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ABSTRACT

This thesis targets localization schemes for single-anchor MilliMeter Wave (MMW)
systems. After a review of the main propagation properties of MMW signals
that may have an impact on localization, we design three algorithms, namely a
triangulation-validation procedure, an angle difference-of-arrival approach, and a
scheme based on location fingerprinting. With the aid of a ray tracing tool devel-
oped for this purpose, the algorithms are evaluated by means of simulations that
make it possible to draw initial conclusions about their robustness. The obtained
results are then validated via measurements involving commercial pre-standard
60 -GHz MMW hardware, showing that by relying only on a single anchor, the
algorithms can localize a node with high probability, and in many cases with
sub-meter accuracy. After drawing our concluding remarks, we discuss possible
extensions of the algorithms.

SOMMARIO

In questa tesi vengono sviluppati algoritmi di localizzazione per sistemi a onde
millimetriche basati su un singolo nodo ancora. Dopo aver compreso le princi-
pali caratteristiche delle onde millimetriche, vengono delineati tre algoritmi: un
primo basato su una procedura di triangolazione-validazione, un secondo basato
su differenze dell’angolo di arrivo, e infine un terzo basato sul fingerprinting. At-
traverso un ray tracer sviluppato appositamente, gli algoritmi sono poi testati
attraverso delle simulazioni al fine di trarre alcune considerazioni riguardanti la
precisione e la robustezza ottenibili. Gli algoritmi sono poi testati sperimental-
mente attraverso misure su apparecchiature standardizzate a 60 GHz: ne risulta
una performance caratterizzata da un’alta probabilità di successo nello stimare
la posizione che, in molti casi, raggiunge una precisione inferiore al metro. Infine
vengono discussi possibile estensioni e miglioramenti degli algoritmi.
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1
INTRODUCTION

Nowadays, emerging MilliMeter Wave (MMW) wireless communication systems
represent more than a century of evolution in modern communications. Since
the first developed and commercialized wireless telegraph by Guglielmo Marconi
in the early 1900s, the wireless industry has expanded from point-to-point tech-
nologies, to radio broadcast systems, and finally to wireless networks. As the
technology has advanced, wireless communications have become pervasive in our
world. We find ourselves fully immersed in wireless networking, as most of us
routinely use cellular networks, wireless local area networks, and personal area
networks. This has rapidly led to what is known as spectrum crunch or conges-
tion,i. e., the potential lack of sufficient wireless frequency resources needed to
support a growing number of consumer devices. Possible solutions to mitigate
the spectrum crunch would be to devise communication systems with higher
spectrum efficiency, reallocate some frequencies in order to free up capacity, or
exploit those frequency bands that actually are not congested. This last point is
the motivation behind the recent interest in MMWs, as they are addressed as a
possible solution to solve the spectrum congestion problem [2, 3].
The MMW available spectrum, ranging between 30 GHz and 300 GHz, is un-

paralleled compared to cellular and Wireless Local Area Network (WLAN) mi-
crowave systems that operate at frequencies below 10 GHz. For example, the
unlicensed frequency band at 60 GHz offers 10× to 100× more spectrum than is
available for conventional unlicensed wireless local area networks in the Indus-
trial, Scientific, and Medical (ISM) bands (e. g., at 900 MHz, 2.4 GHz, 5 GHz) or
for users of Wireless Fidelity (WiFi) and 4G (or older) cellular systems that op-
erate at carrier frequencies below 6 GHz [2]. Moreover, the availability of a larger
bandwidth makes it possible to achieve higher data rates for comparable mod-
ulation techniques, i. e., having similar spectrum efficiency, while also providing
more resources to be shared among multiple users.
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Actually, the MMW spectrum, is occupied by military, radar, and backhaul,
but has much lower utilization compared to lower frequencies. Given the large
amount of spectrum available, MMW presents a new opportunity for future mo-
bile communications to use channel bandwidths of 1 GHz or more. For example,
the spectrum at 28 GHz, 38 GHz, and 70–80 GHz has propagation characteris-
tics that look promising for next-generation cellular systems like 5G [4, 5]. The
60 GHz unlicensed band is seeing active commercial deployment in consumer de-
vices through IEEE 802.11ad [6], a standard also known as WiGig.

Beside communication systems, radio waves have also been addressed as an
enabling technology for the development of localization systems. Nowadays, lo-
calization systems such as the Global Positioning System (GPS) have become per-
vasive in our lives in the same way of communication systems. A lot of effort has
been put into outdoor localization, whereas indoor localization is a relatively re-
cent field of research, also motivated by the fact that outdoor positioning systems
result to be inapplicable due to the low accuracy obtained in indoor environment.
Interest on Indoor Positioning Systems (IPSs) have become even more popular in
recent years due to the incredible boom of smartphones and tablets in our soci-
ety, and the upcoming Internet of Things (IoT): some examples are the location
detection of products stored in a warehouse, of medical personnel or equipment
in a hospital, of firemen in a building on fire, of police dogs trained to find ex-
plosives in a building, and of tagged maintenance tools and equipment scattered
all over a plant. Clearly, with the advance of communication systems exploiting
MMW frequencies, there comes an attempt to devise IPSs that may exploit the
future MMW infrastructure. Many solutions have been designed for the ISM fre-
quency bands, exploiting lateration, triangulation and other classic localization
techniques [7]. However, since MMW technology has began to emerge recently,
the research work is limited and presently there are no schemes devised to exploit
the peculiar characteristics of MMW propagation, which are briefly discussed on
the remainder of this section. Due to the high path loss (as per Friis transmission
equation), and, moreover, the high attenuation due to physical effects, such as
rain, steam and oxygen absorption and localized at different intervals of frequency
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[5, 8, 9], MMW systems necessitate to employ high-gain directive antennas, thus
equipped with steerable mechanisms. At 60 GHz the channel presents an absorp-
tion peak due to oxygen absorption: whenever this could be limiting for outdoor
communications, it could be positive for indoor applications to due the possibil-
ity of limiting the signal inside the building [9]. The small wavelength suggests
the possibility of exploiting Multiple-Input Multiple-Output (MIMO) in order to
achieve time diversity [10]. Further studies have indicated that mm-wave prop-
agation behaves like quasi-optical, thus the Line of Sight (LoS) component is
dominant [11].

1.1 motivation and contribution

This thesis was completed mainly as the result of my abroad experience: from
March 2015 until the end of August 2015, I have been an internship student at
the IMDEA Networks Institute,1 Madrid, Spain. During my stay, I was directly
supervised by Prof. Paolo Casari, and became part of his Ubiquitous Wireless Net-
working research group. As it has been said, in the recent literature, there does
not exist a large bulk of material related to indoor localization that specifically
exploits the peculiar characteristics of MMWs. Thus, my work was addressed to
devise, analyze and implement a localization scheme suitable for MMW frequen-
cies.
During my first period at the institute I focused on acquiring the necessary

knowledge related to the propagation of MMWs. After a further study about local-
ization techniques I decided to devise a localization scheme based on single a Ac-
cess Point (AP) and the resulting signal reflections off the room boundaries, thus
exploiting the quasi-optical behavior of MMWs. Then, I developed a ray tracer
useful to simulate the waves propagation inside a room and performed a perfor-
mance evaluation of the devised algorithm. Aiming to solve different problems led
to the development of three different localization schemes, namely, Triangulate-

1 IMDEA Networks Institute. Address: Avda. del Mar Mediterraneo 22, 28918 Leganés, Madrid.
URL: http://www.networks.imdea.org

3

http://www.networks.imdea.org


introduction

Validate (TV), Angle Difference-of-Arrival (ADoA) and Fingerprinting (FP). The
three algorithms appeared to be promising and a further characterization led to
devise a measurement plan in order to test the algorithms’ performance in a real
scenario. The experimental measurements employed for this test were the result
of a collaboration with the group of Prof. Joerg Widmer, Research Director of
the institute, and were obtained by exploiting standard 60 GHz hardware. The
performance evaluation of the algorithms over experimental data showed that a
sub-meter accuracy can be obtained with a low probability of being unable to
localize the node.

1.2 thesis outline

This thesis is organized as follows. Chapter 2 consists on a review of the state
of the art of localization and MMWs: the first Section 2.1 introduces some of
the classical localization schemes giving a mathematical explanation and some
application examples; the subsequent Section 2.2 is a survey of the recent ad-
vances in indoor localization which have been an hint for the development of
our localization schemes. Section 2.3 introduces MMWs, analyzes their propaga-
tion characteristics in detail, and finally describes related work regarding indoor
localization with MMWs. Chapter 3 gives a description of the TV algorithm (Sec-
tion 3.2), the ADoA algorithm (Section 3.3) and the FP (Section 3.4), explaining
how they work with the aid of pseudocodes as well. The following Chapter 4
describes the ray tracer tool we implemented (Section 4.1) and presents a per-
formance evaluation and characterization of the three algorithms (Section 4.2).
In Chapter 5, Section 5.1 describes the experimental methodology and the em-
ployed hardware we utilized in order to obtain experimental data. The following
Section 5.2 presents the performance evaluation of the three algorithms with the
collected experimental data. Finally, in Chapter 6 we draw some concluding re-
marks and devise possible future work and improvements (Section 6.1).
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2
STATE OF THE ART

In this chapter, we survey related work on localization by subdividing the material
into a general review of range-based and range-free schemes (Section 2.1), a focus
on recent advances in indoor localization (Section 2.2), and a review of multipath-
aided localization (Section 2.2.2). Finally we introduce millimeter waves with
the related definition, why they are becoming appealing etc., and devise some
characteristics of the propagation in indoor environments that may be appealing
for localization purposes.

2.1 classic localization schemes

This section gives a description of the classic schemes exploited for localization
purposes. Which one of these methods is preferable depends on the nature of
the available information: distances, absolute time, time differences, angles etc.
While the procedure to retrieve this kind of data is not specific of each localization
scheme, we will also give a brief overview on how the input data required by the
schemes can be obtained.

2.1.1 Trilateration

Trilateration is a range-based technique which requires the knowledge of the dis-
tances di between the node to be localized and the ith anchor node located at
fixed position oi. Given a node i located at a point oi = (oi,x1 , oi,x2 , . . . , oi,xN )

in a N -dimensional space, the locus of points p = (px1 , px2 , . . . , pxN ) laying at a
distance di from oi is a hypersphere described by the equation

(oi,x1 − px1)
2 + (oi,x2 − px2)

2 + · · ·+ (oi,xN − pxN )
2 = d2

i . (2.1)
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Defining as M the number of available anchor nodes, the node to be localized
satisfies simultaneously M equations like Equation (2.1) related to the ith anchor
node’s position oi and the respective distance from the node to be localized di.
This leads to a system of M equations in N unknowns:



(o1,x1 − px1)
2 + (o1,x2 − px2)

2 + · · ·+ (o1,xN − pxN )
2 = d2

1

(o2,x1 − px1)
2 + (o2,x2 − px2)

2 + · · ·+ (o2,xN − pxN )
2 = d2

2

...

