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Abstract—This paper aims to study on feedback control 
for a networked system with both uncertain delays, packet 
dropouts and disturbances. Here, a so-called robust 
predictive control (RPC) approach is designed as follows: 
1- delays and packet dropouts are accurately detected 
online by a network problem detector (NPD); 2- a so-called 
PI-based neural network grey model (PINNGM) is 
developed in a general form for a capable of forecasting 
accurately in advance the network problems and the 
effects of disturbances on the system performance; 3- 
using the PINNGM outputs, a small adaptive buffer (SAB) is 
optimally generated on the remote side to deal with the 
large delays and/or packet dropouts and, therefore, 
simplify the control design; 4- based on the PINNGM and 
SAB, an adaptive sampling-based integral state feedback 
controller (ASISFC) is simply constructed to compensate 
the small delays and disturbances. Thus, the steady-state 
control performance is achieved with fast response, high 
adaptability and robustness. Case studies are finally 
provided to evaluate the effectiveness of the proposed 
approach. 
 

Index Terms—Networked control system, time delay, 
state feedback control, predictor, neural network, buffer. 

I. INTRODUCTION 

ETWORKED control systems (NCSs) are spatially 

distributed systems, in which actuators and sensors at the 

plant side are connected to a controller at the remote side. Due 

to having many advantages over the traditional control 

schemes via point-to-point wiring, NCSs have been deploying 

worldwide in various applications, such as power grids, 

transportation systems, teleoperation or remote systems. 

However for practical uses of NCSs, the most important 

issues are network-included random time-varying delays and 

packet dropouts which deteriorate the control performances 

and, easily cause the instability [1], [5], [25], and [29]. 

Generally, time delays can be classified into three 

components: computation delays at the controller and 

communication delays at the forward and backward channels. 

Many studies in literature addressed stability of NCSs with 

delay problem only [1]-[6]. Here, the controller designs were 

depended on the assumptions in which the time delay was 

constant [1], bounded [2]-[5] or had a probability distribution 

function [6]. Other researchers focused on analyzing time 

delay problem at communication channels to evaluate its 

effects on the system performances as well as to compensate 

these undesirable effects [7] and [8]. For NCSs with large 

delays, a new control concept based on variable sampling 

periods using neural network or prediction theories has been 

recently adopted [9]-[11]. Nevertheless, the observation of real 

delay data to train and construct the NCSs was not 

appropriately discussed in these studies. To solve this problem, 

an advanced variable sampling period control concept has 

been developed for systems containing random delays [29]. 

The effectiveness of this concept in accurately detecting and 

predicting the delays without requiring a training process was 

proved through real-time experiments. 

To adapt NCSs to not only time delays but also packet 

dropouts, many important methodologies, such as predictive 

control [12]-[16], adaptive control [17], [18], hybrid control 

[18], and robust control [19]-[26], were proposed. In an early 

study with unknown networked systems [18], the randomly 

missing output feature was considered and modelled as a 

Bernoulli process and the Kalman filter-based adaptive control 

scheme was successfully conducted to estimate both the 

missing output measurements and system parameters. For 

systems with network problems existing on both the forward 

and backward channels, Markov chains were employed to 

model the delays and packet dropouts and, subsequently, 

incorporated into the well-known two-mode-dependent state 

feedback controller in the general and practical way [20]. The 

robust stability of this control method was significantly 

improved through the implementation of the H2 and H∞ norms 

to perform the robust H2 and robust mixed H2/H∞ 

two-mode-dependent controller [21], [22]. Several studies also 

developed the robust controllers based on the other advanced 

concepts, in which the network delays are presented in the 

general form and bounded by both upper and lower limits to 

reduce the conservatism problem [23]-[25]. Or, the integral 

action was used to compensate the nonzero disturbance issue 

[25]. By using these techniques, the NCS performances were 

remarkably improved over the traditional methods. However 

in most studies, delays and packet dropouts were assumed to 

be priorly known and bounded to design the controllers. The 

complex control designs to deal with both the communication 

problems and disturbances also restrict their applicability. 

Another trend to improve networked control performances is 

known as control based on efficient networks with adaptive 
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buffers [27] or with a compensation strategy [28]. Although 

these methods could achieved good control results, the 

applicability may be limited because of the complex network 

designs. Furthermore, the uses of fixed sampling period and 

dynamic buffers with large sizes at both channels could limit 

the control performances. Additionally, delays due to a 

complex computation of a control system is another important 

factor affecting directly on the performance, especially in 

NCSs [29]. Recently, a robust control approach named 

RVSPC [36] developed from [29] has been proposed as a 

feasible solution to address all of these problems. Its 

controllability has been clearly proven through both 

simulations and real-time experiments. Although the results 

are remarkable, the RVSPC still remains some open problems: 

 The robust state feedback control module is basically 

designed for a linear NCS of which the system state is 

clearly known. It is actually not easy to be achieved in 

practical applications where most of system states are 

time-variant. In addition, disturbance cancelation are not 

considered in this control module design; 

 With the use of ZOH for updating instants, the control 

performance may be degraded or even, unstable when 

existing long delays and/or high packet loss rate on the 

communication channels; 

 The role of grey model-based prediction is limited to only 

switch between the control modules and to vary the 

sampling period. 

