UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

mgm: Structure Estimation for Time-Varying Mixed Graphical Models in high-
dimensional Data

Haslbeck, J.M.B.; Waldorp, L.J.

DOI
10.18637/jss.v093.i08

Publication date
2020

Document Version
Final published version

Published in
Journal of Statistical Software

License
CcCBY

Link to publication

Citation for published version (APA):
Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Structure Estimation for Time-Varying
Mixed Graphical Models in high-dimensional Data. Journal of Statistical Software, 93, [8].
https://doi.org/10.18637/jss.v093.i08

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

https://doi.org/10.18637/jss.v093.i08
https://dare.uva.nl/personal/pure/en/publications/mgm-structure-estimation-for-timevarying-mixed-graphical-models-in-highdimensional-data(679f4f26-8a46-400f-966c-2cf160a872b3).html
https://doi.org/10.18637/jss.v093.i08

Journal of Statistical Software

April 2020, Volume 93, Issue 8. doi: 10.18637/jss.v093.i08

mgm: Estimating Time-Varying Mixed Graphical
Models in High-Dimensional Data

Jonas M. B. Haslbeck Lourens J. Waldorp

University of Amsterdam University of Amsterdam

Abstract

We present the R package mgm for the estimation of k-order mixed graphical mod-
els (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data.
These are a useful extensions of graphical models for only one variable type, since data
sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous.
In addition, we allow to relax the stationarity assumption of both models by introducing
time-varying versions of MGMs and mVAR models based on a kernel weighting approach.
Time-varying models offer a rich description of temporally evolving systems and allow to
identify external influences on the model structure such as the impact of interventions.
We provide the background of all implemented methods and provide fully reproducible
examples that illustrate how to use the package.

Keywords: structure estimation, mixed graphical models, Markov random fields, dynamic
graphical models, time-varying graphical models, vector autoregressive models.

1. Introduction

We present mgm (Haslbeck 2020), an R (R Core Team 2020) package for the estimation
of (time-varying) k-order mixed graphical models (MGMs) and (time-varying) mixed vec-
tor autoregressive (mVAR) models with a specified set of lags. The package is available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=mgm. In this paper we introduce these models, discuss algorithms to estimate them,
and present a number of fully reproducible code examples that show how to use the imple-
mentations provided by mgm.

Graphical models have become a popular way to abstract complex systems and gain insights
into relational patterns among observed variables in a large variety of disciplines such as
statistical mechanics (Albert and Barabasi 2002), biology (Friedman, Linial, Nachman, and

https://doi.org/10.18637/jss.v093.i08
https://CRAN.R-project.org/package=mgm
https://CRAN.R-project.org/package=mgm

2 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Pe’er 2000), genetics (Ghazalpour et al. 2006), neuroscience (Huang et al. 2010) and psychol-
ogy (Borsboom and Cramer 2013). In many of these applications the data set of interest
consists of mized variables such as binary, categorical, ordinal, counts, continuous and/or
skewed continuous amongst others. One example is internet-scale marketing data, where it
is of interest to relate variables such as clicked links (categorical), time spent on websites
(possibly exponential), browsing history (categorical), social media postings (count), friends
in social networks (count), and many others. In a medical context, one could be interested in
interactions between person characteristics such as gender (categorical) or age (continuous),
frequencies of behaviors (count), taking place of events (categorical) and the dose of a drug
(continuous).

If measurements are taken repeatedly from a system, one can be either interested in relations
between variables at the same time point or in relations between variables across time points.
The former relations are modeled by MGMs, the latter relations are modeled by vector au-
toregressive (VAR) models, which relate variables over a specified set of time lags. For both
types of models it may be appropriate in some situations to relax the assumption of station-
arity, such that its parameters are allowed to vary over the measured time period. These
time-varying models provide additional information for understanding and predicting orga-
nizational processes, the diffusion of information, detecting vulnerabilities and the potential
impact of interventions. An example is the developmental cycle of a biological organism, in
which different genes interact at different stages of development. In a medical context, the
aim could be to study the impact of an intervention on the dependencies between a large
number of physiological and psychological variables that capture the health of a patient. Yet
another example can be found in the field of psychiatry, where one might be interested in the
interaction of negative life events, social contacts and symptoms of psychological disorders
such as major depression.

1.1. Implementation and functionality

The mgm package is written in R and uses the glmnet package (Friedman, Hastie, and
Tibshirani 2010) to fit penalized generalized linear models (GLMs) to perform neighborhood
selection (Meinshausen and Bithlmann 2006). The glmnet package is written in Fortran and is
optimized for computational efficiency. In addition, mgm depends on the packages matrixcalc
(Novomestky 2012), stringr (Wickham 2019), Hmisc (Harrell Jr 2020), gtools (Warnes, Bolker,
and Lumley 2018) and qgraph (Epskamp, Cramer, Waldorp, Schmittmann, and Borsboom
2012).

The main functionality of the mgm package is to estimate mixed graphical models (MGMs)
and mixed autoregressive (mVAR) models, both as stationary models (mgm() and mvar())
and time-varying models (tvmgm() and tvmvar()). In addition, we provide the S3 methods
print () to summarize model objects and predict() to compute predictions and nodewise
errors from all types of models, and the function resample() to determine the stability of
estimates via resampling. Furthermore, mgm provides functions to sample from all four
models in full flexibility in order to enable the user to investigate the performance of the
estimation algorithms in a particular situation. The output of all estimation functions is
designed to allow a seamless visualization with the ggraph package (Epskamp et al. 2012)
and we therefore do not provide our own plotting functions.

Journal of Statistical Software

1.2. Related implementations

Several packages are available to estimate Gaussian graphical models (GGMs): The R pack-
ages glasso (Friedman, Hastie, and Tibshirani 2019) and huge (Jiang et al. 2019; Zhao,
Liu, Roeder, Lafferty, and Wasserman 2012) implement the graphical lasso (Banerjee, El
Ghaoui, and d’Aspremont 2008; Friedman, Hastie, and Tibshirani 2008) which maximizes an
{1-penalized Gaussian log-likelihood. The huge package also allows to estimate GGMs via
neighborhood selection (Meinshausen and Bithlmann 2006), in which the neighborhood of each
node is estimated separately and then the local estimates are combined to obtain the (global)
graphical model. The R package IsingFit (Van Borkulo and Epskamp 2016; Van Borkulo
et al. 2014) implements a neighborhood selection based method to estimate the binary-valued
Ising model (see, e.g., Wainwright and Jordan 2008; Ravikumar, Wainwright, and Lafferty
2010). The XMRF package (Wan, Allen, Baker, Yang, Ravikumar, and Liu 2015) allows to
estimate Markov random fields of the multivariate Gaussian distribution, Ising models, log-
linear Poisson based graphical model, regular Poisson graphical models, truncated Poisson
graphical models and sublinear Poisson graphical models (Yang, Ravikumar, Allen, and Liu
2015, 2013).

For VAR models, the vars package (Pfaff 2008b) allows to fit VAR models with Gaussian
noise. The BigVAR package (Nicholson, Matteson, and Bien 2019) allows to fit VAR models
and structured VAR models with Gaussian noise with structured ¢;-penalties. The mlVAR
package (Epskamp, Deserno, and Bringmann 2019) implements multilevel VAR models with
Gaussian noise. Graphical VAR models (Wild, Eichler, Friederich, Hartmann, Zipfel, and
Herzog 2010), in which lagged coefficients and contemporaneous effects are estimated simul-
taneously, can be estimated with the graphicalVAR package (Epskamp 2018).

For time-varying graphical models, there is a Python (Van Rossum et al. 2011) implementation
of the SINGLE algorithm of Monti, Hellyer, Sharp, Leech, Anagnostopoulos, and Montana
(2014) for time-varying Gaussian graphical models (Monti 2014) and GraphTime (Immer and
Gibberd 2017), a Python implementation of time-varying (dynamic) graphical models based
on the (group) fused-lasso as presented by Gibberd and Nelson (2017). The R package tvReg
allows to estimate linear VAR models via kernel smoothing (Casas and Fernandez-Casal 2020).

mgm goes beyond the above mentioned packages in that it allows to estimate k-order MGMs
and mVAR models (with any set of lags), compute predictions from them and assess model
stability via resampling, while the above packages only allow to do this for special cases. In
addition, the output of mgm is designed to allow a seamless visualization of estimated models
using the R package qgraph (Epskamp et al. 2012). Finally, mgm is the first package that
allows to estimate time-varying MGMs and mVAR models.

1.3. Overview of the paper

In Section 2, we introduce mixed graphical models (MGMs; Section 2.2) and mixed vector
autoregressive (mVAR) models (Section 2.4), and discuss how to estimate these models in their
stationary (Section 2.3) and time-varying (Section 2.5) versions. In Section 3, we illustrate
how to use the mgm package to estimate parameters, compute predictions from and visualize
stationary MGMs (Section 3.1), stationary mVAR models (Section 3.2), time-varying MGMs
(Section 3.3) and time-varying mVAR models (Section 3.4). All presented examples are fully
reproducible, with code either shown in the paper or provided in the online supplementary
material.

4 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

2. Background

In this section we provide basic concepts related to graphical models (Section 2.1), introduce
the model classes mixed graphical models (MGMs; Section 2.2) and mixed vector autoregres-
sive (mVAR) models (Section 2.4), and show how to estimate these models in their stationary
(Section 2.3) and time-varying (Section 2.5) versions.

2.1. Graphical models

Undirected graphical models are families of probability distributions that respect a set of
conditional independence statements represented in an undirected graph G (Lauritzen 1996).
This connection between probability distribution and graph G is formalized by the global
Markov property, which we define after introducing some notation.

An undirected graph G = (V, E) consists of a collection of nodes V' = {1,2,...,p} and a
collection of edges E C V x V. A subset of nodes U is a node cutset whenever its removal
breaks the graph in two or more nonempty subsets, which is equivalent to U being the set
such that all paths from disjoint node sets S and @ go through U (Lauritzen 1996). A clique
is a subset C' C V such that (s,t) € E for all s,t € C' where s # t, and is called a mazimal
clique if inclusion of any other node would make it not a clique. The neighborhood N(s) of a
node s € V is the set of nodes that are connected to s by an edge, N(s) := {t € V|(s,t) € E}.
Throughout the paper we use the shorthand X\ for Xy (4.

To each node s in graph G we associate a random variable X, taking values in a space Xs.
For any subset A C V, we use the shorthand X4 := {X,,s € A}. For three disjoint subsets
of nodes, A, B, and U, we write X4 1 Xp|Xy to indicate that the random vector X4 is
independent of Xp when conditioning on Xy. We can now define graphical models in terms
of the Markov property (e.g., Loh and Wainwright 2012):

Definition 1 (Global Markov property). If X4 L Xp|Xy whenever U is a node cutset that
breaks the graph into disjoint subsets A and B, then the random vector X := (X1,...,X,) is
Markov with respect to the graph G.

Note that the neighborhood set N(s) is always a node cutset for A = {s} and B =V \ {s U
N(s)}.

In the remainder of this paper we focus on exponential family distributions, which are strictly
positive distributions. For these distributions the global Markov property is equivalent to
the Markov factorization property by the Hammersley-Clifford Theorem (Lauritzen 1996).
Consider for each clique C in the set of all clique sets C a clique-compatibility function
o(X¢) that maps configurations z¢ = {xs, s € C'} to RT such that)¢ only depends on the
variables X¢ corresponding to the clique C.

Definition 2 (Markov factorization property). The distribution of X factorizes according to
G if it can be represented as a product of clique functions

P(X) o [] ve(Xe). (1)

ceC

This equivalence implies that if we have distributions that are represented as a product
of clique functions, then we can represent the conditional dependence statements in this

Journal of Statistical Software 5

distribution in a graph G. This is the case for the exponential family distributions we use in
the present paper

P(X) =exp { > bodo(Xe) — ‘1’(9)} , (2)
ceC

where the functions ¢c(X¢c) = logc(X¢) are sufficient statistic functions specified by the

exponential family member at hand (e.g., Gaussian, Exponential, Poisson, etc.), ¢ are pa-

rameters associated with the clique functions and ®(0) is the log-normalizing constant

0(0) = log [" beoc(Xo)v(da),
CceC

where depending on the distribution of X, the measure v is a counting measure or Lesbesgue
measure (for details see Wainwright and Jordan 2008).

The graph G represents a family of distributions because its edges do not indicate the strength
of the dependency and the nodes can represent different conditional distributions. Hence there
is a one to one mapping from the density to the graph, but a one to many mapping from
graph to densities.

2.2. Mixed graphical models

In this section we first introduce the general class of mixed graphical models, and then provide
the Ising-Gaussian model as a specific example.

General mized graphical models

In this section, we introduce the class of mixed graphical models (MGMs), which are a special
case of the distribution in Equation 2 that allow one to combine an arbitrary set of conditional
univariate members of the exponential family in a joint distribution (Yang, Baker, Ravikumar,
Allen, and Liu 2014; Chen, Witten, and Shojaie 2015).

Consider a p-dimensional random vector X = (Xi,...,X,) with each variable X, taking
values in a potentially different set Xs, and let G = (V, E) be an undirected graph over
p nodes corresponding to the p variables. Now suppose the node-conditional distribution of
node X conditioned on all other variables X\, is given by an arbitrary univariate exponential
family distribution

P(XSIX\s) = exp{ES(X\S)qﬁs(Xs) + Bs(Xs) — @(X\s)}, (3)

where the functions of the sufficient statistic ¢s(-) and the base measure Bg(-) are specified
by the choice of exponential family and the canonical parameter Fs(X\,) is a function of
all variables except Xs. Wainwright and Jordan (2008) make these functions explicit for a
number of exponential family distributions.

