) and to use it to
record true radiant sensitivities for all transistors like the one shown in Figure 2. The central controlling
part of the platform is the calibration server implemented as a RaspberryPi computer running the
iPython Notebook kernel. Controlling software communicates with sensor nodes via a connected
JeeLink sensor node and controls the rotation of the stepper motor via general-purpose input/output
(GPIO) connectors and the power amplifier. The test platform is fully manageable from a personal
computer using the iPython Notebook client, i.e., any Internet browser.
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The sensor network part of the platform consists of three nodes:

• The JeeLink node, in the scheme labeled as node 1, serves as a gateway: to send commands to
nodes 2 and 3, and to receive measured data from node 2.

• Node 2 is mounted on a rotating platform and attached to the sensor being calibrated.
• Node 3 is an infrared transmitter, i.e., it serves as a controlled IR radiation source with known

distance and AoA relative to node 2.

For each step of the stepper motor, node 1, attached to the calibration server, triggers a flash
of the IR diodes on the node 3 and, at the same time, measurement is taken by each of the 12 IR
phototransistors on the sensor attached to the node 2. Measured data is then transmitted back to node
1 and stored on the client computer.

After the measurement has been made, the stepper motor rotates one half-step, or in this case
for 0.9◦ in the clockwise direction, and the procedure repeats for all 360◦, i.e., for 400 half-steps. The
obtained data consists of a true AoA taken from the known position of the stepper motor and 12 × 400
IR measurements taken from 12 phototransistors for each of 400 different AoA.

Unlike the typical IR transmission (e.g., with remote control device), wherein the signal is
modulated in order to separate it from the ambient light, in our case only a DC signal is used. We did
not consider modulating the emitted signal because, in our solution, AoA estimation relies exclusively
on the relative strength of the signal received on the sensor’s phototransistors.

Possible MP effects were not taken into consideration during the calibration procedure. Namely,
we did not experience any unexpected issues in this matter, as long as the sensor or the transmitter was
not too close (few centimeters) to some reflective object. In all other cases, the LOS component showed
to be a predominant part of the received signal, and, as such, it is de-facto exclusively used for AoA
estimation. Our calibration platform was placed in the center of the room, away from the walls and
other obstacles, so we can fairly assume that there was no significant MP effect on the sensor calibration.

2.1.3. Estimation Algorithm

To be able to estimate the angle of arrival, the first observation that needs to be made is that the
phototransistor readout presents the sum of the IR irradiance from the transmitting node and the
ambient. To filter out ambient radiation, the sensor needs to make a measurement at the moment in
which all IR transmitters in the range are off. In the following text, all phototransistor readouts are
considered to be already filtered, i.e., subtracted by measured ambient radiation.

The second observation can be made from real (Figure 2) and nominal (Figure 4b) phototransistors
array radiant sensitivity characteristics: for any given angle, only three phototransistors have their
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output above the level that can be used for the AoA estimation. Therefore, the estimation algorithm
selects three phototransistors with the highest output. Since those three phototransistors are always
successive and the middle one has maximal output with the following two being its counterclockwise
and clockwise neighbors, their outputs are marked as vm, vccw, and vcw, respectively.
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nominal phototransistor sensitivity as defined in the datasheet.

The third observation is that absolute values of the signal irradiance readout cannot be used as is,
since they are dependent on the unknown distance between sensor and transmitter. The upside is the
fact that the ratio of their values does not depend on distance; thus, the following three values can be
used: vm/vccw, vm/vcw, and vcw/vccw.

Once phototransistors indices m, cw, and ccw are selected, further AoA estimation is performed in
the range [−15◦, 15◦], relative to the orientation of phototransistor with the maximal value vm. After
measurement data are obtained, the estimation is performed by selecting one ratio and matching its
value with calibration data. The selection of the ratio that is used in the estimation depends on the
segment of the given range in which AoA is being estimated, and this itself can be estimated using the
default vcw/vccw ratio.

The criteria for the selection of the ratio (from three possible ratios vm/vcw, vm/vccw, and vcw/vccw) is
twofold: (1) expected absolute values that are used in the ratio need to be as high as possible (Figure 4c),
and (2) the rate of change, i.e., the absolute derivative of ratios, should be as high as possible, as well
(Figure 4d). Using these criteria, the estimation range is divided into three segments, marked as I, II,
and III and ratios used are vm/vccw, vcw/vccw, and vm/vcw, respectively.

Finally, calibration measurement data is used to calculate all three ratios for any given angle.
Strictly speaking, for each of 12 different sections (Figure 4a), i.e., for each triplet of neighboring
sensors (m, ccw, cw), calculated ratios from measured values are fitted with polynomials and only
coefficients of corresponding polynomials are stored for the estimation. Since all polynomials are
monotone (Figure 4d) in the segment they are used, the estimation algorithm itself is reduced to a
simple binary search.

In order to systematically visualize the required steps in the proposed AoA estimation algorithm,
we additionally present the corresponding flowchart (Figure 5).
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Custom calibration and the described algorithm were used in the evaluation of 16 different AoA
sensors. As shown in Figure 6, this approach reduced the standard deviation of the estimation error
to around 1◦. The main drawback of the IR AoA sensor is its reduced range: We have been able to
capture IR signals and estimate the AoA with a distance between transmitter and sensor up to 4 m. On
the other hand, since the algorithm for the AoA estimation utilizes the ratio of the detected IR levels on
different phototransistors, the range could be further increased simply by using more powerful IR
transmitters and AD converters with a variable reference voltage.
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2.2. Showcase Application: Supermarket Navigation

Our showcase application assumes enriching in-situ shopping experience by providing cart
localization and navigation services within supermarkets aisles. Supporting this context is motivated
by current customer demands, as well as by recent trends that suggest increasing involvement of
modern technologies within the shopping process, i.e., smart shopping [37]. According to a 2016 study
by ECE [38], a German project manager for shopping centers, end users want to utilize digital services
in brick-and-mortar stores. The study showed that, among people younger than 40, every third person
needs some sort of in-store guidance system. Billa, one of the most famous Austrian supermarket
chains, has a mobile application that utilizes Bluetooth Beacon technology for providing location-based
promotions in 11 selected shopping venues. French multinational retailer Carrefour, as well as Target,
the second-largest discount store retailer in the United States, both invested in VLP-based indoor
navigation prototype solutions, to assist their customers in finding what they are looking for more
easily [39,40].

A supermarket is a typical example of a dynamic indoor space with dense obstacles. As noted in
the Related Work subsection, there is a large number of approaches for solving indoor localization
problem in such a context. Most of them are tackling a hard problem with complicated multipath
signal propagation. Those approaches are either using different heuristic methods to overcome the
lack of closed-form solution for NLOS propagation or trying to ensure simple LOS propagation by
dense dissemination of beacons, demanding complicated and high-cost installation.

The key aspect of the proposed system, code-named Navindo, is to integrate readily available
and inexpensive technology, such as the AoA IR sensor described in the previous section, with
state-of-the-art low-power communication technology provided by modern wireless sensor nodes. In
general, Navindo demonstrates how to overcome drawbacks of any system in need of LOS propagation
using inexpensive, autonomous, and easily deployed wirelessly connected nodes. The benefit is
twofold: (1) the system is accurate since there is an abundance of the high-quality LOS signal throughout
the environment, and (2) the system is simple and inexpensive to install and maintain. Navindo
consists of 3 components, as shown in Figure 7.
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Figure 7. Navindo indoor navigation system. (1) Wireless sensor network with nodes deployed at
fixed locations (i.e., above aisles in the supermarket) and simple IR transmitters (tags) on mobile objects
that are being located—carts. (2) Application programming interface (API) that provides support for
managing both the location data and the information about the target navigation area. (3) Client mobile
applications used for accessing, managing, and visualizing location data.

2.2.1. Wireless Sensor Network

The key piece of the proposed solution is a wireless sensor network that extends the usable region
for high-precision LOS mobile node localization based on the IR AoA sensor. The main purpose
of the wireless sensor network is to provide infrastructural support for real-time navigation in the
supermarket context. Having in mind the typical organization of the brick-and-mortar shopping
venue, consisting of shelves and corridors, a straightforward WSN topology is assumed which relies
on placing sensors above the carts’ movement area. Hence, nodes equipped with IR AoA sensor are
positioned directly above aisles, every few meters, preferably clipped onto light sources that are usually
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hanging low enough to evenly illuminate products on the shelves. Each node with its IR AoA sensor
can track the IR signal along the aisle with the standard deviation of error below 1◦, as described in the
previous section.

Additionally, each cart is equipped with a simple IR transmitter and, currently, its sole function is
to transmit its ID number allowing both identification and localization from the sensor nodes side. The
benefits of leaving RF transceiver out of mobile nodes are twofold: (1) cart is kept as simple as possible,
and (2) the number of RF transmitting nodes is reduced, consequently reducing packet collisions and
decreasing latency and throughput of the WSN.

Deployment of the previously described system is simple and straightforward; thus, the cost of
the related installation is expected to be low. Since the density of the WSN directly determines the
price of the system installation, the overall budget can be predicted based on the required number of
WSN nodes and the expected number of the IR transmitters (carts). In the following text, we present
empirical results that suggest that one sensor node per every 3 m of the corridor represents a suitable
density. Furthermore, we introduce the possibility to reduce system operating costs even more, by
proposing energy harvesting scenarios.

Testbed. In our testbed, we used commercially available JeeNode nodes based on Atmel
ATmega328p microcontroller and RFM12B radio module. The radio module is using an 868 MHz
ISM frequency band, with a data rate of 49.261 kb/s, and an indoor range from 10 to 20 m. Mobile
nodes (carts) are equipped with simple IR diodes and the radio module turned off. Sensing nodes,
positioned above corridors, are equipped with the proposed IR AoA sensors. A single gateway node
was equipped with the EtherCard extension module based on the ENC28J60 chip and connected to the
Internet using a wired local area network.

WSN communication protocol is based on the JeeLib library [41] with an address space of 250
groups with 30 regular nodes each. The media access part of the protocol implements a simple CRC-16
algorithm for error detection but with no collision avoidance. Thus, in the proof-of-concept laboratory
setup, consisting of no more than 10 nodes, we used a simple centralized algorithm based on iterative
queries. In this algorithm, the gateway node was also a master node, i.e., the one issuing all queries,
waiting for response messages, and forwarding the corresponding data. This node was sequentially
querying other nodes for fresh AoA measurements: The response message payload was a pair of
values consisting of the ID of the transmitter and the AoA measurement. After each query, the gateway
node simply forwarded the measurements to the localization server API.

In this setup, sensor nodes are continuously listening for IR signals and storing all measurements
until they receive a query from the master node. This way all RF collisions were avoided with an
obvious issue of poor scaling of the network, but that was an inherent drawback of the selected platform.

Our future work plan includes upgrading the platform to the custom Texas Instruments CC2538 or
CC2650 SoC based node. The plan is to implement an algorithm on top of the Contiki operating system
and use its protocol stack consisting of state-of-the-art protocols, such as IEEE 802.4.15, 6LoWPan, RPL
(Routing Protocol for Low-Power and Lossy Networks), and CoAP (Constrained Application Protocol),
thus enabling large address space that can host a much larger network, multi-hop routing, low power
operation, etc.

Measurement protocol. Every measurement is initiated by the IR transmission from the node
placed on the mobile cart, after which sensing WSN nodes in its range detect IR signal and estimate
AoA, thus enabling estimation of the cart location as shown in Figure 8. To unambiguously identify
the transmitting cart, every IR transmission is prefixed with the cart ID encoded with a slightly
customized NEC IR protocol. This protocol is the de-facto standard and, as such, used by many
consumer electronics, mostly for remote control. In our setup, the ID is an 8-bit number allowing
identification of 256 different carts. The duration of the IR transmission is the sum of the modulated ID
prefix and continuous IR signal used for AoA measurement. Using the NEC protocol for encoding
ID prefix takes 40.5 ms, and the measurement signal takes an additional 25 ms, resulting in a total
transmission duration of 65.5 ms. After the detection of the IR signal, the sensing node decodes the
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mobile node ID and then, from a measurement of the incoming IR signal on 12 IR transistors, estimates
the angle of arrival.Sensors 2020, 20, x FOR PEER REVIEW 16 of 32 
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Figure 8. Cart location can be estimated in 1D (along the aisle) using AoA measurement in combination
with the prior knowledge of the wireless sensor network (WSN) node location and height difference
between node and IR transmitter. In this setup, the AoA sensor is rotated in order to estimate the angle
of arrival in the x–z plane. The location of the cart is calculated using an estimated angle, a priori
known AoA sensor position, and simple trigonometry relation: xcart = xnode + h · tan(θ).

IR AoA sensor, in its current form, can detect and measure AoA of just one IR transmitter at a
time. The number of transmitters in the low sensor range is relatively small and transmission duration
takes only 65.5 ms, with the potential to be further reduced. Therefore, to handle multiple transmitters,
we opted to use Time Division Multiplexing (TDM). Since we wanted to keep transmitters simple and
offline, i.e., with no RF communication, we did not introduce additional synchronization overhead
required for TDM. Consequently, the collision of IR packets from nearby carts presented a potential
issue. Each cart is usually in the range of only 2 to 3 different sensor nodes, so we chose to solve the
collision problem using simple transmission delay randomization. In our prototype system, IR signals
from the carts were transmitted with a randomly chosen delay between transmits, ranging from 0.5 s
to 1.5 s. Collision probability depends on the number of carts in the range of the sensor.

An additional advantage of using IR signals is directed radiation (towards sensors installed above
corridors) and relatively small signal range. This property significantly reduces the collision probability,
thus avoiding the need for time synchronization of the transmitters, given the small duty cycle required
for transmitting. Thus, in our analysis, we considered 1 to 6 moving carts in the range of one AoA
sensor. The resulting average times between cart location updates are presented in Figure 9.
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Figure 9. The average time between cart location updates depending on IR package collision probability
or, more precisely, on the number of carts in the sensor node range. With a standard deployment
density of 1 sensor every 3 m, there is a high probability of multiple sensors in the IR range of the
mobile node, further reducing latency.

We did not consider FDMA (Frequency-Division Multiple Access) or CDMA (Code-Division
Multiple Access) instead of TDM, simply because we think that the average time between cart location
updates, as provided with TDM, is appropriate for the target context. Specifically, we find the “in-aisle
crowding scenario”, wherein more than 4 shopping carts are visible to only a single AoA sensor, less
likely to happen. Hence, for a typical WSN topology (1 sensor per every 2–3 m) and a typical shopping
scenario, we expect cart location updates to take place every 1–1.5 s. We find this frequency to be suitable
for the target localization service, i.e., for real-time navigation support within supermarket corridors.

Localization algorithm. To be able to estimate the location of the mobile node, using just AoA
measurement, the position (location and orientation) of sensing nodes must be known at installation
time. Thus, the localization algorithm can map each node i to the following tuple (xi, yi, h, ϕi), that is,
the location of the node in 3D: xi, yi, height h (usually the same for all sensors), and the orientation of the
sensor in xy plane, ϕi. This is a reasonable demand which introduces additional benefits: simplifying
topology control, designating node roles, and setting transmission parameters, such as timings and
signal strengths.

Another prerequisite for the localization, and later for the navigation, is the aisles graph, seeing
that all estimated locations are subsequently mapped onto its edges. The aisles graph represents a
navigation layer of the supermarket map. Generally, WSN nodes are positioned on the edges of the
aisles graph and are oriented in the direction of the edge they reside on, as can be seen in Figure 10.

167



Sensors 2020, 20, 6278

Sensors 2020, 20, x FOR PEER REVIEW 18 of 32 

 

Figure 10. Sensing nodes S1–S7 are placed on the edges of the aisles graph (dashed line). After the IR 

transmission from the cart took place, nodes S2, S3, and S7 performed measurement and AoA estimation. 

Measured irradiance on the node S3 was the highest so the cart was localized using estimated AoA θ3 and 

the position of the sensing node S3 in the Equation (1). The orientation of the node S3 is φ3 = 0°; thus, the 

estimated location is (   333 ,tan yhx  ). 

As described previously, after each IR transmission the AoA measurement and estimation are initiated 

on every WSN node in the range. If the measurement was successful, cart ID, estimated AoA, and the 

maximum measured irradiance level are all sent to the gateway node as soon as possible. On the reception 

of measurements, the gateway simply forwards them to the localization server using REST API. The 

localization algorithm itself is executed on the server. Input for this algorithm is the set of measurements 

initiated by the same IR transmission. Measurement of the sensing node i is defined by the tuple (i, θi, Eei), 

that is, ID of the sensing node, estimated AoA θi, and maximum measured irradiance Eei. 

The localization algorithm is consisting of the following three steps: 

1. Select measurement → from all measurements in the set, pick the one with the highest maximum 

measured irradiance Eei. This step is based on the simple heuristic assuming that the highest irradiance 

measurement correlates with the lowest distance between the transmitter and the sensor, and, more 

importantly, with the lowest geometric dilution of precision (GDOP). 

2. Estimate location from selected measurement → selected measurement, along with the position of the 

corresponding sensing node, is used in the simple equation to estimate cart location: 

))sin(),cos((),( iiiicartcart dydxyx    (1) 

where d is the Euclidean distance of the estimated projection of the cart position onto the line passing 

through the sensing node in the direction of its orientation φi: 

)tan( ihd   (2) 

3. Estimate the location on the aisles graph → find the nearest point on the aisles graph edge from the 

estimated location. This step is usually straightforward since the aisles graph itself is constructed 

according to the positions of the sensors; thus, the distance of the estimated location from the graph 

tends to be zero. As will be described later, this mapping of the location to the aisles graph edges is 

important for the shortest path navigation to the products on the shelves. 

Using the described algorithm, the real trajectory of the mobile node is estimated as the sequence of 

locations placed on the edges of the aisles graph. Each estimated location is the result of the successfully 

received IR transmission as presented in Figure 11. 

Figure 10. Sensing nodes S1–S7 are placed on the edges of the aisles graph (dashed line). After the
IR transmission from the cart took place, nodes S2, S3, and S7 performed measurement and AoA
estimation. Measured irradiance on the node S3 was the highest so the cart was localized using
estimated AoA θ3 and the position of the sensing node S3 in the Equation (1). The orientation of the
node S3 is ϕ3 = 0◦; thus, the estimated location is (x3 + h · tan(θ3), y3).