(oM ,x1 − px1)
2 + (oM ,x2 − px2)

2 + · · ·+ (oM ,xN
− pxN )

2 = d2
M

(2.2)

If the ranges di from the anchor points are perfectly known, the system of equa-
tions (2.2) admits a unique solution ifM ≥ N + 1. However, if some hyperspheres
touch in exactly one point, i. e. there exist some i, j such that ‖oi−oj‖ = di+ dj ,
less than N + 1 equations are required. A graphical example of the system of equa-
tions is given in Figure 2.1, where localization is performed in a 2-dimensional
environment: the point p of intersection of the circumferences is the unique point
where the distance between anchor nodes’ positions o1, o2 and o3 are d1, d2 and
d3, respectively.
Since it would be infeasible to directly measure distances, some ranging tech-

niques must be adopted. Thus, the distance will be indirectly inferred from other
data.
For example, the GPS, which is based on trilateration, exploits delay measure-

ments to retrieve distances from a constellation of 31 satellites orbiting around
the Earth with a revolution period of half a sidereal day and a radius of about
22 200 km [12]: in particular, a satellite periodically transmits data frames where
a timestamp is attached; a synchronous receiver is then able to measure its dis-
tance from the transmitting satellite by measuring the delay experienced by the
received frame, by calculating the time difference ∆t between its own clock and
the frame’s timestamp; finally, the distance between the receiver and the satel-

6
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1

d
2

d
3

Figure 2.1: Trilateration in a two-dimensional environment (N = 2). Except for some
limit cases, at least three circumferences are required to obtain a unique
intersection.

lite can be calculated as d = c∆t, where c = 2.997 924× 108 ms−1 is the speed
of light. This ranging technique requires a perfect synchronization between the
receiver and the GPS satellite clocks, otherwise delays and thus distance esti-
mates would be biased. An interesting fact is that satellites’ clocks exhibit a time
drift with respect to a receiver’s clock on Earth that needs to be electronically
corrected: it is worth noting that the clocks’ drift of about 45 µs/day can be esti-
mated through Einstein’s Relativity Theory and thus GPS is one example where
the theory works [13].
Another ranging technique is Received Signal Strength (RSS) [7]: once an ac-

curate path loss model is provided, the distance can be estimated via received
power measurements. One of the simplest models is the free space model provided
by the Friis transmission equation which has the form

PL[dB] = 20 log10
λ

4πd , (2.3)

7
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where PL is the difference in dB between the transmission power Ptx and the
received power Prx expressed in dB as well, d is the distance between transmitter
and receiver, and λ is the signal wavelength.
Equation (2.3) can be exploited to retrieve d as

d =
4π
λ

10
PL
20 . (2.4)

More complicated models exist in the literature: the simplified path loss model
is provided by

PL[dB] = K[dB] + 10γ log10
d

d0
(2.5)

where d0 is the path loss exponent, d0 is a reference distance for the antenna’s
far-field and K is a constant usually assumed equal to the free space path loss
calculated at a distance of d0 from the transmitter. The simple model provides a
linear function between the distance and the path loss in dB scale. The simplified
model may be exploited to build a more precise multi-slope model to take into
account different phenomena that may occur at different distances, e. g. in the
two-ray model the path loss slope raises from 20 to 40 dB per decade at a certain
distance called the critical distance.
Other models are of empirical nature: an example is the Okumura model [14]

which is exploited in large urban macrocells; the model is applicable over distances
of 1–100 km and frequency ranges of 150–1500 MHz. Okumura used extensive
measurements of base station-to-mobile signal attenuation throughout Tokyo to
develop a set of curves giving median attenuation relative to free space of signal
propagation in irregular terrain.

2.1.2 Multilateration

Multilateration is a localization technique principally based on the Time Dif-
ference of Arrival (TDoA) of the signals transmitted by different anchor nodes:
time differences can be mapped to distance differences and the geometric locus of
points where the difference of distances between two fixed points is an hyperbole.

8
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p
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o
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d
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Figure 2.2: Multilateration in a two-dimensional environment (N = 2).

Given a point p = (px1 , px2 , . . . , pxN ) in an N -dimensional space, and an anchor
node i at position oi = (oi,x1 , oi,x2 , . . . , oi,xN ), their distance di can be computed
as

di =
√
(oi,x1 − px1)

2 + (oi,x2 − px2)
2 + · · ·+ (oi,xN − pxN )

2 (2.6)

which is just Equation (2.1) root-squared.
Given another anchor node j 6= i fixed at position oj , its distance dj from the

point p can be calculated according to Equation (2.6). Thus, if ∆ti,j is the TDoA
of signals from i and j, the point p must satisfy

c∆ti,j = di − dj (2.7)

where c is the speed of light and di and dj are calculated as before.
Equation (2.7) is the mathematical representation of an hyperbole. If more

anchor nodes are available, a set of time differences of arrival can be obtained,
leading to a system of equations in the form of Equation (2.7). Possibly, a unique
solution exists and this would be the position of the node to be localized.
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Note that the exploitation of time differences does not require the node to
be localized to synchronize its clock with that of the anchor nodes, which may
represent an advantage over trilateration.
The TDoA of a signal can be estimated by two general methods: subtracting

Time of Arrival (ToA) measurements from two base stations to produce a relative
TDoA, or through the use of cross-correlation techniques, in which the received
signal at one base station is correlated with the received signal at another base
station.
As an example of a system based on TDoA is Observed Time Difference of

Arrival (OTDoA). The system is an optional feature for the localization of mo-
bile terminals in 3GPP LTE networks. The terminology is that used in 3GPP
LTE specifications: a User Equipment (UE) is a mobile terminal that has to be
localized, and an eNodeB is a base station. The working principles of the sys-
tem are exactly as explained before: ToAs from several neighboring eNodeBs are
subtracted from the ToA of a reference eNodeB to form the OTDoA; geometri-
cally, each ToA determines an hyperbole, and the point at which the hyperboles
intersect is the desired UE location. At least three timing measurements from
geographically dispersed eNodeBs with good geometry are needed to solve for
two coordinates (latitude and longitude) of the UE. A big advantage of OTDoA
over simple GPS is that it works indoors or in urban canyons but a disadvantage
is that it works poorly in rural areas where the BS density is rather low [15]

2.1.3 Triangulation

Triangulation [16] is a technique that relies on angle measurements and thus can
be considered range-free. The technique is quite old: in the 6th century BC, the
Greek philosopher Thales developed a method based on triangulation in order to
calculate the height of the pyramids by measuring the length of their shadows and
that of his own at the same moment, and comparing the ratios to his height [17];
anyway there is also evidence that ancient Egyptians were familiar to similar
techniques as well. Triangulation is still used in surveying due to its simplicity and
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Figure 2.3: A triangulation example.

to the relatively high accuracy provided by theodolites which are utilized for angle
measurements; however, applications involving radio frequency signals are also
present and are becoming quite popular thanks to the extensive use of antenna
arrays and the exploitation of the MUSIC and ESPRIT algorithms [18, 19].
An example of triangulation is represented in Figure 2.3. Here, angles α1 and

α2 are measured from a common reference half-line, e. g. angles may be referred
relatively to a cardinal point; the position of the point p may be inferred consid-
ering that a triangle is completely determined whenever one side and two angles
are known.
Any errors on the estimation of the angles, however, reflect negatively on the

accuracy of localization, especially if the distance between the user and the anchor
nodes is large. Additionally, triangulation fails if the node is aligned with the
anchors because all points on the line connecting the two anchor nodes would be
feasible with the measured angles.

11



state of the art

2.1.4 Fingerprinting

Localization based on location FP [20, 16] relies on the fact that radio waves
emitted from one or more anchors yield a practically unique radio “fingerprint”
at any given location: such fingerprint can be identified and employed to infer the
location itself.
A localization system based on FP requires a preliminary training phase (or

offline stage) where fingerprints at known locations are collected. In this way, a
fingerprint database is constructed. The training phase is opposed to the posi-
tioning phase (or online stage) where, after some measurements, a node to be
localized builds a fingerprint and attempts to localize via a positioning technique
relying on the fingerprint database built in the training phase. Usually finger-
prints are represented as vectors of some measured quantities such as RSS and
time delays, and the positioning technique may exploit a probabilistic framework
like a Maximum Likelihood (ML) estimator, or a deterministic procedure, such
as a simple closest vector lookup or a more sophisticated algorithm like the k-
nearest-neighbor (kNN) [16].
Anyway, while the definitions of fingerprint may vary widely depending on the

scenario and radio technology employed, the approach per se is often dismissed
due to the heavy preliminary measurements required to construct a fingerprint
database, and to the strong dependence of the localization error on the number
of fingerprint measurements. However, recent work has revived FP by suggesting
that the database construction task can be crowdsourced [21].

2.2 recent advances in indoor localization

2.2.1 Developed frameworks and systems

In this section we review some of the newest techniques adopted for indoor local-
ization. Recent work reconsidered WiFi-based indoor localization. The authors

12
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in [22] develop and implement an indoor localization system called ArrayTrack.
The system relies on the capabilities of MIMO systems to detect Angle of Arrival
(AoA) of incoming signals: a mobile terminal transmits some frames that will be
received by one or more AP equipped with MIMO technologies; thus, each AP
will be able to detect the AoA and RSS of the signal from the mobile terminal,
and build a so-called AoA spectrum, which represents the received power as a
function of the pointing angle; AoA spectra at the APs are processed in order to
suppress multipath components; finally, a central server processes the data from
the APs and calculates the mobile terminal position through localization and
trilateration techniques. The system has been implemented by the same authors
and they obtained a sub-meter error exploiting six APs in an office environment
and with a latency of about 100 ms.
Authors in [23] have developed a similar system like ArrayTrack and named CU-

PID. It utilizes PHYsical layer (PHY) information to extract the signal strength
and the angle of only the direct path, successfully avoiding the effect of multi-
path reflections. Moreover, CUPID is able to localize a device when only a single
APs is present. When a few more APs are available, the implemented system can
improve the median localization error to 2.7 m.
Another framework has been developed in [24]: the developed system, named

Centaur, is able to localize portable devices exploiting Radio Frequency and
Acoustic Ranging measurements and Bayesian inference. A further contribution
by the same authors is EchoBeep, a technique to enhance Acoustic Ranging in
the presence of non-line-of-sight signals.
In [25] the authors develop a localization system exploiting only one AP, and

where part of the complexity of the scheme is delegated to the user to be localized,
which is assumed to know his own orientation in space, and the distance covered
while moving, thanks to the use of a digital gyroscope and accelerometer.

The authors of [26] developed a protocol for ranging measurements in ad hoc
WiFi networks that does not rely on synchronization between the nodes, but
rather on the estimation of the round trip times. The possible presence of non-
line-of-sight components that may alter Time of Flight measurements is filtered

13
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at the receivers by using the MUltiple SIgnal Classification (MUSIC) algorithm
which permits to detect the LoS component and to base the measurements on
that.

2.2.2 Multipath-aided localization in UWB channels

In this section we survey the work by Meissner et al. from the University of Graz,
Austria, which deserves a separate section because some ideas developed in their
research were the starting point for our work.
The work of the authors is principally based on Ultra Wide Band (UWB) sig-

nals. A channel model for this type of signals can be found in [27]. As stated in
the same paper, the very short time duration (and the relatively high bandwidth)
of UWB pulses makes them a good choice for indoor localization due to the pos-
sibility to distinguish different MultiPath Components (MPCs) in the estimated
Channel Impulse Response (CIR). Thus, UWB pulses can be exploited to col-
lect ToA/TDoA information. This leads to what is referred to as multipath-aided
localization, a scheme suitable to localize mobile terminals with the aid of only
one AP and of the MPCs resulting from the reflections of the AP signals in the
surrounding environment.
In [28], localization is performed by exploiting a ML estimator for the position

with the aid of a single AP and the knowledge of the floor plan. It is assumed
that the AP transmits UWB pulses periodically: this allows a receiver at an
unknown position to determine the CIR which, typically, contains LoS and NLoS
components that are separable due to the nature of UWB transmission. The
obtained CIR is then exploited in order to determine ToA and therefore ranging
information about the various MPCs. The intuition of the authors is that each
MPC can be directly mapped to a Virtual Anchor (VA) from where the signal
propagates directly to the node, i. e. a straight line without reflections connects
the VA and the node to be localized. The VAs are found as the mirrored instances
of the unique physical anchor node over the room obstacles, e. g. walls, doors,
tables etc., and their position can be determined assuming the knowledge of

14
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distinguishable. Their location is equal to the distances of the
K VAs. The heights of these modes are scaled according to the
visibility model v. The dashed line corresponds to the second
position p = [0, 4]T , which is the upper left corner of the
room. Here, several dk are equal and so the corresponding
modes in the likelihood function are not distinguishable. This
reflects the possible uncertainty in mapping a zi at a given
position to a specific VA if the distances are equal.
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Fig. 3. Measurement likelihood function as a function of p for zi = 3
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Fig. 4. Measurement likelihood function as a function of p for zi = 8

Figures 3 and 4 provide alternative illustrations of the
measurement likelihood function; pzi|p(zi|p) is shown as a
function of p, with the range zi fixed. In this way, the
likelihood function corresponds to the objective function in
the optimization problems (11) and (12). Looking at Fig. 3
for example we have pzi|p(zi|p) for zi = 3. We see the
probabilities to be at a certain position p when this range
measurement is observed. With a high probability, the receiver
is on a circle with radius 3 around the transmitter, which
corresponds to the direct signal path. With lower probabilities
it is on circles corresponding to single and double reflections.
The observations hold for Fig. 4 where zi = 8. In this case,
there is no possibility for the receiver to be at a position
corresponding to the direct signal path.

Figures 3 and 4 also show a potential problem concerning
the maximization of the likelihood function. Especially at
the room boundaries, we observe high concentrations of the
likelihood function around certain positions. This is due to the
symmetry of the transmitter and the single reflection VAs with
respect to the distance to these positions. We expect that these
likelihood concentrations could lead to outliers, especially if
the ML-estimator in (11) is directly used.