These node-conditional distributions are consistent with a joint distribution over the random
vector X as in (1), that is Markov with respect to graph G = (V, E) with the set of cliques Cj
of size at most k, if and only if the canonical parameters { Fs(-)}scy are a linear combination
of products of univariate sufficient statistic functions {¢(X)},en(s) of order up to &

k—1
Os+ > Osrdr(Xe)+.c+ D Oy [00 (X)), (4)
j=1

reN(s) 71,0 Tk—1EN(S)

6 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

where 0. := {05,05,,...,0,. 1} is a set of parameters and N(s) is the set of neighbors of
node s according to graph G (Yang et al. 2014). Factorizing p conditional distributions as in
Equation 3 gives the joint distribution

P(X) = exp Z O0s¢s(Xs) + Z Z Os,rPs(Xs)r (Xr)+

seV s€V reN(s)

k
e Z erl,...,rk H ¢rj (er) + Z BS(XS) - (I)(Q))

714y TR EC J=1 seV

where ®(0) is the log-normalization constant.

The dimensionality of the parameter vector # depends both on the type of modeled vari-
ables and the order of interactions. If one only models continuous variables with pairwise
interactions (k = 2), the MGM simplifies to the multivariate Gaussian distribution which
is parameterized by a 1 x p vector of intercepts and a p X p matrix of () partial correla-
tions. Including all 3-way interactions would lead to an additional () parameters, etc. At
the end of Section 2.2, we discuss the dimensionality of the parameter vector in the presence
of categorical variables.

Necessary conditions for the mixed density in Equation 5 to be normalizable are discussed
in Yang et al. (2014). Chen et al. (2015) show constraints on the parameter space to ensure
normalizability for a number of MGMs with at most pairwise interactions. mgm does not allow
one to implement the constraints, since the underlying glmnet package does not support the
specification of these constraints. However, Trip and Van Wieringen (2018) recently proposed
an algorithm that allows to estimate pairwise MGMs with these constraints.

Example: The Ising-Gaussian model

We take the Ising-Gaussian model as a specific example of the joint distribution in Equa-
tion 5. Consider a random vector X := (Y,Z), where Y = {Y1,...,Y), } are univariate
Gaussian random variables, Z = {Z1, ..., Zp, } are univariate Bernoulli random variables and
we only consider pairwise interactions between sufficient statistics. For the univariate Gaus-
sian distribution (with known variance o2) the sufficient statistic function is ¢y (Ys) = U% and

the base measure is By (Ys) = —ZY;QQ The Bernoulli distribution has the sufficient statistic
function ¢z, = Z5 and the base measure Bz(Zs) = 0. From the MGM joint distribution in

Equation 5 follows that this mixed density is given by

P(Y,Z) xexpq Y —Y+ SNobZi+ > ”YYmL
SEVY reVy (s,r)EEyY

PN S

RO
(s;r)€EEZ (s,r)€EEY z

s seVy

Y2

S

2
202

where the first two terms are thresholds for Gaussian and Bernoulli variables, the third term
represents pairwise interactions between Gaussians, the fourth term represents pairwise inter-
actions between Bernoulli variables, the fifth term represents pairwise interactions between
Gaussians and Bernoulli variables, and the last term sums over the base measures for the
Gaussians.

Journal of Statistical Software

When the conditional distribution is a Bernoulli random variable Z,, it is given by

65,7“

P(Zp| 2\, Y) < expl 0.2, + Y 05,22+ Y

AAY (6)
SEN(r)z SEN(r)y Ir

Note that the conditional distribution in Equation 6 has the same form as the distribution of
a single variable conditioned on all remaining variables in an Ising model plus one additional
term for interactions between Bernoulli and Gaussian random variables.

When the conditional distribution is a Gaussian random variable Yy, it is given by

0 0 0 Y2
Py, 2) xcexp{ Yo+ 3, —=ViVo+), V2 — %
Ts reN(s)y 50T reN(s)y 78 Ts

Now, let ¢ = 1, factor out Y5 and let us = 65 + ZreN(s)y OsrYr + ZreN(s)Z OsrZy. Finally,

2
when taking % out of the log normalization constant, we arrive with basic algebra at the

well-known form of the univariate Gaussian distribution with unit variance
1 Y, — 1s)?
exp (Y —p)” .
V2T 2

Relationship between model parameters and edges in graph

P(Ys|IYs, Z) =

For pairwise MGMs (i.e., the size of cliques is at most k = 2), a pairwise interaction between
two continuous variables s and r is parameterized by a single parameter 6, ,. Now, whether
the edge between s and r is present depends on whether 6, is zero or not, that is, (s,r) €
E <= 0,, # 0. Thus, if only pairwise interactions between continuous variables are
modeled, any given edge is a function of a single parameter. This implies that a weighted
graph fully represents the parameterization of interactions in the underlying model (or the full
parameterization minus the threshold parameters). Interactions between categorical variables
with m > 2, however, are specified by more than one parameter. For instance, a pairwise
interaction between two categorical variables with m and u categories is parameterized by
R = (m — 1) x (u — 1) parameters associated with corresponding indicator functions for
all R states (e.g., Agresti 2003). A pairwise interaction between a categorical variable with
m categories and a continuous variable has R = 1 x (m — 1) parameters associated with
m — 1 indicator functions multiplied with the continuous variable. In this case, 67, is a
parameter defining the interaction between the nodes s and r indexed by z € {1,..., R}.
In such a situation, an edge is present between s and r if all parameters do not have the
same value, indicating that not all states have the same probability. In mgm we use the
parameterization for multinomial regression in glmnet, which models the probability of each
state of the predicted variable, and codes the first category of the predictor variable as the
reference category that is absorbed in the intercept (for details see Friedman et al. 2010).
This results in m x (u — 1) parameters, where m indicates the number of categories of the
predicted variable. In this parameterization, an edge is present if any of the parameters in
05, are nonzero, that is, (s,r) € E <= 3r : |07, > 0. Therefore, depending on which
variables an edge connects it is defined with respect to one or several parameters.

For general k-order MGMs, an edge between nodes s and r is a function of all cliques of size
up to k that include both s and r. Therefore, for instance, it is not clear from the graph

8 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

G whether the edge (s,r) is due to a pairwise interaction or from higher order interactions
(cliques) that include s and r, or both. The number of parameters associated to each clique
discussed above for pairwise interactions extends to k-order interactions. An interaction

between £ continuous variables is parameterized by a single parameter ¢, . , and an
interaction between k categorical variables is parameterized by (m; — 1) x -+ x (mg — 1)
parameters, where mi,ms, ..., my are the number of categories of each categorical variable.

In this paper we focus mainly on the estimation of pairwise MGMs, where each edge is a
function of the parameter(s) of a single pairwise interaction. However, in Section 3.1 we
estimate a higher order MGM and visualize the dependency structure in a factor graph. The
factor graph representation has the advantage one can still see on which set of cliques a
dependency between two nodes depends (Koller and Friedman 2009).

2.3. Estimating mixed graphical models

In this section, we discuss how to estimate the parameters of a joint distribution of the form as
in Equation 5 from observations. The graphical model G is then obtained from the parameter
estimates as discussed in the previous section.

We know that the joint distribution in Equation 5 can be represented as a factorization
of univariate conditional distributions. Thus, if we estimate the p univariate conditional
distributions with the parameterization in Equation 4, we obtain the joint distribution. Since
all univariate conditional distributions are members of the exponential family, it is possible
to estimate the joint distribution in Equation 5 by a series of p regressions in the generalized
linear model (GLM) framework (see, e.g., Nelder and Baker 1972). From a graphical models
perspective this means that we estimate the neighborhood N(s) of each node s € V' and then
combine all neighborhoods to obtain an estimate of the graph G (Meinshausen and Biithlmann
2006).

In order to obtain parameter estimates that are exactly zero (and thereby imply absent
edges in the graph) we minimize the log-likelihood L£(#, X) together with the ¢-norm of the
parameter vector

é:argmein{—E(G,X)—i-)\\\@”l}’ (7)

where |01 = 3-]:1 |6;], J is the length of the parameter vector §, and A is a regularization
parameter that determines the relative weights of the log-likelihood and the ¢;-norm of the
parameter vector. The log-likelihood £(6, X) is defined with respect to the exponential family
distribution of the node at hand. In the Gaussian case, minimizing the negative log-likelihood
is equivalent to minimizing the squared loss —£(0, X) = || Xs— X\ s0|%. In other words, we are
performing an ¢;-penalized (LASSO) regression in the GLM framework with a link-function
appropriate for the node at hand (see, e.g., Nelder and Baker 1972). The ¢;-penalty ensures
that the model is identified in the high-dimensional setting p > n, where we have more
parameters than observations (Hastie, Tibshirani, and Wainwright 2015).

The design matrix is defined with respect to the conditional distribution of node s in the k-
order MGM. For example, if £ = 2, the design matrix for the regression on node s contains all
other variables or the corresponding indicator functions (for categorical variables). If k = 3,
the design matrix for the regression on node s contains all other variables or the corresponding
indicator functions, plus the products of all pairs of variables in i, or the (m —1) x (u —1)
indicator functions in the case of categorical variables with m and u categories.

Journal of Statistical Software 9

To give non-asymptotic guarantees of false and true positive rates for the ¢i-regularized
regression estimator it is necessary to put a lower bound 7 on the size of the parameters
in the true model. This assumption is often called the beta min condition (see, e.g., Hastie
et al. 2015). By thresholding estimates at 7, we approximately enforce this condition (see
also Loh and Wainwright 2012). For estimating the joint distribution in Equation 5 we show
in Haslbeck and Waldorp (2015) that

T = smllogg < spA, (8)
n

where sg is the true number of neighbors. If all variables are continuous, the number of
neighbors is equal to the number of nonzero parameter estimates sy = [|6*||o, where 6* is the
true parameter vector. In the case of categorical variables, interactions are parameterized
by several parameters. In this case the categorical neighbor is present if at least one of the
parameters defining the interaction is nonzero. Since the true parameter vector §* is unknown,
we plug in the estimated parameter vector 0 to obtain the estimated number of neighbors
80 = Hé”o For interactions involving more than one parameter, we plug in the aggregated
parameter (see Algorithm 1). Note that mgm allows to switch off this thresholding (see
Section 3.1). Of course, switching off the thresholding gives a solution that does not have the
guarantees of false and true positive rates.

We determine whether an edge is present or not as described in Section 2.2. In addition,
we compute a weight from the set of parameters of each interaction. If the interaction only
involves continuous variables there is only one parameter and we take its value. If the inter-
action involves categorical variables, we take the mean of the absolute value of all parameters
as the weight of the edge. From the nodewise regressions we obtain k edge-weights for each
k-order interaction. For example, for a a pairwise interaction (k = 2) between nodes s and r,
we obtain one parameter 0, from the regression on s and 6, ¢ from the regression on r. To
obtain a final conditional dependence graph G we need to combine these into a final weight.
This can be done either by using the OR-rule (take arithmetic mean of k& parameter estimates)
or the AND-rule (take arithmetic mean of k£ parameter estimates if all parameter estimates
are nonzero, otherwise set the parameter to zero). Algorithm 1 summarizes this procedure:

Algorithm 1 (Estimating mized graphical models via neighborhood regression.)

1. For each s € V:

(a) Construct the design matriz defined by k, the order of the MGM.
(b) Solve the lasso problem in Equation 7 with regularization parameter .
(¢) Threshold the estimates at T.

(d) Aggregate interactions with several parameters into a single edge-weight.
2. Combine the edge-weights with the AND- or OR-rule.

3. Define G based on the zero/nonzero pattern in the combined parameter vector.

The regularization parameter A can be selected using cross-validation or a model-selection
criterion such as the extended Bayesian information criterion (EBIC):

EBIC, (0) = —2£(f) + 9 logn + 2730 log p, 9)

10 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

where L is the log-likelihood of the conditional density specified by the estimated parameter
vector 0, 8y is the number of nonzero neighbors in the candidate model, and v is a tuning
parameter. Note that if v = 0 the EBIC is equal to the BIC (Schwarz 1978). The EBIC
has been shown to perform well asymptotically in selecting sparse graphs (Foygel and Drton
2010, 2015) for any value of ~. In practice, the choice of v will control the trade-off between
sensitivity and precision. Foygel and Drton (2010) used values v € {0,0.25,0.5,0.75,1} and
showed that increasing v from 0 to 0.25 led to a considerable decrease in false positives,
without increasing false negatives too much. We therefore adopted v = 0.25 as a default
value. However, to make an optimal choice for v, it is necessary to take into account the true
model, the number of available observations and the cost of false positives and false negatives.
While the true model is unknown in real data, a reasonable v can be selected by running a
simulation study roughly reflecting the scenario at hand and choosing the v with the most
desirable performance. To this end we provide flexible sampling functions (see Section 3).

The computational complexity of Algorithm 1 is O(plog(p2¥~1)). Thus the algorithm does
not scale well for large k, the order of interactions in the MGM. However, in most situations
k will be small, because interactions with a high order are increasingly difficult to interpret
and therefore often not of interest.

Note that using a single regularization parameter A for a model including different edge types
may lead to a different penalization for different edge types. This is because edge-parameters
are scaled with the sufficient statistic they are associated with and this scaling can differ
across exponential family members. While we can bring Gaussian variables on the same scale
by subtracting their mean and dividing by their standard deviation, this is not possible for
categorical or Poisson random variables. A potential solution would be to introduce a different
penalization parameter for each edge type. But this would make the selection of regularization
parameters A considerably more complicated, because now a u-dimensional space of A values
has to be searched, where u is the number of different edge types. This is why we currently
do not have a procedure in mgm that allows different penalties for different edge types.