As described previously, after each IR transmission the AoA measurement and estimation are initiated
on every WSN node in the range. If the measurement was successful, cart ID, estimated AoA, and the
maximum measured irradiance level are all sent to the gateway node as soon as possible. On the reception
of measurements, the gateway simply forwards them to the localization server using REST API. The
localization algorithm itself is executed on the server. Input for this algorithm is the set of measurements
initiated by the same IR transmission. Measurement of the sensing node i is defined by the tuple (i, θi, Eei),
that is, ID of the sensing node, estimated AoA θi, and maximum measured irradiance Eei.

The localization algorithm is consisting of the following three steps:

1. Select measurement→ from all measurements in the set, pick the one with the highest maximum
measured irradiance Eei. This step is based on the simple heuristic assuming that the highest
irradiance measurement correlates with the lowest distance between the transmitter and the
sensor, and, more importantly, with the lowest geometric dilution of precision (GDOP).

2. Estimate location from selected measurement→ selected measurement, along with the position
of the corresponding sensing node, is used in the simple equation to estimate cart location:

(xcart, ycart) = (xi + d · cos(ϕi), yi + d · sin(ϕi)) (1)

where d is the Euclidean distance of the estimated projection of the cart position onto the line
passing through the sensing node in the direction of its orientation ϕi:

d = h · tan(θi) (2)

3. Estimate the location on the aisles graph→ find the nearest point on the aisles graph edge from the
estimated location. This step is usually straightforward since the aisles graph itself is constructed
according to the positions of the sensors; thus, the distance of the estimated location from the
graph tends to be zero. As will be described later, this mapping of the location to the aisles graph
edges is important for the shortest path navigation to the products on the shelves.

Using the described algorithm, the real trajectory of the mobile node is estimated as the sequence
of locations placed on the edges of the aisles graph. Each estimated location is the result of the
successfully received IR transmission as presented in Figure 11.
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Figure 11. Localization strategy based on aisles graph. Vertices of the aisles graph are marked with •
(black dot), and estimated locations are marked with ◦ (white dot). WSN nodes are not visible. All
estimated locations reside on the aisles graph edges. The cart is localized after each IR transmission.

As stated previously, in the presented localization solution, the position (both the location and
the orientation) of sensing nodes must be known at installation time. Consequently, while setting the
WSN topology at the target indoor environment, sensors should be installed precisely, following the
specified distance and in the direction of the aisle-graph edges. If a particular sensor is not oriented
correctly (with a certain angular deviation from the aisle-graph edge), then the associated error will
propagate in absolute amount and thus affect the location estimation correspondingly.

The localization accuracy of the WSN described above, which utilizes novel IR AoA introduced in
this paper, is thoroughly tackled in the Results section. However, for the sake of completeness, we continue
this part of the paper by presenting the remaining parts of the Navindo indoor navigation system.

2.2.2. Server and API

The part that connects all Navindo components in one system is the server and its front-facing
application programming interface (API). It is utilized both as permanent storage of measurement
data gathered from the wireless sensor network and for the implementation of the business logic for
all client applications. The chosen software stack includes Debian Linux OS, PostgreSQL database,
Nginx web server, and Gunicorn application server. API was implemented using Python programming
language, Django, and Django Rest Framework package. It implements several functions, such as:

• WSN measurements retrieval and storage,
• WSN node layout management,
• Cart location estimation and update,
• Product locations management,
• Store layout management,
• User signup and login,
• Token-based authentication,
• User cart registration,
• Shopping lists management,
• Shopping list based shortest path navigation (directions).

On the server, each supermarket is modeled using two graphs: the aisles graph and the shelves graph
(Figure 12). Carts and WSN nodes are located on the edges of the aisles graph, and products are located
on the edges of the shelves graph. Each product can be mapped from the shelves graph to the nearest
point(s) on the aisles graph. This way all navigation algorithms, such as the shortest path and the traveling
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salesman, are performed on the aisles graph, while locations of all objects in the 2D coordinate system
are preserved. For the simulation purposes, an existing retailer’s webshop with more than 20 thousand
items was automatically scraped, and obtained items were algorithmically distributed on the shelves
graph edges.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 32 

are performed on the aisles graph, while locations of all objects in the 2D coordinate system are preserved. 

For the simulation purposes, an existing retailer’s webshop with more than 20 thousand items was 

automatically scraped, and obtained items were algorithmically distributed on the shelves graph edges. 

 

Figure 12. Shelves and aisles graphs: {a, b, c, d} is the set of vertices of the shelves graph with the product 

location p on the edge (c, d) and {A, B, C, D} is the set of vertices of the aisles graph with cart location c on the 

edge (A, B). The product location is mapped to the aisles graph as p’ and the shortest path from cart to product 

is (c, B, C, p’) with length 11. 

2.2.3. Client Applications 

In our proof-of-concept solution, we developed a client mobile application for Android devices that 

encompasses shopping list utilities and indoor navigation services (Figure 13). After the initial registration 

with the Navindo system, the user is allowed to manage shopping lists by making use of the product 

database. 

 

Figure 13. Mobile application screenshots. Shopping list editor screen on the left and the navigation screen 

on the right. The dotted line on the navigation screen represents the shortest path on the aisles graph from 

the current estimated cart location to the location of the next product in the shopping list. The more detailed 

view of the corresponding aisles graph is presented in Figure 11. 

Figure 12. Shelves and aisles graphs: {a, b, c, d} is the set of vertices of the shelves graph with the
product location p on the edge (c, d) and {A, B, C, D} is the set of vertices of the aisles graph with cart
location c on the edge (A, B). The product location is mapped to the aisles graph as p’ and the shortest
path from cart to product is (c, B, C, p’) with length 11.

2.2.3. Client Applications

In our proof-of-concept solution, we developed a client mobile application for Android devices
that encompasses shopping list utilities and indoor navigation services (Figure 13). After the initial
registration with the Navindo system, the user is allowed to manage shopping lists by making use of the
product database.
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Figure 13. Mobile application screenshots. Shopping list editor screen on the left and the navigation
screen on the right. The dotted line on the navigation screen represents the shortest path on the aisles
graph from the current estimated cart location to the location of the next product in the shopping list.
The more detailed view of the corresponding aisles graph is presented in Figure 11.
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Once the user enters a supermarket and gets a shopping cart, navigation services can be enabled.
In the mobile application, this is done by cart registration activity wherein the user is required to enter
the cart ID (information provided on the cart itself). Navindo system provides the user with two
basic options for routing within a store: (1) using shortest paths to all products from the list in the
predefined order and (2) reordering the shopping list automatically to generate the global shortest
route for picking all products (an instance of Traveling Salesman solution).

Navigation activity is designed in a way to resemble Google Maps user experience (Figure 13).
As the user is moving inside the store, the position of the shopping cart is updating in real-time. If
a smartphone running the Navindo application is equipped with the compass sensor, the current
orientation of the shopping cart will be visualized on the map, as well. To utilize this option in full
scale, the smartphone device should be mounted on the trolley, for which simple holders can be used
(similar to car phone mounts).

Once all products from the shopping lists are collected, the mobile application routes the user
to the counters zone, thus completing the navigation assist. Localization context can therefore be
deactivated by unregistering the related cart ID.

To further augment location-aware shopping, as well as to demonstrate extra benefits of ubiquitous
computing in the supermarket settings, we also developed an accompanying Navindo smartwatch
application. According to the inherent limitations of the smartwatch I/O capabilities, only a subset of
smartphone application functions is provided. The related use cases are shown in Figure 14. Samsung
Gear 2 watch, running Tizen OS, was used in our proof-of-concept solution.
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2.2.4. Prospective IoT Services

Along with the on-site customers, using mobile applications on their gadgets (smartphones and
smartwatches), retail management represents another user group that can substantially benefit from the
Navindo system. Since the information of both the products and the gathered locations are available in
real-time, extensive data analytics can be performed and subsequently used in order to boost efficiency
and sales numbers. According to the collected location-based information, a detailed insight can be
provided for the following cases: customers movement routes within a store, time of dwelling in the
particular zones (heat maps), crowding scenarios, products purchase frequencies, customer feedback
to promotional offers, a correlation between product locations and purchase volume, etc. Such analysis
could further lead to strategic decisions about promotional offers, personalized marketing, shopping
gamification (coupons and prizes), product placement and exposure, store layout optimization [42],
human resources planning, and supermarket activities in general.
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3. Results

In this section, we present the testing procedures and the results concerning the localization
performance of the proposed AoA-sensor-based WSN solution. We investigated the localization
accuracy of the WSN by performing four different evaluations as follows:

• E1: Static-1D (empirical, laboratory settings),
• E2: Mobile-1D (empirical, laboratory settings),
• E3: Static/Mobile-2D (empirical, laboratory settings),
• E4: Large-scale Mobile-2D (simulation).

In the first experiment (E1), we examined localization accuracy considering, altogether, four
possible sensor deployment patterns. The effect of the WSN density was assessed using a
proof-of-concept setup with sensing nodes positioned every 2 or 3 m, along the corridor (Figure 15).
The height of the sensing nodes above the IR transmitter level was set to 2 m and 3 m. We opted for
a 2 × 2 experimental design, pragmatically considering two discrete values for both sensor spacing
and sensor height, having in mind the current signal range of the proposed IR AoA sensor. For every
combination of sensor spacing d and height h, the cart was moved down the corridor and localized
every 10 cm. The reference trajectory was a straight 8 m line along the aisle, and the cart was kept static
in each measurement point (thus the Static-1D label). Resulting localization errors are presented in
Figure 16, revealing the centimeter-level accuracy of the proposed solution for the corresponding setup.
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Figure 15. E1-Testbed: numbered nodes (1, 2, 3) are equipped with an IR AoA sensor, and on the
handle of the cart is an IR transmitter. Its design is similar to the sensing node since the IR AoA sensor
has IR diodes on the opposite side of the IR phototransistors.
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Figure 16. Localization error experimentally measured in the 8-m-long corridor for every 10 cm. Distribution
of nodes with IR AoA sensor d was one in every 2 and every 3 m, left and right column, respectively. The
height of the sensing nodes above the IR transmitter h was set to 2 and 3 m, top and bottom row, respectively.
As can be seen from the presented results, in all scenarios, localization error did not exceed 10 cm.

According to the obtained results, we can reasonably recommend WSN density with 2–3 m sensor
spacing, as well as sensor placement onto the lighting infrastructure. It is assumed that supermarket
lights are placed above the aisles, 2–3 m above the IR transmitter level, which is typically a case in order
to evenly illuminate all shelves. In the described experiment E1 all measurements were performed
with the static IR transmitter. However, in the real-world scenario, the transmitter is mobile and, due
to the described transmission delay, the real-time localization error depends on movement speed. To
evaluate the localization error of the mobile transmitter we performed the second experiment (E2).

In the experiment E2, we used an IR transmitter attached to the Pioneer AT-3 mobile robot
platform. The robot was set on a straight 8-m-long trajectory, representing the cart movement along
the aisle, with constant velocities of 70 cm/s (maximum robot speed) and 35 cm/s. Three AoA sensors
were distributed along the trajectory every 3 m and were positioned 3 m above the IR transmitter on
the robot. Obtained localization errors are presented in Figure 17.

As expected, the error is dependent on movement speed since the time delay between two consecutive
location updates is kept in the constant range. Location update is performed immediately after the IR
transmission event, reducing the localization error to the level obtained in the static context. We find these
results to be suitable for supermarket navigation, considering the usual movement speed of customers and
the context in which fine-grained localization is needed only when the customer is moving slowly.

Having in mind that the cart’s true position can be outside of the aisles graph, the goal of the
third experiment (E3) was to evaluate the localization accuracy of the proposed solution in a more
realistic Mobile-2D context. This time we set the robot (Figure 18a) on a 7.7-m-long path within the
specially designed topology wherein 6 sensors were set in a 2D mesh (Figure 18b). This topology
determines the corresponding aisles graph on which the robot can be localized by our solution. All
sensors were positioned 3 m above the IR transmitter level. In order to make the experiment setup
similar to the supermarket scenario, the given route was positioned between the shelf mock-ups made
of cardboard boxes. Altogether, six “shelves”, each 220 cm high, were thus used to simulate the target
context (Figure 18c,d). Although there were three people in the laboratory during the experiment (two
experiment administrators and a robot operator), we did not formalize any intentional user movement
in that space. Hence, the MP effects were not specifically analyzed.
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Figure 17. Localization error of the mobile transmitter for two different velocities experimentally
measured in the 8-m-long corridor. The height of the sensing nodes was set to 3 m above the transmitter.
The transmission delay is uniformly distributed between 0.5 s and 1.5 s. It can be seen that error is
significantly and rapidly decreasing after the IR transmission events. Although varying, localization
error showed to be bounded below 50 cm for 35 cm/s and below 90 cm for 70 cm/s. The localization
error in this context represents a displacement of the estimated location from the real location in 1D
(i.e., the displacement on a robot trajectory line); thus, it can be negative.
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Figure 18. (a) Pioneer AT-3 mobile robot platform with IR transmitter attached to its handle; (b)
Static/Mobile-2D experiment setup (WSN topology and movement trajectory used in E3); (c,d) 3D
models of the E3 setup: six AoA sensors are placed above the shelf mock-ups made of cardboard boxes.
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Given that the used AT-3 robot can easily maintain a constant speed on the straight line, we opted
for the linear trajectory once again, which allowed simple calculation of fine-grained ground truth 2D
locations in real-time. The robot traveled along the same trajectory with constant velocities set as in the
Experiment E2 (70 cm/s, 35 cm/s). Additional static localization, like in the E1, was performed with a
10 cm resolution on the same path. Localization errors obtained in the given E3 setup are presented in
Figure 19.
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Figure 19. Localization error obtained in E3. Considering the low Static-1D error from the E1 experiment,
we can conclude that the Static-2D localization error mainly originates from the distance between the
cart true location and the aisles graph and, to a lesser extent, from the AoA measurement error. The
Mobile-2D localization error additionally includes a component related to the movement speed and the
IR transmit time delays as examined in the experiment E2.

The localization error in E3, as opposed to E1 and E2, contains an additional component (distance
from the aisles graph; thus, the localization accuracy in the 2D mobile context is expectedly lower.

Finally, to assess the general localization error of the proposed solution, we carried out a simulation
(E4) based on a large-scale movement trajectory (Figure 20).
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Figure 20. Large-scale Mobile-2D simulation: a part of the supermarket topology with IR AoA sensors,
aisles graph, and cart trajectory.

For an 80 × 38 m supermarket layout, we designed a WSN topology with exactly 301 IR AoA
sensors that were simulated according to the real characteristics of the 16 prototype sensors. We
distributed simulated sensors along the virtual corridors so that every location in the supermarket
has at least one sensor in the IR transmitter range. The corresponding aisles graph was constructed
according to the store layout and the designed WSN topology. In the described setup, we inserted a
large-scale cart trajectory that uniformly covers available movement space for the given layout. This
5000-m-long trajectory was obtained using the ergodicity-based coverage algorithm [43], targeting the
homogeneous area coverage of the simulated cart locations. We simulated shopping cart movement
along the given trajectory using three speeds: 35 cm/s, 70 cm/s, and 140 cm/s. Ground truth locations
from simulated trajectory were compared to estimated locations provided by WSN, and localization
error was thus inspected. Table 3 summarizes the results of the E4 evaluation.

Table 3. Localization errors obtained in the simulation. Along with this paper, we provide a
Supplementary Video File which thoroughly demonstrates error calculation in E4.

Cart Speed Mean Error [cm] STD [cm]

35 cm/s 63.4 39.8
70 cm/s 73.6 40.2

140 cm/s 99.5 50.5

In all empirical evaluations (E1, E2, and E3), we measured the ground truth information manually.
Sophisticated equipment was not at our disposal, and all the measurements were obtained using a
simple laser pointer and a laser distance measuring device. The same gadgets were used for setting the
experiment scenarios (sensor placement in E1, E2, and E3, as well as shelf mock-ups layout in E3). For
static localization purposes, ground truth measurements were taken at the exact positions for which
the system provided the corresponding estimations. On the other hand, for the mobile context, we
manually measured only the starting and ending point of the robot movement trajectory, while the
other ground truth locations were calculated (according to the constant speed of the robot). Although
we did not formally determined the accuracy and precision of the ground truth data, we can assume,
given the magnitude of the localization error, that these factors do not significantly affect it. Hence, we
consider the effects of ground truth precision and accuracy small enough to be neglected concerning
the obtained localization error.
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We find obtained localization performance suitable for the supermarket navigation context.
Namely, in a scenario where a customer is looking for a specific product on the shelf, and/or wants
to get visual feedback about the cart location within a dense supermarket map, localization on the
aisles graph will provide adequate information. Put differently, in a typical supermarket layout with
2–3 m wide corridors, localization on the aisle centerline, along with the cart orientation visualization,
should be sufficient for user-friendly blue-dot navigation. Localization error of the proposed solution
generally depends on the indoor venue layout (e.g., wider corridors), as well as on the movement
trajectory, but appropriate WSN topology can be utilized to mitigate this error.

Due to the simple design and favorable position of nodes, there is an additional opportunity of
using energy harvesting as the main power source, thus limiting or even avoiding network energy
maintenance costs. Stationary nodes could be positioned onto the lights which would open up the
possibility of using photovoltaic cells to power them. Simple IR transmitters placed on carts only need
to transmit when moving, so they could be powered using energy from the cart motion (i.e., wheels
rotational energy).

4. Discussion

As shown within the simulation (experiment E4), which considers the effect of the proposed
localization method in a larger space (supermarket level) with a topology that includes corridors and
high shelves, for the obtained localization error level (0.6–1 m, depending on the cart speed) it is
sufficient to provide 301 AoA sensors on a gross area of 3040 m2. We consider such a WSN density (~1
sensor per 10 m2) to be a suitable solution, given the trade-off between the cost estimation of the related
infrastructure and the provided localization accuracy in the target context. Specifically, knowing the
production costs of both the proposed IR AoA sensor (~USD 13) and the proposed IR transmitter
(~USD 9), we can assume the total cost for an 80 × 38 m retail venue with exactly 100 shopping carts:
USD 4.813. We find this amount to be a rational investment for supermarket management, seeing that
the shopping experience could be considerably enhanced via localization and navigation services. A
more densely deployed sensors would allow even better localization accuracy (as shown in experiment
E1), however, according to the already mentioned cost-accuracy trade-off, the idea is to use a reasonable
number of sensors within a given indoor environment. As stated at the end of the previous section,
the infrastructure maintenance costs could be furthermore reduced by utilizing energy harvesting (on
both the sensor and the transmitter side), which is part of our future work plans.