In order to overcome these drawbacks as well as to improve 

the control quality, this study aims to develop a novel robust 

predictor control (RPC) approach based on the advantages of 

the previous studies, [29] and [36], to deal with networked 

systems included both of three delay components and packet 

dropouts. The merit of the RPC can be expressed as bellows:  

1- Different from [36], and other studies on network analysis, 

delays and packet dropouts are quickly and accurately 

detected online by a network problem detector (NPD) using a 

new rule to detect network problems. 

2- Developed from [29] and [36], a so-called PI-based neural 

network grey model (PINNGM) is robustly constructed in a 

general form for a capable of forecasting precisely in advance 

the network problems and impacts of disturbances on the 

system response. 

3- Using the NPD and PINNGM, a hybrid time-event-driven 

scheme is derived to avoid long delays during the 

communication. 

4- Different from other networked control techniques normally 

using ZOH or larger buffers, a small adaptive buffer (SAB), of 

which the buffer size is online optimized based on the 

PINNGM, is generated on the plant side to compensate packet 

dropouts on the forward link. 

5- By using the PINNGM and SAB, an adaptive 

sampling-based integral state feedback controller (ASISFC) is 

built with four advanced characteristics: 

- To compensate packet dropouts on the forward channel, 

sk-step-ahead control technique is suggested to combine with 

the SAB to produce the control input in time; 

- To compensate packet dropouts on the backward channel, a 

state observer is employed; 

- To compensate the estimated influences of disturbances, an 

integral term is added to the state feedback control algorithm; 

- To avoid the conservatism as well as to save the 

computational time in producing the control input online, a set 

of the control gains is pre-derived for a set of system states 

with small delay regions and then, stored in a look-up table. 

As a result, the steady-state control performance is 

guaranteed with high adaptability and robustness. The rest of 

this paper is organized as follows. Section II introduces the 

concerned problem. The RPC architecture is shown in Section 

III. The design procedures for the PINNGM and ASISFC are 

presented in Section IV and Section V, respectively. 

Experiments are provided and discussed in Section VI. Finally, 

we conclude the paper in Section VII. 

II. PROBLEM DESCRIPTION 

A generic system without delays can be described as: 

( 1) ( ) ( )

( 1) ( )

x k Ax k Bu k

y k Cx k

  


 
  (1) 

where ( ) , ( ) and ( )mx mu my
k k kx k x R u k u R y k y R     

 
denote the state vector, control input and system output, 

respectively; A, B and C are known matrices. Without loss of 

generality, the reference r(k) is assumed to be zero. 

 Remark 1: The RPC scheme is developed for system (1) 

over an imperfect network with following issues: 

 , ,andca sc com   in turn denote communication delays on 

forward and backward channels, and computation delay. 

The computation delay can be bounded, com com

k  . Two 

threshold values, andca sc  , are used to classify delays in 

which large delays are treated as packet dropouts: 

1

or Smalldelay

or Packet dropout

= + ;

ca ca sc sc
k k

ca ca sc sc
k k

sc com ca
k k k k

   

   

   

   



  




 (2) 

 “Virtual” switches, Sca and Ssc, in turn represent the packet 

dropouts in the forward and backward channels: ca
kS  (or 

sc
kS ) is opened (=1) when a packet loss event exists; 

andca sc
k kp p denote the numbers of continuous packet 

dropouts on forward and backward channels up to step kth. 

 The sensors are time-driven with a variable sampling period 

Tk. This period is online regulated in advance to ensure that 

it covers the total system delay in (2), k kT  ; 

 The controller and actuators are hybrid time-event-driven. 

They are event-driven if the delays satisfy (2); otherwise, 

they are time-driven to avoid the packet dropout problem. 

III. ROBUST PREDICTIVE CONTROL APPROACH 

A generic NCS architecture using the proposed RPC 

scheme is depicted in Fig. 1. Generally, the desired tasks 

consists of a main task to control system (1) (including n 
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actuators and n sensors) using the RPC and, other execution 

tasks which cause unavoidable computation delays. The RPC 

mainly consists of five modules: NPD detector, 

PINNGM-based predictor, variable sampling period adjuster 

(VSPA), SAB buffer and ASISFC controller. 

A. NPD Detector 

The NPD is to detect online accurately both the time delays 

and packet dropouts based on (2) and then, to support these 

information to the other control modules. 

Remark 2: using the same hardware and logics developed in 

[36], the NPD employs the PIC18F4620 MCU (from 

Microchip) equipped with the 4-MHz oscillator and the 

embedded time stamp-based detection logic to manage the 

networked system. Thus, real-time measurement accuracy 

is 50 s [36] and, the NDP outputs for each step are the delay 

set,{ , , }ca sc com
k k k   , and packet dropout set,

 
{ , }ca sc

k kp p . 

Based on Remark 1, the controller and actuators are 

selected as time or event -driven according to the real-time 

measurement using the NDP and condition (2). Thus, it is 

possible to use a so-called hybrid period TC (or TA) to 

represent the driven state of the controller (or actuators).  