B. Measurement likelihood function with hard-decision map-

ping

In order to prevent the concentration of the likelihood at the
room boundaries, we have to prevent the individual likelihoods
in (15) from adding up whenever the distances to two or more
VAs are similar. This summation of likelihood reflects the
uncertainty in mapping an entry of z to a VA, which can not
be done unambiguously. In principle, this prevents us from
using the silver standard estimator from (6). We can however
still use the associated likelihood functions for the rk from (4)
to find a statistical mapping for each zi

pzi|p(zi|p) = max
k

{
prk|p(zi|p)

}
(17)

which selects the largest contribution from all the K VAs as
the most probable likelihood for this zi. However, if

prk|p(zi|p) < pzi,VA|p(zi|p) ∀ k (18)

the range measurement zi is considered an unmatched MPC.
This however is a hard-decision mapping and completely
ignores all information for zi belonging to any other VA where
the likelihood is maybe just slightly smaller. Note that this
method of mapping does not prevent multiple zi from being
mapped to the same VA. This of course is a potential for future
research.

The joint likelihood function pz|p(z|p) is obtained in the
same way as in (10) as a product of the marginal likelihoods.
Position estimation is then done by maximizing this joint
likelihood or the a-posteriori likelihood as in (11) and (12).
The estimators obtained in this way will be denoted by
p̂ML,HD and p̂MAP,HD, respectively, where the subscript HD
stands for hard decision.

C. Generation of measurement vectors

To perform performance simulations, we need to generate a
set of observation vectors z that have the statistical properties
that were outlined at the beginning of this section. This
means that an individual measurement zi has to be distributed
according to (15). Hence, each zi is either associated with a
VA or a spurious observation not matched to a VA. The vector
z is assembled from zi which are generated according to these
two cases.

In the first case, we have to take the visibility probabilities
given in v into account. Using v, we can calculate the PDF
for the number of visible VAs Kvis and the expected value of
Kvis

mVA = E{Kvis} (19)

153

Figure 2.4: Graphical representation of the likelihood function of the node to be local-
ized as a function of the determined ranges. Red areas indicate that the
node is very likely located at the corresponding positions. (Image taken
from [28].)

the floor plan and the anchor node position. Thus, given the obtained set of
ranges, localization is performed by building a likelihood function which returns
the probability of observing the set of inferred ranges as a function of a given
position inside the room and the disposition of the anchor nodes. Figure 2.4 is
taken from [28], and graphically represents the likelihood function obtained over
the points of the floor plan. The areas in red are the positions where it is more
likely the node is located.
In [29, 30], the same authors perform the localization of a moving agent exploit-

ing the correlation in successive positions using state-space concepts as a Kalman
Filter (KF) and a PF. The authors achieved an accuracy of about 45 cm for 90 %
of the position estimates in a typical pedestrian motion scenario. In particular,
Figure 2.5 represents the track estimates computed via a PF: the route begins in
the upper-left corner, and the only substantial errors are at the beginning, and
are mostly due to non-perfect initialization.
The later work [31] shows as, most of the times, the deterministic multipath

component is a predominant part, in terms of energy capture, of the UWB CIR
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Fig. 8. Performance results for the four state-space filters over the trajectory from Fig. 1, starting point is in the north-west. Magenta circles are outliers
of the ML-estimates (Errp̂ML > 1m). The dotted lines connect the ML-estimates to their respective true positions. (a) Kalman filter with measurement
refinement and perfect initialization. (b) Gaussian sum filter with M = 10 uniformly random selected components. (c) Particle filter with ML-estimates and
Cauchy error model and Np = 2000 particles. (d) Particle filter with pseudodistances and Np = 2000 particles.

A comparison of all four estimators for the scenario in Fig.
1 can be found in Fig. 8 and 9 . This scenario supports the
previous results from e.g. Fig. 7, i.e., KF with measurement
refinement and GSF show similar performance. The KF is
initialized here with the true initial state vector, while the
GSF draws M = 5 random initial state vectors. It converges
quickly to the correct trajectory. The PF with the ML-estimates
as measurements is again more influenced by their outliers
than the one using pseudodistances. Both PFs use Np = 2000
particles. Increasing this number leads to better robustness.
Concerning the initialization, both PFs use particles that are
randomly drawn according to a uniform distribution within

the room. Both converge to the true trajectory, the PF using
pseudodistances is considerably faster. Looking at the error
CDFs in Fig. 9 confirms the ability of the state-space methods
to enhance both accuracy and also to a large extent the
reliability in terms of avoiding the error floor.
An additional comparison of the proposed estimators can

be found in Fig. 10 and Fig. 11. This trajectory consists
of movement with longer stop phases. It can also illustrate
the initialization phases of the different filters. In Fig. 10,
the performance of the GSF is shown. The door positions
are known via the floor plan. Therefore, M = 3 and the
corresponding initial Gaussian position hypotheses are placed
at the door positions. This leads to a very quick convergence.

Figure 2.5: Tracking estimates obtained with a Particle Filter (PF). (Image taken
from [29].)

(up to a 90 %): this justifies the approach in [28] of considering valid the VAs and
the perfect reflections of the signal from the unique AP.
In [32], the authors formalize all the previous work introducing Multipath-

assisted indoor navigation and tracking (MINT) and extend the scenario to multi-
ple anchors. Also, they improve the localization method: they introduce two rang-
ing algorithms, ML and Jump-Back Search-Forward (JBSF), and an Extended
Kalman Filter (EKF) for localization purposes which requires a scheme for Data
Association (DA) that permits to associate range measurements to corresponding
VAs.

Finally, along the same lines of [33], in [34] the authors obtain a performance
bound for the latter localization scheme MINT, deriving Fisher Information Ma-
trixes (FIMs) and Position Error Bounds (PEBs).
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2.3 millimeter waves and localization algorithms.

2.3 millimeter waves and localization algorithms.

2.3.1 Millimeter waves’ definition and challenges

The International Telecommunication Union (ITU) proposed that the radio spec-
trum shall be subdivided into nine frequency bands, which shall be designated
by progressive whole numbers [1]. The band designated as Extremely High Fre-
quency (EHF) has a frequency range that spans from 30 to 300 GHz. The related
wavelengths, that can be easily calculated assuming λ = c/f go from 1 mm to
10 mm, and thus the name millimeter waves or millimetric waves to designate
signals belonging to the EHF band.

Figure 2.6: The spectrum subdivision proposed by the ITU. (Image taken from [1].)

The first documented work about millimeter waves belongs to the Indian physi-
cist Jagadish Chandra Bose (1858 - 1937) [35]: the scientist built a rudimentary
machinery made of circular waveguides, horn antennas and semiconductors junc-
tions (Bose has also been awarded with the world’s first patent for a semicon-
ductor), and performed experiments with radio waves of length ranging from
2.5 cm to 5 mm; as a botanist, he also studied effects of electromagnetic pollution,
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Figure 2.7: The pioner of millimeter waves J.C. Bose at the Royal Institution, London,
1897. (Image taken from [35].)

in particular on plant growth; last but not least, in 1895 he had demonstrated
publicly remote signalling by wireless some two years before Marconi’s famous
Salisbury Plain demonstration of 1897; however, the results he obtained were only
considered after his death.
Nowadays, besides military and medical applications where they are extensively

used, millimeter waves are becoming appealing because it has become apparent
that there is a need for more bandwidth to support new communication services
for mobile users [4, 36]. With the current bandwidth allocation in the microwave
(µW) frequency range (in the ITU classification, microwaves belong to the Super
High Frequency (SHF) band ranging from 3 to 30 GHz), it is very difficult to
provide such a system capacity increase without incurring in massive costs due to
the extreme densification of the cellular infrastructure. However, recent studies
on the propagation characteristics of millimeter wave, as well as advances in the
design of Radio Frequency (RF) circuits at those frequencies, have shown that
using MMW bands for 5G cellular is actually feasible, and has the potential to
solve the spectrum crunch thanks to the huge amounts of bandwidth available [4,
3, 2].
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Along the lines of the research for transmission systems, there is a need to
study localization schemes that would be suitable and designed to exploit the
propagation characteristics of millimeter waves. The following Section 2.3.2 is
reviews the propagation characteristics of millimeter waves; then, Section 2.3.3
surveys related work on localization achieved by exploiting millimeter waves.

2.3.2 Propagation characteristics of millimeter waves

The radio propagation characteristics at millimeter wave frequencies are starkly
different from their µW counterparts. First, according to the free space path loss
derived by the Friis transmission equation (see Equation (2.3)), the path loss can
easily exhibit 30–40 dB more attenuation because of the smaller wavelength. More-
over, besides free space path loss, compared to lower bands, EHF radio waves have
high atmospheric attenuation, being absorbed by the gases in the atmosphere. In
particular, as it is possible to see in Figure 2.8, signals in the 57–64 GHz region
are subject to the resonance of oxygen molecules and are thus severely attenuated.
Also, even over relatively short distances, rain fade is a serious problem, caused
when absorption by rain reduces signal strength. In climates other than deserts
absorption due to humidity also has an impact on propagation.
Thus, the high path loss experienced by millimeter waves restricts their usage

for terrestrial communication up to a distance of about a kilometer and necessi-
tates the use of fairly narrow and very directional es in order to obtain higher
power in reception. This can be realized through phased antenna arrays, whose
implementation within a reasonable amount of space is made possible thanks to
the smaller wavelengths that correspond to these frequencies. All this may seem a
limiting fact and a disadvantage for millimeter waves, but, from a networking per-
spective, it allows to confine signals (for example, making it possible ot limit the
coverage area of a private wireless network), and also permits smaller frequency
reuse distances than possible at lower frequencies, granting higher achievable ca-
pacities. Moreover, the short wavelength makes it possible to pack a large number
of antennas in a relatively small space. This means that both standard and mas-
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FIGURE 1. Rain attenuation in dB/km across frequency at various rainfall
rates [26]. The rain attenuation at 28 GHz has an attenuation of 7 dB/km
for a very heavy rainfall of 25 mm/hr (about 1 inch per hour). If cell
coverage regions are 200 m in radius, the rain attenuation will reduce to
1.4 dB.

essential for flexibility, quick deployment, and reduced ongo-
ing operating costs. Finally, as opposed to the disjointed spec-
trum employed by many cellular operators today, where the
coverage distances of cell sites vary widely over three octaves
of frequency between 700 MHz and 2.6 GHz, the mm-wave
spectrum will have spectral allocations that are relatively
much closer together, making the propagation characteristics
of different mm-wave bands much more comparable and
‘‘homogenous’’. The 28 GHz and 38 GHz bands are currently
available with spectrum allocations of over 1 GHz of band-
width. Originally intended for Local Multipoint Distribution
Service (LMDS) use in the late 1990’s, these licensees could
be used for mobile cellular as well as backhaul [25].

A common myth in the wireless engineering community is
that rain and atmosphere make mm-wave spectrum useless
for mobile communications. However, when one considers
the fact that today’s cell sizes in urban environments are on
the order of 200 m, it becomes clear that mm-wave cellular
can overcome these issues. Fig. 1 and Fig. 2 show the rain
attenuation and atmospheric absorption characteristics of
mm-wave propagation. It can be seen that for cell sizes on
the order of 200 m, atmospheric absorption does not create
significant additional path loss for mm-waves, particularly at
28 GHz and 38 GHz. Only 7 dB/km of attenuation is expected
due to heavy rainfall rates of 1 inch/hr for cellular propagation
at 28 GHz, which translates to only 1.4 dB of attenuation over
200 m distance. Work by many researchers has confirmed
that for small distances (less than 1 km), rain attenuation will
present a minimal effect on the propagation of mm-waves at
28 GHz to 38 GHz for small cells [26].

FIGURE 2. Atmospheric absorption across mm-wave frequencies in
dB/km [1]. The attenuation caused by atmospheric absorption is 0.012 dB
over 200 m at 28 GHz and 0.016 dB over 200 m at 38 GHz. Frequencies
from 70 to 100 GHz and 125 to 160 GHz also have small loss.