Regarding the deployment aspects, since the proposed solution localizes the user on the aisle
graph (i.e., in the corridors between the shelves with products), the WSN topology design is rather
straightforward. Namely, the proposed sensors should be placed above all the aisles in which users are
expected to be walking through (and not above the shelves), with a distance of 2 m to 3 m along the
corridors (as demonstrated in conducted experiments). Since no cabling is needed for powering and
connecting the WSN infrastructure, we assume supermarket lights and cart handles to be a pragmatic
choice for placing the IR AoA sensors and IR transmitters, respectively. In most cases, the lighting
infrastructure in a supermarket corresponds to the expected WSN topology, as lights are usually placed
above the aisles, in a way to evenly illuminate all shelves.

Seeing that the proposed solution, based on the novel IR AoA sensor, enables cart localization
with the corresponding error between 0.6 m and 1 m (in the mobile 2D scenario), the question of
comparability with other mature solutions with similar accuracy (e.g., RFID-based and BLE-based)
arises. When it comes to the RFID-based localization in the supermarket scenario, we are usually
considering carts equipped with RFID tags, and RFID readers deployed at the venue according to the
given density. As demonstrated in Reference [15], the problematic aspect of the related RFID-based
method can be a long measurement time, and, consequently, the need for the cart to remain stationary
(up to 2 s) in order to estimate its current location. Furthermore, if a passive RFID system is selected
as the backbone for the localization solution, then one must consider the high cost of multiple RFID
readers. For example, high-performance RFID readers, such as the Impinj Speedway RAIN RFID Reader
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(used for baggage tracking, retail inventory management, etc.) reaches a price of over USD 1.000 per
single unit. On the other hand, BLE beacons seem to be the most competitive hardware in terms of
cost estimation, seeing that the average price for a single beacon is around USD 25 (it depends on the
manufacturer, the transmission range, and the form factor of the beacon). However, typical localization
accuracy within the BLE-based systems is around 2 m, which makes them more suitable for less precise
services, such as proximity-based localization and point-of-interest detection.

One can argue that 2 m localization error, achievable via mature RFID or BLE solutions, can
represent an adequate accuracy level for cart localization in supermarkets. We agree that such accuracy
can be considered satisfactory, but, at the same time, we think that the end-user should, as far as
possible, be provided with highly usable localization services, here including seamless and precise
navigation support. Hence, one of our goals was to provide a direction-finding interface, similar to that
from the well-known navigation applications, such as Google Maps. In this sense, the proposed system
supports real-time localization (and, consequently, navigation) wherein the localization error changes
dynamically, depending on the cart movement speed and the distance from the aisle graph. We can
assume that a larger localization error will not affect (negatively, to a greater extent) the usability of the
navigation service when the user searches for the target shelf at a higher speed. However, once the
customer reduces the cart speed coming in front of the shelf, where the target product should be found,
then a lower localization error can considerably affect (positively) the overall user experience. If the
user, while fine-searching for a target product, stops in the middle of the corridor (quite a possible
scenario), then the proposed solution can localize the corresponding cart at the decimeter level (as
demonstrated in the E1 experiment). In addition, when considering RFID and BLE solutions, we have
to take into account the fact that shelves for them are practically “transparent”. This means that 2 m
error can imply location estimation in a corridor adjacent to the ground truth, effectively making the
respective error fairly larger for the end-user. Conversely, in our LOS system, the shelves represent
the obstacles for the IR signal, and, following the aisle-graph model, the cart will be localized in the
right corridor.

Regarding the comparison of the proposed IR AoA sensor with the existing IR sensors for
localization (some of them are tackled in Section 1.1.2), we think that the results of such a comparison
would be difficult to generalize for the target setting. Namely, our localization method depends on the
specific spatial context, i.e., the mobile transmitter can be localized on the aisle graph exclusively, which
inherently contributes to the localization error. However, we are willing to retain that component of
the total localization error, believing that the aisle-graph model represents a suitable trade-off for the
supermarket environment.

The showcase application of the proposed indoor localization principle is providing a cart
navigation service within a supermarket venue on the aisle level. Mobile applications for smartphone
and smartwatch devices are developed, confirming the utility of location-based data provided by the
underlying WSN in real-time. The proposed system has a better cost-benefit ratio when compared to
competing solutions, considering the tradeoff between required installation and maintenance expenses
and achieved localization precision.

To the best of our knowledge, the WiDeo system [9] represents the best competing approach
in terms of both the achieved accuracy and expected installation costs. The object being traced
using WiDeo does not have to be accompanied by any supplementary device, which is a noteworthy
advantage among existing localization solutions. However, according to the reported experiments,
WiDeo can trace only five independent concurrent motions without worsening its accuracy which
is, according to the authors, “sufficient for a home environment, but not for work environments
where a far greater amount of motion is expected”. Moreover, it must be noted that WiDeo utilizes a
method wherein motion tracing accuracy significantly outperforms (absolute) localization accuracy
(80 cm level). Last but not least, the current version of the WiDeo implementation does not support
localization in real-time.
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The supermarket context, specifically tackled in this paper, is a typical example of a dynamic
indoor space with dense obstacles and numerous moving objects (humans and shopping carts). In
such a target context, real-time localization is of utmost importance for providing navigation service.
Independent objects, e.g., shopping carts, not only have to be concurrently localized, but they also
have to be unambiguously identified. For example, localization and identification should seamlessly
work when target objects’ positions are very close (by means of both the estimated AoA and distance),
or in cases wherein moving trajectories interfere and continuously overlap.

According to the abovementioned, the proposed Navindo indoor navigation system seems to be a
suitable solution for a supermarket domain, given that it utilizes WSN topology and IR AoA sensors
developed with such context in mind. The showcase application proved that the proposed localization
solution can be easily deployed in order to provide accurate aisle level navigation in real-time.

The proposed IR-based localization principle is completely orthogonal to any RF-based solution,
meaning that related approaches can be combined to boost localization performance for a given setup.
The advantages of the proposed method are entirely complementary to the shortcomings of the RF
localization systems.

5. Conclusions

In this paper, a supermarket navigation system, which relies on a novel IR AoA sensor, WSN-based
localization infrastructure, and graph-based motion model, is introduced and described. The system is
based on the LOS propagation of the IR signals, and a localization algorithm that uses measurements
and AoA estimation provided by the IR AoA sensor. A proof-of-concept implementation demonstrated
how inexpensive, autonomous, and easily deployable wireless nodes can be utilized to provide suitable
localization accuracy for the target context. Several factors can have an impact on the localization
error of the proposed solution, e.g., AoA measurement error, applied WSN topology (sensor density)
for a given store layout, the relation between movement speed and IR transmit time delays, and
movement trajectory (distance from the aisles graph). Altogether, four evaluation procedures were
performed to investigate localization performance. The accuracy of estimated location was firstly
observed in a 1D static context for different WSN densities, according to the given number of utilized
AoA sensors and varied distance between WSN nodes and IR transmitters. The effect of moving
speed on the localization accuracy in 1D and 2D setups was evaluated, as well, both empirically and
via simulation. Since the proposed solution estimates cart location on the aisles graph exclusively,
different movement trajectories were put under test: the straight 1D path along the sensor line, the
straight 2D path beneath the sensor mesh, and the large-scale tortuous trajectory within the simulation
environment. All obtained results, ranging from centimeter-level accuracy (Static-1D) to 1 m mean
localization error (Mobile-2D simulation), are presented and discussed in detail.

Our future work plan consists of addressing detected limitations in the current version of the
system and exploring potentials for further system improvement. This especially holds for a thorough
investigation of the possibilities for increasing the IR signal range and analysis of the multipath
propagation effects, as well as for evaluating the system in the real-world scenario, i.e., out of the
laboratory context. As noted previously, we intend to upgrade the system platform by utilizing
a state-of-the-art protocol suite with an enhanced hardware base that should support larger WSN
topologies, as well as the implementation of power control through energy harvesting.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6278/s1,
Video S1: E4-simulation.mp4.
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Abstract: Low frequency ultrasounds in air are widely used for real-time applications in short-range
communication systems and environmental monitoring, in both structured and unstructured
environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements
is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity
by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated
for TOF estimations. The procedure, based on the use of template signals, was implemented to
improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple
of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers.
The experimental results were then compared with the standard threshold and cross-correlation
techniques for method validation and characterization. An average improvement of 30% and 19%,
in terms of standard error (SE), was observed. Moreover, the experimental results evidenced
an enhancement in repeatability of about 10% in the use of a recursive positioning system.

Keywords: ultrasonic transducers; time of flight estimation; pulse-echo technique; ferroelectric
films; piezopolymer

1. Introduction

Over the years, ultrasonic technology has been applied in variegated fields ranging from
underwater acoustics [1,2], medical imaging [3] and biomedical devices [4,5]. Apart from the above,
indoor localization systems have reached a widespread consensus as they are inexpensive, space-saving
and less prone to interference due to environmental light or heat sources [6–9]. In-air ultrasounds
were amply investigated to retrieve information about unstructured environments in 3D tracking
and motion detection [6,7,10–15]. Although most technologies (infrared radiation, radio frequency,
artificial vision) are currently developed and commercialized, systems based on ultrasounds can be
realized with simple hardware [10,16], combining multiple coplanar transmitters [17] or in association
with multiple receivers [18], easily achieving a sub-mm resolution.

However, the performances of the 3D ultrasonic positioning system can be significantly improved
by working on hybrid technologies or a novel algorithm [12,19].

Conversely, in-air ultrasounds, which usually range from 30 to 120 kHz, are poorly suitable in the
case of long distances and for the most sophisticated fine-grained local positioning systems (LPSs),
because of the signal wavelength, and the wide lobe of irradiation of the available transducers [14,20].
Recent literature reports different attempts to overcome the limitation of commercially available
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transducers in terms of bandwidth, sensitivity and directivity, by introducing novel geometries and by
the optimization of acoustic wave propagation [7,21–26]. LPSs are usually realized with a combination
of multiple transmitters/receivers, properly positioned around the target area. The emitted signal
and the received echo provide different basic information, such as the receiving object distance,
through a time of flight (TOF) estimation or other information about target characteristics, as in the
case of bio-inspired echolocation systems [27,28]. The simplest and most common way to detect
TOF echo signals is the threshold method, in which the detection occurs when a signal crosses
a predetermined threshold [29–31]. It is generally characterized by a lower accuracy introduced by the
sampling frequency, low signal-to-noise ratio (SNR), and difficulty in setting an optimized threshold.
The introduced delay is generally nonconstant, resulting in a variable offset error. Another widely
used technique involves the cross-correlation function to estimate the TOF of pulse-echo signals by
varying the time observation point [31–33]. The latter is also exploited in natural bio-sonar, in a neural
approach for calculating the temporal correlation between pulse and echo [29,34,35]. Other approaches
exploit artificial intelligence techniques as a probabilistic algorithm, artificial neural networks, k-nearest
neighbor or support vector machine to evaluate the position of an object and improve automatized
learning [36,37].

Although for most applications they provide a sufficient level of accuracy, they are inherently
sensitive to SNRs, distortion and other factors such as fluctuations of sound velocity and the proximity
of other objects. In this paper, a modified cross-correlation technique, based on pulse-echo analysis,
is investigated for a recursive TOF evaluation. The transmitted pulse and the echo are generated by
curved polyvinylidene fluoride (PVDF) transducers previously investigated for robotic applications,
characterized by a low quality factor and high coupling in air [7,28]. The technique is based on
a recursive cross-correlation analysis and the use of a template signal as a reference. The TOF is
evaluated with respect to a calibrated echo signal, resulting in an improved accuracy and repeatability
during continuous target monitoring. The proposed approach is directed to the development of a new
algorithm which, together with the advancements in sensors technologies, can provide improvements
in real-time driver monitoring and behavior, especially if integrated with complementary technologies
(e.g., alcohol monitoring, fatigue recognition systems).

2. Materials and Methods

2.1. Ultrasound Sensors

The application of ultrasonic sensors in determining the x, y, z coordinates of an object in a working
space (e.g., cockpit, robot space) can be used complementarily with optical systems or alone as a valid
alternative to optical methods with a reduced sensitivity to noise, dust, lighting conditions, etc. [38].
In SONAR (Sound NAvigation and Ranging) systems, the resolution can be correlated with the spectral
content of the received signals. The radial resolution in a sonar system is a function of the bandwidth,
whereas the azimuth resolution is a function of the system opening [39,40]. In air, the time of flight of
ultrasonic waves at different frequencies can be considered almost the same; thus, the resolution is
limited by the data acquisition and processing. The propagation medium introduces an attenuation
which depends on different factors like beam dispersion, hysteresis, friction losses and the viscosity of
the medium. Moreover, attenuation increases with frequency, which can alter the reflected wave [41].
External noises, such as turbulence, vibrations and the noise due to the electronics used, also affect the
received echo travelling in a medium. By only taking into account the air viscosity, the enlargement of
the acoustic beam mainly depends on the displacement with respect to the source and the attenuation
of the medium according to the Lambert–Beer law.

Obviously, depending on the specific application and frequency of the system, it is always
desirable to improve the resolution, in order to reduce ambiguity during target positioning and
tracking. Bimodal transducers can result in a worse performance in terms of the SNR at the input of
the receiver. In some cases, multiple unimodal transducers are thus preferred, in order to achieve
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an electrical and mechanical decoupling. Previously developed ultrasonic transducers, based on the
ferroelectric properties of PVDF, were investigated for robotic applications. The hemicylindric geometry
has been theoretically and experimentally investigated in the range between 30 and 120 kHz [3,42].
The transducer was made with a strip of PVDF with a thickness of 28 µm, a width of 5 mm and a length
which depended on the specific resonance frequency (fr). The strip was metallized on both faces,
with about 200 nm of aluminum and clamped on the short side in order to achieve a hemicylindrical
geometry. The operating principle was based on the conversion of longitudinal motion into radial
vibrations due to the clamped extremities (caused by the alternating voltage applied between the
electrodes) allowing the generation of radial acoustic waves in the anterior (concave) and posterior
(convex) sides [7,14]. The resonance frequency was inversely proportional to the bending radius
and, therefore, could be easily manipulated by varying the curvature. Due to the very low-quality
factor of the transducer (Q about 12), the signal is characterized by a broad spectrum. Deviation of the
resonance frequency (~5%) can be observed with respect to the theoretical value due to assembly defects
(not perfectly hemicylindrical, nonparallel electrode shapes), as well as parasitic resistances created
during the realization of the external electrodes (e.g., silver paste, pressure contacts). Figure 1a reports
the effective dimensions of few representative sensors and the related diameters, while Figure 1b shows
the supporting structure used to maintain the geometry, the curved PVDF film, and the external contact.
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A 60 kHz fabricated transducer (b) and Scheme of the experimental setup for the time of flight (TOF)
evaluation between transmitter and receiver (c).

The experimental set-up was composed by two unimodal 60 kHz PVDF transducers,
one transmitter and one receiver, facing each other at a variable distance d (Figure 1c). The transmitter
was characterized by a sound pressure level (SPL) of 105 dB, considering a reference pressure of 20 µPa
(0 dB) at 0.3 m. The receiver, instead, had a sensitivity of −80 dB, considering a reference sensitivity
of 10 V/Pa (0 dB). Both unimodal transducers had a bandwidth of 5 kHz [25,43,44]. The acoustic
beam was generated by driving the PVDF transmitter with a pulse of 10 sinusoidal cycles at 60 kHz,
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with a peak-to-peak voltage of 2V (Tektronix AFG3102), amplified by 36.5 dB through a power
amplifier stage. The echo conditioning circuit was composed by a low noise amplifier, a band pass
filter and a further amplifier stage. The PVDF receiver was shunted by a couple of diodes with the
purpose of protecting the low-noise amplification stage from excessive amplitude voltage signals that
the transmitting stage or other noise sources could capacitively induce. The ultrasonic beam was
characterized according to the Institute of Electrical and Electronics Engineers (IEEE) international
standard by means of intensity parameters. The spatial peak-temporal peak intensity (Isptp), spatial
peak time average (Ispta) and spatial peak pulse average (Isppa) were determined over a plane 300 mm
from the ultrasonic transmitter, using a wide-band system composed by a conditioning amplifier
(Brüel and Kjaer NEXUS 2692-C) and a 1

4 ” free-field microphone, 4 to 100 kHz, 200 V polarization
(Brüel and Kjaer, Type 4939). The ultrasonic signal was detected by the PVDF receiver, conditioned,
and the was voltage recorded by a digital oscilloscope (Tektronix DPO 3054) [45].

2.2. Monitoring Routine

The transmitter was driven with a sinusoidal burst with a frequency fr, allowing the generation of
an acoustic signal, which was propagated toward the target (receiver), then transduced and conditioned,
obtaining a voltage profile as shown in Figure 2. The cross-correlation gives a measure of waveform
similarities while shifting one of them onto the other. Since the cross-correlation of white noise
approaches to zero, the cross-correlation was inherently characterized by noise reduction. Moreover,
in order to reduce the frequency and phase errors, the signal envelope was obtained before starting the
signal processing [19]. Given two digital sequences yP(kTS) and yE(kTS) of the pulse and echo signals,
respectively, where TS is the sampling time, the cross-correlation is given by:

XC =
+∞∑
−∞

yP(kTS)·yE(kTS + nTS) (1)

The estimation of the time delay between the two sequences was evaluated trough the maximum
of Xc. Let us now consider the signal as shown in Figure 2, used to represent the transmitted pulse
(red shaded area) and the received echo (green shaded area). In the time domain the differences
between the maximum of the echo signal (tb) and the related pulse transmission time (ta) represents
the time elapsed between ultrasonic source transmission and echo reception.
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Figure 2. Pulse-echo signal (60 kHz) transmitted and received through a couple of hemicylindrical
polyvinylidene fluoride (PVDF) transducers.