From Remark 2, TC and TA can be derived as 

   

   1

min , min ,

min , min ,

;

C com ca ca sc sc d

k k k k

A sc sc com ca ca d

k k k k

d com ca sc

T

T

     

     

   



    



   


  

 (3) 

B. PINNGM-Based Predictor 

Grey model is known as a feasible solution for online 

prediction while requiring only a few historical data about the 

predicted object [29]-[36]. Although the AGM(1,1) proposed 

in [36] could overcome all drawbacks of typical grey models, 

it requires the fuzzy control knowledge from the user once 

employing this model for each specific application. In this 

study, a grey model is efficiently developed in a general form 

of first order – N variables and denoted as PINNGM(1,N). 

Remark 3: The PINNGM is developed with following 

characteristics: 

 The model is able to forecast any random time-series data 

by using a simple data conversion with additive factors. 

 A recurrent signal is integrated as a model input to exhibit 

the dynamic temporal behavior. 

 The model consists of a main grey model, tagged as 

MGM(1,N), and a proportional-integral (PI) -based neural 

network weight tuner, tagged as PINNWT. 

 Lyapunov stability constrain is used to guarantee the robust 

prediction. 

Network

           T(k)

Desired 

Tasks 

y(k)

Disturbances

Plant

Other Tasks

ASISFC (TC(k))-
+

ca 

sc 

d(k)

PINNGM

VSPA NDP

Sca

Sensor 1

Sensor nMCU

Ssc

com 

D r(k+1)

Actuator 1

Actuator n

SAB

(TA(k),

BS(k))

TC(k)

TA(k) 
BS(k)

T(k)

RPC-based 

Controller

y(k)

yD(k)

 
Fig. 1.  A generic NCS architecture using proposed RPC approach. 

As stated in the Introduction and from Fig. 1, the 

PINNGM(1,N) is employed with two main functions:  

 First, to perform sk-step-ahead prediction of the system 

delays, { , , }
s s s

com ca sa

k i k i k i     , and packet dropouts, 

ˆ{ }, 1,...,s
s

ca
k i s kp i  where sk is defined as: 

 

2

ˆmin at which 0; 2,3,...

k

ca

k k i

s

s i p i




  
 (4) 

These predicted values are used to set the sampling period 

for the sensors and the size of the SAB buffer.  

 Second, to estimate the current system response (when 

existing a packet dropout on the backward channel) as well 

as the sk-step-ahead responses. This information is then fed 

into the ASISFC to derive in advance the sk-step-ahead 

control inputs to compensate the packet dropouts on the 

forward channels. 

C. VSPA Adjuster 

Based on Remark 1, it is necessary to regulate the sensors’ 

sampling period synchronously with the delays defined by (2). 

By considering the system process time constant as Tp, the 

sampling period for a future step (k+is)th is defined based on 

the PINNGM and a MAX-MIN rule as 

   

 

0 0

0 1

0 0

, /

ˆ ˆ ˆmax ,min , min ,

0.1 , is initial sampling period

s

s s s

k i T T new

sc sc com ca ca

new k i k i k i

p

T k T k T T

T T

T T T

    



   

    

   
 



 (5) 

where *   is ceiling function to return nearest integer value. 

Meanwhile, the hybrid periods, TC (or TA), are estimated in 

advanced in order to perform the sk-step-ahead control: 

   

   1

ˆ ˆ ˆ ˆmin , min ,

ˆ ˆ ˆ ˆmin , min ,

C com ca ca sc sc d

k k k k

A sc sc com ca ca d

k k k k

T

T

     

     

    


   

 (6) 

D. SAB Buffer 

To eliminate forward packet dropout effect, the SAB is only 

utilized at the plant side. Selection of the buffer size (BS) 

affects directly on the control performance. With the ZOH, the 

controlled system is difficult to follow the desired goal when 

there is a large number of forward packet dropouts. On the 

contrary, the control performance becomes poor when using a 

large size buffer (designed for the worst network state). Thus, 

the key principle here is to optimize online the buffer size SB 

based on the PINNGM to store enough commands to drive the 

actuators during each ca
kp continuous forward packet dropouts. 

For each working step, the commands for actuators are then 

extracted from the SAB following the first-in-first-out rule.  

The procedure to tune the SAB size can be described as: 

Initial step: Define the minimum size of the SAB, BSmin. In 

this case, it is selected as, BSmin = min(sk)= 2. Then, set the 

initial size of the SAB: BS0 = BSmin. 

Step 1: For each step (k+1)th at the controller side, based on 

the sk-step-ahead prediction to: 

 Assign value of BSk+1 = sk; 
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 Generate a set of time-stamped control 

inputs, 1{ ,..., }
kk k su u  using the ASISFC.  

Step 2: For each step (k+1)th at the plant side:  

 If a new package sent from the controller is arrived: 

+ Re-size the SAB with the new size BSk+1.  

+ Update the new control inputs and store in the SAB. 

 Extract data from the SAB to drive the actuators based on 

the first-in-first-out principle. 