The performance of Algorithm 1 depends on the number of variables, the order of interactions,
the type of variables, the size of parameters relative to the variance of associated variables,
the sparsity of the parameter vector and the structure of the dependency graph. The best way
to determine the performance for a given situation is therefore to obtain it with a simulation
study. To this end mgm provides a flexible function to sample from MGMs such that the
performance of Algorithm 1 in a given situation can be evaluated via simulations.

2.4. Mixed autoregressive models

In vector autoregressive (VAR) models, each node s at time point ¢ is modeled as a linear
combination of all variables (including s) at a set of earlier time points. The standard VAR
model is defined with a Gaussian noise process, such that the model can be split up into
p conditional Gaussian distributions (see, e.g., Hamilton 1994; Pfaff 2008a). Instead of a
univariate conditional Gaussian distribution, one can also associate other univariate expo-
nential family members with a given node. This leaves us with an almost identical model
and estimation problem as discussed in Section 2.3. The only difference is that the canonical
parameter of the node-conditional at hand is not a function of parameters associated with
interactions of variables at the same time point, but a function of parameters associated with
variables at previous time points. To distinguish this VAR model over mixed variables from

Journal of Statistical Software

the VAR model that is typically defined with only Gaussian variables, we call this model
mized autoregressive (mVAR) model.

The mVAR model can be estimated by estimating the parameters of the conditional proba-
bility of each variable s as a function of all variables (including itself) at a set of specified
previous time points, denoted by L. For example, L = {1, 2,3} specifies a VAR model with
lags 1, 2 and 3. We introduce a time index as a superscript ¢ for all variables since we are
now dealing with time-ordered observations. We then define the canonical parameter E(X)
of the conditional distribution P(X!|X?~! Xt=2 X'=3) at time ¢

EYX) = 6,43 Y 0576,(x1). (10)

JELreN(s)

We only included pairwise interactions because mgm does not implement higher order in-
teractions for mVAR models. The canonical parameter function in Equation 10 defines the
log-likelihood £(6, X) in Equation 7 and we can therefore use Algorithm 1 with two modifi-
cations: First, we define the design matrix as a function of the included lags L instead of the
maximal order of the interactions, which we here fix to k& = 2 (only pairwise interactions).
Second, we do not apply an AND/OR rule, because the cross-lagged effect of X!~ on X! is a
different effect than the cross-lagged effect of X!~! on X! and thus no parameter is estimated
twice. Here we state the modified algorithm explicitly:

Algorithm 2 (Estimating mized VAR models via nodewise regression.)

1. For each s € V:

(a) Construct the design matriz defined by L, the set of included lags.
(b) Solve the lasso problem in Equation 7 with regularization parameter .

(¢) Threshold the estimates at T.

2. Define the directed graphs D; based on the zero/nonzero pattern in the combined param-
eter vector for each lag j € L.

The computational complexity of Algorithm 2 is O(plog(p|L|)). Similarly to Algorithm 1, the
regularization parameter A can be selected using cross-validation or an information criterion

such as the EBIC.

Note that the directed graphs in the p x p x |L| array D are not encoding conditional in-
dependence statements as the graph G for MGMs. But they are a useful summary of the
parameters of the mixed VAR model, especially because it allows a visualization as a series
of directed networks (see Section 3.1 for illustrations).

Note that the performance of Algorithm 2 depends on the number of variables and the num-
ber of lags, the type of variables, the size of parameters relative to the variance of associated
variables, the sparsity of the parameter vector and the structure of the dependency graph.
mgm offers a flexible function to sample from mixed VAR models such that the performance
of Algorithm 2 in a given situation can be evaluated via simulation studies. Haslbeck, Bring-
mann, and Waldorp (2019) report the performance of Algorithm 2 in recovering VAR models
with Gaussian noise process in a variety of situations.

11

12 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

2.5. Estimating time-varying models

For both MGMs (Section 2.2) and mixed VAR models (Section 2.4) for time series data, we
assumed so far that the models are stationary. This means that the observations at each
time ¢ point are generated from the same distribution parameterized by 6. In time-varying
models we relax this assumption, such that the parameters §* can be different at each time
point t € T, = {%, %, ..., 1}, where n is the number time points in the time series. Note that
we use 1 to denote the number of observations both for cross-sectional data (observations
are measurements of different systems from some population) and time series data (repeated

measurements of the same system).

Since one cannot estimate a model from a single time point, we have to make assumptions
about how the parameters of the true model vary as a function of time. These assumptions
are usually assumptions about local stationarity (e.g., Zhou, Lafferty, and Wasserman 2010)
and come in one of two flavors: We either assume that there exists a partition B of 7, in
which time points are consecutive and in each of the subsets B € B the model is stationary,
that is, Vi,j € B : 8 = 7. These piecewise constant time-varying models can be estimated
with a fused lasso penalty, which puts an additional penalty on parameter changes from one
time point to the subsequent time point (see, e.g., Monti et al. 2014; Kolar and Xing 2012;
Gibberd and Nelson 2016, 2017).

The other type of local stationarity, which we focus on in this paper, requires that the model
6% is a smooth function of time. In this case we can combine observations close in time for
estimation, because we know that their generating models are similar. This idea is imple-
mented by fitting local models 6! across the time series, which only give high weight to data
points close to the given estimation point t*. The weight function is usually non-negative
and symmetric over t¢ (see, e.g., Song, Kolar, and Xing 2009; Zhou et al. 2010; Kolar, Song,
Ahmed, and Xing 2010; Kolar and Xing 2013; Tao, Huang, Wang, Xi, and Li 2016; Chen and
He 2018). The full time-varying model is then the set of all local estimates {61,602, ..., 6/¢1}
at estimation points £ = {t5,5, ..., I}, where the entries in £ are usually equally spaced
across the time series and the number of estimation points || is chosen depending on how
fine-grained one would like to describe ¢ as a function of time ¢.

Stating the above formally, we estimate the model #*° at time point ¢ by minimizing a
weighted version of the loss function in Equation 7 in Section 3.1:

rpe 1 e
Ht :argmin{—ne w £9,Xt + A 0 1}, 11
T B S ; ¢ £(0,X7) + Alle] (11)

where w!” is a function of ¢ defined by a kernel centered over t°. Specifically, we define the
weight function w!” to be a Gaussian kernel, normalized such that the largest weight is equal
to one (Zhou et al. 2010):

e Z, 1 (t — t¢)?

t t

wy = , where Z;=—exp{——s’" ;. 12
t maxe7;,) {UtZt} ¢ 2o P { 202 ()

This particular scaling of the weight function has the convenient property that the sum of
all weights ng = 7wt (or the area under the curve) used at a given estimation point
t¢ indicates the amount of data used for estimation at t¢ relative to the full time series (the
full rectangle). Note that we indexed n, s also with the estimation point ¢, because less

Journal of Statistical Software

Time X;1 Xee11 ... Xep wlo? owle?
1 0.03 —097 ... —0.08 0.61 0.00
2 1.15 —1.07 ... =056 088 0.14
3 0.11 063 ... 1.09 1.00 1.00
4 -1.08 013 ... 1.88 0.88 0.14
5 —-0.93 1.00 ... —0.29 0.61 0.00
6 —-1.08 017 ... =136 032 0.00
7 027 —-1.72 ... =113 0.14 0.00
8 0.03 —-1.26 ... —=0.97 0.04 0.00
9 -1.29 -1.05 ... =0.10 0.0l 0.00
10 —0.07 —0.04 1.05 —0.12 0.00 0.00

Time points

Figure 1: Illustration of two kernel weighting functions with different bandwidth parameter
defined for the estimation point t¢ = 3. Left panel: weights as a function of time; right panel:
equivalent representation of the weights across time, combined with the time series data.

data is used at the beginning and the end of the time series, where the weighting function is
truncated (see left panel Figure 1).

The example in Figure 1 illustrates this estimation procedure. Here we have a time series of
n = 10 measurements of p continuous variables, and we would like to estimate the model at
time point ¢ = 3. To this end we first define a kernel function w} as in Equation 12. The
bandwidth o of the kernel, which is here equal to the standard deviation of the Gaussian
distribution, indicates how many observations close in time we combine to estimate the node

at estimation point t¢.

Figure 1 displays the kernel function w}" for two different choices of bandwidth, o = 0.05
and o = 0.2. The kernel function with ¢ = 0.05 gives only time points very close to t¢ = 3 a
nonzero weight, while other time points get a weight close to zero and have therefore almost no
influence on the parameter estimated at t¢ = 3. In contrast, the kernel function with ¢ = 0.2
distributes weights more evenly, which implies that also time-points quite distant from ¢¢ = 3
influence the parameter estimates at t¢ = 3. The values of both weighting functions at the
measured time points are also illustrated together with the data matrix in the right panel of
Figure 1.

The choice of bandwidth involves a trade-off between the sensitivity to time-varying pa-
rameters and the stability of the estimates: If we combine only a few observations close in
time (small bandwidth o) the algorithm can detect parameter-variation at small time scales,
however, because we use little data, the estimates will be unstable. If we combine many
observations around the estimation point (large o), parameter-variation at small time scales
will be lost due to aggregation, however, the estimates will be relatively stable. Note that if
we keep increasing the bandwidth o, the weights on [0, 1] will converge to a uniform distri-
bution and give the same estimates as the stationary version of the model, thereby becoming
relatively stable, but losing all sensitivity to detect changes in parameters over time.

The ideal bandwidth ¢* results in the estimated parameter vector ' which minimizes the
distance to the true time-varying model #* as a function of 0. We can estimate the ideal

14 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

0.5

Estimation point . 05
1.0 Estimation point
1.0
5
‘g 0.5 05
0.0 0.0
0 0.05 0.23 0.5 0.57 0.7 0.79 0.85 0.9 0.95 1 :] 0,.05 0'23 0.5 0'57 0'7 0'79 O,.85 O'.Q 0,.95 '1
Time points Time points
(a) Assumed equal spacing (b) Include true time points

Figure 2: Left panel: the weighting function is computed by assuming that the true time
points are equally spaced. Since the true time points are not equally spaced, this creates a
mismatch between the time scale of estimation points and the true time scale. Right panel:
the true time interval is used to compute the weights and hence the two scalings match.

bandwidth ¢* using a time-stratified cross-validation scheme, where one searches a specified
o-sequence and selects the o which minimizes the mean (across folds and variables) out-of-
sample prediction error (see Section 3.3 for a description of the time-stratified cross-validation
scheme).

So far we assumed that the measurements in the time-series are taken at equal time intervals.
But this need not be the case, because measurements can be missing randomly or by design.
Simply treating the time points as equally distributed leads to an incorrect estimate of the
time-varying model. Figure 2 illustrates this issue.

Here we have a time series with n = 10 time points, measured at irregular time intervals. In
Figure 2(a) we distribute these time points evenly across the time interval, which results in
that the assigned time points in the normalized time interval [0, 1] do not correspond to the
true time points (values in red). Now if we estimate the time-varying model at time point
t¢® = 0.5, we see that the true time point 0.7 gets the highest weight. Thus, the model at
t¢® = 0.5 is more strongly influenced by the observations at the true time point 0.7 than by
the observations at time point 0.5. Clearly, this is undesirable.

In Figure 2(b) we avoid this problem by using the true time points in order to define the
weighting function w!”. We again estimate the model at ¢ = 0.5 and see that the time scale of
the estimation point is now aligned with the true time scale. This results in a different amount
of data used for estimation ng s, depending on how many measurements are available around
a given time point. If there is less data available, the algorithm becomes more conservative,
since we plug in ny e for n in the 7 threshold in Equation 8. In the extreme case where there
is no data close to an estimation point, ns ¢t will be extremely small, which implies that the
algorithm sets all estimates to zero. This makes sense, because if there is no data available
close to a given estimation point ¢, we cannot expect to obtain reliable estimates at t°.

Note that the only difference between the stationary models and the time-varying models
is that we introduce a weight for each time point in the cost function in Equation 11 and
repeatedly estimate the model at different estimation points. Therefore we can easily adapt
the estimation algorithms for the stationary MGM (Algorithm 1) and mixed VAR model

Journal of Statistical Software 15

(Algorithm 2) to their time-varying versions. We first state the algorithm for time-varying
MGMs.

Algorithm 3 (Estimating time-varying MGMs via kernel-smoothed neighborhood regression.)

1. For each estimation point t¢ € £:

(a) For each variable s € V' :
1. Construct the design matrix defined by k, the order of the MGM.

7. Solve the weighted lasso problem in Equation 11 with reqularization parameter
X\ and the weighting function w*" defined by t¢ and bandwidth o.

115. Threshold the estimates at T4 te.
(b) Combine the parameter estimates with the AND- or OR-rule.

(c) Define G¢ based on the zero/nonzero pattern in the combined parameter vector 6°.

Thus we obtain a parameter vector 8 of the MGM in Equation 5 and a graph G** defined
by 6%, for each estimation point t¢ € £. From Algorithm 1 follows that Algorithm 3 has a
computational complexity of O(|€|plog(p2¥~1)).

Similarly, we can adapt Algorithm 2 for the estimation of time-varying mixed VAR models.

Algorithm 4 (Estimating time-varying mized VAR models via kernel-smoothed neighborhood
regression.)

1. For each estimation point t¢ € £

(a) For each variable s € V:
1. Construct the design matrix defined by the L, the set of included lags.

7. Solve the weighted lasso problem in Equation 11 with reqularization parameter
X\ and the weighting function w** defined by t¢ and bandwidth o.

i1i. Threshold the estimates at T4 te.

(b) Define the directed graphs D3 based on the zero/nonzero pattern in the parameter
vector ¢ for each lag j € L.

Here we obtain a parameter vector #*° of the mVAR model and a directed graph D' for
each lag, defined by 0%, for each estimation point t¢ € £. From Algorithm 2 follows that
Algorithm 4 has a computational complexity of O(|€|plog(p|L])). Haslbeck et al. (2019)
report the performance of Algorithm 4 in recovering time-varying VAR models with Gaussian
noise process for a variety of situations.