The distance was then computed by taking into account the sound velocity in air (d = TOF·v).
Even though variable (influence of temperature, humidity, etc.), the sound velocity in air can be
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modeled with good approximation by v = 20.555·
√

T, where T is the temperature in Kelvin, to take into
account the environmental conditions [46,47]. Since the time reference is used in signal acquisition,
an accurate pulse-echo acquisition is necessary. Synchronization can be inherently affected by frequency
errors (i.e., nonconstant errors) and in case of multiple reference signals these errors can affect each
other. A time shift can be observed also in the case of a single reference signal used to synchronize
transmission and reception. These synchronization errors are due to different factors, such as local
temperature random errors. This means that the TOF is affected by smaller variations happening
continually (i.e., time shift of the pulse and echo maximum ta and tb). As shown in the flowchart
(Figure 3), the processing technique starts with the acquisition of a pulse-echo signal at a given distance,
named template signal, then the following steps were carried out: (i) selection of the pulse component
sa(t)) and echo component (sb(t), (ii) cross-correlation between two subsequent acquired signals and
the pulse-echo, respectively, (iii) TOF evaluation and return to the acquisition of a new set of signals.
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The use of a template signal allows for the referencing of all the cross-correlations to the same
signal, which is expected to affect the accuracy of the TOF evaluation, especially on multiple cyclic
transmissions/receptions. Moreover, in the proposed implementation, no envelope extraction was
investigated. Considering two acquired pulse-echo signals, s1(t) and s2(t), shifted with respect to the
template, similarly to what was done for the template signal (Figure 2), tc, td, tc2, and td2 indicate the
referenced time at pulse, and the maximum echo time of s1(t) and s2(t), respectively. The proposed TOF
estimation through the modified cross-correlation technique according to the procedure previously
described can be seen in Figure 4.
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Figure 4. Ultrasound signal processing steps for TOF estimation through a modified
cross-correlation-based technique: in red is reported the template signal, properly filtered in transmitter
(sa(t)) and receiver (sb(t)); subsequently, two further acquired signals (s1(t) and s2(t) (in black)),
were opportunely cross-correlated with the two templates, obtaining 4 cross-correlations (in blue);
local cross-correlation maxima, related to the corresponding time shift for homologous (pulse–pulse)
and nonhomologous (pulse-echo) signals, were obtained as reported in Table 1.

The cross-correlation between sa(t) and the template is in general characterized by two local maxima,
the first, Ra1, related to the maximum overlap between homologous (pulse–pulse) signals, while the
second, Ra2, related to the maximum overlap between nonhomologous (pulse-echo) signals (not shown
in Figure 4). Similarly, the cross-correlation between sb(t) and the template evidenced other two local
maxima, Rb1 (pulse–pulse) and Rb2 (pulse-echo). The same steps have been performed between the
two template signals and s1(t), s2(t). According to the proposed technique, 4 cross-correlations were
evaluated providing multiple maxima, each one related to a specific time shift. Moreover, two more
maxima were related to the cross-correlation of the template signal with sa(t) and sb(t), which provides
the calibrated initial position. A maxima evaluation of the pulse-echo and cross-correlation signals
involves the selection of an appropriate Dirichlet window, with a time length L. The start and end of
the window involves, firstly, the signal being rectified, binned (2 samples) and then set to a threshold
(average value of the processed signal) with a window length overestimation of 10% (Figure 5). As each
cross-correlation sample correlated with a specific time shift, the combination of information carried
out by multiple cross-correlations can be used to retrieve the TOF related to the signals s1(t) and s2(t).
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In Table 1, the local cross-correlation maximum is related to the specific time shift on which
the proposed implementation is based. Therefore, the TOF evaluation is not affected by the choice
of pulse–pulse or pulse-echo local maximum and, considering that the reference signal is the same,
these times are expected to be more accurate than the times of flight evaluated through threshold and
standard cross-correlation methods.

Table 1. Local cross-correlation maximum related to the corresponding time shift for homologous
(pulse–pulse) and nonhomologous (pulse-echo) signals.

Time Pulse–Pulse Maxima Pulse-Echo Maxima

Ra1 T

Ra1 − Rb2 = TOF0
Ra3 − Rb4 = TOF1

d1/v = (TOF1 − TOF0)
Ra5 − Rb6 = TOF2

d2/v = TOF2 − TOF1

Rb1 − Ra2 = TOF0+k
k = tb − ta

Rb3 − Ra4 = TOF1+k
d1/v = (TOF1 + k) − (TOF0 + k) = TOF1 − TOF0

Rb5 − Ra6 = TOF2 + k
d2 = (TOF2 + k) − (TOF1 + k) = TOF2 − TOF1

Ra2 (T − td) + ta

Rb1 (T − tc) + tb

Rb2 T − d

Ra3 T

Rb3 (T − tc1) + ta

Ra4 (T − td1) + ta

Rb4 T − d1

Ra5 T

Rb5 (T − tc2) + ta

Ra6 (T − td2) + ta

Rb6 T − d

T = pulse-echo acquisition time; d = temporal distance between the reference signal and the shifted signal s1(t);
d1 = temporal distance between the reference signal and the shifted signal s2(t); TOF= temporal distance between
the shifted signals s1(t) and s2(t);

In this way, the distance between the transmitter and receiver can be evaluated by observing
TOF increments with respect to the template signal (placed at a calibrated distance, related to TOF0).
As we can verify, TOF1 and TOF2 can be alternatively obtained by analyzing the homologous or
nonhomologous components of the cross-correlation. The reliability of the three methods were
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compared by the standard error SE =
√

(σ2/n), where σ2 is the sample variance and n is the sample size.
Since a recursive evaluation is often required in positioning systems, investigations were performed by
moving the receiver back and forth.

2.3. Experimental Validation

A set-up was fabricated in order to investigate the performance comparison between the threshold,
standard and modified cross-correlation technique (Figure 1c). The system includes a threaded rod
(M10 with a pitch of 1.5 mm), which is rotated by a 4-phase unipolar stepper motor (RS Components,
Corby, UK) with a 7.5◦ step angle, 0.24 Nm holding torque and a positioning accuracy of 5%.
The stepper motor has been driven by using a national instrument DAQ6015 board. A hemicylindrical
ultrasonic transmitter was fixed solidly to the threaded rod, while the receiver had been placed at
a reference position.

On the base of the number of steps and therefore the angular variation of the bar, the linear
movement could be traced, apart from the errors due to the motor positioning and mechanical
tolerances on the bar, which are assumed constant during the experimental evaluation. Considering
the step angle and the pitch, the minimum longitudinal distance was evaluated by dL= (p·ϕ)/360
(i.e., 0.03 mm). The supports, instead, gave the right height and the right alignment to the two sensors,
so that the obstacles in the immediate vicinity did not create multiple reflections and, therefore, an echo
signal with the presence of unwanted components. The impedance analysis and frequency response
of the PVDF transducer evidenced the characteristic electric resonance feature (Figure 6a) and the
bandwidth (Figure 6b) of the hemicylindrical sensor [48–50].
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Figure 6. Impedance analysis (a) and frequency response (b) of a 60 kHz hemicylindrical
PVDF transducer.

Starting from a predefined transmitter/receiver distance (set to 0.3 m), the stepper motor was
driven to obtain a variable number of the turns from 1 (dL = 1.25 mm corresponding to 48 motor steps)
up to 5 (dL = 6.25 mm corresponding to 240 motor steps) and the distance was maintained within
0.6 m. For each position, the signal acquisition was repeated four times for the statistical analysis.
The effect of the pulse length was also investigated by changing the number of cycle N from 5 up to 15,
corresponding to a pulse time duration of 83.3, 106.6 and 249.9 µs. The relationship between the actual
distance and the relationship evaluated by the threshold, standard and modified cross-correlations
were then compared.

3. Results

Three excitation pulse signals were used to drive the PVDF transmitter. The stability of the
excitation source was of ±1 ppm ±1 µHz, 0 to 50 ◦C, with expected amplitude variations < 10 mV.
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Therefore, the pulse was stable and controllable enough to be used as a reference signal for the
cross-correlation method. The SNR was evaluated to be > 30 dB during all the acquisitions. As depicted
in Figure 1c, the analyzed case is that of a transmitter facing a receiver with a separation distance
controlled by the stepper motor.

The stepper motor was controlled by changing the turns and the TOF was subsequently evaluated
with each method. Subsequently, the distance is computed taking into account the sound velocity
in air by compensating the temperature fluctuation through a sensor, resulting in an uncertainty on the
sound velocity of less than 0.05 m/s [46]. Figure 7a–c shows the comparison among threshold, standard
and modified cross-correlation in the evaluation of TOF using a variable pulse length as previously
reported, respectively. As expected, the standard and modified cross-correlation techniques performed
better in terms of standard error (SE) and linearity with respect to the threshold technique (Figure 7d).
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Figure 7. Comparison of distance evaluation used for a pulse length of (a) 5 sinusoidal cycles,
(b) 10 sinusoidal cycles and (c) 15 sinusoidal cycles at 60 kHz. (d) Standard error in the
distance evaluation.

The absolute mean errors reported in Figure 8a–c are representative of a target moving in a range
of 40 cm, while the standard and modified cross-correlation techniques were used by varying the
number of cycles N. Figure 8d reports the maximum error observed in the previously reported cases.
In all cases, the results evidenced a nonlinear behavior, which however can be reduced by increasing
the number of cycles (Figure 7d).

We additionally evaluated the computational time of both the standard and modified
cross-correlations. In light of the results, the modified algorithm requires 70% of an additional
computational load in the estimation of the TOF, which can be acceptable in most low frequency
positioning systems.
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Figure 8. Repeatability evaluation through subsequent cycles of the TOF evaluation at
increased/decreased distances using for a pulse length of (a) 5 sinusoidal cycles, (b) 10 sinusoidal cycles
and (c) 15 sinusoidal cycles at 60 kHz. (d) Maximum repeatability error vs. pulse length.

4. Discussion

Based on the proposed technique, a template signal was evaluated as a reference signal for all the
TOF evaluations in order to reduce errors due to synchronization that can be inherently affected by
the range. The overall model is suitable in positioning systems working in a confined unstructured
environment in which the distance between the transmitter and the target can be evaluated by
observing TOF increments with respect to the calibrated position. In Figure 7d, it is clearly shown that
a standard and modified cross-correlation exhibits a better performance than the threshold method.
When increasing the number of cycles, no differences were highlighted between cross-correlation
techniques, while the threshold method evidenced a deteriorated performance. Moreover, remarkable
improvements with respect to the threshold technique are clearly observed with a reduction in SE in the
order of 45%. Further improvements were also observed with respect to conventional cross-correlations
which has been estimated in the order of 20%. This is mainly due to the use of a calibrated reference
signal, which reduces the smaller variations that happen continually (i.e., time shift of the pulse and
echo maximum). As previously highlighted, it is evident that this improvement is counterbalanced by
a higher computational load. Moreover, no significant differences were observed by changing the pulse
length in the range from 83.3 up to 249.9 µs, evidencing that it is possible to choose the pulse length in
accordance with the requirements of the application without affecting the performances. Interestingly,
the experimental results evidenced an enhancement in repeatability of about 10% by continuously
changing the distance of the target back and forth, which means that it is possible to compensate for
hysteresis-like behavior in the use of a recursive positioning system. Although the computational
cost of the algorithm is higher than that of the compared techniques, it still guarantees the possibility
of obtaining data in real-time for the specific application. In fact, an algorithm has been conceived
for the monitoring and tracking of the driver, where a more accurate knowledge of driver dynamics
can be used complementarily with other systems, providing shared information (e.g., the calibration
of alcohol monitoring systems). The use of a single template signal for all the TOF evaluations can
be advantageously applied in positioning systems based on multiple transmission/reception points,
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to reduce the time shift introduced by multiple reference signals. Moreover, the implementation of the
combination of multiple data retrieved from a standard cross-correlation can reduce the time shift that
can also be observed in the case of a single reference signal.

5. Conclusions

A study on a modified algorithm based on the cross-correlation technique for the evaluation of time
of flight specifically designed for a recursive data evaluation was investigated. This proposed algorithm
was implemented in MATLAB and a comparison with threshold and standard cross-correlation
techniques was presented. The conventional resolution in SONAR is limited by the wavelength
and, subsequently, different signal processing techniques, such as those based on cross-correlations.
Of course, one of the ways to improve the overall performance of the system is to increase the ultrasound
source frequency (i.e., a lower wavelength), and different SONAR systems were recently proposed
in order to allow a frequency shift using wideband transducers. Obviously, ultrasonic attenuation in air
dramatically increases as the frequency increases. The modified algorithm evidenced improvements
with respect to both threshold and conventional cross-correlation techniques, with a reduction
in the standard error of about 45% and 20%, respectively. On the other hand, an increase of 70%
of computational load has been estimated in the evaluation of TOF. Nonintrusive on-board driver
positioning can benefit the recursive nature of the algorithm and the electronic sensors investigated.
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Abstract: The weighted K-nearest neighbor (WKNN) algorithm is a commonly used fingerprint
positioning, the difficulty of which lies in how to optimize the value of K to obtain the minimum
positioning error. In this paper, we propose an adaptive residual weighted K-nearest neighbor
(ARWKNN) fingerprint positioning algorithm based on visible light communication. Firstly, the
target matches the fingerprints according to the received signal strength indication (RSSI) vector.
Secondly, K is a dynamic value according to the matched RSSI residual. Simulation results show the
ARWKNN algorithm presents a reduced average positioning error when compared with random forest
(81.82%), extreme learning machine (83.93%), artificial neural network (86.06%), grid-independent
least square (60.15%), self-adaptive WKNN (43.84%), WKNN (47.81%), and KNN (73.36%). These
results were obtained when the signal-to-noise ratio was set to 20 dB, and Manhattan distance was
used in a two-dimensional (2-D) space. The ARWKNN algorithm based on Clark distance and
minimum maximum distance metrics produces the minimum average positioning error in 2-D and
3-D, respectively. Compared with self-adaptive WKNN (SAWKNN), WKNN and KNN algorithms,
the ARWKNN algorithm achieves a significant reduction in the average positioning error while
maintaining similar algorithm complexity.

Keywords: visible light communication; indoor positioning system; fingerprint positioning; weighted
K-nearest neighbor; distance metric

1. Introduction

Positioning systems can be divided into outdoor positioning system (OPS) and indoor positioning
system (IPS). The OPS usually uses global positioning system (GPS) to obtain the coordinates of the
target. Since the GPS signal is not able to penetrate the wall and other obstacles, GPS cannot be
applied in the indoor positioning scene [1]. As a supplement to OPS, IPS has attracted increasing
attention among researchers. At present, there are two main research areas on IPS. One is based on
radio frequency communication technology, such as radio frequency identification (RFID) [2], wireless
sensor network (WSN) [3], ultra-wideband (UWB) [4], wireless fidelity (WiFi) [5], Bluetooth [6], etc.
The other is based on visible light communication (VLC) [7]. IPS can be divided into range-based IPS
and range-free IPS. The methods of range-based include time of arrival (TOA), angle of arrival (AOA),
and received signal strength indication (RSSI), etc. [8,9]. The range-free IPS usually uses fingerprint
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matching to achieve positioning [10]. Compared with radio frequency communication technology,
using a light-emitting diode (LED) to achieve indoor positioning has the following advantages:
(1) LED communication uses the visible light spectrum, which can be applied to some areas where
electromagnetic radiation is prohibited, such as operating rooms and gas stations; (2) generally, LED
is uniformly distributed on the ceiling, there is mainly line-of-sight (LoS) communication between
transceivers and receivers; (3) existing LED lighting devices can be used directly, and the receiver can
use integrated photodiode (PD) devices [11,12]; (4) the signal-to-noise ratio (SNR) is usually very high
due to lighting requirements.

Typical fingerprint-based localization algorithms usually use machine-learning algorithms [13],
for example, random forest (RF) [14], K-nearest neighbor (KNN) [15], extreme learning machine
(ELM) [16], artificial neural network (ANN) [17], etc. In [11], for indoor positioning based on VLC,
three classical machine-learning algorithms, RF, ELM and KNN are adopted to train multiple classifiers
based on received signal strength indication (RSSI) fingerprints, and a grid-independent least square
(GI-LS) algorithm was proposed to combine the outputs of these classifiers. Experimental results show
that compared with RF, KNN and ELM algorithms, the positioning error based on the GI-LS algorithm
is lower. In machine learning algorithms, K-nearest neighbor (KNN) is one of the most widely used
fingerprint positioning. The KNN fingerprint positioning algorithm [15] works in two stages. The
first one is run offline, and it consists of generating a set of fingerprint points in the application area.
In the second step, the target measures an RSSI vector of M LEDs, which is then matched with the
K nearest fingerprints obtained previously offline. When K fingerprints have different weights, this
method is called the weighted K-nearest neighbor (WKNN) fingerprint positioning algorithm. The
WKNN localization algorithm is based on the shortest physical distance between fingerprints and the
target position [12,18,19], which usually adopts two ranging methods: Euclidean distance [18] and
Manhattan distance [19]. In Hu et al. [19], for indoor positioning based on WiFi, a self-adaptive WKNN
(SAWKNN) algorithm with a dynamic K was proposed. Experimental results show that the positioning
error based on the SAWKNN algorithm is lower than that of the WKNN algorithm. In most cases, M
LEDs are laid out on the ceiling of the same horizontal plane. The traditional trilateration method and
least linear multiplication method can only solve the two-dimensional (2-D) coordinates of targets [20],
and the height of the target from the floor needs to be known in advance, which is not feasible in many
applications. A Newton–Raphson method was proposed in Şahin et al. [21] and Mathias et al. [22]
to estimate the PD location. For a non-convex optimization problem of 3-D positioning, it is easy for
the least linear multiplication method and Newton–Raphson method to fall into the local optimal
solution, resulting in large positioning error. Particle swarm optimization [23] and differential evolution
algorithm [24] are adopted to perform 3-D visible light positioning, which will increase the complexity
of the algorithm. In Van et al. [25], compared with trilateration method in the case of ambient light
interference and without ambient light interference, simulation results show that the positioning
accuracy of the WKNN algorithm is improved by 36% and 50%, respectively. In Alam et al. [12],
experiment results show that the average positioning error of the fingerprints established by Lambertian
regeneration model is close to that of the actual RSSI measurement fingerprints, which are 2.7 cm
and 2.2 cm, respectively. Therefore, the WKNN positioning algorithm based on VLC does not need
a large number of human resources to acquire the fingerprints. In Gligorić et al. [26], a visible light
localization algorithm based on compressed sensing (CS) was proposed. The orthogonal matching
pursuit (OMP) reconstruction algorithm [27] is used to determine the overlapping region, and the
KNN algorithm is used to determine the coordinates of the target. In Zhang et al. [28], an visible
light inversion positioning system based on CS and a 4-sparse 2-D fingerprint matching algorithm
was proposed. When CS is used to realize fingerprint positioning, the measurement matrix needs
to satisfy the restricted isometry property (RIP) attribute, and the orthogonal decomposition of the
measurement matrix is needed [29,30], which will increase the complexity of the algorithm. The
fingerprint positioning algorithm based on CS must satisfy O (K log (N)), where this is the value of
the number of measurements M (i.e., the number of LEDs) [29]. When the neighboring fingerprints K
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and the number of fingerprints N become larger, a high-density LED layout is required to satisfy the
compression sensing reconstruction condition. However, an excessively dense LED layout not only
wastes resources but also increases interference between LEDs. Although the WKNN algorithm is a
commonly used fingerprint positioning, the difficulty lies in how to optimize the value of K to obtain
the minimum positioning error. Compared with the traditional WKNN positioning algorithm, this
paper makes the following contributions:

1. A novel adaptive residual weighted K-nearest neighbor (ARWKNN) fingerprint positioning
algorithm is proposed, and K is a dynamic value according to the matched RSSI residual. As far
as the authors know, most fingerprint positioning algorithms based on VLC only consider a fixed
neighbor value, e.g., [12,25,28].