D. Mm-WAVE CELLULAR MEASUREMENTS:
UNDERSTANDING THE CHANNEL
Future wireless technologies must be validated in the most
urban environments, such as New York City. In order to
improve capacity and service quality, the cellular network
architecture needs to support higher spatial reuse. Massive
MIMO base stations and small-cell access points are two
promising approaches for future cellular. Massive MIMO
base stations allocate antenna arrays at existing macro base
stations, which can accurately concentrate transmitted energy
to the mobile users [24]. Small cells offload traffic from
base stations by overlaying a layer of small cell access
points, which actually decreases the average distance between
transmitters and users, resulting in lower propagation losses
and higher data rates and energy efficiency [24]. Both of
these important trends are readily supported and, in fact,
are enhanced by a move to mm-wave spectrum, since the
tiny wavelengths allow for dozens to hundreds of antenna
elements to be placed in an array on a relatively small physical
platform at the base station, or access point, and the natural
evolution to small cells ensures that mm-wave frequencies
will overcome any attenuation due to rain.
Understanding the radio channel is a fundamental require-

ment to develop future mm-wave mobile systems as well as
backhaul techniques. With a firm technical understanding of
the channel, researchers and industry practitioners may then
explore new methods for the air interface, multiple access,
architectural approaches that include cooperation and inter-
ference mitigation and other signal enhancement techniques.
In order to create a statistical spatial channel model (SSCM)
for mm-wave multipath channels, extensive measurements
must be made in typical and worst-case operating conditions
and environments. We have conducted extensive propagation
measurements in urban environments in New York City and
suburban environments in Austin, Texas in order to under-
stand the mm-wave channel.
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Figure 2.8: The sea level attenuation in dB/km experienced by millimeter waves as a
function of frequency. Attenuation exhibits a non-linear behavior (in the log-
arithmic domain) due to physical phenomena such as the oxygen resonance
at 60 GHz. (Image taken from [2].)

sive MIMO approaches become feasible [37], further increasing frequency reuse
potential.
The expected use of directive antennas implies the necessity of further studies

regarding millimeter waves propagation in environments where significant reflec-
tions may originate from the environment boundaries. The following paragraph
describes the scattering and the behavior of millimeter waves when bouncing off
obstacles.
The paper[38] presents a model for the Power Delay Profile (PDP) perceived

by a receiver at a fixed position in a rectangular room with a unique transmitter:
with an argument based on ellipsoids, the authors obtain an integral form for
the power value of each delay in the PDP. The model resulted to fit well the
experimental data.
Some experiments to model the scattering of millimeter waves have been carried

out in [39] but with special regard to outdoor surfaces such as roads; some further
experiments can be found in [40], where radiative transfer theory is exploited. A
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brief overview of the theory can be found in [41]. An exhaustive modeling of
the scattering is presented in [42], where the authors distinguish between two
scattering components: volume and surface scattering. For the purposes of this
thesis, such a model factors in an excessive number of details: as it will be clearer
later, we are mostly concerned in the quasi-optical nature of millimeter waves.
In [43], the authors performed some measurements about reflections of MMW

beams and obtained characteristic scattering patterns. Aiming to build a simula-
tor, they interpreted the deterministic patterns as probability radiation patterns:
given a directive beam bouncing off a wall, a unique reflected beam is expected
and its direction is randomly chosen with a probability determined by the ampli-
tude of the deterministic radiation pattern, i. e. the most probable directions are
those where the power is concentrated in the deterministic pattern . For instance,
the most probable direction is that predicted by Snell’s equation which states
that the reflected wave has the same incidence angle of the incidence wave. The
simulation results obtained resulted to be enhanced with the exploitation of the
probability radiation patterns.
Another study involving radiation patter measurements is in [44], where radi-

ation patterns are called power angle profiles Power Amplitude Profiles (PAPs).
The experiments conducted in this work regarded 60 GHz millimeter waves, and
were conducted in different office environments: one of the main assumptions is
that millimeter waves PAPs have a negligible probabilistic component due to
scattering, i. e., directions with the highest received power are those determined
by rays that incurred in perfect reflections. Thus, millimeter waves have a quasi-
optical behavior. A similar statement can be found in [11]. The quasi-optical
behavior has also been proved relatively to lighting models, generally used in com-
puter graphics: the authors in [45] present a set of measured reflection patterns
and compare them to two models, by Lambert and Phong respectively; a further
study in [46] presents a modified Phong’s model for radar applications and in its
conclusions new sophisticated models are indicated such as Blinn-Phong model
and Schlick’s model. In all these models the deterministic reflection dominates
over the scattering component.
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2.3.3 Localization schemes exploiting millimeter waves

In the literature there exists a scarce amount of material regarding localization
exploiting the peculiar characteristics of millimeter waves and, as has been said
in Chapter 1, this is one of the motivations of our work. The following is a short
survey of the state of the art regarding localization with millimeter waves.
Authors in [47] evaluate performance of RSS-, TDoA- and AoA-based local-

ization schemes assuming the presence of several anchor nodes deployed over a
circumference around the receiver. It is observed that the AoA approach achieves
the smallest localization error because of the broad AoA spectrum diversity orig-
inating from the circular geometry of the anchor nodes deployment.
In [48], a method is developed for the estimation of the TDoA based on the

interference between Orthogonal Frequency Division Multiplexing (OFDM) sym-
bols from two different transmitters. The technique makes it possible to leverage
actual data communications for location estimation, without having to rely on a
different, specific protocol.
In [49], the authors exploit Differential Time Difference of Arrival (DTDoA),

an improved version of TDoA, which does not require synchronization between
the anchor nodes. Time information is extracted from the 60 GHz OFDM trans-
mission frames exchanged by the node to be localized and, at least, 4 anchor
nodes. The localization error of the developed system has been investigated, and
showed a median of about 1 m.
Exploiting MIMO techniques for millimeter waves lead to a sparse representa-

tion of the MIMO channel matrix [10]. This is a peculiar characteristic of MMWs,
and, leveraging on this, the authors in [50] developed a localization scheme based
on sparse beamspace channel signatures where LoS information is not mandatory
and where the room plan is subdivided into cells; then, given the sparse represen-
tation of the channel matrix at the unknown position obtained via measurements
possibly affected by noise, a ML estimator returns the position associated to the
most likely cell. Performance evaluation is carried out in terms of error probabil-
ity that a user localizes itself in a cell different from the one where it is placed.
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Anyway, this probability has been shown that cannot be made arbitrarily small
for a fixed cell size: for a 25× 25 m2 cell, the probability is about 4 %, whereas
for a 5× 5 m2 it is about 6 %.
The last presented work may appear promising, but it has to be noticed that the

introduced error probability decreases as long as the cell dimension increases, but
if a small localization error is sought, the cell size must be decreased. The other
presented material relies on classical localization schemes that do not exploit the
particular characteristic of MMWs. For example, MMW communications must
rely on highly directive antennas: none of the methods seems to exploit this fea-
ture. Instead, highly directive antenna patterns may be exploited in conjunction
with the fact that MMWs propagation is quasi-optical [44, 11]. Moreover, MPCs
are usually seen as a sort of interference that needs to be filtered out: instead,
we claim that, as per [28], MPCs may be exploited too, enabling a localization
scheme which relies on a unique AP, and this is the motivation behind our work.
In the next chapter, we discuss how MMW propagation properties have been
factored in to design three different localization algorithms.
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3
MILL IMETER WAVE LOCAL IZAT ION SCHEMES

This chapter describes the three MMW localization algorithms devised in this
work of thesis. The first paragraphs are a description of the localization scenario
and introduce the symbols used throughout the thesis.
The indoor localization scenario for the three developed algorithm is a room

bounded by walls, a ceiling and a floor. With the notation introduced in Sec-
tion 2.1, let N = 3, i. e. we assume a 3D space. Without loss of generality, we
introduce a rectangular room scenario where we set a three-dimensional Cartesian
coordinates system to be centered in one of the corners of the room. The coordi-
nates system introduces the three canonical vectors of the three axes ex = (1, 0, 0),
ey = (0, 1, 0) (oriented orthogonally along the floor sides), and ez = (0, 0, 1) (ori-
ented along the height of the room). Any point q = qxex + qyey + qzez is a
linear combination of the three canonical vectors and can be mapped to a triple
(qx, qy, qz).

The room boundaries and any other obstacles containing radio-reflective sur-
faces are grouped in the reflective objects set Z. Obstacles in the set Z are rep-
resented as three-dimensional polyhedra with flat polygonal faces, straight edges
and sharp vertices. We treat each obstacle’s face as an oriented surface S, repre-
sented by its normal vector n, which, given three different points of the surface
p1, p2 and p3, can be found as

n =
(p2 − p1)× (p3 − p1)

‖(p2 − p1)× (p3 − p1)‖
. (3.1)

The operator ‖ · ‖ denotes the Euclidean norm, and × the cross-product.
We assume that a single MMW AP is installed in the room at the location

pTX and is employed as an anchor node for localization purposes. The algorithms
are designed to leverage on direct signals from the AP and on the reflections
off indoor boundaries in order to compute location estimates. The input to all
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algorithms is the AoA spectrum Pp(α), which records the distribution, over the
azimuthal plane, of the amplitude of multipath components at a given location
p, as a function of the azimuth φ, assumed to be measured relative to a reference
direction φ0 in the Cartesian coordinate system. Since the AoA spectrum is only
referred to the azimuthal plane, the localization returns an estimate in the same
plane, i. e., two-dimensional localization is performed and no height information
is revealed. The availability of the only azimuthal AoA spectra was determined
by the available hardware for the experimental evaluation of the algorithms, but
if three-dimensional AoA spectra would be available, the same algorithms can be
straightforwardly extended to the 3D localization case.
The AoA spectrum Pp(φ) is processed by the algorithms to yield a compact

representation of different MPCs at p. In particular, the AoA spectrum is initially
smoothed in order to filter possible present noise: for example, this may be the
case of an experimentally measured AoA spectrum). Then a peak on the reception
pattern is identified with an MPC [44]. Note that an MPC can be either a LoS
path or a path that incurred (possibly multiple) reflections off one or more surfaces
of the elements in Z. The detected MPCs are collected in a 2×Np matrix M(p),
where Np is the number of detected MPCs in Pp(α). The first row of M(p)

contains the amplitude of each MPCs sorted in decreasing order; the second row
contains the AoA of the MPC, relative to φ0. In this way, each column M(p)

:,k of
M(p) (where the semicolon notation :,k denotes all elements of the corresponding
dimension, and in this case it means all rows of column k) can be seen as a
vector in polar coordinates, departing from p, where M(p)

1,k and M(p)
2,k denote the

amplitude and phase of the vector relative to φ0, respectively.
We also assume that the room geometry (i. e., pTX and Z) is treated as inputs

for the algorithms.
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3.1 virtual anchor nodes

In this preliminary section, we provide more precise definitions about Virtual
Anchor (VA) anchor nodes, which will be required by the algorithms in Section 3.2
and Section 3.3.
Each MPC belonging to the AoA spectrum Pp(α) perceived at location p can

be modeled as emitted by a VA node that would be the source of a LoS signal
reaching p along the same AoA of the MPC. The position of the VA can be
determined by mirroring the position of the AP with respect to the surfaces the
signal has reflected off.
Call A = {a0, a1, . . . } the set containing the positions of the possible VAs, and

call Ā = {A0,A1,A2, . . . } a partition of this set. We let A0 = pTX, whereas each
set Ai, i = 1, 2, . . . contains the VAs that have been mirrored i times with respect
to any surface of the objects in Z, i. e. Ai contains the virtual anchor nodes that
may generate direct signals that otherwise would have incurred in i reflections in
the environment. Note that A and Ā have countably infinite cardinality, as there
is no limit to the number of times the AP can be mirrored. However, in practice
the MMW signals from the AP will fade quickly as they propagate and reflect
off surfaces, a substantially different aspect with respect to, e. g., UWB systems
at lower frequencies. Therefore, it makes sense to truncate A by considering a
maximum reflection order µ [44]. To this end, we define Aµ =

⋃µ
i=0Ai.

Figure 3.1 shows two VAs ai and aj corresponding to a first- and a second-
order reflection, respectively. The node ai is found by mirroring pTX over the
vertical line representing a wall and it would be a source of first order reflections,
i. e. ai ∈ A1. Then, the node aj ∈ A2 is found by mirroring ai, which belongs to
A1, over then horizontal line (mirroring again over the vertical line returns again
pTX but this is avoided in Line 11). It is now clear as the rays arriving at p and
transmitted by the unique AP in the room, can be seen as directly coming from
anchor nodes of different reflection order.
The recursive algorithm with pseudo-code given in Algorithm 1 explains how

to populate the sets Ai of the partition of A given the desired reflection order i,
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Figure 3.1: Virtual anchor nodes related to first- and second-order reflections.

and the inputs ptx and Z. The algorithm is recursive since in Line 4 the algorithm
itself is called, with a reflection order decreased by 1. Recursive calls end when
i = 0 and the AP position pTX is returned (Line 2): a reflection order µ = 0
means that only direct paths and they can only be provided by the AP. Then, the
set Ai is populated by processing each element in Ai−1 (Line 6) and by calculating
its mirrored instance over every surface of any obstacle element in Z (Lines 7-9).
In particular, Line 9 computes the mirrored replica p̄ of a point p based on the
normal vector n describing a surface S as

p̄ = p− 2n · (p− q) , (3.2)

where · denotes the dot product, and q 6= p is any point of S. Finally, duplicates
and anchor nodes that may belong to anchor nodes sets with lower index are not
included in Ai as per Lines 10 and 11.
Still referring to Figure 3.1, if we want to detect second order VAs (µ = 2)

such as the one at position aj ∈ A2, Algorithm 1 would recall itself in order to
detect first order VAs (µ = 1): given ai ∈ A1 (that can be found by mirroring
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Algorithm 1: Construction of the set Ai.
1 Function DetermineAnchors (i, pTX, Z)
2 if i = 0 then return {pTX}
3 else
4 Ai−1 ← DetermineAnchors(i− 1, pTX, Z)
5 Ai ← ∅
6 foreach anchor node a ∈ Ai−1 do
7 foreach obstacle z ∈ Z do
8 foreach surface S of z do
9 ā← mirror a over S using (3.2)

10 if ā /∈ Ai then Ai ← Ai ∪ {ā}

11 return Ai \ ({pTX} ∪Ai−1)

the unique anchor node of µ = 0, i. e. the AP at position pTX, over the vertical
line) aj is found by mirroring ai over the horizontal line.