Fitting a time-varying model with the above method requires to specify an appropriate band-
width parameter o. In Section 3.3, we describe a time-stratified cross-validation scheme
to select o in a data-driven way. The EBIC is not suitable to select o. The reason is that
threshold (intercept) parameters are neither included in the ¢1-penalty, nor in the EBIC. This
results in the EBIC selecting always the model with the smallest specified bandwidth, which
includes no interaction parameters, but achieves an extremely good fit through highly local

16 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

(time-varying) thresholds (intercepts). This problem is avoided when using a cross-validation
scheme, where fitting local means leads to high out-of-fold prediction error.

Note that the performance of Algorithms 3 and 4 depends on the number of variables, the type
of variables, the size of parameters relative to their variance, the sparsity of the parameter
vectors, the structure of the dependency graph and how non-linear the parameters vary as
a function of time. The best way to obtain the performance of Algorithms 3 and 4 is to
set up a suitable simulation study. To this end mgm offers flexible functions to sample from
time-varying MGMs and time-varying mVAR models.

3. Usage and examples

The mgm package can be installed from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=mgn:

R> install.packages ("mgm")
R> library("mgm")

In the following four sections, we show for each of the four model types how to:

1. Sample observations from a specified model.
2. Estimate the model from data.
3. Make predictions from an estimated model.
4. Visualize the estimated model.

5. Assess the stability of estimates.

The sampling functions are included to enable the user to determine the performance of the
estimation algorithm in a specific situation via simulations. All data sets used are loaded
automatically with the mgm package. All analyses in the paper are fully reproducible, and
the necessary code is either shown in the paper or can be found in the online supplementary
material or the Github repository https://github.com/jmbh/mgmDocumentation. For all
code examples we use mgm version 1.2-9 and R version 3.6.

3.1. Stationary mixed graphical models

In this section we first use a simulated data set to show how to estimate a pairwise MGM,
compute predictions from it, visualize it and assess the stability of its parameters. Then we
fit a pairwise MGM to a larger empirical data set related to autism spectrum disorder (ASD).
Finally, we give an example of a higher-order MGM by showing how to estimate a k = 3
MGM to a data set consisting of symptoms of post-traumatic stress disorder (PTSD).

Estimating mized graphical models

In this section we show how to use the function mgm() to estimate a pairwise MGM to a data
set with n = 500 observations of two continuous, and two categorical variables with m = 2
and u = 4 categories, respectively. The true model includes the pairwise interactions 1-4, 2—-3

https://CRAN.R-project.org/package=mgm
https://github.com/jmbh/mgmDocumentation

Journal of Statistical Software

and 1-2. For the exact parameterization of the true model and for a description of how to
sample from this MGM using the mgmsampler () function see the section on sampling below.

Next to the data, we specify the type of each variable ("g" for Gaussian, "p" for Poisson,
"c" for categorical) and the number of levels of each variable (1 for continuous variables
by convention). Here we use the example data mgm_data which is automatically loaded with
mgm. Next, we indicate the order of the graphical model: We choose k = 2, which corresponds
to a pairwise MGM (containing at most 2-way interactions). If we specified k = 3, we would fit
an MGM including all 2-way and all 3-way interactions, k& = 4 would include all 2-way, 3-way
and 4-way interactions, etc. After that, we specify how we select the penalization parameter
A in Algorithm 1. The two available options are the EBIC or cross-validation. Here we choose
cross-validation with 10 folds. If not otherwise specified via the argument lambdaSeq, the
considered A-sequence is determined as in the glmnet package: a sequence is defined from
Amax, the smallest (data derived) value for which all coefficients are zero, and Apin, a fraction
of Amax, which is 0.01 in the high-dimensional setting (n < p) and 0.0001 if n > p. Finally, we
indicate that estimates across neighborhood regressions should be combined with the AND-
rule. Since we use cross-validation, we set a random seed outside the function to ensure that
the analysis is reproducible.

R> set.seed(1)

R> fit_mgm <- mgm(data = mgm_data$data, type = c("g", "c", "c", "g"),
+ levels = c¢(1, 2, 4, 1), k = 2, lambdaSel = "CV", lambdaFolds = 10,
+ ruleReg = "AND")

mgm() returns a list with the following entries: fit_mgm$call returns the call of the func-
tion; fit_mgm$pairwise contains the weighted adjacency matrix and the signs (if defined)
of the parameters in the weighted adjacency matrix; fit_mgm$interactions contains a list
that shows all recovered interactions (cliques) and a list that returns the parameters asso-
ciated with all cliques; fit_mgm$intercepts stores all estimated thresholds/intercepts and
fit_mgm$nodemodels is a list with the p glmnet objects from which all above results are
computed. We inspect the weighted adjacency matrix stored in fit_mgm$pairwise$wadj:

R> round(fit_mgm$pairwise$wadj, 2)

(11 [,2]1 [,3] [,4]
[1,] 0.00 0.53 0.00 0.46
[2,] 0.53 0.00 0.09 0.00
[3,]1 0.00 0.09 0.00 0.00
[4,] 0.46 0.00 0.00 0.00

and see that we correctly recovered the pairwise dependencies 1-4, 2-3 and 1-2. The list
entry fit_mgm$pairwise$signs indicates the sign for each interaction, if a sign is defined.
By default, a sign is only defined for interactions between non-categorical variables (Gaussian,
Poisson). Interactions involving categorical variables with m > 2 categories are defined by
more than one parameter and hence no sign can be defined. The function showInteraction()
provides an alternative way to inspect a given interaction. For instance, one can obtain the
details about the interaction 1-4 like this:

R> showInteraction(object = fit_mgm, int = c(1, 4))

17

18 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Interaction: 1-4
Weight: 0.4586544
Sign: 1 (Positive)

We use the glmnet package to fit the regularized nodewise regressions, which directly models
the probabilities of categorical variables instead of the ratio relative to a reference category.
This is possible, because the regularization ensures that this model is identified (for details
see Friedman et al. 2010). This means that an interaction between two categorical variables
X1 €{1,...,m}and X5 € {1,...,u} has m x (u— 1) parameters in the regression on X; and
u X (m — 1) parameters in the regression on Xs. In addition, all estimation functions in mgm
also allow an overparameterization (specified via the argument overparameterize = TRUE),
where an indicator function is defined for each state of the categorical predictor variable. In
the previous example of a pairwise interaction, this leads to m x u parameters specifying the
interaction between X7 and Xs. The overparameterization is useful when one is interested in
parameters associated with indicator functions that are otherwise absorbed by the threshold
(intercept) parameters (also called reference category). We give an example when estimating
a k = 3 order MGM at the end of this section.

If the argument binarySign is set to TRUE, all binary variables have to be coded as {0, 1}
and a sign is defined in the following way: For an interaction between two binary variables
X1, X2 € {0, 1}, if the parameter associated with the indicator function Ix,—; in the equation
modeling P(X; = 1) has a positive sign (which implies that the parameter associated with
Ix,—1 in the equation modeling P(X; = 0) has a negative sign, see Friedman et al. 2010),
then we assign a positive sign to the binary-binary interaction. For an interaction between a
binary variable X and a continuous variable Xy we take the sign of the parameter associated
with X5 in the equation modeling P(X; = 1). In addition, it is possible to specify a weight
for each observation via the argument weights to perform weighted regression.

In the example above we used an ¢1-penalized GLM to estimate the MGM, which implies that
we assume that the true MGM is sparse. However, a different penalty may be appropriate
in some situations. Via the argument alphaSeq one can specify any convex combination of
the ¢1- and ¢3-penalty (the elastic net penalty, see Zou and Hastie 2005). alphaSeq = 1
corresponds to the ¢1-penalty (default) and alphaSeq = 0 to the 3-penalty. If a sequence of
values is provided to alphaSeq, the function will select the best o value based on the EBIC
or cross-validation, specified via the argument alphaSel.

Making predictions from mixed graphical models

We now use the predict() function to compute predictions and nodewise errors from the
model estimated in the previous section. This function takes the model object and data of
the same format as the data used for estimation as input. It also allows to specify which
error functions should be used to compute nodewise prediction errors. The error functions
F(g,y) for continuous and categorical variables are specified via the errorCon and errorCat
arguments, respectively. Here we specified the root mean squared error ("RMSE") and the
proportion of explained variance ("R2") as error functions for the continuous variables, and
the proportion of correct classification (or accuracy, "CC") and the normalized proportion
of correct classification ("nCC") for categorical variables. "nCC" indicates the increase in
accuracy beyond the intercept model, divided by the maximal possible increase, and thereby
captures how well a node is predicted by other nodes beyond the intercept model. Specifically,

Journal of Statistical Software

let A= % * 1 I(y; = 9;) be the proportion of correct classifications, and let pg, p1,...pm be
the marginal probabilities of the categories, where I is the indicator function for the event
R; = R;. In the binary case these are pg and p; = 1 — pg. We then define the normalized
accuracy as
A _ A_max{p0>p17"'apm}
norm

B 1- maX{p()apla s 7pm} ‘

For details see Haslbeck and Waldorp (2018). If one is not interested in computing nodewise
prediction errors, the arguments errorCon and errorCat can be simply ignored.

We provide the object with fit mgm and the data as input arguments and a choice of prediction
error measures to the predict () function:

R> pred_mgm <- predict(object = fit_mgm, data = mgm_data$data,
+ errorCon = c("RMSE", "R2"), errorCat = c("CC", "nCC"))

The output object pred_mgm is a list that contains the function call, the predicted values, the
predicted probabilities of each category in case the model includes categorical variables, and
a table with nodewise prediction errors. Here we print the nodewise error table:

R> pred_mgm$errors

Variable Error.RMSE Error.R2 Error.CC Error.nCC

[1,] 1 0.781 0.389 NA NA
[2,] 2 NA NA 0.842 0.225
[3,] 3 NA NA 0.342 0.000
(4,] 4 0.855 0.268 NA NA

The RMSE and R? are shown for the two continuous variables, the accuracy and normal-
ized accuracy are shown for the two categorical variables. It is possible to provide an arbi-
trary number of customary error functions for both continuous and categorical variables to
predict (), for details see ?predict.mgm.

In this example we used the same data for estimation and prediction, which means that we
computed within sample prediction errors. In order to evaluate how well the model generalizes
out of sample, the predictions have to be made on a fresh test data set. This can be done by
providing new data of the same format to the predict () function.

Visualizing mized graphical models

We visualize interaction parameters of the pairwise model together with the nodewise errors
using the qgraph package (Epskamp et al. 2012). To this end we first install and load the
qgraph package and compute a vector containing the nodewise errors we would like to display:

R> install.packages("qgraph")

R> library("qgraph")

R> errors <- c(pred_mgm$errors[1, 3], pred_mgm$errors[2:3, 4],
+ pred_mgm$errors[4, 3])

19

20 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

()

1: Gaussian
2: Categorical; m =2
3: Categorical; m=4

4: Gaussian

Figure 3: Visualization of the edge-parameters and nodewise errors of the estimated MGM.
Green edges indicate positive relationships. Grey edges indicate pairwise interactions for
which no sign is defined (interactions involving categorical variables). The width of the edges
is proportional to the absolute value of the associated edge-parameter.

Here we decided to display the proportion of explained variance for the continuous variables
and the accuracy for the categorical variables. In order to plot the model, one provides the
weighted adjacency matrix and the errors to the function qgraph (). We also provide a matrix
of edge colors that specify the sign of each interaction (green = positive, red = negative, grey
= undefined) that is stored in the object fit with mgm. Finally we provide colors for the
different error measures and variable names for the legend.

R> qgraph(fit_mgm$pairwise$wadj, edge.color = fit_mgm$pairwise$edgecolor,

+ pie = errors, pieColor = c("lightblue", "tomato", "tomato",
+ "lightblue"), nodeNames = c("Gaussian", "Categorical; m = 2",
+ "Categorical; m = 4", "Gaussian"), legend = TRUE)

Figure 3 shows the resulting visualization. The green edge between variable 1 and variable 2
indicates a positive linear relationship between the two Gaussian variables and the two grey
edges indicate relationships between categorical variables, for which no sign is defined. The
exact nature of these interactions can be found by inspecting them using the output object
of the showInteraction() function. The width of the edges is proportional to the size of the
corresponding edge-parameter. The blue rings indicate the proportion of variance explained
by neighboring nodes for the Gaussian variables, and the red rings indicate the accuracy of
the categorical nodes.

Bootstrap sampling distributions

Obtaining the sampling distributions for parameter estimates can be useful if one is interested
in the stability of estimates (Hastie et al. 2015). The function resample() obtains empirical
sampling distributions with the nonparametric bootstrap (Efron 1992; Efron and Tibshirani
1994). Its input is the mgm model object fit_mgm (the output of the function mgm(), see
above), the data, and the desired number of bootstrap samples B via the argument nB. The
argument quantiles specifies lower /upper quantiles of the sampling distributions, which are

Journal of Statistical Software 21

-0.50 025 0.00 0.25 050 0.75 1.00
1-2 —_—

1-4 —o—

2-3 —o—

.

_

2-4 —@—

Figure 4: Summaries of bootstrapped sampling distributions separately for the weight of each
edge. The value indicates the proportion of nonzero estimates across the B bootstrap samples
and is plotted at the arithmetic mean of the sampling distribution. The black horizontal lines
indicate the 0.05 and 0.95 quantiles of the bootstrapped sampling distribution.

added to the output. Here we choose quantiles = c(0.05, 0.95). Finally, we set a random
seed to make the analysis reproducible.