2. The impact of modulation bandwidth, transmit power, the signal-to-noise ratio, the maximum
number of neighboring fingerprints, the sampling interval, the number of LEDs, the sampling
ratio, and distance metric on positioning errors are analyzed in detail. The distribution of optimal
K and the complexity of the algorithm are also analyzed in detail. The results can provide a useful
reference for the design of the actual VLP system.

3. Simulation results show that the ARWKNN algorithm based on Clark distance (CLD) and
minimum maximum distance (MMD) metrics produces the smallest average positioning error in
2-D and 3-D, respectively, as far as the authors know, this is the first work to report the impact of
CLD and MMD metrics on the positioning error of the fingerprint positioning algorithm.

4. Simulation results show that when the SNR is 20 dB, in 2-D, compared with the fingerprint
positioning algorithm based on RF [14], ELM [16], ANN [17], GI-LS [11], SAWKNN [19],
WKNN [12] or KNN [15,25] algorithms, the average positioning error of the ARWKNN algorithm
based on Manhattan distance can be reduced by 81.82%, 83.93%, 86.06%, 60.15%, 43.84%,
47.81%, and 73.36%, respectively. Compared with SAWKNN, WKNN and KNN algorithms, the
ARWKNN algorithm can significantly reduce the average positioning error while maintaining
similar algorithm complexity.

The rest of this paper is organized as follows: the ARWKNN algorithm is proposed in Section 2.
Simulation results are shown and discussed in Section 3. Finally, Section 4 concludes this paper.

Notation: Matrices and vectors are in boldface. The field of real numbers is denoted by R. ‖.‖2
is the 2 norm of the vector. |·| is the absolute value, and d e denotes the rounding up operator. The
transpose operation is denoted by [.]T.

2. Design of the Adaptive Residual Weighted K-Nearest Neighbor (ARWKNN) Algorithm

2.1. System Model

The positioning model is shown in Figure 1a. If there is Mtotal LEDs in the room, the target checks
and selects M LEDs that has the highest RSSI for positioning. For simplicity, we assume that the target
appears in a 3-D space with M LEDs. The coordinates of M LEDs are βi = [xLED-i, yLED-i, zLED-i]T, for
i = 1, 2, . . . , M. It is assumed that M LEDs are evenly distributed on the same horizontal plane, i.e.,
zLED-i = zLED, zLED is the height from the floor to the LED. αi ∈ R3×1 represents the angle of the ith LED.
θj∈ R3×1 and γj∈ R3×1 represent the coordinate and angle of the jth fingerprint point, respectively, for
j = 1, 2, . . . , N, N represents the number of fingerprint points. Suppose the target moves in an interval
from hL to hH at the z-axis, hL and hH are the minimum and maximum vertical distance from the floor
to the target, respectively.

We use S to denote the spacing of the fingerprints, as shown in Figure 1a. m, n and l are used to
represent the collection directions of fingerprints in x-axis, y-axis and z-axis, respectively, the meanings
of m, n, and l are shown in Table 1. To make it easier to understand, an example is given, as shown in
Figure 1b. In Figure 1b, columns are arranged from left to right (in the positive direction of the x-axis),
rows are arranged from bottom to top (in the positive direction of the y-axis), and dimensions are
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arranged from low to high (in the positive direction of the z-axis). The starting point of fingerprint
collection is θinit = [xinit, yinit, zinit]T, xinit, yinit, and zinit are given by:

xinit = min(xLED−i)

yinit = min(yLED−i)

zinit = hL

(1)
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Figure 1. Fingerprint positioning based on visible light communication (VLC): (a) The positioning
model; (b) The collection directions of fingeprints in x-axis, y-axis and z-axis.

Table 1. The meaning of the indices.

Indices Meaning

m The number of columns corresponding to the fingerprint point
n The number of rows corresponding to the fingerprint point

l The number of dimensions corresponding to the fingerprint
point

Then, in the positioning space, the coordinates corresponding to the fingerprint points in the l
dimension, i.e., the m column and the n row are

xfin−m = xinit + S(m− 1), m = 1, 2, . . . ,
⌈L1

S +1
⌉

yfin−n = yinit + S(n− 1), n = 1, 2, . . . ,
⌈L2

S +1
⌉

zfin−l = zinit + S(l− 1), l = 1, 2, . . . ,
⌈L3

S +1
⌉ (2)

where L1 = max (xLED-i) −min (xLED-i), L2 = max (yLED-i) −min (yLED-i) and L3 = hH − hL. Then the
distance dl,m,n−i between each fingerprint point and the ith LED can be obtained as:

dl,m,n−i =

√
(xfin−m − xLED−i)

2 + (yfin−n − yLED−i)
2 + (zfin−l − zLED−i)

2 (3)

2.2. Fingerprint Matrix Construction

We use Φ ∈ RM×N to denote the measurement matrix of the fingerprints, which is given by:

Φ =


φ1,1,1−1 φ1,1,2−1 · · · φl,m,n−1
φ1,1,1−2 φ1,1,2−2 · · · φl,m,n−2

...
...

. . .
...

φ1,1,1−M φ1,1,2−M · · · φl,m,n−M

 (4)
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where N is given by:

N =
⌈L1

S
+ 1

⌉⌈L2

S
+ 1

⌉⌈L3

S
+ 1

⌉
(5)

And φl,m,n−i represents the RSSI, which is given by:

φl,m,n−i = 10 log10

(
Pl,m,n−i

)
(6)

where Pl,m,n−i represents the optical power value from the ith LED received by the fingerprint point in
the l dimension, m column and n row within the positioning area.

2.3. Measurement Vector

Suppose the coordinates of targets in 3-D are Ψk = [xtarget-k, ytarget-k, ztarget-k]T, for k = 1, 2, . . . ,
C, and C represents the number of targets. Thus, the receiving signal intensity vector Yk of M LEDs
collected by the kth target is given by:

Yk = [Yk,1, Yk,2, . . . , Yk,M]T (7)

where Yk,i is given by
Yk,i = 10 log10

(
Pk,i

)
(8)

where Pk,i represents the optical power value of the ith LED received by the kth target.

2.4. Measurement Model

In this paper, the measurement matrix Φ and measurement vector Yk are generated by the
Lambertian radiation model. Because the LED is distributed on the ceiling, there is mainly LoS
communication between the fingerprint point and the LED. Without loss of generality, this paper
only considers the Lambertian radiation model of the LoS, which are widely adopted in papers such
as [12,28,30–32], the received light power value of the fingerprint point is:

PRe = PTr
APD(b + 1)Tsg

2πd2
(cos(λi))

b cos(ωi) (9)

where PRe represents the received light power value; PTr represents the transmit power of the LED; d is
the distance between the transmitter and the receiver; Ts and g are the optical filter gain and optical
concentrator gain, respectively; b is the Lambertian order; λ1/2 is the half-power angles of the LED;
APD is the effective area of the PD detection; The field of view (FOV) of PD is defined as ωFOV, and
0 < ωi < ωFOV. λi and ωi are the radiation and incident angles, i.e., the transmitter’s normal and
receiver’s normal, respectively, as shown in Figure 1a.

2.5. Channel Access Method

As LEDs transmit a unique identification (ID) code independently, however, signals sent from
different LEDs will interfere with each other at the receiver. In order to receive the power from different
LEDs, we also use time division multiplexing to achieve this goal [20,31,32], and in a real scenario, we
can also use different modulation frequencies, such as Guo et al. [11] and Alam et al. [12]. M LEDs
have synchronous frames [20,31], and different LEDs use different time slots to transmit signals within
each frame cycle, when one LED transmits the ID code, other LEDs emit a constant light intensity
(CLI) for illumination purposes only. The frame structure is shown in Figure 2. After photoelectric
conversion, a high-pass filter can be used to filter out the power from other LEDs [20].
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2.6. Setting of K

According to the principle of fingerprint positioning, the purpose of positioning is to find K
fingerprint points that are close to the target. When in a different experimental environment, K
generally takes different values, such as in Xue et al. [15], the optimal positioning accuracy is obtained
when K = 5; in Alam et al. [12] and Zhang et al. [28], the optimal positioning accuracy is obtained when
K = 4; in Van et al. [25], the optimal positioning accuracy is obtained when K = 3. One thing they all
have in common is that K is a fixed value. In this paper, N fingerprint points are evenly distributed in
the 2-D or 3-D space. In a specific time, there are K fingerprint points close to the same target, which
is called the KNN fingerprint positioning algorithm. For example, when the target exactly matches
the fingerprint point, as shown in Figure 3a, obviously, the optimal positioning accuracy is obtained
when K = 1. When the target falls on a straight line formed by two fingerprint points, as shown in
Figure 3b, i.e., K = 2. When the target is in a triangular area composed of three fingerprint points, as
shown in Figure 3c, i.e., K = 3. If the 3-D fingerprints map is adopted, and the target is obviously
located in a minimum cube composed of 8 fingerprint points with a high probability, i.e., K = 8, as
shown in Figure 3d.
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Figure 4 is the positioning error of five targets at different 3-D positions using WKNN algorithm,
for K increases from 1 to 8. When K = 4, the positioning error of target 1 is minimal. When K = 3, the
positioning error of target 2 is minimal. When K = 8, the positioning error of target 3 is minimal. When
K = 1, the positioning error of target 4 is minimal. When K = 6, the positioning error of target 5 is
minimal. It can also be seen from Figure 4 that the positioning error varies with the K value fluctuation,
and there is no monotonous increasing or decreasing relationship. In a 2-D visible light localization,
the average positioning error based on the WKNN algorithm can be minimized when K = 3 or K = 4,
e.g., [12,25,28]. In the 3-D visible light localization, the average positioning error based on the WKNN
algorithm can be minimized when K = 8, which will be discussed in Section 3 . The minimum mean
positioning error does not mean that the positioning error of each target is the smallest, so the dynamic
K value can effectively reduce the positioning error of different targets. To address this issue, this paper
proposes an adaptive residual weighted K-nearest neighbor fingerprint positioning algorithm, which
is called ARWKNN fingerprint positioning algorithm.
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2.7. ARWKNN Algorithm

The WKNN fingerprint positioning algorithm is based on the shortest RSSI physical distance
between the fingerprint and the target position. The positioning error for the WKNN algorithm is
affected by the weight of the fingerprint point and this weight is affected by the K value. If the optimal
K value can be obtained, the positioning error can be reduced, so a novel ARWKNN algorithm is
proposed in this paper. The pseudo-code of the ARWKNN algorithm is shown in Algorithm 1. In
Algorithm 1, if we only consider Steps 1, 2 and 5, then it is the WKNN algorithm, and in Step 5, if
the location of the target is estimated by averaging the coordinates of K fingerprints, then it is the
KNN algorithm. By contrast with the KNN and WKNN algorithms, the ARWKNN algorithm also
performs Step 3 and 4 in Algorithm 1. Because there is no prior information about the location of the
target, that is, the value of Ψk is unknown, but we known the fingerprint matrix Φ and the target RSSI
measurement vector Yk, we can adaptively select the K value by matching the residual between the
measured and calculated RSSI values. Therefore, the purpose of Steps 3 and 4 in algorithm 1 is to
obtain the optimal K value, i.e., the K value corresponding to the smallest RSSI matching residual. In
Algorithm 1, because the maximum number of neighboring fingerprint points Kmax is much smaller
than the total number of fingerprint points N, the ARWKNN algorithm has a large reduction in the
average positioning error while maintaining similar algorithm complexity, which will be discussed in
Section 3.4.
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Algorithm 1. ARWKNN algorithm

Input: the maximum number of nearest neighbor fingerprints Kmax, fingerprint matrix Φ, and the kth target
measurement vector Yk.
Output: The coordinates of the kth target, i.e., Ψk.
Step 1: Calculate the distance from the kth target to N fingerprint points.

disl,m,n−k =

 M∑
i = 1

∣∣∣φl,m,n−i −Yk,i
∣∣∣r

1/r

where r = 1 represents the Manhattan distance, r = 2 represents the Euclidean distance.
Step 2: Sort the distance values in ascending order, i.e.,

[X, I] = sort (dis).

where dis = [dis1,1,1−k, dis1,1,2−k, . . . , disl,m,n−k]T
∈ RN×1, X ∈ RN×1 represents the distance vector after sorting,

and I ∈ RN×1 represents the corresponding index set.
Step 3: Calculate the matched RSSI residuals.
K = 1,
while K ≤ Kmax do

for ii = 1: K
A(:, ii) = Φ(:, I(ii));
end for

where A ∈ RM×K represents finding the K column values corresponding to the fingerprint matrix Φ according
to the index set I.
Calculate the kth target RSSI vector via K nearest neighbor fingerprints,

Ỹk = AB,

where B = [B1, B2, . . . , BK]T
∈ RK×1 and

Bt = 1
X(t)/

K∑
tt = 1

1
X(tt) , for t = 1, 2, . . . , K,

Calculate the matched RSSI residual between the measured and calculated RSSI values,

Eresidual = Yk − Ỹk,

and calculate the sum of the absolute values of the residuals,

Esum(K) =
M∑

i = 1

∣∣∣Eresidual(i)
∣∣∣,

K = K + 1.
end while
Step 4: Output the K value, i.e.,

K = argmin(Esum); s.t. 1 ≤ K ≤ Kmax

Step 5: Calculate the coordinates of the kth target,

Ψk =

K∑
t = 1

1
X(t)θI(t)

K∑
t = 1

1
X(t)

where θI(t) represents the coordinates of the corresponding fingerprint point found according to the index set I.
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3. Simulation Analysis

In this Section, the ARWKNN algorithm is compared with RF [14], ELM [16], ANN [17], GI-LS [11],
SAWKNN [19], WKNN [12] or KNN [15,25] algorithms. The basic principle of the fingerprint
positioning algorithm based on RF, ELM, ANN, and GI-LS machine learning is as follows [11,13]:
Firstly, the positioning area is divided into several equal grid points according to the sampling interval
S, RSSI measurements are obtained by placing the receiver at different grid points, and each grid point
represents a category. Secondly, machine-learning algorithms are used to train the category to which
each grid point belongs. Thirdly, the RSSI measurements obtained in the online phase are compared
with the derived model to predict the location of the target.

3.1. Error Definition

Suppose the actual coordinates of targets are Ψ̃k ∈ R3×1, then the positioning error Ek is defined as:

Ek = ‖Ψk − Ψ̃k‖2 (10)

and the average positioning error EAPE is defined as:

EAPE =
1
C

C∑
k = 1

Ek (11)

3.2. Noise Model of Visible Light Communication (VLC)

In indoor VLC, the noise σnoise includes shot noise σshot and thermal noise σthermal [33], which are
given by:

σ2
noise = σ2

shot + σ2
thermal (12)

σ2
shot = 2qRPDPrB + 2qIbgI2B (13)

σ2
thermal =

8πkBTK

G0
ηAPDI2B2 +

16π2kBTKΓ
gm

η2A2
PDI3B3 (14)

where q is elementary charge, RPD is the responsivity of the PD, B is the equivalent noise bandwidth,
Pr indicates the received power from M LEDs, kB is the Boltzmann’s constant, TK is the absolute
temperature, G0 is the open loop gain, η is the fixed capacitance of PD, Ibg is the background light
current, Γ is the channel noise factor, gm is the field effect transistor (FET) transconductance, I2 and I3

are the noise bandwidth factors.
According to the noise model, the signal-to-noise ratio (SNR) is given by [32]

SNR(dB) = 10 log10

(
RPD

Pr
APD

)2

σ2
noise

(15)

3.3. Simulation Parameters

Without loss of generality, we suppose αi = [0, 0, −1]T and γj = [0, 0, 1]T, i.e., cos(λi) = cos(ωi) =

hl,m,n-i/dl,m,n-i, hl,m,n-i is the z-axis distance from the fingerprint point to the ith LED in the l dimension,
the m column and the n row, which are widely adopted in papers such as [12,20,28]. The parameter
setting of the Lambertian radiation model is as follows: Ts = g = 1, λ1/2 = π/3, ωFOV = π/2, APD = 1 cm2,
b = 1, which follow from a typical LED setup. M LEDs are evenly distributed in a 3-D space with an area
of 200 cm × 200 cm × 300 cm, min (xLED-i) = min (yLED-i) = 0 cm, max (xLED-i) = max (yLED-i) = 200 cm,
and zLED = 300 cm. C = 200, i.e., 200 targets randomly appear in the 3-D or 2-D positioning area. In the
KNN and WKNN algorithms, K is a fixed value, that is, K = Kmax. The parameter setting of the noise
model is as follows [33]: TK = 295 K, G0 = 10, gm = 30 mS, Γ = 1.5, I2 = 0.562, I3 = 0.0868, RPD = 0.54
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A/W, η = 112 pF/cm2, Ibg = 5100 µA. Unless otherwise specified, PTr = 6 W, M = 4, r = 1 (i.e., Manhattan
distance). In 3-D, hL = 20 cm and hH = 100 cm. In 2-D, hL = hH = 100 cm. The simulation tool is
MATLAB R2017a.