3.2 the triangulate-validate (tv) algorithm

The first algorithm we present permits a node at an unknown position p to
estimate its position via a number of triangulation steps followed by a validation
of the estimated locations, and thus the name TV. The algorithm assumes that
the node has measured the AoA spectrum Pp(α) and has derived the matrix M(p)

described previously. We assume the knowledge of the transmitter position pTX,
the set of obstacles Z, that may model walls and boundaries, and the reference
direction φ0 from where angles are measured.
If the association between the anchors in A and the MPCs in M(p) were known,

it would be possible to directly triangulate the position of p, and this would be
a relatively simple problem. However, such association is unknown, leading to a
higher complexity: the algorithm that follows is designed to solve the localiza-
tion problem with a procedure less complex than the reformulation of the ML
approach in [28] to employ AoA information (in [28], the information was related
to distances from the VAs).
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With reference to the pseudo-code in Algorithm 2, we start by considering VAs
up to a given reflection order µ. While a high value of µ would yield a richer
virtual anchor set Aµ, a low value is more meaningful for triangulation: in fact,
reflections weaken the signal, and VAs of higher order can be quite far from the
receiver, and this distance would translate into a large triangulation error in the
presence even of only small errors in the AoA spectrum. In addition, a signal
at MMW frequencies is rarely distinguishable from noise after more than two
reflections, hence we set µ=2 in the following.
We start by considering M(p)

:,1 and M(p)
:,2 which, due to the sorting of M(p),

correspond to the MPCs with highest amplitude. Before using them to triangulate
a position, we need to transform these entries into vectors departing from the
position of any anchor, expressed relative to the reference Cartesian coordinates
system of the room. This yields two vectors u1 = −QM(p)

:,1 and u2 = −QM(p)
:,2 ,

where Q is the coordinates transformation matrix (Line 3). We now make an
initial guess that the anchors from which u1 and u2 emanate are two points
ai, aj ∈ Aµ and triangulate a location over the azimuthal plane by solving the
following linear system in two unknowns t1 ≥ 0 and t2 ≥ 0 (Line 6):

ai + u1t1 = aj + u2t2 . (3.3)

Triangulating with the directions of the strongest MPCs guarantees a sort of
noise filtering of the AoA spectrum Pp(α). Call pk, k ≥ 0 the position found.
If pk is valid with respect to some logical constraints (e. g., it is inside the room,
not within any of the obstacles in Z, and does not coincide with pTX, Line 7),
we validate the position by basically measuring how compatible the remaining
MPCs are with the positions of other VAs in Aµ. We assign a weight wk > w`

to all anchors of partition subsets Ak and A`, 0 ≤ ` < k ≤ µ, Ak,A` ⊂ Aµ. This
reflects the fact that the validation involving VAs closer to p should be given
greater importance. We now choose vmax further MPCs M(p)

:,m, 3 ≤ m ≤ vmax + 2,
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3.2 the triangulate-validate (tv) algorithm

Algorithm 2: The Triangulate-Validate algorithm.
1 Function TriangVal (Pp(α), pTX, Z, φ0, µ, vmax)
2 Aµ ←

⋃µ
`=0 DetermineAnchors(`, pTX,Z)

3 Map M(p) to canonical base, compute u1, u2
4 k ← 0
5 foreach pair (ai, aj), ai, aj ∈ Aµ, i 6= j do
6 pk ← point such that ai + u1t1 = aj + u2t2
7 if isValid(pk,Z) then
8 T ← Aµ \ {ai, aj}
9 ck ← 0

10 for m = 3 to vmax + 2 do
11 um ← −QM(p)

:,m
12 ck ← ck + mina∈T Cost(pk, a, um)
13 T ← T \ {arg mina∈T Cost(pk, a, um)}
14 k ← k+ 1

15 return p̂ =
∑K
k=1 c

−1
k pk/

∑K
k=1 c

−1
k

to be involved in the validation process. For each MPC, we consider all VAs in
T = Aµ \ {ai, aj} and associate a cost ck to pk as follows:

ck =
vmax+2∑
m=3

min
a∈T

Cost(pk, a, um) , (3.4)

where Cost(pk, a, um) is any cost function that may penalize the triangulated
position pk given an anchor node position a and a MPC direction um in the
room coordinates system. We point out that a suitable cost function, for a given
m, would return a null cost if there exists an anchor a ∈ T that lies exactly on
the line leaving pk with direction M(p)

:,m, otherwise the cost would be greater.
The cost function defined in this thesis is defines as follows

Cost(pk, a, um) =
[
cos−1

(
− um ·

a− pk
‖a− pk‖

)]2
wω(a) (3.5)

where um = −QM(p)
:,m and ω(an) = ` if an ∈ A`. Note that the function, as it

would be desirable, returns a null cost if −um and a − pk are parallel vectors,
whereas the cost increases if the minimum angle between any anchor a ∈ T and
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Figure 3.2: The geometry of Angle Difference-of-Arrival localization.

M(p)
:,m, with corner in pk, increases. The square operation penalizes larger discrep-

ancies more than smaller ones (Lines 8 to 14). After computing the argument that
returns the minimum cost in (3.4) the anchor a that minimizes the argument is
removed from T (Line 13). The cost function is exploited in Lines 12 and 13 for
these described operations.
The TV steps are repeated for all possible associations of the first two elements

of M(p) to the anchors in the set Aµ, returning a total of K estimates pk, k =

1, . . . ,K, and their related costs ck (Line 5). Note that K ≤ |Aµ|(|Aµ| − 1) since
the algorithm fails if a triangulated position is found to be outside the room, or
if the received AoA spectrum contains fewer than 3 MPCs. The final estimate of
p returned by the TV algorithm is a weighed average of the positions pk found
along the process (Line 15).
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3.3 the angle differences-of-arrival (adoa) algorithm

The TV algorithm requires the knowledge of the reference angle φ0, or equiva-
lently, of the coordinate transformation matrix Q introduced in Section 3.2. As
this is not necessarily a feasible assumption, and the measurement of φ0 (e. g.,
as provided by a smartphone’s digital compass) may be affected by a significant
error, we developed a second algorithm based on the ADoA among MPCs. This
algorithm is slightly more complex than TV, but is immune both to errors in φ0

and to variations thereof across the room area.
We start by defining the angles δ1 = M(p)

2,2 −M(p)
2,1 and δ2 = M(p)

2,3 −M(p)
2,1 . The

ADoA algorithm is described in terms of the following geometrical problem, for
which we refer to Figure 3.2: given two points ai and aj in a 2D space, find the
locus of the points p such that the angle âipaj (where p is the corner), is constant
and equal to the angle δ1 defined above. This locus is a circumference, of which
the segment aiaj is a chord. We assume the angle âipaj to be positive if ai follows
aj in a counterclockwise direction within the space of a semi-circumference and
|âipaj | < π, where the | · | operator in this case represents the absolute value
of the angle measure. With reference to Figure 3.2, that depicts a typical ADoA
localization scenario, consider the circumference C1. Given the angle âipaj , we
have âio1aj = 2 âipaj , where âio1aj is the central angle that insists on the same
chord aiaj . If âipaj > π/2, âio1aj is concave, hence |âio1aj | > π. In this case, we
wrap the angle back into the interval [−π, π) via the operator W (·). The radius
r1 of C1 can be found as

r1 =
‖a− b‖

2 sin(|W (âio1aj)|/2)
. (3.6)

Finally, given β = r1 cos
(
W (âio1aj)/2

)
and u = (a− b)× (0, 0, 1), the center

of the circumference is found as

o1 = m1 + sgn
(
W (âio1aj)

) βu
‖u‖

, (3.7)
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where sgn returns the sign of the angle, and m1=(ai+aj)/2 is the middle point
of the chord aiaj . The vector

w1 =
(
o1 −m1

)
sgn

(
W (|âio1aj |)

)
(3.8)

points to the section of C1 defined by the chord aiaj where the constant angle
requirement is satisfied. We now consider a second chord ajak and the circumfer-
ence C2 as the locus of the points q where the angle âjqak = δ2. The radius r2

and the center o2 of C2 can be computed in the same way as above. The point
p of intersection between C1 and C2 is considered a feasible location estimate
whenever it is located on the sections of C1 and C2 pointed to by the orientation
vectors w1 and w2. This means that, given the two chord centers m1 and m2, it
must hold that w1 · (p−m1) > 0 and w2 · (p−m2) > 0.
The pseudo-code of the procedure that provides an estimate p̂ of the location

of a node based on ADoA is given in Algorithm 3. The algorithm starts by
determining Aµ, M(p), δ1 and δ2 (Lines 2 and 3). As for the TV algorithm,
we are initially unable to map each detected MPC to its related anchor node.
Therefore, the ADoA algorithm collects a set of eligible positions which are the
result of the intersection between the circumferences determined by the angle
differences δ1 and δ2 and the chords aiaj and ajak, ai, aj , ak ∈ Aµ. Lines 6 to 8
determine the center and radius of C1 and C2 via (3.6) and (3.7), and compute
their intersection by checking that it is feasible based on the orientation vectors
w1 and w2 (see (3.8)). The ADoA procedure is repeated for different triples
(ai, aj , ak) ∈ Aµ (Line 5) to yield a number of possible location estimates. Those
positions that are valid with respect to the same logical constraints introduced for
the TV algorithm are collected in the set L (Line 9). Because resorting to angle
differences does not require to estimate the reference angle φ0, it may happen
that for some combinations of anchor nodes, and in the presence of large AoA
estimation errors, the user is localized in an erroneous position that still satisfies
the angle differences. To eliminate such spurious locations, the estimated position
is computed as the median of L (Line 8).
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Algorithm 3: The Angle Difference-of-Arrival algorithm.
1 Function ADoA(P (φ), pTX, Z, µ)
2 Aµ ←

⋃µ
`=0 DetermineAnchors(`, pTX,Z)

3 Map M(p) to canonical base, compute ∆, δ1, δ2
4 L ← ∅
5 foreach triple (ai, aj , ak) ∈ Aµ, i 6= j 6= k do
6 C1 ← DetermineCirc(i, j, δ1)
7 C2 ← DetermineCirc(i, k, δ2)
8 p← DetermineIntersec(C1,C2) \ {pTX}
9 if isValid(p,Z) then L ← L∪ {p}

10 return p̂← Median(L)

3.4 localization based on location fingerprinting (fp)

We finally present a fingerprint-based localization algorithm. We assume that
the area the user to be localized within has been previously characterized by
creating a database D of AoA spectra measured at a set of different locations
F = {f1, f2, . . .} (in Section 2.1.4 this has been called the training phase).
Given a spectrum Pp(α) measured at location p as an input, the algorithm

looks up the most similar spectrum in D (according to some proximity measure)
and returns its corresponding location. In order to be fair to the TV and ADoA
schemes, we define the fingerprint of an AoA spectrum in terms of: i) a LoS
feature, defined as the amplitude and AoA of the LoS arrival; and ii) a number of
Non-Line of Sight (NLoS) features, defined as the amplitude and ADoA (relative
to the LoS AoA) of every other NLoS MPC in the pattern. These choices are
based on the fact that the strongest MPC is typically the LoS path [11, 44], and
that we wish to make the feature matching process resilient to position-dependent
errors in the reference angle φ0. Given the pattern Pp(α) and its MPC matrix
M(p), we identify the LoS feature as a vector s(p) = M(p)

:,1 (it is the strongest
MPC since the entries in M(p) are sorted in decreasing power), and by calling
Np the number of columns in M(p), we collect the remaining Np − 1 entries of
M(p) in the NLoS feature matrix T(p) and subtract the angle of the LoS path

35



millimeter wave localization schemes

M(p)
2,1 from all elements of T(p)

2,: . In the pseudo-code reported in Algorithm 4, this
corresponds to Line 2.
Note that the AoA spectra received at any two different points typically have

one LoS feature, and may have a different number of NLoS features. For each entry
of D measured at location f (Line 3), we execute an adapted instance of the closest
point algorithm [51] which returns the indices i and j of the NLoS features in T(p)

and T(f ), respectively, whose angle differences are most similar. The pseudo-code
for the algorithm is reported in Algorithm 5: the function getClosestPairs(X,
Y) takes as input two real-valued vectors X and Y of possibly different length
and returns a set P of couples of the indexes of the closest values from the two
vectors; getClosestPairs(X, Y) makes use of nearest(X,y) which given a
vector X returns the index of the closest value to the given input y.