E. ASISFC controller 

The ASISFC takes part in driving the actuators to reach the 

desired target. As mentioned above, the packet dropout 

problem is compensated by the use of NDP, PINNGM and 

SAB with sk-step-ahead control technique. Thus, the ASISFC 

is designed to address only the small delays defined by (2) 

with following characteristics: 

 The state feedback control algorithm is used to generate the 

main control input; 

 An integral term is added to the control algorithm to 

compensate the bad effects of disturbances. 

 A state observer is implemented to adapt to the time variant 

system states. 

 Based on the threshold values of small delays, a set of the 

control gains is pre-derived for a set of system states with 

small delay regions and stored in a look-up table.  

IV. PINNGM-BASED PREDICTOR 

A. Main Grey Model MGM(1,N) 

This section is to generate a grey model between N relevant 

objects (or characteristics), 
1 2

{ , ,..., }
Nobj obj objy y y , of a system. 

Without loss of generality, object 1st is assumed to be the 

object which needs to be estimated based on a historical data 

set of the relevant objects. The procedure to predict this object 

using the MGM(1,N) can be designed with following steps: 

Step 1: Prepare an input grey sequence for each object obji: 

 Update the data sequence with the newest values: 

 1 2( ), ( ),..., ( ) ; 1,..., ; 5.
i i iobj O obj O obj Omy t y t y t i N m   (7) 

 Define corresponding raw input grey sequences as 

        0 0 0 0

1 2( ), ( ),..., ( ) ; 1,..., ; 5.
i i i iraw raw raw raw ny y t y t y t i N n    (8) 

 Define a data distribution checking condition: 

   

 

1

1 1 1

/ 2; ; 2,...,

; : previous time stamp of ;
i

Oi MGM Oi Oi O i

O O Olast Olast obj O

t T t t t i m

t t t t y t


      

  
 (9) 

here TMGM is the desired prediction sampling period; 

 If (9) is satisfied, then update directly sequence (8) as the 

(7); Otherwise, sequence (8) is created as sequence (10) 

with approximately equal time intervals based on sequence 

(7) and the spline function, SP, introduced in [36]: 
             

 

0 0

1 1 1

1

; ; ;

1,..., ; 2,..., ; / ; j 1,..., 1;

i i iraw obj O raw k k Oj Oj k O j

Om O MGM

y t y t y t SP t t t t t

i N k n n t t T m


    

       

 (10) 

here *   is floor function to return nearest integer value. 

 To exhibit the dynamic temporal behavior of the model, a 

recurrent signal as the current-step predicted value of the 

predicted object,
   

1

0ˆ
raw ny t


, is generated and added to its 

sequence
   0

raw ny t  to become: 

              
1 1 1 1

0 0 0 0

1 2
ˆ, ,..., ; 5.raw raw raw raw nY y t y t y t n


   (11) 

Remark 4: By adding two non-negative factors c1 and c2 

derived by Theorem 1 in [36], sequence (11) satisfies the two 

checking conditions of a grey model: positive sequence and 

quasi-smooth – quasi-exponential law checking condition. 

 Generated a grey sequence (12) using Remark 4: 

              
       

1

0 0 0 0

1 2

0 0

1 2

, ,..., 0; 5

; 1,..., .

n

k raw k

y y t y t y t n

y t Y t c c k n

  

   
 (12) 

Step 2: Generate a new series y(1) by generating from y(0): 
       

  

1 0

1

1 21

, 1,2,...,

.

k

i ii

k

raw i ii

y k y t t k n

Y t c c t





  

   




 (13) 

Step 3: Create the background series z(1) from y(1) as 
           1 1 11 2

1 ; 2,...,k k k k kz t w y t w y t k n    (14) 

where 1 2,k kw w is a weight factor set which is designed as 

    

     

1

1 1 2 1 2

2

1 1 2 1 2

0.5 1 1 1

0.5 1 1 1

PINN PINN

k k k

PINN PINN

k k k

w w w

w w w

    

    

      


     

 (15) 

where 0 1PINN

kw   is derived using the PINNWT tuner; 

1 2{ , }   is a set of activated factors and defined as 

           
           

1 1 1

1 1 1

0 0

1 1

0 0

1 2 1 1

{1,0},IF : ;

{ , } {1,1},IF : ;

{0,1},Others.

raw k k raw k obj k

raw k obj k raw k k

y t SP t y t y t

y t y t y t SP t 

 

 

  

  




 (16) 

Step 4: Establish the grey differential equation 

           0 1

3 1 3

2

1 .
i

N

k k i raw k

i

y t az t b b y t 


      (17) 

where
3 is an activated factor which is enabled (or 1) when 

N=1, and vice versa.   

By employing the least square estimation ([30],[36]), one has: 

1

1
ˆ ˆˆ ˆ ( )

T
T T

ab Na b b B B B Y   
 

 (18) 

where 

           

           

           

2

2

1

2 3 3 2 3 2

1

3 3 3

0 0 0

2 3

1 1

,

1 1

.