R> set.seed(1)
R> res_obj <- resample(object = fit_mgm, data = mgm_data$data, nB = 50,
+ quantiles = c¢(0.05, 0.95))

The bootstrapped sampling distributions of the edge weights can be found in a B X p X p array
stored in the list entry res_obj$bootParameters. For example, the vector of length B with
the bootstrapped sampling distribution of the weight of the edge 3—4 is stored in the entry
res_obj$bootParameters[, 3, 4]. The output object res_obj also contains the specified
lower /upper quantiles of each sampling distribution, the function call, the B estimated models
and the running time for each bootstrap sample. The function plotRes() provides a plot
that summarizes the bootstrapped sampling distributions. For each edge weight, it displays
the proportion of nonzero estimates across all B models, printed at the arithmetic mean of
the sampling distribution. In addition, it displays specified lower/upper quantiles. Here we
choose the 5% and 95% quantiles by setting quantiles = c(0.05, 0.95).

R> plotRes(object = res_obj, quantiles = c(0.05, 0.95))

The resulting plot is displayed in Figure 4. It shows that the sampling distributions for the
edges 1-2 and 1-4 are located far from zero, have a small standard deviation and 100% of the
B estimates were nonzero. For the edges 3—4, 2-3 and 1-3 that are absent in the true graph,
the sampling distribution is close to zero and the proportion of estimated nonzero effects is
much smaller.

22 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

While bootstrapped sampling distributions are useful to determine the stability of estimates,
they are not suited for performing hypothesis tests, for instance, against the null hypothesis
that the population parameter is equal to zero. The reason is that the sampling distribu-
tions of parameters obtained with f;-regularized regression have a zero mass around zero
(Biithlmann, Kalisch, and Meier 2014). The R package bootnet (Epskamp, Borsboom, and
Fried 2018) also implements a bootstrap scheme for mgm objects and provides similar plotting
options.

Sampling from mized graphical models

Here we illustrate how to use the function mgmsampler () to create the data set mgm_data that
was used for estimation above. These data were created by specifying an MGM consisting
of two continuous Gaussian nodes ("g"), and two categorical nodes ("c") with m = 2 and
u = 4 categories, and three pairwise interactions between these four variables. A third
option in mgmsampler () are Poisson nodes ("p"). Note that we use the overparameterized
representation of interactions between categorical variables to specify the model, which means
that the pairwise interaction between the categorical variables has m x u parameters. We
begin by specifying the type and number of categories for each node. By convention, for
continuous variables we set the number of categories to 1.

R> type <- C(”g", ”C”, "C”, ugn)
R> level <- c(1, 2, 4, 1)

Next, we specify a list containing the thresholds for each variable:

R> thresholds <- list()
R> thresholds[[1]] <- 0
R> thresholds[[2]] <- rep(0, level[2])
R> thresholds[[3]] <- rep(0, level[3])
R> thresholds[[4]] <- 0

We specify a zero threshold (intercept) for the two Gaussian nodes, and for each of the
categories of both categorical variables. Thresholds correspond to the first summation in
the joint MGM density in Equation 5. Next, we specify a vector containing the standard
deviations for the Gaussian variables:

R> sds <- rep(1, 4)

The entries in sds corresponding to non-Gaussian nodes (here 2 and 3) are ignored. Finally,
we specify three pairwise interactions between the variables 1-2, 2-3 and 1-4 in two steps:
First, we create a matrix, in which each row indicates one pairwise interaction:

R> factors <- 1list()
R> factors[[1]] <- matrix(c(1, 4, 2, 3, 1, 2), ncol = 2, byrow = TRUE)

We assign the matrix to the first list entry factors[[1]], which contains pairwise interac-
tions. The second list entry factors[[2]] contains a ¢ X 3 matrix of ¢ 3-way interactions,
the third entry contains a w x 4 matrix of w 3-way interactions, etc. Since we only specify

Journal of Statistical Software 23

pairwise interactions in this example, we only use the first entry. A description and examples
of how to specify higher order interactions are given in the help file 7mgmsampler. In a second
step, we specify the parameters of the three interactions:

R> interactions <- list()
R> interactions[[1]] <- vector("list", length = 3)
R> interactions[[1]][[1]] <- array(0.5, dim = c(levell[1l], levell[4]))

R> int_2 <- matrix(0, nrow = level[2], ncol = levell[3])
R> int 2[1, 1:2] <- 1

R> interactions[[1]][[2]] <- int_2

R> int_1 <- matrix(0, nrow = level[1], ncol = level[2])

R> int_1[1, 1] <- 1
R> interactions[[1]][[3]] <- int_1

The interaction between the continuous variables 1-2 is parameterized by one parameter
with value 0.5. The interaction between the two categorical variables is specified by a 2 x 4
parameter matrix. We give the entries (1,1) and (1,2) a value of 1, which means that these
two states have a higher probability than the remaining states, which are associated with a
value of 0. Finally, we specify the interaction between the continuous Gaussian node 1 and
the binary node 2, which has two parameters associated with the two indicator functions for
the binary variable multiplied with the continuous variable. Now we provide these arguments
to the mgmsampler () function, together with n = 500, which samples 500 observations from
the model:

R> set.seed(1)
R> mgm_data <- mgmsampler (factors = factors, interactions = interactions,
+ thresholds = thresholds, sds = sds, type = type, level = level, N = 500)

The function returns a list containing the function call in mgm_data$call and the data in
mgm_data$data. For more details on how to specify k-order MGMs we refer the reader to the
help file ?mgmsampler.

Application: Autism and well-being

Here we show how to estimate an MGM on a real data set consisting of responses of 3521
individuals from the Netherlands, who were diagnosed with autism spectrum disorder (ASD),
to 28 questions on demographics, psychological aspects, conditions of the social environment
and medical measurements (for details see Begeer, Wierda, and Venderbosch 2013; Deserno,
Borsboom, Begeer, and Geurts 2017). The data set is included in the mgm package and
loaded automatically. It includes continuous variables, count variables and categorical vari-
ables (see autism_data_large$type), and the latter have between 2 and 5 categories (see
autism_data_large$level).

We choose a pairwise model (k = 2) and select the regularization parameters A using the
EBIC with a hyper-parameter v = 0.25:

R> fit_ADS <- mgm(data = autism_data_large$data,
+ type = autism_data_large$type, level = autism_data_large$level,
+ k = 2, lambdaSel = "EBIC", lambdaGam = 0.25)

24 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

The 28 x 28 weighted adjacency matrix is too large to be displayed here. Instead, we directly
visualize it using the qgraph package. In addition to the weighted adjacency matrix and the
matrix containing edge colors that indicate the signs of edge parameters, we also provide a
grouping of the variables into the categories Demographics, Psychological, Social environment
and Medical measurements as well as colors for the grouping, both of which are contained
in the data list autism_data_large. The remaining arguments are chosen to improve the
visualization, for details we refer the reader to the help file ?qgraph.

R> qgraph(fit_ADS$pairwise$wadj, layout = "spring", repulsion = 1,

+ edge.color = fit_ADS$pairwise$edgecolor,

nodeNames = autism_data_large$colnames,

color = autism_data_large$groups_color,

groups = autism_data_large$groups_list,

legend.mode = "style2", legend.cex = 0.4, vsize = 3.5, esize = 15)

+ + + +

The resulting visualization is shown in Figure 5. The layout of node positions was computed
with the Fruchterman Reingold algorithm, which places nodes such that all the edges are
of more or less equal length and there are as few crossing edges as possible (Fruchterman
and Reingold 1991). Green edges indicate positive relationships, red edges indicate negative
relationships and grey edges indicate relationships involving categorical variables for which no
sign is defined. The width of the edges is proportional to the absolute value of the edge-weight.
The node color indicates the different categories of the variables.

We observe a strong positive relationship between age and age of diagnosis, which makes
sense because the two variables are logically connected. The negative relationship between
number of unfinished educations and satisfaction at work seems plausible, too. Well-being
is strongly connected in the graph, with the strongest connections to satisfaction with social
contacts and integration in society. These three variables are categorical variables with 5, 3
and 3 categories, respectively. In order to investigate the exact nature of these interactions,
one can look up all parameters using the function showInteraction().

Estimating higher-order mized graphical models

In the previous section, we focused on the estimation of pairwise (k = 2) MGMs. Here, we
show how to estimate an MGM of order £ = 3 to a data set consisting of post-traumatic
stress disorder (PTSD) symptoms reported from 344 survivors of the Wenchuan earthquake
in China reported in McNally, Robinaugh, Wu, Wang, Deserno, and Borsboom (2015). The
data set is loaded automatically with mgm and includes the following symptoms:

R> PTSD_data$names
[1] "intrusion" "dreams" "flash" "upset" "physior" "avoidth"

We first specify the data, type, levels and the desired method to select the regularization
parameter A, similarly to the pairwise MGM. But here we specify with k = 3 to estimate all
pairwise and all 3-way interactions.

In addition, we choose to use the overparameterized version of the representation of categorical
variables by setting overparameterize = TRUE. This results in that all states of categorical

Journal of Statistical Software

Demographics

1: Gender

14: Type of Housing

15: No of unfinished Educations
28: Age

Psychological

2:1Q

4: Openness about Diagnosis
5: Success selfrating

6: Well being

18: No of Interests

20: Good Characteristics due to Autism
21: No of Transition Problems
Social environment

7: Integration in Society

16: Type of work

17: Workinghours

19: No of Social Contacts

26: Satisfaction: Work

27: Satisfaction: Social Contacts
« Medical

3: Age diagnosis

8: No of family members with autism
9: No of Comorbidities

10: No of Physical Problems
11: No of Treatments

12: No of Medications

13: No of Care Units

22: Satisfaction: Treatment

23: Satisfaction: Medication

24: Satisfaction: Care

25: Satisfaction: Education

Figure 5: Visualization of the MGM estimated on the autism data set. Green edges indicate
positive relationships, red edges indicate negative relationships and grey edges indicate rela-
tionships involving categorical variables for which no sign is defined. The width of the edges
is proportional to the absolute value of the edge-parameter. The colors of the nodes map to
the different domains Demographics, Psychological, Social Environment and Medical.

variables up to degree k are modeled explicitly. This overparameterization is possible due to
the ¢;-penalization (for details see Friedman et al. 2010). The standard and the overparame-
terized parameterization are statistically equivalent and therefore one has to choose one over
the other based on which parameterization lends itself to the most useful interpretation in
a given application: If it is more sensible to compare all categories to a reference category
the standard parameterization is preferable. If one is interested in all categories equally, the
overparameterization might be better. We call mgm () with the above discussed specifications:

R> fit_mgmk <- mgm(data = PTSD_data$data, type = PTSD_data$type,
+ level = PTSD_data$level, lambdaSel = "EBIC", lambdaGam = 0.25,
+ k = 3, overparameterize = TRUE)

The output object £fit_mgmk has the same structure as the pairwise MGM discussed above.
We still find the pairwise interactions in fit_mgmk$pairwise but these do not represent the
full parameterization anymore, since we also estimated 3-way interactions. All interactions
that have been estimated to be nonzero can be found in the list fit_mgmk$interactions:
The entry fit_mgmk$interactions$indicator contains a list showing all nonzero estimated
interactions, separately for each order (here 2 and 3):

25

26 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

R> fit_mgmk$interactions$indicator

[[11]

[,11 [,2]

[1,] 1 2
(3,] 4 5

[[2]]

[,11 [,2] [,3]

[1,] 1 3 4
[2,] 1 3 5
[3,] 2 3 4
(4,] 3 5 6
[5,] 4 5 6

The output indicates that we estimated two nonzero pairwise interactions, and five nonzero
3-way interactions. For example, the third row in the second list entry indicates that there
is a 3-way interaction between variables 2-3-4 (Dreams, Flashbacks and Upset). The list
fit_mgmk$interactions also contains additional entries for the strength of each interaction,
and all parameters specifying the interaction (more than one parameter in case of categorical
variables, see Section 2.1).

If we were to visualize the dependency structure of this k& = 3-order MGM in a common
undirected graph, we would lose the information about on which interaction(s) a dependency
(edge) is based on. For instance, an edge between the nodes 1 and 2 could either be due to
a pairwise interaction between 1 and 2, or due to any 3-way interaction including the nodes
1 and 2, or both. A visualization that allows to represent different orders of interactions is
the factor graph (e.g., Koller and Friedman 2009). A factor graph is a bipartite graph that
includes nodes for variables on the one hand, and nodes for interactions on the other hand.
We use the function FactorGraph() to plot such a factor graph.

R> FactorGraph(object = fit_mgmk, labels = PTSD_data$names,
+ PairwiseAsEdge = FALSE)

This results in Figure 6(a). The six circle nodes represent the six variables in the data set.
The red square factor nodes indicate pairwise interactions and the blue square factor nodes
indicate 3-way interactions. Each factor node connects to two (pairwise) or three (3-way)
variables, indicating an interaction between the respective variables. The width of the edges
are proportional to the absolute value of the weight of the corresponding interaction.

We have a closer look at the 3-way interaction 2-3-4 (Dreams, Flashbacks, and Feeling Upset)
in Figure 6(b): First look at the marginal probability cross-table of the variables Dreams and
Upset, which shows unequal cell probabilities and hence an interaction between those two
variables. Now we condition on the two states of a third variable Flashbacks and see that the
interaction between Dreams and Upset considerably depends on whether an individual has
Flashbacks or not.

Interpreting a k-way interaction by interpreting the & — 1 way interaction for several levels
of the variable X; in the interaction can be seen as a moderation by X;. In Haslbeck,

Journal of Statistical Software

Dreams

(a) (b) .
set Flashbacks
" n - :

Dreams

Dreams

Flashbacks

Figure 6: (a) Factor graph visualization of the estimated kK = 3 MGM. The circle nodes refer
to variables, the quadratic nodes refer to factors over two variables, and the triangle nodes
refer to factors over three variables. The width of the edges is proportional to the strength
of the factor; (b) the marginal sample probability cross-table of Dreams and Upset, and the
same table conditioned on the two states of Flashbacks. We see that the relationship between
Dreams and Upset depends on Flashbacks

Borsboom, and Waldorp (2020) we explain this approach of interpreting k = 3 interactions
as moderation in more detail, and provide further examples for estimating and interpreting
higher-order MGMs for the special case of continuous variables.