Now that we can pair MPCs from different AoA spectra, we need a cost function
to characterize the similarity of the patterns at p and f .
We design the cost function as follows:

cf = −w`a
∣∣∣s(p)2,1 − s(f )2,1

∣∣∣− 2wp
|s(p)

1,1−s(f )1,1|

s(p)
1,1+s(f )1,1

−
∑

∀(i,j)∈P

(
wna

∣∣∣T(p)
2,i −T(f )

2,j
∣∣∣+ 2wp

|T(p)
1,i−T(f )

1,j |

T(p)
1,i+T(f )

1,j |

)
, (3.9)

where the weights w`a, wna and wp are chosen to give more importance to the
discrepancies in the angle differences of NLoS paths rather than to the absolute
difference among the angles of the LoS path: this makes fingerprinting-based
localization more robust to possible errors in the reference angle φ0. On the
contrary, the amplitude discrepancies of the paired LoS and NLoS features is
given the same weight wp. The cost function can be seen as the logarithm of
a product of exponential functions where the arguments are a function of the
differences between angle and amplitude values of the MPCs of the pattern in f

and p, and the weights w`a, wna and wp may be seen as variances. We compute
the absolute value of the angle differences since we have verified empirically that it
achieves better robustness compared to, e. g., the squared value of the difference.
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In Algorithm 4, the function losCost in Line 4 of computes the first line
in (3.9), whereas the function mpcCost repeatedly called in Lines 6 and 7 com-
putes the sum in (3.9). Finally, the algorithm returns the estimated position p̂

as the the location of the entry f in F that has minimum cost (Line 8).

Algorithm 4: Localization based on location fingerprints.
1 Function FingerPrint(Pp(α), D)
2 Compute M(p), extract s(p) and T(p)

3 foreach Pf (α) ∈ D do
4 cf ← losCost(s(p), s(f ))
5 P ← closestPairs

(
T(p)

2,: , T(f )
2,:
)

6 foreach pair (i, j) ∈ P do
7 cf ← cf + mpcCost

(
T(p)

:,i , T(f )
:,j
)

8 return p̂← arg minf cf

Algorithm 5: The closest pairs algorithm used to detect closest pairs of real
numbers taken from two lists.

1 Function getClosestPairs(X, Y)
2 P ← ∅
3 for j = 1 To n_elem(X) do
4 b← nearest(Y, X(j))
5 if j = nearest(X, Y(b) then
6 P ← P ∪ {(j, b)}

7 return P
8 Function nearest(X,y)
9 dmin ←∞

10 for k = 1 To n_elem(X) do
11 if |X(k)− y| < dmin then
12 min← |X(k)− y|
13 el← k

14 return el
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4
PERFORMANCE EVALUATION BY S IMULATION

4.1 a ray tracing tool

In order to evaluate the performance of the localization algorithms in controlled
ideal and non-ideal conditions, we have developed a ray tracer, which is an appro-
priate tool to model the propagation of MMW in an indoor environment given
the directionality of MMW transmissions [11, 44] and the limited amount of scat-
tering generated by reflections [43].
The ray tracer simulates the propagation of a MMW ray given the location of

the transmitter, its transmission beam pattern, the boundaries of the propagation
area, the location of the receiver and its reception beam pattern.
In the following, we consider the simulation of a single ray departing from

the transmitter position pTX. Denote as {xn}n=0,1,2,... the sequence of positions
through which the ray propagates. Given a ray departing from the transmitter at
a given position pTX, we have x0 = pTX. Denote as {un}n=0,1,2,... the sequence
of the unit-norm propagation direction vectors of the ray at the corresponding
positions xn. Given the initial ray propagation direction u0, the ray propagation
is modeled by updating the position of the ray xn as

xn+1 = xn + ∆xun, (4.1)

where ∆x is a constant which regulates the accuracy of the simulation.
After every update of the position, the simulator has to check if some logical

constraints are violated. For example we may check if the position xi lays outside
the room boundaries: given a surface S with a normal vector n of an object o ∈ Z,
and a point q ∈ S, if (xn − q) · n > 0 then xn still has not impacted on the
surface. If no violated constraints are detected, the ray direction is not updated,
i. e. ui+1 = un; otherwise a reflection must be modeled, and this translates to a
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Figure 4.1: Refraction and reflection of a wave at the interface between two media of
different refractive indices n1 and n2.

variation in the direction vector. We modeled the bounces using Snell’s law as
per [43]: given a ray with direction un, reflecting off a surface S with normal
vector n, the direction un+1 of the reflected ray is computed as

ui+1 = un − 2(un · n)n. (4.2)

Along with the trajectory modeling, the signal power must be taken into account.
First, we consider that the ray incurs standard distance-dependent path loss
PL(d) [52] as it was introduced in: Section 2.1.1

PL(d) = PLFS (d0) + 10γ log10

(
d

d0

)
, (4.3)

where d is the distance covered by the signal, PLFS the free space path loss at
a reference distance d0 and γ is the path loss exponent (set to γ = 2 [44] in our
simulations). Notice that the distance d covered by the ray can be parametrized
as n∆x, n = 0, 1, 2, . . . and thus the path loss can be updated as

PL(∆x(n+ 1)) = PL(∆xi) + 10γ d0
n∆x ln(10) (4.4)

If the obstacles are not perfect reflectors, a power loss must also be taken into
account. A simple model would be to consider a constant power loss at each
bounce, determined by the kind of surface where the reflection took place (e. g.
it may be a function of the refraction index of the material). A more exhaustive
model would express the power loss as a function of the angle of incidence αinc:
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4.1 a ray tracing tool

in this case, Fresnel’s equations shall be exploited. Referring to Figure 4.1, when
a wave encounters an interface between a medium with a refraction index n1 and
a medium with refraction index n2, it splits into two waves lying on the plane
which contains the incidence plane, and that is orthogonal to the normal vector
n describing the interface: the reflected wave travels back in the first medium
with an angle αref , whereas the refracted wave propagates in the second medium
with an angle αtr. Snell’s equations establish that αref = αinc and n1αinc =

n2αtr. If the incident wave is polarized with its electric field perpendicular to
the plane containing the incident, reflected, and refracted rays we refer the wave
as s-polarized. Instead, if the incident wave is polarized with its electric field
parallel to the plane of incidence we refer the wave as p-polarized. Defining the
reflection (and refraction) indexes rs and rp (ts and tp) as the ratio between the
reflected (refracted) wave amplitude and the incident wave amplitude s-polarized
and p-polarized respectively, Fresnel’s equations states that

rs =
n1 cosαinc − n2 cosαtr
n1 cosαinc + n2 cosαtr

rp =
n1 cosαtr − n2 cosαinc
n1 cosαtr + n2 cosαinc

. (4.5)

Defining the reflectance as the fraction of the incident electromagnetic power that
is reflected at an interface, Equation(4.5) leads to the following equations for the
reflectance Rs and Rp for s-polarization and p-polarization respectively

Rs =
∣∣∣∣n1 cosαinc − n2 cosαtr
n1 cosαinc + n2 cosαtr

∣∣∣∣2 Rp =
∣∣∣∣n1 cosαtr − n2 cosαinc
n1 cosαtr + n2 cosαinc

∣∣∣∣2 . (4.6)

It the wave is not polarized the reflectance is R = (Rs +Rp)/2. To summarize,
if a wave propagating in a medium with a given refraction index n1 bounces off
an obstacle with refraction index n2, with incidence angle αi, a power loss of
10 log10R(αinc,n1,n2) [dB] (if the wave is assumed to be non-polarized) has to
be added to the ray’s path loss in Equation 4.4.
Algorithm 6 is the pseudo-code used for tracing a ray departing from the trans-

mitter position pTX with direction u0 and initial power p0. The simulation of the
ray propagation continues until a certain threshold value plim of the signal power
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Algorithm 6: Localization based on location fingerprints.
1 Function traceRay(x0, u0, p0, Z, ε, ∆x, plim)
2 p← p0, x← x0, r ← 0, d← 0
3 while p > plim do
4 x← x + ∆xu
5 d← d+ ∆x foreach o ∈ Z do
6 foreach surface S of o do
7 if given q ∈ S, (x− q) · n < 0 then
8 Ray has hit an obstacle!
9 r ← r+ 1

10 p← p− powerLoss(u, n)
11 u← u− 2(u · n)n
12 Break

13 if No obstacle has been hit then
14 p← p− pathLoss(∆x)
15 if ‖x− pRX‖ < ε then
16 Save the eigenray parameters, e. g. p, u, u0, r

is reached. Notice that the signal simulation does not end if the ray travels near
the receiver position pRX. The function powerLoss(u, n) in Line 10 computers
the power loss due to a reflection: a constant power loss can be assumed, otherwise
it may be a function of the incidence angle αinc derived by ray direction vector
u and the surface normal vector n where the reflection took place; otherwise,
the power loss may be computed according to reflectance calculated as in Equa-
tion (4.6). The function pathLoss(∆x) in Line 14 computes the differential path
loss that results from a propagation of ∆x: Line 14 implements as Equation 4.4.
Given the transmission beam pattern of the transmitter’s antenna, expressed

as PTX(φ, θ) where φ ∈ [0, 2π) is the azimuthal angle and θ ∈ [−π/2,π/2] the
elevation angle, a complete simulation shall be obtained by executing instances
of the ray tracer that spans the ranges of values for φ and θ: the initial power
p0 is set as PTX(φ, θ) (this models the directivity of the antenna) and the ini-
tial direction vector is u0 = (cosφ sin θ, sinφ sin θ, cos θ). The rays that lead to
an actual received power contribution at the receiver (or eigenrays) are identi-
fied as those that propagate sufficiently close to the receiver, i. e. rays such that
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∃i : ‖xi − pRX‖ < ε (ε is a parameter of the ray tracer and should be inversely
proportional to the number of rays that are going to be simulated). These rays
are stored in a list of eigenrays (Line 16) which constitutes the output of the
whole simulation.

Considering eigenrays in the azimuthal plane (φ = 0), an impulsive version
of the AoA spectrum P ∗pRX(φ) can be obtained. If the reception beam pattern
PRX(φ, θ) of the receiver antenna is known, the effective AoA spectrum PpRX(φ)

can be obtained correlating P ∗pRX(φ) with PRX(φ, 0): for directive antennas, this
models the fact that possible side lobes in the reception pattern give a power
contribution as well. For instance, if an isotropic antenna is deployed as the re-
ceiving antenna, then P ∗pRX(φ) assumes a constant value. Obviously, the obtained
AoA spectrum can be exploited as an input for the three localization algorithms
devised. The following Section 4.2 will employ simulated AoA spectra in order to
evaluate the performance of the three algorithms.
Finally, notice that the ray tracer can also be exploited to obtain the PDP at

the receiver position pRX: in fact, each eigenray that has covered a distance d
to reach the receiver gives a power contribution at a time t = d/v, where v is
the propagation speed of the wave (v ' c if the medium is the air). As it will
be clearer later, our algorithms mainly rely on AoA, therefore we will not use
PDP information, and leave extensions of the algorithms that make use of it as
a future work.

4.2 simulation scenario and results

Our simulation scenario consists of a rectangular empty room of size 8.9× 6.3× 3 m.
The reference of the Cartesian coordinate system is placed at the south-western
corner of the room, where the x axis extends towards East and the y axis towards
North. The walls, floor and ceiling are modeled as uniform flat surfaces with a
constant refraction index n2. We set φ0 = π/2, i. e., angles are measured in a
counterclockwise direction starting from the south-to-north direction. The trans-
mitter is located at pTX = (0.2, 0.2, 1)m. We assume the transmitter employs a
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omnidirectional antenna, i. e., PTX(φ, θ) is constant for every value of φ and θ.
Instead, the receiver antenna is modeled as a perfect directional antenna with a
reception beam pattern that can be modeled as PRX(φ, 0) = δ(φ) (δ(x) is the
Dirac delta function, i. e. δ(x) equals 1 if x = 0, 0 otherwise).
We characterize the performance of the three algorithms via two quantities:

• the empirical Cumulative Density Function (CDF) of the Localization Error
(LE), i. e. the function that returns the fraction of estimates with an error
lower than a given value;

• the localization failure probability Pu, i. e. the probability that the localiza-
tion algorithm fails to estimate a position.

