47 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Channel estimation for MIMO-OFDM systems in Fast Time-Varying Environments

    Full text link

    Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications

    Get PDF
    Antenna array technology enables the directional transmission and reception of wireless signals for communication, localization, and sensing purposes. The signal processing algorithms that underpin it began to be developed several decades ago [1], but it was with the deployment of 5G wireless mobile networks that the technology became mainstream [2]. The number of antenna elements in the arrays of 5G base stations (BSs) and user devices can be measured on the order of hundreds and tens, respectively. As networks shift toward using higher-frequency bands, more antennas fit into a given aperture. For communication purposes, the arrays are harnessed to form beams in desired directions to improve the signal-to-noise ratio (SNR) and multiplex data signals in the spatial domain (to one or multiple devices) and to suppress interference by spatial filtering [2]. For localization purposes, these arrays are employed to maintain the SNR when operating across wider bandwidths, for angle-of-arrival estimation, and to separate multiple sources and scatterers [3]. The practical use of these features requires that each antenna array is equipped with well-designed signal processing algorithms

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    DoA and ToA Estimation, Device Positioning and Network Synchronization in 5G New Radio : Algorithms and Performance Analysis

    Get PDF
    Location information plays a significant role not only in our everyday life through various location-based services, but also in emerging technologies such as virtual reality, robotics, and autonomous driving. In contrast to the existing and earlier cellular generations, positioning has been considered as a key element in future cellular networks from the very beginning of the fifth generation (5G) standardization process. Even though the earlier generations are capably of providing coarse location estimates, the achieved accuracy is far from the expected even sub-meter positioning accuracy envisioned in the context of 5G networks. In general, 5G new radio (NR) networks provide a convenient infrastructure for positioning by means of wider bandwidths, larger antenna arrays, and even more densely deployed networks especially at high millimeter wave (mmWave) frequencies. Building on dense 5G NR networks, this thesis focuses on the development of novel network-centric positioning frameworks by exploiting the existing NR reference signals. The contributions in this thesis can be grouped into topics based on the considered frequency ranges and the employed beamforming (BF) schemes therein. First, novel cascaded algorithms for sequential device positioning are proposed assuming 5G NR networks operating at the lower sub-6 GHz frequency range and equipped with digital BF capabilities. In the first stage of the cascaded solution, two sequential estimators are proposed for joint direction of arrival (DoA) and time of arrival (ToA) estimation facilitating the received reference signals. Thereafter, the second-stage sequential estimators employing the obtained DoA and ToA estimates are proposed for joint positioning and network synchronization resulting in not only device location estimates, but also clock parameter estimates that are obtained as a valuable by-product. Such a choice stems from the fact that the ToA estimates are not feasible for positioning as such due to the clock instabilities in low-cost devices and the insufficient level of synchronization in the cellular networks. Second, a similar cascaded algorithm for joint positioning and network synchronization is proposed in the context of dense mmWave 5G networks and fundamentally different analog BFs. In particular, a novel joint DoA and ToA estimator is proposed by fusing information from multiple received beams based on a novel beam-selection method. In addition, the theoretical performance limits are derived and compared to those obtained using the digital BFs. The cascaded framework is completed with the second-stage positioning solution in a similar manner as in the case of digital BFs. The performance of both frameworks is evaluated and analyzed in various scenarios using extensive computer simulations relying on the latest 5G NR numerology and a ray-tracing tool. Overall, this thesis provides valuable insights into practical positioning algorithms and their performance when relying solely on the 5G NR networks and available signalling therein. The obtained results in this thesis indicate that the envisioned sub-meter positioning accuracy is technically feasible using NR-based solutions

    Real-time Outdoor Localization Using Radio Maps: A Deep Learning Approach

    Full text link
    Global Navigation Satellite Systems typically perform poorly in urban environments, where the likelihood of line-of-sight conditions between the devices and the satellites is low, and thus alternative localization methods are required for good accuracy. We present LocUNet: A convolutional, end-to-end trained neural network for the localization task, able to estimate the position of a user from the received signal strength (RSS) from a small number of Base Stations (BSs). In the proposed method, the user to be localized simply reports the measured RSS to a central processing unit, which may be located in the cloud. Using estimations of pathloss radio maps of the BSs and the RSS measurements, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps. The proposed method does not require pre-sampling of new environments and is suitable for real-time applications. Moreover, two novel datasets that allow for numerical evaluations of RSS and ToA methods in realistic urban environments are presented and made publicly available for the research community. By using these datasets, we also provide a fair comparison of state-of-the-art RSS and ToA-based methods in the dense urban scenario and show numerically that LocUNet outperforms all the compared methods.Comment: Submitted to IEEE Transactions on Wireless Communication

    Design, simulation and experimental evaluation of indoor localization schemes for 60 GHz millimeter wave systems

    Get PDF
    This thesis targets localization schemes for single-anchor millimeter wave systems. The devised algorithms are evaluated by means of simulations in order to draw initial conclusions about their robustness. The obtained results are then validated via measurements involving commercial pre-standard 60-GHz MMW hardware, showing that by relying only on a single anchor, the algorithms can localize a node with high probability, and in many cases with sub-meter accurac
    corecore