N

N

raw raw

n raw n raw n

T

n

z t y t y t

B

z t y t y t

Y y t y t y t

  

  

   
 

  
 
    

 
 

  

Step 5: The MGM(1,N) prediction is then setup as: 

   
         11 2

3 1 3 1
0 2

1

ˆ ˆ ˆ1

ˆ .
ˆ1

i

N

i raw k k k k

i
k

k k

b b y t a w w y t

y t
w a t

  



   


 


 (19) 

 

Step 6: Combining (19), (13) and (12), the predicted value 
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of
1objy at step (k+pk)th can be computed as 

       
1

0 0

1 2
ˆ ˆ

k kraw k p k py t y t c c   
 

(20) 

where pk is the step size of the grey predictor. 

B. PINNWT Tuner and MGM(1,N) Stability Analysis 

By considering the prediction of
1objy using the MGM(1,N) 

as a tracking control problem with the control input is PINN

kw (in 

(15)), it is possible to derive a robust controller to enhance the 

robust prediction of this model. Here based on Remark 3, the 

PINNWT controller is designed with a Lyapunov stability 

condition to regulate the ‘control input’ PINN

kw . 

Here, the PINNWT consists of three layers: an input layer 

as a prediction error sequence 1 1{ ,..., }MGM n

k k ke e e  , 

       0 0ˆi

k raw i raw ie y t y t  , a hidden layer with two nodes, P and I, 

following PI algorithm, and an output layer to compute the 

weight factor, PINN

kw . Define{ , }Pi Ii

k kw w is a weight vector of the 

hidden nodes with respect to input ith, and { , }P I

k kw w is the 

weight vector of the output layer. Therefore, the output from 

each hidden node is derived based on PI algorithm: 
1

1

1

1 1

:NodeP

:Node I

nP Pi i

k k ki

nI I Ii i

k k k ki

O w e

O O w e







 

 


 




 (21) 

Then, the output from the network or the control input for 

‘plant’ MGM is obtained using sigmoid activation function: 

   
1

1 ,
NN
kOPINN NN NN P P I I

k k k k k k kw f O e O w O w O



      (22) 

In order to ensure the robust prediction, the 

back-propagation algorithm based on the Lyapunov stability 

condition is used to tune the PINNWT. Define a prediction 

error function as 

          
1 1

2 21 10 0

1 1
ˆ0.5 0.5 .

n nMGM i
k i i kraw rawi i

E y t y t e
 

 
     (23) 

Thus, the weight factors of the PINNWT are online tuned 

for each step, (k+1)th, as follows: 
/ / / /

1

/ / / /

1

/

/

P I P I P I MGM P I

k k k k k

Pi Ii Pi Ii Pi Ii MGM Pi Ii

k k k k k

w w E w

w w E w









    


   

 (24) 

where / /,P I Pi Ii

k k  are learning rates within range [0,1]; the 

other factors in (24) are derived using the partial derivative of 

the error function (23) with respect to each decisive parameter 

and chain rule method [37]. 

Theorem 1: By selecting properly the learning 

rates / /Pi Ii P I

k k k    for step (k+1)th to satisfy (25), then the 

stability of the PINNGM prediction is guaranteed. 

 
1 2

1
0.5 0

n i

k k k ki
e F F 




   (25) 

with 
1

1

.
j MGM j MGMn

k k k k

k Pi Pj Ii Ij
j k k k k

e E e E
F

w w w w





  
   

  
  

 Proof: Define a Lyapunov function as 

          
2 21 10 0

1 1
ˆ0.5 0.5 .

n nMGM i
k raw i raw i ki i

V y t y t e
 

 
     (26) 

The change of this Lyapunov function is derived as 

    
    

2 21

1 11

21

11

0.5

0.5 , .

nMGM i i

k k ki

n i i i i i i

k k k k k ki

V e e
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 (27) 

From the PINNWT structure, one has: 
1

1

.
i in

i Pj Ijk k

k k kPj Ij
j k k

e e
e w w

w w





  
     

  
  (28) 

The terms ,Pj Ij

k kw w  are from (24). By using the partial 

derivative and selecting / /Pj Ij P I

k k k    , (28) becomes: 

.i

k k ke F   (29) 

From (29), (27) is rewritten as 

 
1 2

1 1
0.5 .

nMGM i

k k k k ki
V e F F 



 
    (30) 

The MGM(1,1) prediction is guaranteed to be stable only if 

1 0,MGM

kV k   . It is clear that except
k , the other factors in 

(30) can be determined online based on the prediction error 

and the chain rule method [37]. Hence for each working step, 

it is easy to select a proper value of
k to make (25) satisfy. 

Therefore, the proof is completed. 

C. PINNGM(1,N) Application to RPC and Examples 

 As presented in Section III.B, the PINNGM model is 

utilized for the RPC design as: 

 To perform sk-step-ahead prediction of the system 

delays/packet dropout, PINNGM(1,1) is employed, in 

which the model input is a vector of historical delays/packet 

dropouts; 

 To perform sk-step-ahead prediction of the system response, 

PINNGM(1,2) is chosen, in which the model inputs are the 

historical data of system response and control input. This is 

because the system response is relevant to the control input.  