For all algorithms, we truncate the set of virtual anchors positions A to A2, i. e.
considering only the virtual anchor nodes up to the second order (µ = 2). This
choice derives from [44] where the authors claim that reflections up to the second
order give a power contribution.
The fingerprinting database D is populated with simulated AoA spectra re-

trieved at the points in the training set F1 = {(1.85+ 1.3k, 1.85+ 1.3n, 1), k =

0, . . . , 4, n = 0, 1, 2}: these constitute a grid of 15 points equally spaced 1.3 m
apart from their nearest neighbors, and centered inside the room. The height of
the measurement points in F1 is the same as that of the transmitter, i. e. 1 m.
We have also simulated the fact that the measurement of the AoA spectrum by

the node to be localized is not ideal, but rather may be affected by errors on the
reference angle φ0 (for example due to a wrong calibration of the compass) and
by errors on the absolute estimates of the AoA of the MPCs (for example, as a
consequence of small changes in the propagation environment, or due to imperfect
beamforming of the phased antenna array at the receiver). This non-ideal behavior
has been simulated according to the Gaussian Angle of Arrival (GAA) model [53]
which assumes the AoA of a multipath component coming from a single scatterer
cluster, e. g. a wall, to be Gaussian-distributed around the direction predicted by
Snell’s law for reflections. Thus, errors on the absolute estimates of the AoA of
the MPCs, for a given position p, are simulated by first estimating the true AoA
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Figure 4.2: Localization error CDF for all algorithms for different values of the MPC
AoA estimation error σ.

spectrum, by extracting the MPC matrix M(p) and by adding a different random
Gaussian-distributed displacement of standard deviation σ to each element of
M(p)

2,: .
The CDF for the LE is graphically reported in Figure 4.2 for the ideal case

where σ = 0 rad = 0° and the non-ideal cases for σ = 0.05 rad = 2.86° and for
σ = 0.2 rad = 11.45°.
In the ideal case where σ = 0°, both the TV and the ADoA algorithms localize

nodes with sub-meter accuracy, where the 90th percentile of the LE is about
0.25 m. In this respect, they consistently outperform FP, which experiences a
double maximum LE and sub-meter accuracy up to the 65th percentile.
For increasing values of σ, the performance of all algorithms degrades. For

σ = 2.86°, ≈ 90 % of TV’s and ADoA’s estimates achieve sub-meter accuracy.
For considerably larger AoA estimation errors, corresponding to σ = 11.45°, loca-
tion estimates become expectedly less accurate, with a median error of ≈ 1.7 m
for both ADoA and TV. Setting σ = 0.1 rad = 5.73° would translate into a
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Table 4.1: The localization failure probability, and the probability of achieving a LE
below 1 m, and for the three algorithms under different values of σ.

Pu P[LE ≤ 1m]

TV ADoA FP TV ADoA FP
σ = 0° 0 0 0 0.984 0.998 0

σ = 2.86° 0.018 0.029 0 0.836 0.912 0
σ = 5.73° 0.107 0.070 0 0.479 0.564 0
σ = 11.45° 0.284 0.147 0 0.208 0.267 0

median LE around 1 m, and has been omitted for clarity in Figure 4.2. For the
TV algorithm, the error increases both because the triangulation step relies on
sufficiently accurate AoA information, and because the estimated AoAs of the
MPCs do not exactly correspond to the virtual anchors in Aµ. For the ADoA
algorithm, instead, angle differences are affected by errors of variance 2σ2, and
negatively affect the estimation of the intersection between the circumferences in
Figure 3.2.
Thanks to the matching operation carried out by the closest pair algorithm (see

Algorithm 4), FP is more robust to high values of σ, and its performance does
not degrade significantly even for σ = 0.2. The LE incurred by TV and ADoA is
lower than that of fingerprinting for σ = 0° and σ = 2.86°, and becomes worse
for σ = 11.45°.
Notice that one of the factors that affects the LE of the FP algorithm is the

cardinality of the training set D: for example, if all the training set points are
spaced by ∆x, assuming that localization maps to the nearest point, the LE may
be up to ∆x/2. Thus, the LE of the fingerprinting algorithm can be improved
by increasing the cardinality of the training set. Related to our simulation, call
F2 = {(1.2 + 1.3k, 1.2 + 1.3n, 1), k = 0, . . . , 6, n = 0, . . . , 3}. By populating D
with the patterns measured at the points of F1∪F2, the error of the FP algorithm
improves to match that of TV and ADoA for σ = 2.86°.
The performance in terms of localization failure probability is reported in Ta-

ble 4.1. In the same table we have also reported the probability that the LE is
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below 1 m, a quantity defined as P[LE ≤ 1m]. Since, the matching operation in
the FP algorithm always permits to localize, it results that Pu = 0 for FP. For TV
and ADoA algorithms, as expected, the localization failure probability increases
for larger values of σ: besides the ideal case in which both the algorithms never
fail, the ADoA algorithm results to be more robust than the TV algorithm, with
a lower value for Pu for the same σ.
Finally, we have devised another simulation which may model the fact that the

user to be localized has an equipment that only provides a discretized version
of the AoA spectrum. For example, this may be the case where the receiver is
made up by a limited number of directional antennas. Thus, we aim to evaluate
the robustness, in terms of LE, and localization failure probability as well, of the
three algorithms if a granularity in the AoA spectrum is present.
To this purpose, Figure 4.3 presents the performance of the TV and ADoA

algorithms when the AoA spectra are sampled with a limited precision ∆φ, for
σ = 0°. The results show that increasing ∆φ causes the increase both of the
average LE and of the probability Pu of being unable to localize a node. Both
the TV and the ADoA algorithms are similarly affected by the increase of ∆φ.
Interestingly, we observe that the average LEs remain lower than 1 m, with Pu <
0.05 for ∆φ ≤ 10°.
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5
EXPERIMENTAL RESULTS

In this chapter we present our experimental evaluation of the localization algo-
rithms. Section 5.1 describes the measurement equipment and the methodology
that we devised to obtain experimental AoA spectra. In Section 5.2 we report the
performance evaluation of the three algorithms when experimental AoA spectra
are employed, and discuss the results with those obtained in Section 4.2.

5.1 equipment and experimental methodology

In order to evaluate the performance of our localization algorithms in the presence
of actual MMW transceivers, we devised a campaign of measurements in an empty
room available at the ground floor of the IMDEA Networks Institute premises1:
the room is numbered 1.23 and it is sized 8.9× 6.3× 3 m for a total of 56.26 m2.
We note that the room size is the same as the one we set for the simulations in
Section 4.2. A plan of the room is reported in Figure 5.1. The reference system is
also set as in Section 4.2, where the origin of the Cartesian coordinate system is
placed at the south-western corner of the room, the x axis extends towards east
and the y axis towards north. Between all the available rooms, we selected this
one in order to guarantee that the LoS MMW signal and its reflections could be

1 The measurement campaign has been carried out in collaboration with the IMDEA Wireless
Networking group, coordinated by Prof. Joerg Widmer.

56.25 m2

8.9 m

6
.3

 m

(0 , 0)
x

y

Figure 5.1: Plan of the the room selected for the campaign of measurements.
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comfortably heard at all locations in the room. In larger rooms, the signal of the
AP would be excessively attenuated, impeding single-AP localization: a solution
may be to exploit a more powerful AP; another solution may be a multiple AP
deployment, since all the three algorithms can be straightforwardly extended to
the latter case.
As a MMW transmitter we employed the Dell D5000 wireless docking station

(see Figure 5.2):2 it is one of the first available off-the-shelf hardware that exploits
MMW frequencies and whose specifications are standardized by the Wireless Gi-
gabit Alliance (WiGig), a trade association that promotes the adoption of wireless
technologies exploiting the 60 GHz frequency band. As for the simulations in Sec-
tion 4.2, the transmitter was placed at the position pTX = (0.2, 0.2, 1)m, i. e.
close to the south-western room corner. As a receiver, we employed the 60 GHz
Vubiq development system3 equipped with a 25 dBi standard gain horn antenna
mounted on an Arduino-controlled rotating stage. An Agilent MSO-X 3034 oscil-
loscope is finally connected to the Vubiq board in order to collect the received
signals and store them in a computer for further processing.
In order to obtain the AoA spectra useful to test the algorithms, we exploited

the D5000 device discovery process. As explained in Section 2.3.2, MMW commu-
nications rely on directive antennas in order to face the high power loss exhibited
at these frequencies: clearly, if the transmitter and the receiver main lobes are
not pointing toward each other, the communication will be very likely compro-
mised, and this is the motivation behind the preliminary phase of the device
discovery. In the case of the D5000 docking station, the device discovery is a pro-
cess defined by the 60 -GHz WiGig protocol: this involves the transmission of 32
discovery frames, each corresponding to a different configuration of the station’s
2×8 phased antenna array. An example of signal received during this process is
shown in Figure 5.4. These device discovery frames are sent periodically every
102.4 ms.

2 http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/
Dell-Wireless-Dock-WiGig-spec-sheet.pdf

3 http://www.admiral-microwaves.co.uk/pdf/vubiq/V60WGD02.pdf
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5.1 equipment and experimental methodology

Figure 5.2: The Dell D5000 wireless
docking station employed
as a transmitter.

Figure 5.3: The Vubiq development system,
equipped with a 60 GHz horn
antenna, employed as a receiver.
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Figure 5.4: Dell D5000’s device discovery frames. Each frame corresponds to a different
configuration of the station’s 2×8 phased antenna array.

The Vubiq system is employed to reveal LoS receptions as well as any MultiPath
Component (MPC) reflected off the boundaries of the room at any given posi-
tion. This is done by redirecting the Vubiq’s down-converted, 1.8 GHz-bandwidth,
modulated signal traces of the analog I/Q output directly into the oscilloscope,
which stores traces for later analysis. The process makes it possible to collect the
voltage amplitude of each of the 32 discovery frames over the azimuthal plane,
for a number of orientations spaced by ∆φ∗ = 3°. This value has been chosen in
order to achieve a reasonable tradeoff between measurement time and accuracy,
and because Figure 4.3 suggests that neither the localization error nor Pu would
be significantly affected. For every orientation, the receiver always captures the
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Figure 5.5: The simulated and experimental AoA spectrum at the position
(5.75, 4.45, 1)m.

same number of frames as in Figure 5.4, with different voltage amplitudes that
depend on the antenna patterns used by the D5000 for each frame, and on how
the MMW signal is reflected off the boundaries and obstacles of the room.
From these traces, the value of the AoA spectrum P (φ) for a given angle φ mul-

tiple of ∆φ is extracted by measuring the voltage amplitude of the strongest frame.
This yields robustness against the presence of small sidelobes in the transmitter’s
pattern. Since parameters such as the impedance of the oscilloscope’s probe were
unknown, and thus it would be impossible to determine the power from the volt-
age amplitude measure, the obtained AoA spectra have been normalized, i. e. the
range of values is [0, 1]. In this case, it is easy to pass from voltage to power
or vice-versa with a square or square root operation, respectively. An immediate
consequence of normalization is that the FP algorithm may be stressed since it
relies on amplitude information as well, unlike TV and ADoA.
Figure 5.5 shows one of the experimental normalized patterns (in gray), mea-

sured at position (5.75, 4.45, 1)m (the point marked by a diamond in Figure 5.6).
We observe that the LoS path between the D5000 and the Vubiq has an AoA
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Figure 5.6: Experimental measurement grid. Black: F1; gray: F2; diamond: measure-
ment point for the AoA spectrum shown in Figure 5.5.

of 125°; strong reflections are detected with AoAs of 35° and 250°, and a weaker
reflection has an AoA of 300°. For comparison, we also plot the normalized AoA
spectrum simulated via ray tracing at the same position (in black), which proves
the very good agreement between simulations and measurements. The recep-
tion beam pattern of the receiver antenna has been modeled as PRX(φ, 0) =

exp
(
− φ2

2s2

)
, s = 0.1. The gaussian shape and the value of the parameter s have

been devised empirically.
Figure 5.7 on page 55 visualizes the pattern in Figure 5.5 placed inside the

room at the measurement position (5.75, 4.45, 1)m (for visualization purposes we
have not considered all the possible VAs). As can be seen, both the simulated and
the experimental AoA spectra are perfectly in agreement with with the MPCs
that would be expected at that position: the NLoS MPCs directions are in ac-
cordance with the position of the VA, of first order (VAs at position ai and aj
both belonging to A1) and second order (VA at position ak ∈ A2). Figures 5.5
and 5.7 further confirm that the devised algorithms are suitable for experimental
data too.
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In order to collect a feasible amount of AoA spectra for performance evaluation,
in a reasonable amount of time, we carried out AoA spectrum measurements at
the 39 grid points shown in Figure 5.6. In the figure, the black and gray points
respectively correspond to the sets F1 = {(1.85 + 1.3k, 1.85 + 1.3n, 1), k =

