987 research outputs found

    mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

    Get PDF
    We present the R-package mgm for the estimation of k-order Mixed Graphical Models (MGMs) and mixed Vector Autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package

    A novel chaotic time series prediction method and its application to carrier vibration interference attitude prediction of stabilized platform

    Get PDF
    Aiming at the problems existing in previous chaos time series prediction methods, a novel chaos times series prediction method, which applies modified GM(1,Β 1) model with optimizing parameters to study evolution laws of phase point L1 norm in reconstructed phase space, is proposed in this paper. Phase space reconstruction theory is used to reconstruct the unobserved phase space for chaotic time series by C-C method, and L1 norm series of phase points can be obtained in the reconstructed phase space. The modified GM(1,Β 1) model, which is improved by optimizing background value and optimizing original condition, is used to study the change law of phase point L1 norm for forecasting. The measured data from stabilized platform experiment and three traditional chaos time series are applied to evaluate the performance of the proposed model. To test the prediction method, three accuracy evaluation standards are employed here. The empirical results of stabilized platform are encouraging and indicate that the newly proposed method is excellent in prediction of chaos time series of chaos systems

    Robust predictive tracking control for a class of nonlinear systems

    Get PDF
    A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a class of nonlinear SISO systems. To improve the control performance, the RPTC architecture mainly consists of a robust fuzzy PID (RFPID)-based control module and a robust PI grey model (RPIGM)-based prediction module. The RFPID functions as the main control unit to drive the system to desired goals. The control gains are online optimized by neural network-based fuzzy tuners. Meanwhile using grey and neural network theories, the RPIGM is designed with two tasks: to forecast the future system output which is fed to the RFPID to optimize the controller parameters ahead of time; and to estimate the impacts of noises and disturbances on the system performance in order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map (FGCM)-based decision tool is built to regulate the RPIGM prediction step size to maximize the control efforts. Convergences of both the predictor and controller are theoretically guaranteed by Lyapunov stability conditions. The effectiveness of the proposed RPTC approach has been proved through real-time experiments on a nonlinear SISO system

    A Tutorial on Estimating Time-Varying Vector Autoregressive Models

    Get PDF
    Time series of individual subjects have become a common data type in psychological research. These data allow one to estimate models of within-subject dynamics, and thereby avoid the notorious problem of making within-subjects inferences from between-subjects data, and naturally address heterogeneity between subjects. A popular model for these data is the Vector Autoregressive (VAR) model, in which each variable is predicted as a linear function of all variables at previous time points. A key assumption of this model is that its parameters are constant (or stationary) across time. However, in many areas of psychological research time-varying parameters are plausible or even the subject of study. In this tutorial paper, we introduce methods to estimate time-varying VAR models based on splines and kernel-smoothing with/without regularization. We use simulations to evaluate the relative performance of all methods in scenarios typical in applied research, and discuss their strengths and weaknesses. Finally, we provide a step-by-step tutorial showing how to apply the discussed methods to an openly available time series of mood-related measurements

    A novel robust predictive control system over imperfect networks

    Get PDF
    This paper aims to study on feedback control for a networked system with both uncertain delays, packet dropouts and disturbances. Here, a so-called robust predictive control (RPC) approach is designed as follows: 1- delays and packet dropouts are accurately detected online by a network problem detector (NPD); 2- a so-called PI-based neural network grey model (PINNGM) is developed in a general form for a capable of forecasting accurately in advance the network problems and the effects of disturbances on the system performance; 3- using the PINNGM outputs, a small adaptive buffer (SAB) is optimally generated on the remote side to deal with the large delays and/or packet dropouts and, therefore, simplify the control design; 4- based on the PINNGM and SAB, an adaptive sampling-based integral state feedback controller (ASISFC) is simply constructed to compensate the small delays and disturbances. Thus, the steady-state control performance is achieved with fast response, high adaptability and robustness. Case studies are finally provided to evaluate the effectiveness of the proposed approach

    Icing thickness prediction model for overhead transmission lines

    Get PDF
    Failures in a large electric power system are often inevitable. Severe weather conditions are one of the main causes of transmission line failures. Using the fault data of transmission lines of Shaanxi Power Grid from 2006 to 2016, in conjunction with meteorological information, this paper analyses the relationship between the temporal-spatial distribution characteristics of meteorological disasters and the fault of transmission lines in Shaanxi Province, China. In order to analyze the influence of micro-meteorology on ice coating, a grey correlation analysis method is proposed. This thesis calculates the grey relational between ice thickness and micro-meteorological parameters such as ambient temperature, relative humidity, wind speed and precipitation. The results show that the correlation between ambient temperature, wind speed and ice thickness is bigger than others. Based on the results of grey correlation analysis, a Multivariate Grey Model (MGM) and a Back Propagation (BP) neural network prediction model are built based on ice thickness, ambient temperature and wind speed. The prediction results of these two models are verified by the case of ice-coating of Shaanxi power grid. The results show that the prediction errors of the two models are small and satisfy the engineering requirement. Then a realistic case is carried out by using these two models. An icing risk map is drawn according to the results

    Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage ( Brassica rapa L. ssp. pekinensis )

    Get PDF
    Abstract Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. Genetic dissection of leaf mineral accumulation and tolerance to Zn stress is important for the improvement of the nutritional quality of Chinese cabbage by breeding. A mapping population with 183 doubled haploid (DH) lines was used to study the genetics of mineral accumulation and the growth response to Zn. The genetic map was constructed based on 203 AFLPs, 58 SSRs, 22 SRAPs and four ESTPs. The concentration of 11 minerals was determined in leaves for 142 DH lines grown in an open field. In addition shoot dry biomass (SDB) under normal, deficient and excessive Zn nutritional conditions were investigated in hydroponics experiments. Ten QTLs, each explaining 11.1ΒΏ17.1% of the Na, Mg, P, Al, Fe, Mn, Zn and Sr concentration variance, were identified by multiple-QTL model (MQM) mapping. One common QTL was found affecting SDB under normal, deficient and excessive Zn nutritional conditions. An additional QTL was detected for SDB under Zn excess stress only. These results offer insights into the genetic basis of leaf mineral accumulation and plant growth under Zn stress conditions in Chinese cabbag

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of β€œAlgorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Grey diffenrential equation modeling on stock prices

    Get PDF
    Includes bibliographical references (leaves 110-111)
    • …
    corecore