 The applicability of the PINNGM models is investigated via 

the following examples. 

Example 3.1: A comparative study of four grey models, 

GM(1,1), SAUIGM(1,1) [29], AGM(1,1) [36] and 

PINNGM(1,1), has been carried out to investigate the 

capability in predicting the network delay problem studied in 

[29] and [36]. Because the GM is limited to equal-time-series 

prediction, the real-time estimations were performed for a 

30-second period in which there were only time delays in the 

network. The delays were observed by the NPD with a fixed 

sampling rate of 10ms [29]. The one-step-ahead estimation 

results were obtained and analyzed in Table I using three 

evaluation criteria: average relative error (ARE), root mean 

square error (RMSE) and coefficient of determination (R2). 

It is clear that the prediction accuracy was low using the 

typical GM due to its drawbacks [29]. Although the 

performance was improved by using the SAUIGM, there was 

no sufficient condition to ensure the prediction stability. 

Meanwhile by using the AGM and PINNGM, of which the 

model parameters were optimized via the Lyapunov 

conditions, the highest prediction accuracies were achieved as 
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in Table I. However, the fuzzy inference of the AGM may 

need to be re-designed once changing the application or 

prediction step size. This is investigated through the second 

example. 

Example 3.2: Series of delay predictions using the four grey 

models in Example 3.1 have been done with different 

prediction step sizes (varied from 1 to 30) to evaluate the 

sk-step-ahead prediction ability. The comparison result is then 

displayed in Fig. 2. Here, the GM prediction accuracy was 

totally reduced according to the step size increase. Although 

the SAUIGM could improve the accuracy, its fitness was not 

kept stably. Only with the AGM and PINNGM which were 

optimized by the robust conditions, the precise estimations 

were almost guaranteed. However, the performance of the 

PINNGM was better than that of the AGM due to the 

adaptability of the neural network, PINNWT, over the change 

of prediction step sizes. 
 

V. ASISFC CONTROLLER DESIGN 

A. ASISFC-based NCS Analysis 

As described in the Introduction, Remark 1 and Section III, 

the ASISFC controller is designed to create the sk-step-ahead 

control inputs for networked system (1) with only small delays 

defined in (2). Without loss of generative, the followings are 

to design the control gains for the networked system (1) only 

at step (k+1)th which can be simplified to the following 

delayed system: 
1 2

2 1 1 1 1 1k k k k k k kx A x B u B u         (31) 

where the matrices in (31) are derived from (3) and (5): 

 
11 1

1

11

1 2
1 1 1

0
, , ;

A
kk k

k

A
kk

T T T
AT At At

k k k
T T

A e B e Bdt B e Bdt
 







  


     

(with step (k+is)th (is =2,…,sk), 1 1
and

A A

k k
T T

  in (31) are replaced 

by ˆ ˆand
A A

k i k is s
T T

  ). 

From (3), 1

A d

k
T 


 , and Section III.E, it is possible to 

consider the control design for system (31) similarly as for a 

set of system with D small delay regions having the same 

intervals: 
TABLE I 

REAL-TIME ONE-STEP-AHEAD DELAY PREDICTIONS 

Evaluation 

criteria 

Prediction models 

GM SAUIGM AGM PINNGM 

ARE (%) 8.6720 0.9664 0.5271 0.4783 

RMSE (10-4) 28.4937 3.7635 2.026 1.8398 

R2 0.8818 0.9679 0.9822 0.9891 
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Fig. 2.  Delay prediction model fitness vs. prediction step size sk. 
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    ; 

4 1 1
ˆ1(activated) ifi d A d

i k iT      . 

To ensure a robust tracking performance with disturbance 

attenuation, the control rule for system (32) is designed as a 

state feedback gain combine with an integral gain: 
1 2

1 1 1
d

k k ku K x K x     (33) 

where 1 2andmu mx mu mdK R K R   are the desired control 

gain matrices; 1
d md
kx R  is the disturbance integration factor: 

 2 1 1 1 1
d d d
k k k k kx x y r x Cx          (34) 

Replacing (33) and (34) in to (32), one has: 

 

 

4 4
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 (35) 

or: 

2 1 1k k kX X     (36) 

where, 

1 11 12 13

1 1

1

; 0 0 ;

0

k

k k k

d
k

x

X x I

C Ix
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To adapt to the time-variation of the system state, a state 

observer is implemented into system (32): 

   
4

1 2
2 1 1 1 1 1 1 1

1

ˆ ˆ ˆ

D
i i i

k k k k k k k k k

i

x A x B u B u L y y       



      (37) 

where x
1 1

ˆ ˆ, andmx my mx my
k kx R y R L R   

 
denote the 

estimated state, estimated system output and observer gain, 

respectively. The state estimation error is 1 1 1
ˆ .k k ke x x     

The packet dropouts on the backward channel can be 

compensated by the PINNGM(1,2) (Section IV.C) to estimate 

the system response (denoted as ˆ My ). Thus, system (37) can 

be re-written in a general form as 

   
4

1 2
2 1 1 1 1 1 1 1

1

ˆ ˆ ˆ

D
i i i

k k k k k k k k k

i

x A x B u B u L y y       



      (38) 

 
 

 

1 , 0
1

ˆ 1 , 1
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M sc
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 (39) 

 Let 1 1 0
T

k k kE e e     , the estimation error can be 
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represented as 

1

2 1

0 0

0 0
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k
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 (40) 

or  

2 1 1
E

k k kE E     (41) 

where, 

1

1

0 0

0 0 .