0, . . . , 4, n = 0, 1, 2} and F2 = {(1.2 + 1.3k, 1.2 + 1.3n, 1), k = 0, . . . , 6, n =

0, . . . , 3} discussed in Section 4.2: the two grids span the room uniformly and
would give a fair performance evaluation since we expect a position-dependent
LE of the algorithms. Moreover, the presence of 2 grids will be useful to build a
training set for the FP algorithm as will be explained in Section 5.2. In addition
to the grid points, we have also carried out some measurements at the 5 extra
locations marked with a star: pA = (2.3, 3.5, 1)m, pB = (2.8, 3.48, 1)m, pC =

(2.3, 4.0, 1)m, pD = (1, 5.9, 1)m and pE = (8.5, 5.85, 1)m. Points pA, pB and
pC were devised in order to test the FP algorithm in out-of-grid points, whereas
points pD and pE were devised in order to test the algorithms in critical positions
such as in the proximity of walls or corners. Finally, we highlight that the room
was empty and free from in-band interference during the whole realization of the
measurement campaign.
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5.2 experimental results

We tested the capability of the TV and ADoA algorithms to correctly localize a
node located at each of the points in Figure 5.6. For the fingerprinting scheme, we
used the measurements at the points in F1 as a training set, whereas those taken
at the points in set F2 and at the points pA, pB, pC, pD and pE were employed
to test the algorithm. As in Chapter 4, we characterized the performance of the
algorithms in terms of the CDF of the localization error and of the probability Pu
that a user cannot be localized. The TV and ADoA algorithms were configured to
consider virtual anchors corresponding to up to either µ = 1 or µ = 2 reflections.
Figure 5.8 shows the CDF of the localization error for all schemes. The best

performance is achieved by the ADoA algorithm with µ = 1, for which ≈ 85 %
of the measurements have sub-meter accuracy. However, as reported in Table 5.1,
Pu = 0.32 in this case. By allowing ADoA to process second-order reflections (µ =

2), only in four cases does the algorithm is unable to localize a node (Pu = 0.09).
Being able to localize in more points, even those that are not localizable with
µ = 1, comes at the cost of larger estimation errors, as the CDF correspondingly
shows sub-meter accuracy in 70 % of the cases.
The TV algorithm also shows lower errors in the µ = 1 case with respect to

the µ = 2 case. This is because in the received power patterns, most of the
time, the strongest peaks are relative to the LoS and the first order reflections.
In any event, the probability of being able to localize a node is better for µ = 2
(Pu = 0.11) than for µ = 1 (Pu = 0.16). The fingerprinting algorithm shows a
higher localization error, although it achieves Pu = 0. This is partly due to the
choice of the measurement points in F2, which were taken at a maximal distance
from the training set points in F1 in order to stress the FP algorithm. However,
from the CDF we infer that about 55 % of the points are localized correctly at one
of the nearest neighbors in the training set, whereas others tend to be localized
farther due to the similarity of the measured AoA spectra. The poor performance
of the FP algorithm is influenced by the normalization process involving the AoA
spectra, as stated in Section 5.1.
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Figure 5.8: Experimental CDF of the localization error for all algorithms for different
values of µ.

Table 5.1: Pu and probability of sub-meter accuracy for all algorithms.

TV TV ADoA ADoA FP
µ = 1 µ = 2 µ = 1 µ = 2

Pu 0.16 0.11 0.32 0.09 0
P[LE ≤ 1m] 0.76 0.70 0.82 0.72 0.57

We conclude our analysis by showing the localization error of TV and ADoA
(µ = 2 in both cases) for each measurement point, and by marking which lo-
cations cannot be identified by each algorithm. These features are rendered in
Figure 5.9 as a circle whose diameter is proportional to the error range. Those
locations where the algorithms fail to estimate a position are indicated with a
cross. Black markers refer to the TV algorithm, whereas gray markers refer to
ADoA. Fingerprinting is not included in this graph due to the poor performance
observed in Figure 5.8. We observe that the largest localization errors are primar-
ily due to the large widths of some arrivals in the measured AoA spectra, which
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make it difficult to accurately estimate the corresponding AoA. Specifically, for
the locations near the transmitter, this is the case for the LoS AoA. Conversely,
the weakness of the received signal and the presence of mainly second-order re-
flections in the AoA spectrum measured at the opposite corner of the room (point
pE) explains why ADoA achieves a large error and TV is unable to localize. By
comparing Figure 5.8 and Figure 4.2, we can also conclude that our measurements
are affected by non-ideal conditions (related to the experimental equipment and
setup) that induce an AoA estimation error with standard deviation on the order
of 0.05 rad = 2.86°.
An interesting observation from Figure 5.9 is that none of TV and ADoA is

successful at all locations, but they complement each other: where one fails, the
other can compute an estimate, the accuracy of which depends on the location
of the failure. In addition, the experimental results in Figure 5.8 suggest that
it would be efficient to implement the algorithms so that they incrementally
increase the cardinality of the anchor set Aµ (and therefore their complexity)
upon localization failures. In fact, for µ = 1, we found that there is a fair chance
to be able to localize a node, and the resulting estimate would help achieve a
very good accuracy; the less accurate but more robust version of the two schemes
(µ = 2) may be invoked only in order to deal with localization failures.
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Figure 5.9: The measurements grid with the related errors in black for the TV algorithm
and in gray for the ADoA algorithm.
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6
CONCLUS IONS AND FUTURE WORK

In this thesis, we developed three different localization algorithms tailored around
the characteristics of MilliMeter Wave (MMW) propagation, and able to localize
a node subject to the presence of only a single Access Point (AP) by exploiting
the AP signal reflections off the bounds of an environment with known geome-
try. One of the algorithms is based on a Triangulate-Validate (TV) procedure,
a second one is based on Angle Difference-of-Arrival (ADoA), and a third one
is based on location Fingerprinting (FP). All algorithms take as input what we
have defined as Angle of Arrival (AoA) spectrum, that is a representation of the
received power as a function of the azimuthal angle. A ray tracer tool has been
developed in order to simulate AoA spectra in a user-defined environment. A per-
formance evaluation has been carried out based on the simulated AoA spectra
devising two quantities: the Localization Error (LE) which can be easily evaluated
via its Cumulative Density Function (CDF), and the localization failure proba-
bility Pu. The ADoA algorithm resulted to be slightly more precise than the TV
algorithm in the ideal case where the estimation of the AoA of the MultiPath
Components (MPCs) is perfect; in this case, FP was outperformed by the other
two algorithms: anyway, an improvement of the LE for the FP algorithm can
be obtained increasing the training set cardinality. Introducing a zero mean and
σ2-variance normally-distributed error on the AoA estimation representing, e. g.,
incorrect beamforming, we concluded that, in general, the three algorithms are
negatively affected. However, in this case FP resulted to be more resilient than
TV and ADoA algorithms, and achieved a lower LE for values of σ > 0.1. We also
evaluated the feasibility of the TV and ADoA algorithms when the AoA spectrum
is sampled only once every ∆φ [rad]: the algorithms performed similarly, both in
terms of LE and localization failure probability. From the simulation we devised
the value of ∆φ∗ = 3° as a good tradeoff to experimentally measure the AoA
spectra exploiting a standard 60 -GHz commercial hardware, such as the Dell
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conclusions and future work

D5000 docking station and the Vubiq development system. Experimental results
showed that, unless a large error affects AoA estimations, the algorithms achieve
sub-meter accuracy with high probability, and feature a very low probability of
localization failure. We finally observed that there is no absolute winner among
the three algorithms, in that when one of them fails to localize, the others tend
to succeed.

6.1 future work

The following is a list of possible future extensions that do not require the algo-
rithms to be substantially modified. A natural continuation of the work would
be to implement the algorithms in a mobile terminal. This translates to develop
a unit able to continuously detect MPCs and finally extract a real time location
estimate. Also, it would be interesting to implement the MUSIC or the ESPRIT
algorithms to retrieve AoA information. Another interesting straightforward work
would be to test the algorithms in the presence of double or multiple APs: this
may be devised as a solution for localization in larger rooms, where a single AP
would not be suitable to guarantee a sufficient number of MPCs. The addition of
further APs is transparent to the TV and ADoA algorithms since it only trans-
lates into populating the partition subset A0 with the positions of the multiple
APs. This leads wider population of the set of virtual anchor nodes positions
Aµ, for a given reflection order µ. A work aimed at strengthening the algorithms
would be to take into account also Time of Arrival (ToA) and/or Time Differ-
ence of Arrival (TDoA) information. For example, for both TV and ADoA, time
information may rule out some of the MPC↔Virtual Anchor (VA) associations,
before having to try them. For the FP, the training may be extended to contain
fingerprints based on AoA spectra as well as time information.
A future work where the TV and ADoA shall be revised is the following:

presently, the algorithms permit to localize a node inside a room with known
geometry, and a single AP with known location. The assumptions may be re-
versed: if we know the initial user position inside the room it should be possible
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6.1 future work

to determine the AP position and the room geometry. Initial guesses for the trans-
mitter position may be done considering the strongest MPC that is likely coming
from the transmitter. Then, based on the other MPCs, it should be possible to
infer the position of the VAs. Finally, from the deployment of the transmitter and
the related VAs, the room size and geometry may be devised.
In the remainder of this section we analyze related problems and discuss pos-

sible solutions about the actual scheme of the algorithms. First of all, the condi-
tions in which we tested the algorithms were quasi-ideal: the experiments room
was empty and free from signal interference. A further study would be necessary
to test the algorithms’ performance in the presence of furniture: a typical office
environment presents a lot more obstacles than the walls, ceiling and floor we
considered, thus unexpected MPCs may appear, and other expected MPCs may
be shielded away from the receiver. This alters the localization process, possibly
leading to localization errors. Certainly, when facing the presence of more obsta-
cles that may cause unexpected reflections, a solution would be to populate the
set Z with those objects, but this would lead to an exponential growth of the
virtual anchor subsets’ cardinality, impacting the complexity of the algorithms.
Thus, a preliminary study may be carried out by simulating the algorithms per-
formances over AoA spectra where MPCs are removed or randomly added. Based
on the obtained results, it would be possible to devise a characterization of the
obstacles that really need to be taken into account and added to Z.
Apart from the furnished case, unexpected MPCs may appear if the receiver

is equipped with a non-perfectly directional antenna, i. e., with sidelobes. To
better understand the problem we devise the following example: let the receiver
antenna has a reception beam pattern with a main lobe and two smaller sidelobes;
if no MPCs reach the antenna in the main lobe direction, there may be a power
contribution as well if some MPC reaches the other two sidelobes; this means
that, for a given direction, we are sensing a MPC that, in reality, does not exits,
and clearly, this may lead to localization errors. A possible solution to this would
be to estimate the reception beam pattern of the antenna and perform a sort of
decorrelation with the measured AoA spectrum.
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Another non-ideal case may be the presence of time-varying MPCs. This may be
the consequence of people or objects moving inside the environment. The problem
could be mitigated by exploiting the temporal correlation between AoA spectra.
Another study related to temporal correlation would be movement estimation:
the variation of the MPCs may be exploited in order to track a user inside the
room and also strengthen the localization estimate thanks to the correlation. To
this purposehre, the employment of a Kalman Filter (KF) shall be considered.
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ACRONYMS

µW microwave

ADoA Angle Difference-of-Arrival
AoA Angle of Arrival
AP Access Point

CDF Cumulative Density Function
CIR Channel Impulse Response

EHF Extremely High Frequency
EKF Extended Kalman Filter

FP Fingerprinting

GPS Global Positioning System

IoT Internet of Things
IPS Indoor Positioning System
ITU International Telecommunication Union

KF Kalman Filter

LE Localization Error
LoS Line of Sight

MIMO Multiple-Input Multiple-Output
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acronyms

ML Maximum Likelihood
MMW MilliMeter Wave
MPC MultiPath Component
MUSIC MUltiple SIgnal Classification

NLoS Non-Line of Sight

OFDM Orthogonal Frequency Division Multiplexing
OTDoA Observed Time Difference of Arrival

PAP Power Amplitude Profile
PDP Power Delay Profile
PF Particle Filter
PHY PHYsical layer

RF Radio Frequency
RSS Received Signal Strength

SHF Super High Frequency

TDoA Time Difference of Arrival
ToA Time of Arrival
TV Triangulate-Validate

UE User Equipment
UWB Ultra Wide Band

VA Virtual Anchor

WiFi Wireless Fidelity
WLAN Wireless Local Area Network
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Twenty years from now you will be more disappointed
by the things that you didn’t do than by the ones you did so.

So throw off the bowlines. Sail away from the safe harbor.
Catch the trade winds in your sails. Explore. Dream. Discover.

— Mark Twain
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