For simplicity, unless otherwise specified, we only consider the 2-D case, and S = 20 cm. In
order to obtain the optimal classification accuracy of ANN, ELM, and RF algorithms, and the optimal
positioning accuracy of KNN, WKNN, and SAWKNN algorithms. The optimal parameters obtained
through offline training and learning are as follows: In KNN, WKNN, ARWKNN and SAWKNN
algorithms, Kmax = 4. In the Section 3.4, we will also discuss the impact of different Kmax values on the
average positioning error. For the optimal number of hidden nodes and trees, the classification method
is the same as that in Guo et al. [11], i.e., each grid point represents a category, and the cross-validation
method is adopted based on experience adjustment. For the optimal number of hidden nodes, the
cross-validation method has a range of 100 to 700 and a step size of 50. For the optimal number of
trees, the cross-validation method has a range of 10 to 50 and a step size of 5. After comprehensive
evaluation of the positioning accuracy and classification accuracy, the optimal number of hidden nodes
and trees are selected to be 600 and 40, respectively. The impact of γth on the average positioning
error is shown in Figure 5, it can be seen from the Figure 5 that minimum average positioning error is
achieved when γth is within the range of [30%, 50%], so, the value of γth is selected to be 40%, which
denotes the threshold of two RSSI difference values that can be considered similar [19].
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Figure 5. The impact of γth on the average positioning error.

3.4. Result Analysis

We only consider positioning in this paper, so B = 640 KHz will be able to label 3.4 × 1038 LEDs [34],
which is far exceeds the actual needs. The SNR experimental results are shown in Table 2. If B = 640
KHz, typical SNR for indoor visible light communication ranges from 42.97 to 60.92 dB, and the average
value reaches 52.45 dB. In addition to indoor positioning, LEDs can also provide high-speed data rate,
If B = 100 MHz, the average SNR can also reach 28.86 dB.

Table 2. Typical signal-to-noise ratio (SNR) in indoor environment.

Minimum Maximum Average

SNR (B = 640 KHz) 42.97 dB 60.92 dB 52.45 dB
SNR (B = 100 MHz) 19.72 dB 37.35 dB 28.86 dB

When Ptr = 6 W, the average positioning errors of eight algorithms are analyzed when B is within
50 MHz to 400 MHz, the results are shown in Figure 6. As the value of modulation bandwidth increases,
the average positioning errors of eight algorithms increase. The higher the modulation bandwidth, the
lower the SNR and the higher the average positioning errors. As only positioning is considered in this
paper, a very high modulation bandwidth is not necessary. With a high-modulation bandwidth, it may
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be more suitable to modulate the transmission signal of the LED by modified orthogonal frequency
division multiplexing (OFDM) to achieve indoor positioning [22,35,36], but this is beyond the scope of
this paper. It can also be seen from Figure 6 that when B is within 50 MHz to 400 MHz, the average
positioning error based on the ARWKNN algorithm is the smallest.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 25 

 

We only consider positioning in this paper, so B = 640 KHz will be able to label 3.4 × 1038 LEDs 
[34], which is far exceeds the actual needs. The SNR experimental results are shown in Table 2. If B = 
640 KHz, typical SNR for indoor visible light communication ranges from 42.97 to 60.92 dB, and the 
average value reaches 52.45 dB. In addition to indoor positioning, LEDs can also provide high-speed 
data rate, If B = 100 MHz, the average SNR can also reach 28.86 dB. 

Table 2. Typical signal-to-noise ratio (SNR) in indoor environment. 

 Minimum Maximum Average 

SNR (B = 640 KHz) 42.97 dB 60.92 dB 52.45 dB 

SNR (B = 100 MHz) 19.72 dB 37.35 dB 28.86 dB 

When Ptr = 6 W, the average positioning errors of eight algorithms are analyzed when B is within 
50 MHz to 400 MHz, the results are shown in Figure 6. As the value of modulation bandwidth 
increases, the average positioning errors of eight algorithms increase. The higher the modulation 
bandwidth, the lower the SNR and the higher the average positioning errors. As only positioning is 
considered in this paper, a very high modulation bandwidth is not necessary. With a high-
modulation bandwidth, it may be more suitable to modulate the transmission signal of the LED by 
modified orthogonal frequency division multiplexing (OFDM) to achieve indoor positioning 
[22,35,36], but this is beyond the scope of this paper. It can also be seen from Figure 6 that when B is 
within 50 MHz to 400 MHz, the average positioning error based on the ARWKNN algorithm is the 
smallest. 

 
Figure 6. The impact of B on the average positioning error with Kmax = 4. 

When B = 100 MHz, the average positioning errors of eight algorithms are analyzed when Ptr is 
within 1 W to 6 W, the results are shown in Figure 7. As the Ptr increases, the average positioning 
errors of eight algorithms decrease. When Ptr = 3 W, the average positioning errors of eight algorithms 
are close to convergence. The higher the transmitting power, the higher the SNR and the smaller the 
average positioning errors. It can also be seen from Figure 7 that when Ptr is within 1 W to 6 W, the 
average positioning error based on the ARWKNN algorithm is the smallest. 

Av
er

ag
e 

 p
os

iti
on

in
g 

 e
rro

r  
(c

m
)

Figure 6. The impact of B on the average positioning error with Kmax = 4.

When B = 100 MHz, the average positioning errors of eight algorithms are analyzed when Ptr

is within 1 W to 6 W, the results are shown in Figure 7. As the Ptr increases, the average positioning
errors of eight algorithms decrease. When Ptr = 3 W, the average positioning errors of eight algorithms
are close to convergence. The higher the transmitting power, the higher the SNR and the smaller the
average positioning errors. It can also be seen from Figure 7 that when Ptr is within 1 W to 6 W, the
average positioning error based on the ARWKNN algorithm is the smallest.Sensors 2020, 20, x FOR PEER REVIEW 12 of 25 
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Figure 7. The impact of Ptr on the average positioning error with Kmax = 4.

The average positioning errors of eight algorithms under different SNR are compared, simulation
results are shown in Figure 8. As shown in Figure 8, when SNR = 10 dB, the average positioning
errors of eight algorithms are large due to severe noise interference. As the SNR increases, the average
positioning errors of eight algorithms decrease. When SNR = 20 dB, the average positioning errors
of eight algorithms are close to convergence. Since fingerprint positioning based on RF, ELM and
ANN algorithms can only determine the category of the target, compared with WKNN algorithm,
the positioning error is larger. When the SNR is higher than 15, the average positioning error based
on the ARWKNN algorithm is the smallest. Due to lighting requirements and LoS communication,
within the typical SNR range of indoor visible light communication, the average positioning error
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based on the ARWKNN algorithm is significantly lower than that of RF, ELM, ANN, GI-LS, SAWKNN,
WKNN and KNN algorithms. The average positioning error based on the SAWKNN algorithm is
lower than that of the WKNN algorithm. The GI-LS algorithm uses the complementary advantages of
KNN, RF, and ELM classifiers to weight the estimation results, the average positioning error based
on the GI-LS algorithm is lower then that of KNN, RF, ELM and ANN algorithms, but higher then
WKNN, ARWKNN and SAWKNN algorithms.
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Figure 8. The impact of SNR on the average positioning error with Kmax = 4.

When SNR = 20 dB, the average positioning errors based on ARWKNN, RF, ELM, ANN, GI-LS,
SAWKNN, WKNN and KNN algorithms are shown in Table 3. It can be seen from Table 3 that compared
with RF, ELM, ANN, GI-LS, SAWKNN, WKNN and KNN algorithms, the average positioning error
based on the ARWKNN algorithm can be reduced by 81.82%, 83.93%, 86.06%, 60.15%, 43.84%, 47.81%,
and 73.36%, respectively.

Table 3. Average positioning error for each algorithm with SNR = 20 dB.

Algorithm Average Positioning Error

ARWKNN 1.55 cm
RF 8.53 cm

ELM 9.65 cm
ANN 11.12 cm
GI-LS 3.89 cm

SAWKNN 2.76 cm
WKNN 2.97 cm

KNN 5.82 cm

When SNR = 20 dB, the simulation results of cumulative distribution function (CDF) are shown
in Figure 9. It can be seen from Figure 9 that the CDF of positioning errors based on the ARWKNN
algorithm is significantly better than that of the RF, ELM, ANN, GI-LS, SAWKNN, WKNN and KNN
algorithms. The KNN algorithm is one of the simplest of all machine learning algorithms. Compared
with the RF, ELM, ANN and GI-LS algorithms, fingerprint positioning based on the ARWKNN
algorithm, not only has lower complexity, but also has lower positioning error. Fingerprint positioning
is based on machine-learning algorithms, which require a large amount of data for training and
learning. If there are not enough training data, the positioning error will be large, and a large amount
of training data will increase the complexity of the algorithm. Compared with the SAWKNN, WKNN,
and KNN algorithms, the ARWKNN algorithm can significantly reduce the average positioning error
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while maintaining similar algorithm complexity, which will be discussed in the section of algorithm
complexity analysis.
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Figure 9. The cumulative distributions of positioning errors with Kmax = 4.

When SNR = 20 dB, the average positioning errors of ARWKNN, SAWKNN, WKNN, and KNN
algorithms are analyzed, in WKNN and KNN algorithms, K is a fixed value, that is, K = Kmax. The
simulation results of 2-D and 3-D are shown in Figures 10 and 11, respectively. As can be seen from
Figure 10, when Kmax is within 1 to 8, similar to the experimental results in most papers, in 2-D, the
optimal K based on the WKNN algorithm is 3 or 4, which exactly conforms with the fact that the
target will be located in a minimum triangle or square composed of 3 or 4 fingerprint points with a
high probability. It can also be analyzed from Figure 10 that when Kmax is greater than 3, the average
positioning error based on the ARWKNN algorithm is significantly lower than that of the KNN,
WKNN, and SAWKNN algorithms. From Figure 11, It can be seen that as the Kmax increases from
1 to 12, the average positioning error based on the ARWKNN algorithm decreases. When Kmax = 8,
the average positioning error is not significantly reduced if the value of Kmax continues to increase.
Therefore, a reasonable value of Kmax is taken as 8. From Figure 11, we can also see that when Kmax = 8,
the average positioning error based on the KNN and WKNN algorithms is the smallest, which exactly
conforms that the target will be located in a minimum cube composed of 8 fingerprint points with a
high probability. It can also be analyzed from Figure 11 that when Kmax is greater than 6, the average
positioning error based on the ARWKNN algorithm is significantly lower than that of the KNN,
WKNN, and SAWKNN algorithms, and the advantages of the ARWKNN algorithm are more obvious
as Kmax increases.
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When SNR = 20 dB, the average positioning errors of ARWKNN, SAWKNN, WKNN, and KNN
algorithms are analyzed with the variation of the fingerprint sampling point spacing S, the results of
2-D and 3-D are shown in Figures 12 and 13, respectively. It can be seen that as S decreases from 40 cm
to 20 cm, whether in 2-D or 3-D, the average positioning error based on the ARWKNN algorithm is
significantly lower than that of the KNN, WKNN, and SAWKNN algorithms, and the larger the S, the
more obvious the advantage. As S decreases to 5 cm, the average positioning errors of four algorithms
tend to be the same. The lower the value of S, the larger the number of fingerprint points N to be
acquired, and the more complicated the algorithm becomes.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 25 

 

algorithms tend to be the same. The lower the value of S, the larger the number of fingerprint points 
N to be acquired, and the more complicated the algorithm becomes. 

 
Figure 12. In 2-D, the impact of S on the average positioning error with Kmax = 4. 

 
Figure 13. In 3-D, the impact of S on the average positioning error with Kmax = 8. 

When SNR = 20 dB, the average positioning errors of ARWKNN, SAWKNN, WKNN, and KNN 
algorithms are analyzed when M is within 3 to 8, the results of 2-D and 3-D are shown in Figures 14 
and 15, respectively. It can be seen that as M increases from 3 to 8, the average positioning errors 
based on the KNN, WKNN, SAWKNN and ARWKNN algorithms do not change much. Thus, only 
4 LEDs are needed to achieve very low positioning error in this paper. 

 
Figure 14. In 2-D, the impact of M on the average positioning error with Kmax = 4. 

Av
er

ag
e 

 p
os

iti
on

in
g 

 e
rro

r  
(c

m
)

Av
er

ag
e 

 p
os

iti
on

in
g 

 e
rro

r  
(c

m
)

Figure 12. In 2-D, the impact of S on the average positioning error with Kmax = 4.
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Figure 13. In 3-D, the impact of S on the average positioning error with Kmax = 8.
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When SNR = 20 dB, the average positioning errors of ARWKNN, SAWKNN, WKNN, and KNN
algorithms are analyzed when M is within 3 to 8, the results of 2-D and 3-D are shown in Figures 14
and 15, respectively. It can be seen that as M increases from 3 to 8, the average positioning errors based
on the KNN, WKNN, SAWKNN and ARWKNN algorithms do not change much. Thus, only 4 LEDs
are needed to achieve very low positioning error in this paper.
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Figure 15. In 3-D, the impact of M on the average positioning error with Kmax = 8.

When SNR = 20 dB, in order to analyze the robustness of the algorithm, fingerprints adopt
non-uniform distribution structure, i.e., the RSSI values in the fingerprint map are chosen randomly at
different sampling ratios SR. The average positioning errors of the ARWKNN, SAWKNN, WKNN,
and KNN algorithms are analyzed with the variation of the fingerprint sampling ratio SR, the results
of 2-D and 3-D are shown in Figures 16 and 17, respectively. It can be seen that as SR increases from
50% to 100%, whether in 2-D or 3-D, the average positioning error based on the ARWKNN algorithm
is significantly lower than that of the KNN, WKNN, and SAWKNN algorithms, and the larger the
SR, the smaller the average positioning errors of the four algorithms. When SR = 50%, the average
positioning errors of the ARWKNN, SAWKNN, WKNN, and KNN algorithms are analyzed with the
variation of the time, and the results of 2-D and 3-D are shown in Figures 18 and 19, respectively.
It can be seen that as t increases from 1 to 50, whether in 2-D or 3-D, the average positioning error
based on the ARWKNN algorithm is significantly lower than that of the KNN, WKNN, and SAWKNN
algorithms. As can be seen from Figures 16–19, the ARWKNN algorithm has good robustness. When
the fingerprint sampling rate is only 50%, lower positioning errors can still be achieved.
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Figure 16. In 2-D, the impact of sampling ratio (SR) on the average positioning error with Kmax = 4.Sensors 2020, 20, x FOR PEER REVIEW 17 of 25 
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Figure 17. In 3-D, the impact of SR on the average positioning error with Kmax = 8.
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Figure 18. In 2-D, the impact of t on the average positioning error with Kmax = 4.
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Figure 19. In 3-D, the impact of t on the average positioning error with Kmax = 8.

The WKNN fingerprint positioning algorithm is based on the shortest RSSI physical distance
between the fingerprint and the target position. It can be seen from Step 5 of the ARWKNN algorithm
that the positioning error is affected by the weight of the fingerprint point and this weight is affected
by the distance metric; therefore, it is necessary to analyze the impact of different distance metrics on
the positioning error. In addition to Euclidean distance (ED) and Manhattan distance (MD), there are
other distance metrics [12,37], such as:

Minimum maximum distance (MMD), which is defined as:

disl,m,n−k = 1−

M∑
i = 1

(
min

(∣∣∣φl,m,n−i
∣∣∣, ∣∣∣Yk,i

∣∣∣))
M∑

i = 1

(
max

(∣∣∣φl,m,n−i
∣∣∣, ∣∣∣Yk,i

∣∣∣)) (16)

Squared Euclidean distance (SED), which is defined as:

disl,m,n−k =
M∑

i = 1

(
φl,m,n−i −Yk,i

)2
(17)

Chebyshev distance (CHD), which is defined as:

disl,m,n−k = max
i

∣∣∣φl,m,n−i −Yk,i
∣∣∣ (18)

Squared-chord distance (SCD), which is defined as:

disl,m,n−k =
M∑

i = 1

(√∣∣∣φl,m,n−i
∣∣∣− √∣∣∣Yk,i

∣∣∣)2
(19)

Wave hedges distance (WHD), which is defined as:

disl,m,n−k =
M∑

i = 1

1−
min

(∣∣∣φl,m,n−i
∣∣∣, ∣∣∣Yk,i

∣∣∣)
max

(∣∣∣φl,m,n−i
∣∣∣, ∣∣∣Yk,i

∣∣∣)
 (20)
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Lorentzian distance (LD), which is defined as:

disl,m,n−k =
M∑

i = 1

ln
(
1 +

∣∣∣φl,m,n−i −Yk,i
∣∣∣) (21)

Matusita distance (MTD), which is defined as:

disl,m,n−k =

√√√ M∑
i = 1

(√∣∣∣φl,m,n−i
∣∣∣− √∣∣∣Yk,i

∣∣∣)2
(22)

Squared chi-squared distance (SCSD), which is defined as:

disl,m,n−k =
M∑

i = 1

(
φl,m,n−i −Yk,i

)2∣∣∣φl,m,n−i + Yk,i
∣∣∣ (23)

Canberra distance (CAD), which is defined as:

disl,m,n−k =
M∑

i = 1

∣∣∣φl,m,n−i −Yk,i
∣∣∣∣∣∣φl,m,n−i + Yk,i
∣∣∣ (24)

Clark distance (CLD), which is defined as:

disl,m,n−k =

√√√√ M∑
i = 1


∣∣∣φl,m,n−i −Yk,i

∣∣∣∣∣∣φl,m,n−i + Yk,i
∣∣∣
2

(25)

For different distance metrics, if the same γth value is used, the positioning error based on the
SAWKNN algorithm will be greatly affected, so this section does not consider the SAWKNN algorithm.
When SNR = 20 dB, we investigated 30 distance metrics and selected 12 distance metrics with the best
performances, the results of which are shown in Tables 4 and 5. It can be seen from Tables 4 and 5
that when the KNN algorithm is used for positioning, ED and SED metrics produce the minimum
average positioning error in 2-D and 3-D. In 2-D, the average positioning error based on the WKNN
algorithm is similar to the experimental results in Alam et al. [12], we also get SCD and SCSD metrics
produce the minimum average positioning error, but in 3-D, SED metric produces the minimum
average positioning error. When the ARWKNN algorithm is used for positioning, the CLD metric
produces the minimum average positioning error in 2-D and MMD metric produces the minimum
average positioning error in 3-D. As far as the authors know, this is the first work to report the impact
of CLD and MMD metrics on the positioning error of the fingerprint positioning algorithm. It can
also be seen from Table 4 that the best values of the KNN, WKNN and ARWKNN algorithms are
4.84 cm, 2.03 cm and 1.45 cm, respectively. Compared with the KNN and WKNN algorithms, in
2-D, the minimum average positioning error of the ARWKNN algorithm can be reduced by 70.04%,
and 28.57%, respectively. It can also be seen from Table 5 that the best values of the KNN, WKNN
and ARWKNN algorithms are 4.46 cm, 3.05 cm and 2.18 cm, respectively. Compared with the KNN
and WKNN algorithms, in 3-D, the minimum average positioning error of the ARWKNN algorithm
can be reduced by 51.12%, and 28.52%, respectively. In 2-D or 3-D, the average positioning errors of
the ARWKNN algorithm proposed in this paper are all smaller than that of the KNN and WKNN
algorithms under 12 distance metrics.