0 0 0

k
E
k

A LC

I





 
 

 
 
  

 

 

 By combining (36) and (41), the closed-loop NCS using 

both state feedback control gain, disturbance integration gain 

and observer gain is expressed by 

2 1 1 1k k k kX X LCE       (42) 

B. ASISFC Control Gain Design and Stability Analysis 

Theorem 2 [25]: Separation principle – If there exit two 

positive matrices, P and PE, such that: 

1 1 0T
k kP P      (43) 

and, 

1 1( ) 0E T E E E
k kP P      (44) 

hold, then the closed-loop NCS (42) is asymptotically stable. 

Proof: The proof of this theorem is addressed in [25]. 

Based on Theorem 3, the control gain design for system (42) 

is now simplified to the control gain designs for system (36) 

and system (41). 

Theorem 3: If there exists a positive definite matrix 0P  , 

such that (43) hold, then the NCS (36) is asymptotically 

stable. 

Proof: Select the following Lyapunov function: 

 1 1 1 1 1.T
k k k k kV X V X PX       (45) 

Using (36), the derivative of this function is obtained as 

 
1 2 1 2 2 1 1

1 1 1 1.

T T
k k k k k k k

T T
k k k k

V V V X PX X PX

X P P X

      

   

    

   
 (46) 

Due to P>0, it is clear that 1 0kV   if (43) holds, thus the 

system (36) is asymptotically stable, the proof is completed. 

The sufficient condition for designing the controller is 

pointed out by Theorem 3. However when designing the 

control gains, the inequalities (43) may do not has the form of 

LMIs. In order to design the control gains, Theorem 4 is 

therefore introduced: 

Theorem 4: If there exists a positive definite matrix 0P  , 

such that the inequalities: 

1

1

0

T
k

k

P

Q





  
 

   

 (47) 

hold with PQ = I, then the NCS (36) is asymptotically stable. 

Proof: Applying the Schur complement [38] to the 

equalities (43), one has: 

1

1
1

0.

T
k

k

P

P






  
 

   

 (48) 

Letting 1P Q  , (48) becomes (47). The proof is finished. 

Using Theorem 4 and the cone complementary linearization 

algorithm [39], the control gains can be solved by the 

following minimization problem involving LMI conditions: 

 minimize

subject to(47), 0, 0.

trace PQ

P Q 
 (49) 

Remark 5: by applying Theorem 2, system (41) is 

asymptotically stable if existing a positive matrix PE which 

satisfies (44). Thus in this case, the stability of system (41) can 

be guaranteed by design the observer gain L in order to 

placing all eigenvalues of the characteristic (Ak+1-LC) inside 

the unit circle. This can be done easily by pole placement 

method [40]. 

Finally, the ASISFC control procedure for a NCS can be 

summarized as: 

Step 1 – control gain preparation (off-line):  

 Divide the delay range d into D small delay regions to 

input to (30); 

 Design a set of control gains K1 and K2 for system (36) 

using Theorem 4 and (49); 

 Design a control gain L for system (41) using the pole 

placement method; 

 Generate a look-up table to store the designed control gains 

with respect to the set of delay regions. 

Step 2 – sk-step-ahead control command generation (online): 

 Based on the predicted system delays, select properly the 

control gains from the gain look-up table; 

 Generate the sk-step-ahead driving commands with time 

stamps and send to the SAB. 

VI. CASE STUDY 

This section considers a case study with speed tracking 

control of a networked DC servomotor system. The proposed 

RPC approach has been evaluated in a comparison with two 

controllers: the RVSPC developed in [36] and, the SSFC in 

[36] combined with a fixed buffer and the VSPA module, 

tagged as SSFC-FB. 

A. System Configuration and Problem Investigation 

Configuration of the networked DC servomotor system is 

presented in Fig. 3 and clearly described in [29] and [36]. The 

servomotor input-output transfer function can be expressed as 

 
Fig. 3.  Configuration of the networked servomotor control system. 
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The system can be also represented in the form of (1) with: 

235870 4934200 1 0
, , .

1 0 0 32298000

T

A B C
      

       
     

 

Furthermore for the full evaluation, computation delays and 

two disturbance sources were applied to the system. The 

computation delays were observed from the control system of 

the real machine [36]. The first disturbance source came as the 

magnetic load applied to the motor shaft while the second 

source was simulated and added to the system feedback speed: 

( ) Rand ( ) sin(2 ) 1N N NN t t A f t    

here AN was given randomly from 0.5 to 1; fN was varied from 

1 to 5 Hz; RandN was a noise with power 0.005. 