3.2. Stationary mixed VAR models

In this section, we first show how to estimate a mixed VAR model, compute predictions from
it and visualize it based on simulated data. Then we show how to specify and sample from
a mixed VAR model in order to generate the data used earlier for estimation. We then fit a
mixed VAR model of order 3 to resting state fMRI data.

Estimating mized VAR models

Here we show how to use the function mvar() to fit a mixed VAR model to a time series
of six variables, consisting of four categorical variables (with 2, 2, 4 and 4 categories) and
two Gaussian variables. In the true mVAR model from which the time series was sampled,
there are effects of lag order 1 from variable 6 on 5, from 5 on 1 and from 3 on 1. The exact
parameterization of these interactions is shown later in this section, where we create this data
set with the function mvarsampler().

We provide the data (which is an example data set automatically loaded with mgm), and
specify the type of each variable in type, where "g" stands for Gaussian, "p" for Poisson,
and "c" for categorical. Next, we provide the number of levels for each variable via levels,

27

28 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

where we choose 1 for continuous variables by convention. We specify a lag of order 1 and
select the regularization parameter A using the EBIC with tuning parameter v = 0.25:

R> fit_mvar <- mvar(data = mvar_data$data,
+ type = C(”C", net omen nen ugu, ngu), level = C(2, 2, 4, 4, 1, 1),
+ lambdaSel = "EBIC", lambdaGam = 0.25, lags = 1)

mvar () returns a list with several entries: fit_mvar$wadj is a p X p X |L| array of edge
weights, where |L| is the number of specified lags. For example, fit_mvar$wadj[3, 5, 1]
corresponds to the parameter for the crossed lagged effect of 5 on 3 over the first lag specified
in lags (in this example we only specified one lag). fit_mvar$signs has the same dimension
as fit_mvar$wadj and contains the signs of all parameters, if defined. fit_mvar$rawlags
contains the full parameterization of the cross-lagged effects. If the mixed VAR model con-
tains only continuous variables, the information in fit_mvar$wadj and fit_mvar$rawlags
is equivalent. Similarly to mgm(), the entry fit_mvar$intercepts contains all thresholds
(intercepts) and fit_mvar$nodemodels contains the p glmnet models of the p neighborhood
regressions. Here we show the interaction parameters of the fitted VAR model for the single
specified lag of order 1:

R> round(fit_mvar$wadj[, , 11, 2)

(.11 [,2]1 [,3] [,4] [,5] [,6]
[1,] 0 0 0.33 0.06 0.41 0.00
[2,] 0 0 0.00 0.00 0.00 0.00
[3,] 0 0 0.00 0.00 0.00 0.00
(4,] 0 0 0.00 0.00 0.00 0.00
[5,] 0 0 0.00 0.00 0.00 0.31
(6,1] 0 0 0.00 0.00 0.00 0.00

The autoregressive effects are on the diagonal and the cross-lagged effects are on the off-
diagonal. We use a representation in which columns predict rows, which means that the
entry fit_mvar$wadj[5, 3, 1] corresponds to the cross-lagged effect of 3 on 5 at lag 1.
Comparing the estimates with the true cross-lagged effects indicated above, we see that all
three true cross-lagged effects have been recovered and all other effects are correctly set to
Zero.

The additional arguments that can be provided to mvar () are similar to the ones in mgm():
The regularization parameter A can be selected using the EBIC with a specified hyperparam-
eter v or with cross-validation with a specified number of folds. The candidate A sequence is
computed as in mgm() (see Section 3.1). The « in the elastic-net penalty can be selected with
the EBIC or cross-validation, similarly to how A is selected. Again similarly to mgm(), the
weights argument allows to weight observations, binarySign allows signs for interactions
involving binary variables, threshold defines the type of thresholding (see Section 2.3) and
overparameterize allows to choose the preferred type of parameterization of interactions
involving categorical variables. For additional input arguments see ?mvar.

In many situations, one fits a VAR model to data that do not consist of a sequence of
measurements that are equally spaced in time. The reason for this can be (randomly) missing
measurements and gaps implied by the measurement process: For instance, in an experience

Journal of Statistical Software

sampling study, individuals may be asked to respond to questions about symptoms 6 times
a day at equal time intervals of three hours. A mixed VAR model would then show how
the presence of a symptom at a given time point is related to the presence of that and other
symptoms at earlier time points (3h ago, 6h ago, etc.). However, because the individual sleeps
at night, there are gaps in the time series. If one did not take this information into account,
every seventh data point in the time series would represent a lag with the length of the
night-gap, whereas the other six are representing a lag of three hours. This problem can be
avoided by providing an integer sequence via the argument consec, which indicates whether
measurements are consecutive. For instance if one has a time series with 12 time points (2 days
of measurements in the above example), one would provide the vector c(1, 2, 3, 4, 5, 6,
1, 2, 3, 4, 5, 6). If one specifies a lag of order 1, mvar() then excludes the time step
(over night) from measurement 6 to 7. Alternatively one can specify the notification number
and the day number via the arguments beepvar and dayvar, respectively. Then the consec
variable is computed internally. If a larger number of lags is included, more measurements
are excluded accordingly. Information about which cases were excluded as well as the final
data matrix used for estimation can be found in mvar$call. For more details see ?mvar and
the application example for the time-varying mVAR model below.

Making predictions from mized VAR models

Here we show how to use the predict () function to compute predictions and nodewise errors
from the model estimated in the previous section. We provide the fit object mvar_fit and
the data as arguments:

R> pred_mgm <- predict(object = fit_mvar, data = mvar_data$data,
+ errorCon = c("RMSE", "R2"), errorCat = c("CC", "nCC"))

pred_mgm$call contains the function call, pred_mgm$predicted the predicted values for
each row in the provided data matrix, and pred_mgm$probabilities contains the predicted
probabilities for categorical variables. pred_mgm$errors contains a table of nodewise errors.
Similarly to Section 3.1 we specified the root mean squared error (RMSE) for continuous
variables and the (normalized) accuracy for categorical variables:

R> pred_mgm$errors

Variable RMSE R2 CcC nCC

NA NA 0.754 0.495
NA NA 0.523 0.000
NA NA 0.302 0.000
NA NA 0.266 0.000
5 0.916 0.157 NA NA
6 0.998 0.000 NA NA

O O W N -
SN -

Node 1 has the highest normalized accuracy, which makes sense because it is predicted by
three other nodes at the previous time point. Nodes 2, 3 and 4 have a normalized accuracy
of 0, because they are not predicted by any other node. Node 6 has a proportion of explained
variance of 0, because it is not predicted by any other node, and node 5 has a nonzero
proportion of explained variance because it is predicted by node 6.

29

30 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

: Categorical; m =4

5: Gaussian
@ 6: Gaussian

: Categorical; m =2
. Categorical; m =2
: Categorical; m=4

A WN P

O—LJ

Figure 7: We visualize the lagged interaction parameters of the mixed VAR model estimated
together with the nodewise errors. Green edges indicate positive relationships. Grey edges
indicate that no sign is defined for the pairwise interaction (in the case the interaction involves
categorical variables). The width of the edges is proportional to the absolute value of the
edge-parameter.

One can also provide customary error functions via the errorCon and errorCat arguments.
For details, see ?predict.mgm.

Visualizing mized VAR models

We visualize the lagged interaction parameters of the mixed VAR model estimated above
together with the nodewise errors computed in the previous section. Specifically, we visualize
the proportion of explained variance for the two continuous variables, and the normalized
accuracy for the four categorical variables:

R> errors <- c(pred_mgm$errors[1:4, 5], pred_mgm$errors[5:6, 3])

R> qgraph(t(fit_mvar$wadj[, , 1]1), edge.color = t(fit_mvar$edgecolor[, , 1]),
+ pie = errors, pieColor = c(rep("tomato", 4), rep("lightblue", 2)),

+ nodeNames = c(pasteO("Categorical; m=", c(2, 2, 4, 4)),

+ rep("Gaussian", 2)))

We transposed the parameter matrix fit_mvar$wadj[, , 1] because qgraph() draws arrows
from rows to columns instead of columns to rows, the latter of which is the data structure
used in mvar (). The resulting plot is shown in Figure 7.

The green edge indicates a positive linear relationship for the cross-lagged effect from node 6
on node 5. The remaining edges are grey, indicating that no sign is defined. This is because
these interactions are defined by several parameters, so no sign can be defined. The width of
the edges is proportional to the absolute value of the estimated edge-weights (the values in
fit_mvar$wadj[, , 11).

Journal of Statistical Software

Sampling from mized VAR models

We now use the function mvarsampler() to sample the data set mvar_data used in the
previous section. We specify a model with only one lag of order one and p = 6 variables, four
categorical (with 2, 2, 4 and 4 categories) and two Gaussians:

R>p <-6

R> type <- c("c", "c", "c", "c", "g", "g")
R> level <- c(2, 2, 4, 4, 1, 1)

R> max_level <- max(level)

R> lags <- 1

R> n_lags <- length(lags)

Next, we specify the thresholds for each variable. We assign one threshold (intercept) to
the Gaussians, and a separate threshold for each of the categories of each of the categorical
variables. These thresholds correspond to the first summation in the joint MGM density in
Equation 5. In addition, we define a vector indicating the standard deviations of the Gaussian
nodes. Note that entries of that vector that do not correspond to Gaussian variables in type
are ignored.

R> thresholds <- list()
R> for (i in 1:p) thresholds[[i]] <- rep(0, levell[i])
R> sds <- rep(1, p)

Finally, we specify the lagged effects in a 5-dimensional p x p x max{levels} x max{levels} x | L|
array, where |L| is the number of lags n_lags. We first specify the lagged effect from the
continuous variable 6 on the continuous variable 5, which consists of a single parameter:

R> coefarray <- array(0, dim = c(p, p, max_level, max_level, n_lags))
R> coefarrayl[5, 6, 1, 1, 1] <- 0.4

We specify two additional lagged effects: one from the categorical variable 3 on the categorical
variable 1, which is parameterized by 2 x 4 parameters; and one from the continuous variable
5 to the binary variable 1, which is parameterized by 2 x 1 parameters.

R> coefarrayl[1, 5, 1:level[1], 1:level[5], 1] <- c(0, 1)
R> m1 <- matrix(0, nrow = level[2], ncol = level[4])
R>mi[1, 1:2] <- 1

R> mi[2, 3:4] <- 1

R> coefarray[1, 3, 1:level[2], 1:level[4], 1] <- ml

Finally, all arguments are provided to mvarsampler():

R> mvar_data <- mvarsampler(coefarray = coefarray, lags = lags,
+ thresholds = thresholds, sds = sds, type = type, level = level,
+ N = 200, pbar = TRUE)

These sampled data correspond to the example data set in mvar_data we used above to
illustrate how to estimate a mVAR model.

32 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

(c)Lag=3

Figure 8: Visualization of the fitted mVAR model, where we depict the parameters separately
for each lag. Red edges indicate positive relationships, green edges indicate negative relation-
ships. The width of the edges is proportional to the absolute value of the edge-parameter.

Application: Resting state fMRI data

We fit an mVAR model with lags 1, 2 and 3 to resting state fMRI data of a single participant.
The data set consists of BOLD measurements of 68 voxels for 240 time points, where the
average sampling frequency is 2 seconds (for details see Schmittmann, Jahfari, Borsboom,
Savi, and Waldorp 2015). The data set is loaded automatically with the mgm package. All
BOLD measurements are modeled as conditional Gaussians, and accordingly we specify the
number of levels to be equal to 1 for all variables. We select the regularization parameter A
with the EBIC with tuning parameter v = 0.25, and we include lags of order 1, 2 and 3.

R> rs_mvar <- mvar(data = restingstate_data$data, type
+ level = rep(1, 68), lambdaSel = "EBIC", lambdaGam
+ lags = c(1, 2, 3))

rep("g”, 68) s
0.25,

We visualize the 68 x 68 x 3 interaction parameters of this VAR model in rs_mvar$wadj
in three separate network plots in Figure 8, one for each lag. We provide code to reproduce
Figure 8 from the package example data set restingstate_data in the online supplementary
materials and on the Github repository https://github.com/jmbh/mgmDocumentation.

For the lag of size one, many coefficients are nonzero. In contrast, for the lags of size two and
three only few coefficients are nonzero. For a typical fMRI data analysis, this could mean
that it is sufficient to fit a VAR model of lag 1 in order to reduce the variance for further
analyses.

Similarly to MGMs, the function resample() can be used to obtain bootstrapped sampling
distributions for the parameters of the mVAR model.

3.3. Time-varying mixed graphical models

In this section we show how to estimate a time-varying MGM, how to compute predictions
from it and how to visualize it.

https://github.com/jmbh/mgmDocumentation

Journal of Statistical Software

Estimating time-varying mixzed graphical models

We fit a time-varying MGM to gene expression data used by Gibberd and Nelson (2017),
who took a subset of the data presented by Arbeitman et al. (2002). Specifically, we model
p = 150 gene expressions related to the immune system of D. melanogaster (the fruit fly)
measured at n = 67 time points across its whole life span. Since p > n, this is an example of a
high-dimensional estimation problem. Figure 9 (top panel) shows that the 67 measurements
are distributed unequally across the time interval.