Figure 20 shows the cumulative distributions of positioning errors for the ED and CLD metrics
with various S values. As can be seen from Figure 20, in 2-D, compared with the ED metric, the CLD
metric produces smaller positioning error. In addition, compared with the CLD metric, the positioning
error of the ED metric increases faster when S becomes larger. Figure 21 shows the cumulative
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distributions of positioning errors for the ED and MMD metrics with various S values. As can be seen
from Figure 21, in 3-D, compared with the ED metric, the MMD metric produces smaller positioning
error. In addition, compared with the MMD metric, the positioning error of ED metric increases faster
when S becomes larger. ED is a commonly used distance metric, however, as can be seen from Tables 4
and 5, in fact, the ED is not the most accurate metric for calculating weights when the WKNN and
ARWKNN algorithms are used for positioning.

Table 4. In 2-D, the impact of distance metrics on the average positioning error with Kmax = 4, best
values for KNN, WKNN, and ARWKNN algorithms are highlighted in bold.

Distance Metrics KNN WKNN ARWKNN

ED 4.84 cm 2.61 cm 1.51 cm
MD 5.82 cm 2.97 cm 1.55 cm

MMD 5.84 cm 2.97 cm 1.54 cm
SED 4.84 cm 2.16 cm 1.85 cm
CHD 5.22 cm 2.97 cm 1.61 cm
SCD 4.99 cm 2.03 cm 1.82 cm

WHD 5.79 cm 2.94 cm 1.54 cm
LD 6.17 cm 3.45 cm 1.81 cm

MTD 4.99 cm 2.61 cm 1.50 cm
SCSD 4.99 cm 2.03 cm 1.82 cm
CAD 5.97 cm 2.93 cm 1.53 cm
CLD 5.05 cm 2.62 cm 1.45 cm

Table 5. In 3-D, the impact of distance metrics on the average positioning error with Kmax = 8, best
values for KNN, WKNN, and ARWKNN algorithms are highlighted in bold.

Distance Metrics KNN WKNN ARWKNN

ED 4.46 cm 3.30 cm 2.31 cm
MD 4.63 cm 3.29 cm 2.28 cm

MMD 4.69 cm 3.33 cm 2.18 cm
SED 4.46 cm 3.05 cm 2.42 cm
CHD 5.18 cm 4.12 cm 2.86 cm
SCD 4.53 cm 3.13 cm 2.58 cm

WHD 4.91 cm 3.53 cm 2.43 cm
LD 5.30 cm 4.16 cm 2.61 cm

MTD 4.53 cm 3.41 cm 2.45 cm
SCSD 4.53 cm 3.13 cm 2.58 cm
CAD 4.88 cm 3.51 cm 2.41 cm
CLD 4.64 cm 3.58 cm 2.60 cm
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SNR = 20 dB. To make the graph have a certain degree of discrimination, we only choose the ED,
MMD, SED, SCD, and CLD metrics to analyze the cumulative distributions of optimal K. The results of
2-D and 3-D are shown in Figures 22 and 23, respectively. As can be seen from Figures 22 and 23, there
are differences in the optimal K values for 200 targets, and there are also differences in cumulative
distributions of the optimal K for five distance metrics. The optimal K cumulative distributions for ED,
MMD and CLD are very close, and the optimal K cumulative distributions for SED and SCD are also
very close.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 25 

 

 
Figure 21. In 3-D, the cumulative distributions of positioning errors for the ED and CLD metrics with 
various S values. Kmax = 8. 

SNR = 20 dB. To make the graph have a certain degree of discrimination, we only choose the ED, 
MMD, SED, SCD, and CLD metrics to analyze the cumulative distributions of optimal K. The results 
of 2-D and 3-D are shown in Figures 22 and 23, respectively. As can be seen from Figures 22 and 23, 
there are differences in the optimal K values for 200 targets, and there are also differences in 
cumulative distributions of the optimal K for five distance metrics. The optimal K cumulative 
distributions for ED, MMD and CLD are very close, and the optimal K cumulative distributions for 
SED and SCD are also very close. 

 
Figure 22. In 2-D, the cumulative distributions of the optimal K with Kmax = 4. 

 
Figure 23. In 3-D, the cumulative distributions of the optimal K with Kmax = 8. 

0 5 10 15 20 25
Positioning error (cm)

0

0.2

0.4

0.6

0.8

1

CD
F

ARWKNN, ED, S = 20 (cm)
ARWKNN, ED, S = 40 (cm)
ARWKNN, ED, S = 60 (cm)
ARWKNN, MMD, S = 20 (cm)
ARWKNN, MMD, S = 40 (cm)
ARWKNN, MMD, S = 60 (cm)

1 2 3 4
K

0

0.2

0.4

0.6

0.8

1
ARWKNN, ED
ARWKNN, MMD
ARWKNN, SED
ARWKNN, SCD
ARWKNN, CLD

CD
F

Figure 22. In 2-D, the cumulative distributions of the optimal K with Kmax = 4.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 25 

 

 
Figure 21. In 3-D, the cumulative distributions of positioning errors for the ED and CLD metrics with 
various S values. Kmax = 8. 

SNR = 20 dB. To make the graph have a certain degree of discrimination, we only choose the ED, 
MMD, SED, SCD, and CLD metrics to analyze the cumulative distributions of optimal K. The results 
of 2-D and 3-D are shown in Figures 22 and 23, respectively. As can be seen from Figures 22 and 23, 
there are differences in the optimal K values for 200 targets, and there are also differences in 
cumulative distributions of the optimal K for five distance metrics. The optimal K cumulative 
distributions for ED, MMD and CLD are very close, and the optimal K cumulative distributions for 
SED and SCD are also very close. 

 
Figure 22. In 2-D, the cumulative distributions of the optimal K with Kmax = 4. 

 
Figure 23. In 3-D, the cumulative distributions of the optimal K with Kmax = 8. 

0 5 10 15 20 25
Positioning error (cm)

0

0.2

0.4

0.6

0.8

1

CD
F

ARWKNN, ED, S = 20 (cm)
ARWKNN, ED, S = 40 (cm)
ARWKNN, ED, S = 60 (cm)
ARWKNN, MMD, S = 20 (cm)
ARWKNN, MMD, S = 40 (cm)
ARWKNN, MMD, S = 60 (cm)

1 2 3 4
K

0

0.2

0.4

0.6

0.8

1
ARWKNN, ED
ARWKNN, MMD
ARWKNN, SED
ARWKNN, SCD
ARWKNN, CLD

CD
F

Figure 23. In 3-D, the cumulative distributions of the optimal K with Kmax = 8.
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The complexity of the KNN and WKNN algorithms mainly depends on the size of N and the
sorting operation of Step 2 in Algorithm 1. Compared with the KNN and WKNN algorithms, the
ARWKNN algorithm also performs Step 3 loop function and Step 4 min function in Algorithm 1. The
time complexity of Step 3 plus Step 4 depends on the size of Kmax. Since Kmax is much smaller than
N, that is, the number of neighboring fingerprint points are much smaller than the total number of
fingerprint points, the complexity of the ARWKNN algorithm is similar to the KNN and WKNN
algorithms. In 3-D, when Kmax = 8, the average computing time of 200 targets varying with S is
analyzed, the result of which is shown in Table 6. It can be seen that when S is the same, the average
calculation time of the KNN, WKNN, SAWKNN, and ARWKNN algorithms is almost the same. It can
also be seen from Figure 13 that when S decreases, the average positioning errors of four algorithms
decrease, but the complexity of the algorithm also increases. Therefore, according to the actual situation,
the power consumption and positioning error of the algorithm can be compromised by selecting an
appropriate S.

Table 6. Computational complexity analysis.

Algorithm The Value of S Average Computing Time

KNN S = 10 cm 15.07 ms
WKNN S = 10 cm 15.18 ms

SAWKNN S = 10 cm 15.51 ms
ARWKNN S = 10 cm 15.28 ms

KNN S = 20 cm 8.62 ms
WKNN S = 20 cm 8.68 ms

SAWKNN S = 20 cm 8.95 ms
ARWKNN S = 20 cm 8.91 ms

4. Conclusions

At present, the classical KNN and WKNN algorithms are mainly aimed at 2-D positioning,
assuming that the height of the target from the floor is known, and it is not feasible to know the height
of the target from the floor in advance. The least linear multiplication method and Newton–Raphson
method are suitable for solving 2-D coordinates. Solving the 3-D coordinate is a non-convex optimization
problem, which is easy to fall into a local optimal solution. In this paper, the shortcomings of the
fingerprint positioning algorithm and the trilateration method are discussed, and an adaptive residual
weighted K-nearest neighbor fingerprint positioning algorithm is proposed. Compared with the
fingerprint positioning algorithm based on compressed sensing, the range-based WKNN algorithm
can achieve high-precision positioning under the low-density LED layout. Compared with RF [14],
ELM [16], ANN [17], and GI-LS [11] machine-learning algorithms, fingerprint positioning based on
the ARWKNN algorithm not only has lower complexity, but also has lower positioning error. The
impact of LEDs modulation bandwidth, LEDs transmit power, the signal-to-noise ratio, the maximum
number of neighboring fingerprints, the sampling interval, the number of LEDs, the sampling ratio
and distance metric on positioning errors are analyzed in detail. The distribution of optimal K and the
complexity of the algorithm are also analyzed in detail. Simulation results show that the ARWKNN
algorithm based on CLD and MMD metrics produces the smallest average positioning error in 2-D and
3-D, respectively. Compared with the SAWKNN [19], WKNN [12] and KNN [15,25] algorithms, the
ARWKNN algorithm can significantly reduce the average positioning error while maintaining similar
algorithm complexity.

Due to lighting requirements and LoS communication, the typical SNR of indoor visible light
communication is relatively high, however, the RF, ELM, ANN, GI-LS, SAWKNN, WKNN, KNN, and
ARWKNN algorithms have higher positioning error under low SNR conditions. Our next step is to
design an efficient noise filtering algorithm to achieve higher positioning accuracy under low SNR
conditions. LED communication can not only achieve high-precision positioning, but also achieve
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high rates. We will consider using modified OFDM to achieve high-precision positioning with high
modulation bandwidth and provide a real scenario in the future.
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Abstract: Increasing efforts toward the development of positioning techniques testify the growing
interest for indoor position-based applications and services. Many applications require accurate indoor
positioning or tracking of people and assets, and some market sectors are starting a rapid growth
of products based on these technologies. Ultrasonic systems have already been demonstrating their
effectiveness and to possess the desired positioning accuracy and refresh rates. In this work, it is shown
that a typical signal used in ultrasonic positioning systems to estimate the range between the target
and reference points—namely, the linear chirp—due to the effects of acoustic diffraction, in some cases,
undergoes a shape aberration, depending on the shape and size of the transducer and on the angle
under which the transducer is seen by the receiver. In the presence of such signal shape aberrations,
even one of the most robust ranging techniques, which is based on cross-correlation, provides results
affected by a much greater error than expected. Numerical simulations are carried out for a typical
ultrasonic chirp, ultrasonic emitter, and range technique based on cross-correlation and for a typical
office room, obtained using the academic acoustic simulation software Field II. Spatial distributions of
the ranging error are provided, clearly showing the favorable low error regions. The work demonstrates
that particular attention must be paid to the design of the acoustic section of the ultrasonic positioning
systems, considering both the shape and size of the ultrasonic emitters and the shape of the acoustic
signal used.

Keywords: acoustic diffraction; acoustic signal aberration; cross-correlation aberration; ultrasonic ranging

1. Introduction

Augmented reality (AR) and many other applications based on positioning are emerging
technologies that need indoor positioning technology. Mall navigation, path finding in large hospitals
or airports, the automatic guidance for unmanned cleaning and maintenance vehicles, surveillance
systems, and others require positioning systems capable of operating inside buildings with high
positioning accuracy [1–5]. Many accurate positioning systems use trilateration, a technique that has
proven to work well indoors. The trilateration (multilateration) positioning technique requires three
(many) range measurements between reference emitters and a sensor to be located. Distances and
spatial positions with a high degree of precision at a relatively low cost can be provided by systems
based on ultrasonic waves [6–10]. The most used ranging technique involves the estimation of the
time of arrival (TOA) of a suitable ultrasonic signal. Typically, the TOA is estimated by finding in the
received signal or in the postprocessed signal a specific that is easy to identify upon arrival. In some
cases, the arrival time of the maximum peak of the envelope of an ultrasonic pulse is used. However,
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despite the simplicity of this technique, it is highly subject to acoustic disturbances, with errors in the
order of wavelengths (centimeters) even in the presence of a high signal-to-noise ratio (SNR) [11–16].

Methods based on cross-correlation estimate the TOA with high accuracy and, in general,
good acoustical noise immunity [13–16]. Digital cross-correlation techniques properly sample and
analog-to-digital convert the received acoustical signal to obtain the array C = SF T, where S is the
numerical array of received signal samples, T is the digital reference signal, previously stored in the
sensor processor memory as a numerical array of samples, andF denotes the cross-correlation operator.
The best aligning of S and T in time is revealed by the peak of the cross-correlation. The inter-signals
displacement, or lag τ, corresponding to the cross-correlation peak (i.e., τMAX), is proportional to the
TOA [17,18].

The distance measurement accuracy of the order of the current space sampling, which is the
distance covered by the ultrasound during the time sample interval and that can be made much smaller
than the ultrasonic wavelength, is achieved by estimating the TOA through the cross-correlation peak.
In addition, the cross-correlation peak is easily detectable when the signal T is a chirp. In practical
systems, it is possible to achieve a range resolution up to the order of one-tenth of the wavelength used.
For example, in [16], a range resolution of ± 1.2 mm was experimentally achieved using a 15–40-kHz
chirp, with a wavelength range 22.86–8.57 mm, considering a sampling frequency of 1 MHz and, thus,
space sampling of 0.34 mm with a sound speed of 343 m/s. When the signal and noise are uncorrelated,
cross-correlation significantly increases the SNR. It is a known drawback that, in some cases, the cross
correlation peak associated with the chirp that travels along the direct path (or line of sight, LOS) is
lower than the signals coming from the reflection paths. In the presence of reflections, a number of
signals from indirect paths combine to produce a peak higher than that of the direct path signal.

The acoustic field generated by acoustic transducers according to the shape and aperture of
the transducer has been widely studied in the past considering impulsive or continuous sinusoidal
wave signals. The closed-form solution of the generated acoustic field made it possible to derive
simple approximate formulas to calculate the emission angle as a function of the wavelength, aperture,
and distance from the emitter, the best known of which apply to circular apertures. In the far field,
the emission cone semi-angle ϑ is approximately described by the well-known relationship [19]

sinϑ = 1.22
λ
D

(1)

where λ is the emitted wavelength and D the diameter, or aperture, of the circular planar transducer.
Furthermore, it is well-known that, to obtain good results, the receiver must always operate within

the emission cone of the emitter [20]. At present, no equivalent formulas are known in the case of any
signals, such as chirp.

To design a positioning system based on ultrasonic signals, tools to evaluate the spatial coverage
of each transducer in terms of quality (amplitude and level of deformation) of the received signal are
needed. For any signals, there are no simplified formulas that give a reliable indication; therefore,
the usage of numerical tools is mandatory.

The use tout court of finite element analysis (FEA), which is a very powerful general use tool, seems
excessive for the design of positioning systems and definitively not practical from the computational
point of view. In fact, for the systems under investigation, large spatial regions of several cubic meters
and time windows of tens of milliseconds should be considered (see, e.g., [9,10,13]).

From these premises, it was, therefore, decided to use a powerful numerical tool, the academic
Field II software [21], for the analysis of ultrasound positioning systems. Field II was developed and is
currently very well-known for the simulation of complete ultrasonic imaging systems. A transducer
for ultrasonic signals both for transmission and reception, and the formation process of images in the
field of medical ultrasounds, are simulated. However, Field II has the numerical characteristics that
make it a valid tool also in the field of ultrasonic positioning.
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Among many other capabilities, which however fall outside the scope of this work, this tool is
able to calculate the acoustic pressure field at any point in the space for transducers and signals of any
shape, taking into account the attenuation properties of the propagation medium. In other words, Field
II allows to modify in any way the transducer shape and size, and the signal applied to the transducer,
to evaluate their effects in a trial and error design cycle, if necessary.