B. Control Parameter Setting 

First, the RVSPC control gains were derived as presented in 

[36]. Second, based on the network condition, the SSFC-FB 

control gains were computed by considering the total delay as 

0.1 .d
SSFC s   Then, the SSFC-FB control gain was found as 

 0.3652 0.2539SSFC FBK    while its buffer size was fixed 

as 5. Third for the RPC design, based on Remark 1, the delay 

threshold values were selected as: 0.025 ,com s   

0.035 and 0.035ca scs s   . The state feedback and integral 

control gains were, therefore, derived for a set of the total 

delay regions ranging from 0 to 0.095 with interval of 0.01s as 

shown in Table II. Meanwhile, the observer gain was derived 

as [1; 1.3217]. 

C. Experimental Results and Discussion 

The real-time speed tracking control evaluation in the 

imperfect conditions, including both the three delays, packet 

dropouts, and disturbances, has been then performed using the 

comparative controllers. Here, the first disturbance source 

always applied to the motor shaft while the second disturbance 

source was only added to the feedback speed after 15 seconds. 

Firstly, the experiments on the system without the simulated 

disturbances were done in which the desired motor speed was 

set as a constant of 10rad/s. The tracking results were then 

obtained as demonstrated in Fig. 4. The one-step-ahead delay 

prediction using the PINNGM was observed as in Fig. 5.  

 
TABLE II 

RPC CONTROL GAINS ACCORDING TO TOTAL DELAY 

ˆ AT  
1K  

2K  

0~0.01 [0.2511  0.2001] 0.0038 

0.01~0.02 [0.2587  0.2009] 0.0037 
0.02~0.03 [0.2644  0.2037] 0.0037 

0.03~0.04 [0.2723  0.2065] 0.0039 

0.04~0.05 [0.2805  0.2086] 0.0038 
0.05~0.06 [0.2869  0.2101] 0.0038 

0.06~0.07 [0.3028  0.2152] 0.0039 

0.07~0.08 [0.3213  0.2189] 0.0041 
0.08~0.95 [0.3471  0.2234] 0.0040 

 

 

In this case, the SSFC-FB controller could not ensure the 

smooth tracking result due to the use of fixed control gains 

and buffer, which were designed for the worst network 

conditions. Furthermore, the SSFC-FB lacked of the 

predictability of the system response, the controller could not 

derive the control inputs once there existed packet dropouts on 

the feedback channel. The tracking performance was 

significantly degraded when the packet dropout ratio increased 

and the second disturbance source was invoked into the 

system. 

By using the RVSPC controller, the performance was 

improved by the advanced switching control based on the QFT 

and state control algorithms. However, without the use of 

buffer, the control performance was degraded in some regions 

with high packet dropout ratio. Additionally, without the 

disturbance compensation in designing the control gains, both 

the SSFC-FB and RVSPC could not cancelled the steady state 

error in the state feedback performances.  

Only by using the proposed RPC approach which possesses 

the advantages of the SAB and sk-step-ahead control, which 

combines both the state feedback control, disturbance 

rejection, and observer-based control, the best tracking result 

was achieved with fast response and high robustness even 

facing with the high ratio of packet dropouts. 
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Fig. 4.  Step tracking: performances comparison. 
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Fig. 5.  Step tracking: one-step-ahead predicted delays and adaptive 

sampling period based on the PINNGM. 
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Fig. 6.  Multi-step tracking: performance comparison. 
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Fig. 7.  Multi-step tracking: one-step-ahead predicted delays and 

adaptive sampling period based on the PINNGM. 
 

TABLE III 
COMPARISON OF NCS PERFORMANCES USING DIFFERENT CONTROLLERS 

Controller 

Step responses 

Percent of 
Overshoot 

[%] 

Settling 
Time  

[s] 

Steady State 
Error [%] 

[15~30s] 

Mean Square 
Error [rad/s]2 

10-2 [15~30s] 

SSFC-FB 0.35 1.65 9.07 30.73 

RVSPC 0.45 0.95 6.01 4.71 
RPC 0.47 0.74 1.63 1.14 

 

Secondly, another experiment series were done for a 

multi-step speed tracking profile using the compared 

controllers. The results were then obtained in Fig. 6 and Fig. 7. 

These results again show the best performance was achieved 

by using proposed control method. This comes as no surprise, 

because the proposed method is based on both the advanced 

control modules as presented in Section III. The tracking 

performances using these three controllers were finally 

analyzed in Table III to state evidently the efficiency of the 

proposed approach. 

VII. CONCLUSIONS 

This paper presents the novel robust predictive control 

approach for NCSs included both the three delay components, 

packet dropouts and disturbances. Based on the robust 

prediction using the PINNGM, this control approach is the 

combination of both the advanced techniques, the small 

adaptive buffer with sk-step-ahead control to compensate the 

packet dropouts, the observer-based integral state feedback 

control with smooth switching gains and adaptive sampling 

period to compensate the delays and disturbances. 

The capability of the proposed RPC control scheme has 

been validated through series of real-time experiments with 

the speed tracking of the networked servomotor system. In 

addition, the comparative study with other advanced 

controllers has been done. The results proved convincingly the 

effectiveness as well as the applicability of the proposed 

method to NCSs. 
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