Estimating the type of time-varying models introduced in Section 2.5 requires the specification
of a bandwidth parameter o that reflects how many time points are combined locally for
estimation. The bandwidth parameter o is the standard deviation of the Gaussian distribution
that defines the weighting function (see Section 2.5). The empirical time points are normalized
to the interval [0,1] and the Gaussian weighting function is defined on this interval. This
allows some intuition about which o is appropriate. For example, 0 = 2 implies weights that
are close to uniform on the interval [0, 1] and therefore gives similar results as the stationary
model. This intuition allows to specify a candidate o-sequence. We select o with the function
bwSelect (), which computes prediction errors on leave-out sets for all candidate o-values
and selects the o* that has the lowest mean error. In the next paragraph we describe this
approach in detail.

The function bwSelect () fits time varying models on an equally spaced sequence between
the time points j and n — F 4+ j — 1 of length J with j € {1,2,...,F}, where F is the
number of folds (times the procedure is repeated) while leaving out (weighting to zero) the
time point at which the model is estimated. In a second step, the data at this time point are
predicted with the time-varying model and an error measure is computed (RMSE for non-
categorical, 0/1-loss for categorical). This procedure is repeated F' times. Then we take the
arithmetic mean over J estimation points, p variables and F folds. If J = %, this procedure
is equal to a time-stratified F-fold cross-validation scheme. We allow to specify J < % to
save computational cost. J is specified by the argument bwFoldsize and F is specified by
the argument bwFolds. Selecting the ratio between bwFoldsize and n corresponds to the
problem of selecting the number of folds in cross-validation (see, e.g., Friedman, Hastie, and
Tibshirani 2001).

For the present illustration we select bwFolds = 5 and bwFoldsize = 5 to keep the compu-
tation time short. We provide the candidate o-sequence {0.1,0.2,0.3,0.4}. And we provide
all arguments for the time-varying MGM. This is because we repeatedly fit the type of model
we want as our final model (then with fixed o). We provide the time points of measurements
fruitfly_data$timevector via the argument timepoints (see Figure 2 in Section 2.5 for
an explanation of why one has to provide the time points if they are not equally spaced).
Finally, we specify the class of time-varying model modeltype = "mgm" and pass the argu-
ments k, threshold and ruleReg, to tvmgm() (see Section 3.1 on mgm() for a description of
these arguments).

R> set.seed(1)

R> p <- ncol(fruitfly_data$data)

R> bw_tvmgm <- bwSelect(data = fruitfly data$data, type = rep("g", p),
+ level = rep(1, p), bwSeq = c(0.1, 0.2, 0.3, 0.4), bwFolds = 5,

+ bwFoldsize = 5, timepoints = fruitfly data$timevector,

+ modeltype = "mgm", k = 2, threshold = "none", ruleReg = "OR")

33

34 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Note that the code above takes about 3 hours to run.

We would like to know which candidate bandwidth minimized the average prediction error.
This information is stored in bw_tvmgm$meanError:

R> round (bw_tvmgm$meanError, 3)

0.1 0.2 0.3 0.4
0.826 0.707 0.630 0.640

We see that 0 = 0.3 minimizes the error in this data set. If the smallest/largest candidate
o minimized the prediction error, it is advisable to extend the candidate o sequence to
smaller/larger values.

After obtaining a reasonable bandwidth for this data set, we can estimate the final time-
varying MGM. The estimation points are specified on the unit interval [0,1] to which the
provided time scale is normalized internally. We choose 20 equally spaced time points across
the time series by setting estpoints = seq(0, 1, length.out = 20). Finally, we spec-
ify the above obtained bandwidth with bandwidth = 0.3 and set a random seed to ensure
reproducibility.

R> set.seed(1)

R> fit_tvmgm <- tvmgm(data = fruitfly_data$data, type = rep("g", p),
+ level = rep(1, p), timepoints = fruitfly_data$timevector,

+ estpoints = seq(0, 1, length.out = 20), k = 2, bandwidth = 0.3,
+ threshold = "none", ruleReg = "OR")

The output list in the fit object fit_tvmgm is similar to the list returned by mgm(). The
difference is that all parameter matrices are now 3-dimensional arrays, with an additional
dimension for the estimated time points t¢ € £. For instance, the edge parameters of the
pairwise MGM estimated at the third estimation point t¢ = 3 are stored in the matrix
fit_tvmgm$pairwise$wadj[, , 3]. For a a detailed description of all output provided in
fit_tvmgm, see the help file 7tvmgm.

Making predictions from time-varying mized graphical models

When making predictions with time-varying MGMs, in principle we would need to estimate
the time-varying model at the maximum resolution, that is, at every time point. However,
this would be computationally expensive: For example, for a time-series of n = 1000 time
points, we would need to fit 1000 models in order to compute predictions. The predict
method in mgm provides two different options in order to compute predictions and nodewise
errors across time, without requiring to estimate n models.

The first option, tvMethod = "weighted", computes predictions for each of the n time points
from all models t¢ € £. It then computes a weighted average over the predictions of all models
at each time point. The weight is equal to the weight of the kernel function at ¢ for the
respective model estimated at t°. The second option is tvMethod = "closestModel", which
for each time point determines the closest estimation point ¢¢, and then uses this model for
prediction. Accordingly, local nodewise errors are calculated only from the closest model.

Journal of Statistical Software 35

Note that if one estimates n models at equally spaced time points, this method corresponds
to the above described situation of estimating a time-varying model for each time point.

In order to compute predictions we call the predict() function and provide the data,
the fit object and the desired method to compute predictions. Here we pick tvMethod =
"weighted":

R> pred_tvmgm <- predict(object = fit_tvmgm, data = fruitfly data$data,
+ tvMethod = "weighted")

The output object pred_tvmgnm is a list containing the function call pred_tvmgm$call, the
predicted values pred_tvmgm$predicted and pred_tvmgm$probabilities (in the case of
categorical variables) computed by the method tvMethod = "weighted". pred_tvmgm$true
contains the true data matrix and pred_tvmgm$errors contains an array of local nodewise
error, where the third dimension indicates the estimation points.

Visualizing time-varying mized graphical models

Figure 9 displays several aspects of the time-varying MGM estimated on the fruit fly data
above. The top panel shows the number of edges (solid line) estimated across the time series
of 67 measurements, which decreases across the time series. This can be explained by the
small number of measurements available at the end of the time series (see red dashes on
the time arrow). To make this explicit, we plot n,—o3+, the used sample size at a given
estimation point (see Section 2.5). We see that extremely few data points are available in the
end of the time series, resulting in a very low sensitivity to detect edges. The lower panel
shows the undirected network at the 2nd, 6th and 13th estimation point out of 20 equally
spaced estimation points across the whole time series (blue dashes).

While we can interpret the MGM at each estimation in context of the local ng e, it is difficult
to interpret changes over time, because the sensitivity of the algorithm decreases towards the
end of the time series (because less data is available) and hence it is unclear whether edges
in the end of the time series are absent in the true model or whether the sensitivity of the
algorithm was too low to detect them. This highlights the importance of collecting data with
a roughly constant sampling frequency. We provide code to exactly reproduce Figure 9 from
the package example data set fruitfly_data in the online supplementary materials and on
the Github repository https://github.com/jmbh/mgmDocumentation.

Sampling from time-varying mized graphical models

The function tvmgmsampler () allows to sample from a time-varying MGM. The function
input is identical to the input to mgmsampler (), the sampling function of the stationary MGM
described in Section 3.1, except that the arguments thresholds, sds and interactions have
an additional dimension for time. The number of indices in this additional time dimension
defines the length of the time series. Thus, a separate model is specified for each time point
in the time series. For details see 7tvmgmsampler.

Bootstrap sampling distributions

Similarly to stationary MGMs, the function resample() can be used to obtain bootstrapped
sampling distributions for the parameters of the time-varying MGM. The only difference

https://github.com/jmbh/mgmDocumentation

36 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Time / Measurements across time

- t t t t t t >
250 67
/”‘\\
—-=10----0 T,
» 200 =
® —e— Number of Edges S so
<)
3 -o- Localn <
L z
150 — =
ks [
3 g
o)
Ko} o —
IS > © - 25
S S Z
pz4 = ©
iT -
50 —
SOoen.
O---_ o ° _
t t t t ? ¢ + 0
Estimation Points
O o
° o o] o 5
o o 0o o ° °
°6 %0 o ° "o
o o © o o
o 00 ° o o ©0©
o § 00 0° %Q% o °© 0o
o Q o o
o s o o o
g ©° Q o ©
[e] o]
1) o O o °
o o S o o o e}
© © o® o
o o °© o o o)
o o o
o o o o
o o © o o0® % 5
0° o5 ° % o O 5
o © ° o o
o o
o © o o
o o0 © o o
o o
O o %0 o

Figure 9: Top panel: the number of estimated edges (solid line) and the local sample size
Ne=0.3,tc (dashed line) at each estimation point. The red dashes indicate the available mea-
surement on the true time scale. The four colored areas indicate the four stages of the life
cycle of the fruit fly. Bottom panel: the undirected network plottet at three different es-
timation points 2, 6, 13 (with 20 estimation points equally distributed across the 67 time
points).

is that we use a block-bootstrapping scheme to ensure that data points remain reasonably
distributed across time. The number of blocks can be specified with the argument blocks
in the resample() function. The larger the number of blocks, the more evenly distributed
the bootstrap samples are across the time interval and the higher the similarity between
bootstrap samples. Since even distribution across time and low similarity across bootstrap
samples is desirable, the number of blocks controls this trade-off. For more details see the
help file ?resample.

3.4. Time-varying mixed VAR models

We illustrate how to fit a time-varying mixed VAR model on a symptom time series with
51 variables measured on 1478 time points during 238 consecutive days from an individual
diagnosed with major depression (Wichers, Groot, Psychosystems, ESM Group, and EWS
Group 2016). The measured variables include questions regarding mood, self-esteem, social
interaction, physical activity, events and symptoms of depression (see also legend in Figure 10).
During the measured time interval, a double-blind medication dose reduction was carried

Journal of Statistical Software

out, consisting of a baseline period, the dose reduction, and two post assessment periods (see
Figure 10, the points on the time line correspond to the two dose reductions). For a detailed
description of this data set see Kossakowski, Groot, Haslbeck, Borsboom, and Wichers (2017).

Estimating time-varying mized VAR models

We provide the data, the type (continuous and categorical), and the levels for each variable,
all of which are contained in the data list symptom_data (automatically loaded with mgm),
similarly to specifying mvar (). Next, we provide the day number with dayvar and the number
of notification on each day with beepvar. Alternatively, one could manually compute a single
vector that indicates the consecutiveness of measurements and provide it via the argument
consec. We provide this information because the measurements in this data set are not
consecutive, both because of the day-night break in which no measurements are taken and
because of randomly missing measurement points. If we did not provide this information,
the resulting parameters would represent a mixture of effects across different lags and are
therefore not interpretable anymore. We explained this in detail in Section 2.5. The function
tvmvar () uses this information to fit the model only on rows of the time series for which
sufficient previous measurements are available (1 for lag 1, 2 for lag 2, etc.).

In order to fit a time-varying MGM we need to choose an appropriate bandwidth parameter
o, which determines how many observations close in time we combine in order to estimate
a local model (see Section 2.5). In Section 3.3, we provided an explanation of how to use
bwSelect () to select an appropriate o using a time-stratified cross-validation scheme. Here
we choose o = 0.2.

We specify a lag of order 1 and via the argument estpoints we specify that we would like to
estimate the model at 20 equally spaced time intervals throughout the time series. We specify
the sequence of estimation points on the unit interval [0, 1], to which the provided time scale
is normalized internally. Finally, we set thresholding threshold = "none" and set a random
seed to ensure reproducibility.

R> set.seed(1)

R> fit_tvmvar <- tvmvar(data = symptom_data$data, type = symptom_data$type,
+ level = symptom_data$level, beepvar = symptom_data$data_time$beepno,

+ dayvar = symptom_data$data_time$dayno, lags = 1,

+ estpoints = seq(0, 1, length.out = 20), bandwidth = 0.2,

+ threshold = "none", saveData = TRUE)

Note that the code above takes about 15 minutes to run.

The output of tvmvar() is similar to the output of ?mvar described in Section 3.2. The
difference is that all entries have now an additional dimension for estimation points. For
example, the entry of the parameter array fit_tvmvar$wadj[4, 9, 2, 15] indicates the
cross lagged effect of 9 on 4 over the second specified lag in lags at the 15th estimation
point. The array fit_tvmvar$signs has the same dimension and specifies the signs of the
parameters in fit_tvmvar$wadj, if defined. For a discussion of when a sign is defined for
an edge-parameter see Section 3.1. The object fit_tvmvar$intercepts contains a list with
time-varying thresholds/intercepts and fit_tvmvar$tvmodels contains the models at each
of the |£| estimation points.

We provided the day and notification number of each measurement and tvmvar () used this

37

38 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

information to only include measurements in the model for which sufficient previous mea-
surements are available. By executing the model object in the console, we get the number of
measurements that were actually used for estimation:

R> fit_tvmvar

mgm fit-object

Model class: Time-varying mixed Vector Autoregressive (tv-mVAR) model
Lags: 1

Rows included in VAR design matrix: 876 / 1476 (59.35 %)

Nodes: 48

Estimation points: 20

We see that for 876 of 1476 measurement points the previous measurement (requirement of
lag 1) is available and were therefore used for estimation. If we included lags with higher
order the number of usable measurements would become smaller.