In this work, using Field II, the effectiveness of cross-correlation-based ranging techniques using a
chirp signal when the diameter of the circular plane transducer used as ultrasonic emitter is changed
is shown.

This work will show that, considering a chirp signal outside a certain emission cone generated
by the transducer, the usual ranging technique introduces a significant error in calculating the
emitter-receiver distance.

In perspective, the main advantages of the proposed approach are the possibility of examining the
acoustic field over time and space at each point of the region of interest as a function of the aperture
and of the type of signal emitted (e.g., of its bandwidth or shape) and the ability to easily test each
algorithm dedicated to estimating the TOA in the various positions and operating situations.

This paper is structured as follows. Section 2 describes the proposed simulation setup, while Section 3
shows the simulation results, and Section 4, the discussion. Section 5 draws the paper’s conclusions.

2. Field II and Simulation Setup

In this section, the operating principle of the Field II simulator is briefly outlined, and the
simulation configuration is described in detail.

The acoustic field simulator Field II [22] employs the concept of spatial impulse responses [23–25].
The ultrasound field for both the pulsed and continuous wave cases is found using the linear systems
theory. The spatial impulse response gives the emitted ultrasound field at a specific point in space
as a function of time, when the transducer is excited by a Dirac delta function. In a second step,
the field generated by any kind of excitation is found by convolving the spatial impulse response
with the excitation function. Since the linear systems theory is used, any excitation can be considered.
The impulse response is a function of the position relative to the transducer, hence the name spatial
impulse response of the technique [26].

Briefly, the transducer surface is divided into small rectangles, introducing a transducer surface
and field approximations that are as much smaller as the elements into which the transducer surface is
divided are smaller. The approximation is reduced by using small rectangles, where the distance to the
field point is large compared to the size of the rectangles. Typically, the element size is much smaller
than the wavelength of the signal to be simulated. Each of the rectangular elements is considered a
rectangular piston, of which the exact solution for the impulsive response is known [25]. A spherical
wave is emitted by each of the small elements, and the impulsive responses due to each element are
added together at each desired field point [26].

In the simulations that follow, the aim is to examine the acoustic field and the effectiveness of an
established ranging technique based on the correlation in a typical 4 × 4 × 3 m3 room [27]. In particular,
the simulation results will be examined on a grid of points belonging to a vertical section (see Section
A of the room volume, Figure 1) and on a horizontal section halfway between the floor and the ceiling
(see Section B of the room volume, Figure 1). The transducer is a circular planar and is placed in the
center of the ceiling, in position x = 0, y = 0, and z = 0, and emits towards the floor of the room.

The transducer is immersed in the air, and a linearized air absorption (slope 39.3 dB/m·MHz,
constant term −0.262 dB/m, i.e., about 0.917 dB/m @ 20 kHz and 1.703 dB/m @ 50 kHz) has been
assumed around 40 kHz, corresponding to a transducer central frequency of 40 kHz at a temperature
of 20 ◦C, a pressure of 1 atm, and a relative humidity of 55% [28,29].

The emitted and received signals at all points in the space depends on the shape and size of the
emission surface (i.e., on the aperture D) of the transducer. In this work, a circular plane transducer
was considered, with acoustic properties similar to those of the most commonly used transducers
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for positioning applications—for example, the typical piezoelectric transducer Murata MA40S4S
(D = 9.9 mm) or Pro-wave 328ST/R160 (D = 13.1 mm) [30,31].

The emission disk is divided into a certain number of rectangles. In particular, square elements
with sides 0.125 mm by 0.125 mm were used for all the simulations that follow. The transducer element
size chosen in this work is a good compromise between the accuracy of the solution and computational
resources engaged in the simulation. In Figure 2, for displaying purposes, in order to visualize the
single elements, the dimension of the mathematical elements is 1 mm by 1 mm.

Figure 1. Simulation setup: the calculation path of the cross-correlation results shown in Figures 3–5;
the vertical section A of the typical 4 m × 4 m × 3 m room along which the results displayed in Figure 6
are computed; the horizontal section B where the results displayed in Figure 7 are computed.

Figure 2. Example of a defined emitting transducer: circular and planar piston transducer with a
diameter of D = 25 mm divided into square mathematical elements.

The signal used for the simulations is a linear chirp with a bandwidth of 30-50 kHz and 5.12-ms
duration [10,27].

For simulation purposes, the signal was sampled at fS = 1 MHz. The acoustic field was calculated
in a set of points in the space for the duration of a time window compatible with the complete
reception of the signal itself [26]. Once the simulation was completed, for each point of the space
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considered in the simulation, the behavior over time of the acoustic pressure generated by the complete
excitation signal was obtained. This allowed any subsequent evaluation and postprocessing of the
signal to be obtained. For example, the peak pressure and the total signal strength at each point can be
calculated. Subsequently, an ideal receiver was assumed that linearly transduced the pressure signal
into an electrical signal, downstream of a suitable sampling and numerical quantization, so that the
cross-correlation vector C could be calculated.

3. Simulations Results

All the following simulations were performed for a set of acoustical apertures D = {25 mm, 20 mm,
15 mm, 13.1 mm, 8.5 mm, 6 mm}. The simulation includes acoustic diffractive phenomena, with the
possibility of simulating transducers of every shape and every emitted signal. Finally, it is possible to
test every ranging or positioning technique one intends to apply.

In Figure 3, it is possible to see the value of the pressure peak, the correlation peak, and the
estimated distance when using the position of the correlation peak to evaluate the TOA at varying D
within the previously defined set. Given the field symmetry, only the results for angles from 0◦ (on the
axis) to 90◦ (laterally to the transducer) are shown on a path at a constant distance R = 1 m from the
center of the transducer and with varying apertures of D.
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Figure 3. Numerical results at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm along a
semicircular path at distance R = 1 m from the emitting transducer, using a linear chirp with starting
frequency fL = 30 kHz and final frequency fH = 50 kHz. A linearized air absorption around 40 kHz
(slope 39.3 dB/m·MHz, constant term -0.262 dB/m, i.e., about 0.917 dB/m @ 20 kHz and 1.703 dB/m @ 50
kHz) has been assumed, considering the room temperature 20 ◦C and atmospheric pressure 1 atm: (a)
acoustical pressure peak, displayed after normalization and dB conversion, (b) cross-correlation peak,
displayed after normalization and dB conversion, and (c) estimated range from the position of the
cross-correlation absolute peak. For the first four aperture diameters, the lag of the cross-correlation
peak does not correspond to the correct time of arrival (TOA) (see also, Figure 4).

Finally, at the bottom of Figure 3, it is possible to see the results of the estimate of the distance R*
using the usual technique based on the search for the maximum position of the cross-correlation peak
(τMAX) [16,32], which, in favorable conditions, produces the correct estimate of the TOA and, from this,
the estimate of the range R*, considering:

cair = 331.5

√
1 +

T
273.15

, (2)

where cair (m/s) is the speed of sound in the air, and T (◦C) is the ambient temperature. In particular,
the estimate of the range estimate R* is computed as follows:

R∗ =
(
τMAX

fS
− TOE

)
cair −Rcal (3)

where τMAX is the lag of the maximum peak, and Rcal is a calibration constant that takes into account
all the fixed delays of the considered system. Rcal is independent of the range, and the time of emission
of the ultrasonic signal (TOE) can be assumed known through some a priori operation.

The cross-correlation along the same path considered in Figure 3—that is, along a quarter of a
circumference belonging to a plane passing through the emission axis of the transducer with a radius
R = 1 m—is shown in Figure 4 as the grayscale amplitude of the cross-correlation with variable lag for
each angle ϑ and for the six considered apertures.
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Figure 4. Cross-correlation values along a semicircular path at distance R = 1 m from the emitting
transducer at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm. From D = 25 mm down to
D = 6 mm, it is possible to appreciate the progressive appearance of a single correlation peak, which
makes the identification of the TOA univocal.

In Figure 5 are displayed the cross-correlations along a semicircular path at a distance R = 1
m from the emitting transducer for two different transducer apertures: D = 25 mm (Figure 5a) and
D = 8.5 mm (Figure 5b). The cross-correlation values are normalized to their maximum value for
each aperture.
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Figure 5. Cross-correlations along a semicircular path at distance R = 1 m from the emitting transducer
for two different transducer apertures: (a) D = 25 mm and (b) D = 8.5 mm. For D = 25 mm, it is possible
to see that the single unique peak of the cross-correlation for ϑ = 0◦ is no longer present at the 45◦ and
90◦ angles, while, for D = 8.5 mm, it is possible to appreciate the single correlation peak at all angles.
The cross-correlation values are normalized to their maximum value for each aperture: for D = 8.5 mm,
the amplitude relative reduction with respect to the increasing angle is much lower than for D = 25 mm,
due to the much wider emission of the smaller aperture.

In order to observe in detail the extent and shape of the spatial regions within which it is possible
to obtain the typical accuracy of the technique based on the cross-correlation, the ranging error on
two rectangular grids of points (see Section A and B of the room volume, Figure 1) was evaluated as a
function of D. The grid pitch is 5 cm in the x and z directions. For each point, the lag of the correlation
peak (τMAX) and, from these, the estimates of the distance from the emitter through (3) were obtained.
Finally, the competent ground-truth value at each point of the simulation grid was subtracted from the
values just obtained, thus generating a grid of estimates of the ranging error.

Figure 6 shows the ranging error along a rectangular vertical section (Section of the room volume,
Figure 1) of 3-m height and 4-m base passing through the center of the transducer, equal to the vertical
section of the typical office room taken as a reference in some positioning works [27,33,34], for each
aperture D of the set defined above. The grid pitch is 5 cm in the x and y directions.
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Figure 6. Computed range error at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm in a
dense grid of points (horizontal and vertical step = 0.05 m) belonging to the vertical 4 m × 3 m Section
A (see Figure 1); it is possible to appreciate the progressive widening of the cone of the minimum
ranging error going from D = 25 mm to D = 6 mm. For aperture values D = 8.5 mm and D = 6 mm,
the low error region includes all the half-space in front of the transducer.

Finally, Figure 7 shows the behavior of the ranging error on a horizontal section of 4 m × 4 m at
z = 1.5 m, or halfway between the ground and the ceiling (Figure 1b), for all the apertures considered.
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Figure 7. Computed range error at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm in
a dense grid of points (horizontal and vertical step = 0.05 m) belonging to the horizontal 4 m × 4 m
Section B (see Figure 1); it is possible to appreciate the progressive widening of the disk of the minimum
ranging error going from D = 25 mm to D = 6 mm. For aperture values D = 8.5 mm and D = 6 mm,
the low error region includes all the half-space in front of the transducer.

For D from 25 mm to 13.1 mm, Figure 7a–d, it is possible to clearly recognize increasing low error
circular areas, which are the circular sections of the low error cones already seen in Figure 6a–d. Using
such apertures, therefore, it is not possible to cover the whole room for that height, and things go
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even worse for high heights, which, however, are certainly of interest for a three-dimensional internal
positioning system. On the contrary, the volume of the room is completely covered by the last two
apertures D = 8.5 mm and D = 6 mm, as can also be seen from the vertical sections of Figure 6e,f, which
show ranging errors everywhere lower than about 3.09 mm. The ranging error is due to the numerical
approximations and the sampling frequency chosen for the simulation.

4. Discussion

In Figure 3, as expected, the pressure peak drops smoothly and rapidly with the increasing angle ϑ.
The behavior of the cross-correlation peak is different, abruptly varying at certain angles. This depends
on the shape of the cross-correlation, as shown also in Figure 4.

In general, note that the pressure values are decreasing as the aperture decreases, since the surface
power density in emission is kept constant, while the extension of the emitting surface decreases.
Furthermore, since the cross-correlation is also proportional to the amplitude of the received signal,
its peak value also decreases with the pressure signal. Note that, as the aperture D decreases, the angle
up to which the correct estimate is obtained increases; for D = 25 mm, the largest ranging error is
obtained, over 15 mm.

Additionally, consider that no noise has been added to show more clearly that the observed
phenomenon is due only to the acoustic diffraction that exists regardless of the current SNR level.

In Figure 4, the grayscale amplitude of the cross-correlation with variable lag shows that, up to a
certain angle ϑ, the shape of the cross-correlation remains regular, as expected, with only one clearly
recognizable peak. In the regions included in the above angles, the correlation-based technique works
very well, with errors in the order of the sampling rate of the signal. However, beyond a certain
limit angle, the value of which increases as the transducer aperture D decreases, on the other hand,
the cross-correlation deforms, with variations in the shape and multiplication of the peaks, with a
trend similar to a bifurcation. For angles larger than this limit, it becomes unpractical to identify a peak
corresponding to the TOA, simply because it no longer exists; in fact, the peaks of the cross-correlation
beyond the limit angle no longer correspond to the correct lag proportional to the TOA, and, therefore,
they produce incorrect estimates of the TOA and, as a consequence, of R*. This finally well explains
the strange abrupt behavior of the range estimation of Figure 3c.

In Figure 5, it is possible to see that, for D = 25 mm, it is possible to appreciate that the single
univocal peak of the cross-correlation for ϑ = 0◦ is not anymore present at angles 45◦ and 90◦,
while, for D = 8.5 mm, it is possible to identify the single correlation peak at all angles. Moreover,
for D = 8.5 mm, the amplitude relative reduction with respect to the increasing angle is much lower
than the reduction for D = 25 mm, due to the much wider emission of the smaller aperture.

In Figure 6a–d is displayed a zone with a shape similar to a triangle (similar to a cone in three
dimensions), with the vertex corresponding to the center of the transducer, inside which the error is
minimal, i.e., of the order of the error quantization due to the signal time sampling 1/fS. Therefore, let
us define this low error triangular region (conical in three dimensions) as that of the correct operation
of the ranging system and ϕ its angle at the vertex. In Table 1, it is possible to see ϕ and the maximum
error as a function of the increasing aperture D values.

Table 1. Low error cone angle and range maximum error as a function of the aperture D.

Emitter aperture D (mm) Low Error Cone Vertex Angle ϕ (◦) Range Maximum Error (mm)

6 180 3.3
8.5 180 3.3

13.1 93.51 13.3
16 73.26 13.7
20 55.84 14.2
25 44.62 14.6
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Immediately outside this low error area, on the other hand, the abrupt appearance of a higher
error, often greater than 11 mm, is observed, which is ultimately produced by the bifurcation of the
cross-correlation values, as also shown in Figure 4.

Instead, in Figure 6e,f, no conical region is seen, but a fairly uniform error appears, which is about
one order of magnitude lower than that seen in Figure 6a–d. This is the numerical error due to the
numerical approximations and the sampling frequency chosen for the simulation, everywhere less than
about 3.3 mm. The absence of the low error conical region is due to the fact that, for aperture values D
= 8.5 mm and D = 6 mm, the low error region includes all the half-space in front of the transducer.

The isolated points of yellow color (relatively large ranging errors) in Figure 6c,d refer to positions
where the peak detection error is large due to the similarity in the height of adjacent peaks of the
cross-correlation (see also peaks of almost equal height for ϑ = 45◦ and ϑ = 90◦ in Figure 5a). The same
phenomenon is also observed in Figure 7d.

In Figure 7a–d, for D from 25 mm to 13.1 mm, it is possible to clearly recognize increasing low error
circular areas, which are the circular sections of the low error cones already seen in Figure 6a–d. Using
such aperture values, therefore, it is not possible to cover the whole room for that height, and things go
even worse for z higher than 1.5 m, which, however, is certainly of interest for a three-dimensional
internal positioning system. On the contrary, the volume of the room is completely covered by the last
two apertures D = 8.5 mm and D = 6 mm, as can also be seen from the vertical sections of Figure 6e,f,
which show ranging errors everywhere lower than about 3.09 mm. The ranging error is mainly due to
the numerical approximations and the sampling frequency chosen for the simulation.

As a significant result, for apertures D from 25 mm down to 13.1 mm, it is possible to clearly
recognize the cone-shaped favorable zone. With these apertures, however, it is not possible to cover
the whole room. In fact, the room can only be covered up to a height of less than 1 meter from the floor
in the most favorable case. This unfortunately prevents, in many cases, from reaching the coverage
required by three-dimensional indoor positioning systems. The room, on the other hand, is completely
covered by the last two apertures, as can also be seen from the vertical Section A shown in Figure 6,
where, in fact, the conical region is no longer recognized, since the low error area is now extended to
the whole volume of the room.

The simulations presented demonstrate that, using Field II in the design phase, by varying the
transducer aperture and the others parameters, it is therefore possible to check whether the acoustic
coverage required by a specific application is reached, i.e., whether the region of interest for that
application is within the region where the ranging error is sufficiently low or not.

5. Conclusions

In this paper, Field II, an acoustical simulation software well-established in the field of ultrasound
medical imaging, has been applied to the simulation of the acoustic field in air produced by a circular
transducer and to the evaluation of a ranging technique based on the measurement of this acoustic field.

The original contribution of this work is to show that Field II can be profitably applied to the
problem of ranging with ultrasound in the air. As the first significant result, numerical simulations
have shown that it is not enough to guarantee a certain acoustic pressure in a spatial region to reach a
certain low level of error. In fact, depending on the angle at which the emitter is seen, the received chirp
undergoes a significant aberration in shape compared to that emitted. Shape aberration also occurs to
its cross-correlation, so the usual peak detection technique cannot detect the true TOA, regardless of
the signal level or SNR.

Field II allows us to observe ranging errors greater than expected in the presence of signal shape
aberrations, regardless of the SNR. This means that particular care must be taken in the acoustic design
of an ultrasound positioning system and that the use of a numerical simulator such as Field II is
necessary in the design phase. With such a tool, in fact, it is possible to evaluate effectively both the
acoustic coverage and the accuracy of the ranging technique used.
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In particular, it was possible to observe the total coverage of a typical 4 m × 4 m × 3 m room by
using a circular aperture of diameter D = 8.5 mm or less, a 30–50-kHz linear chirp signal, and cross-
correlation-based peak detection. In this case, the maximum ranging error obtained across the entire
volume was about 3.3 mm. Instead, for larger D, outside the favorable regions shown by the numerical
simulations, the ranging error increases up to 14.6 mm.

Many applications and services based on ultrasonic positioning systems can benefit from the
presented simulation tool.
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