Making predictions from time-varying mized VAR models

In order to compute predictions from the mixed VAR model we have to choose between the
two options tvMethod = "weighted" and tvMethod = "closestModel". For a discussion of
these two methods see Section 3.3 or the help file ?predict.mgm. Next to the fit object we
provide the data and information about the consecutiveness of measurements to predict ():

R> pred_tvmvar <- predict(object = fit_tvmvar, data = symptom_data$data,
+ tvMethod = "weighted", beepvar = symptom_data$data_time$beepno,
+ dayvar = symptom_data$data_time$dayno)

The output object pred_tvmvar is a list containing the function call pred_tvmgm$call, the
predicted values pred_tvmgm$predicted and pred_tvmgm$probabilities (in the case of
categorical variables) computed by the method tvMethod = "weighted". pred_tvmgm$true
contains the true data matrix, which is useful in the case of VAR models, when not all rows
in the original data matrix are necessarily used to fit the VAR model (see previous section).
Finally, pred_tvmgm$errors is an array of local nodewise errors, where the third dimension
indexes estimation points. For instance, pred_tvmgm$errors[, , 9] contains the nodewise
errors for estimation point 9.

Visualizing time-varying mized VAR models

Figure 10 displays some aspects of the time varying mixed VAR model estimated in the
previous section. In the top row of Figure 10 we depict a network plot of the VAR(1)
parameters at the estimation points 2, 6, and 16. Green edges indicate positive relationships
and red edges indicate negative relationships. Grey edges indicate that no sign is defined,
because the edge-weight is a function of several parameters, which is the case for interactions
including categorical variables (see Section 3.1). The width of edges is proportional to the
absolute value of the edge-weight. It is evident from the three network plots that the model
changes considerably over time which suggests that a stationary model is not appropriate
for these data. The second row depicts six autoregressive or cross-lagged effects across the

Journal of Statistical Software 39

®
® ®7é
® ® S ®
° o ° o . /f\@ o
® e ® o \,\@@
® ® e o @
® e ? ® e ®
O
® ® ® o [P
® ® @& 9
® ® @ ® ®
® & @
/ ® &
0.40 | | | | | | | | |
0.33
0.25
()
=}
= 0.18 . . X
> —— Worrying — Worrying —— Concentration — Down
2 010 4 —— Tired — Tired —— Selflike — Ashamed
%) —— Selflike = Down Strong — SelfDoubt
©
5 003+
o -
-0.05 \\\\‘\‘-———\\\,..
-0.12 4
-0.20 -
Baseline Double-blind period Postassessment Additional Postassessment
4 Weeks 14 Weeks 4 Weeks 12 Weeks
Mood Self-esteem Social Physical Events
* 1: Relaxed 13: Restless 21: Who with 30: Hungry = 35: Action
> 2: Down 14: Agitated 22: Enjoy alone 31: Tired = 36: Action else
= 3! Irritated 15: Worrying 23: Prefer company 32: Pain 37: Difficult
* 4: Satisfied 16: Concentration 24: Who else with 33: Headache » 38: Good at
* 5: Lonely 25: Who else 2 34: Sleepy * 39: Enjoy
* 6: Anxious 26: Who with count © 40: Physical
» 7: Enthusiastic Symptoms 27: Company pleasant ° 41: Pleasant
» 8: Suspicious * 17: Selflike 28: Prefer alone 42: Important
s 9: Cheerful * 18: Ashamed 29: Social activity * 43: Type of Cause
> 10: Guilty * 19: Selfdoubt ° 44:Type Meta
* 11: Doubt ¢ 20: Handling * 45: Frequency
» 12: Strong ° 46: Type Social

= 47: Disturbing
= 48: Ordinary

Figure 10: Top row: network visualization of VAR(1) parameters at the estimation points 2, 6,
and 16. Green edges indicate positive relationships, red edges indicate negative relationships
and grey edges indicate that no sign is defined. The color of the nodes corresponds to the
group the variable belongs to (see legend); second row: six autoregressive (e.g., Worrying!—*
— Worrying') or cross-lagged effects (e.g., Selflike!~! — Down') depicted as a function of
time.

measured time interval. We see that parameters change considerably over time, for instance
the autoregressive effect of Tired is strong at the beginning of the time series and decreases
almost monotonously until the end of the measured time interval.

We provide code to exactly reproduce Figure 10 from the example data set symptom_data
in the online supplementary materials and on the Github repository https://github.com/
jmbh/mgmDocumentation.

https://github.com/jmbh/mgmDocumentation
https://github.com/jmbh/mgmDocumentation

40 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Sampling from time-varying mized VAR models

The function tvmvarsampler() allows to sample from a time-varying mVAR model. The
function input is identical to the input to mgmsampler (), the sampling function of the sta-
tionary mVAR described in Section 3.2, except that the arguments thresholds, sds and
coefarray have an additional dimension for time. The number of indices in this additional
time dimension defines the length of the time series. Thus, a separate model is specified for
each time point in the time series. For details see 7tvmvarsampler.

Similarly to time-varying MGMs, the function resample() allows to obtain bootstrapped
sampling distributions for the parameters of time-varying mixed VAR models.

4. Concluding comments

We presented the mgm package which allows to fit stationary and time-varying mixed graph-
ical models and stationary and time-varying mixed vector autoregressive models. In addition
to the estimation functions, we provide methods to compute predictions and nodewise errors
and assess the stability of estimates via resampling. Furthermore, flexible sampling functions
for all model classes allow the user to evaluate the performance of the estimation algorithms
in a given situation via simulations. Finally, we provided fully reproducible code examples
that illustrate how to use the software package.

The mgm package is under continuous development. We aim to add functions that allow
one to inspect higher order interactions in an accessible way. We plan to implement dif-
ferent ways to select tuning parameters (A penalization parameter, « elastic net parameter,
o bandwidth parameter), for instance with stability-selection (Meinshausen and Biithlmann
2010; Liu, Roeder, and Wasserman 2010). And we will implement other estimators than
lo-penalized regression, which might be more appropriate in some situations. Finally, since
all estimation algorithms are based on sequential regressions, considerable performance gains
can be made by parallelizing the estimation algorithms.

Acknowledgments

We would like to thank three anonymous reviewers for their detailed and constructive feed-
back, and Fabian Dablander and Oisin Ryan for their comments on an earlier version of this
manuscript.

References

Agresti A (2003). Categorical Data Analysis, volume 482. John Wiley & Sons.

Albert R, Barabasi AL (2002). “Statistical Mechanics of Complex Networks.” Reviews of
Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47.

Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott
MP, Davis RW, White KP (2002). “Gene Expression During the Life Cycle of Drosophila
Melanogaster.” Science, 297(5590), 2270-2275. doi:10.1126/science.1072152.

https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1126/science.1072152

Journal of Statistical Software 41

Banerjee O, El Ghaoui L, d’Aspremont A (2008). “Model Selection through Sparse Maximum
Likelihood Estimation for Multivariate Gaussian or Binary Data.” Journal of Machine
Learning Research, 9, 485-516.

Begeer S, Wierda M, Venderbosch S (2013). Allemaal Autisme, Allemaal Anders. Rap-
port NVA Enquete 2013 [All Autism, All Different. Dutch Autism Society Survey 2013].
Bilthoven. NVA.

Borsboom D, Cramer AOJ (2013). “Network Analysis: An Integrative Approach to the
Structure of Psychopathology.” Annual Review of Clinical Psychology, 9(1), 91-121. doi:
10.1146/annurev-clinpsy-050212-185608.

Bithlmann P, Kalisch M, Meier L (2014). “High-Dimensional Statistics with a View Toward
Applications in Biology” Annual Review of Statistics and Its Application, 1, 255-278.
doi:10.1146/annurev-statistics-022513-115545.

Casas I, Fernandez-Casal R (2020). tvReg: Time-Varying Coefficients Linear Regression for
Single and Multiple Equations. R package version 0.5.0, URL https://CRAN.R-project.
org/package=tvReg.

Chen S, Witten DM, Shojaie A (2015). “Selection and Estimation for Mixed Graphical
Models.” Biometrika, 102(1), 47-64. doi:10.1093/biomet/asu051.

Chen X, He Y (2018). “Inference of High-Dimensional Linear Models with Time-Varying
Coefficients.” Statistica Sinica, 28(1), 255-276. doi:10.5705/ss.202015.0202.

Deserno MK, Borsboom D, Begeer S, Geurts HM (2017). “Multicausal Systems Ask for Mul-
ticausal Approaches: A Network Perspective on Subjective Well-Being in Individuals with
Autism Spectrum Disorder.” Autism, 21(8), 960-971. doi:10.1177/1362361316660309.

Efron B (1992). “Bootstrap Methods: Another Look at the Jackknife.” In Breakthroughs in
Statistics, pp. 569-593. Springer-Verlag.

Efron B, Tibshirani RJ (1994). An Introduction to the Bootstrap. CRC Press.

Epskamp S (2018). graphicalVAR: Graphical VAR for Ezperience Sampling Data. R package
version 0.2.2, URL https://CRAN.R-project.org/package=graphicalVAR.

Epskamp S, Borsboom D, Fried EI (2018). “Estimating Psychological Networks and Their
Accuracy: A Tutorial Paper.” Behavior Research Methods, 50(1), 195-212. doi:10.3758/
s13428-017-0862-1.

Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D (2012). “qgraph: Net-
work Visualizations of Relationships in Psychometric Data.” Journal of Statistical Software,
48(4), 1-18. doi:10.18637/jss.v048.104.

Epskamp S, Deserno MK, Bringmann LF (2019). mIVAR: Multi-Level Vector Autoregression.
R package version 0.4.4, URL https://CRAN.R-project.org/package=mlVAR.

Foygel R, Drton M (2010). “Extended Bayesian Information Criteria for Gaussian Graphical
Models.” In Advances in Neural Information Processing Systems, pp. 604—612.

https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1146/annurev-statistics-022513-115545
https://CRAN.R-project.org/package=tvReg
https://CRAN.R-project.org/package=tvReg
https://doi.org/10.1093/biomet/asu051
https://doi.org/10.5705/ss.202015.0202
https://doi.org/10.1177/1362361316660309
https://CRAN.R-project.org/package=graphicalVAR
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.18637/jss.v048.i04
https://CRAN.R-project.org/package=mlVAR

42 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Foygel R, Drton M (2015). “High-Dimensional Ising Model Selection with Bayesian Informa-
tion Criteria.” Electronic Journal of Statistics, 9(1), 567-607. doi:10.1214/15-ejs1012.

Friedman J, Hastie T, Tibshirani R (2001). The Elements of Statistical Learning. Springer-
Verlag.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse Inverse Covariance Estimation with the
Graphical Lasso.” Biostatistics, 9(3), 432-441. doi:10.1093/biostatistics/kxm045.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1-22. doi:10.
18637/jss.v033.101.

Friedman J, Hastie T, Tibshirani R (2019). glasso: Graphical Lasso — Estimation of Gaussian
Graphical Models. R package version 1.11, URL https://CRAN.R-project.org/package=
glasso.

Friedman N, Linial M, Nachman I, Pe’er D (2000). “Using Bayesian Networks to Analyze
Expression Data.” Journal of Computational Biology, 7(3-4), 601-620. doi:10.1089/
106652700750050961.

Fruchterman TMJ, Reingold EM (1991). “Graph Drawing by Force-Directed Placement.”
Software: Practice and Experience, 21(11), 1129-1164. doi:10.1002/spe.4380211102.

Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE,
Drake TA, Lusis AJ, Horvath S (2006). “Integrating Genetic and Network Analysis to
Characterize Genes Related to Mouse Weight.” PLoS Genetics, 2(8), €130. doi:10.1371/
journal.pgen.0020130.

Gibberd AJ, Nelson JDB (2016). “Estimating Dynamic Graphical Models from Multivari-
ate Time-Series Data: Recent Methods and Results” In A Douzal-Chouakria, J Vilar,
PF Marteau (eds.), AALTD 2015: Advanced Analysis and Learning on Temporal Data,
volume 9785 of Lecture Notes in Computer Science, pp. 111-128. Springer-Verlag, Cham.
doi:10.1007/978-3-319-44412-3_8.

Gibberd AJ, Nelson JDB (2017). “Regularized Estimation of Piecewise Constant Gaussian
Graphical Models: The Group-Fused Graphical Lasso.” Journal of Computational and
Graphical Statistics, 26(3), 623-634. doi:10.1080/10618600.2017.1302340.

Hamilton JD (1994). Time Series Analysis. 1st edition. Princeton University Press, Princeton.

Harrell Jr FE (2020). Hmisc: Harrell Miscellaneous. R package version 4.3-1, URL https:
//CRAN.R-project.org/package=Hmisc.

Haslbeck JMB (2020). mgm: Estimating Time-Varying k-Order Mized Graphical Models. R
package version 1.2-9, URL https://CRAN.R-project.org/package=mgn.

Haslbeck JMB, Borsboom D, Waldorp LJ (2020). “Moderated Network Models.” Multivariate
Behavioral Research. doi:10.1080/00273171.2019.1677207. Forthcoming.

Haslbeck JMB, Bringmann LF, Waldorp LJ (2019). “A Tutorial on Estimating Time-Varying
Vector Autoregressive Models.” arXiv:1711.05204 [stat.AP], URL http://arxiv.org/abs/
1711.05204.

https://doi.org/10.1214/15-ejs1012
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1007/978-3-319-44412-3_8
https://doi.org/10.1080/10618600.2017.1302340
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=mgm
https://doi.org/10.1080/00273171.2019.1677207
http://arxiv.org/abs/1711.05204
http://arxiv.org/abs/1711.05204

Journal of Statistical Software 43

Haslbeck JMB, Waldorp LJ (2015). “Structure Estimation for Mixed Graphical Models
in High-Dimensional Data.” arXiv:1510.05677 [stat.AP], URL https://arxiv.org/abs/
1510.05677.

Haslbeck JMB, Waldorp LJ (2018). “How Well Do Network Models Predict Future Obser-
vations? On the Importance of Predictability in Network Models.” Behavior Research
Methods, 50, 853-861. doi:10.3758/s13428-017-0910-x.

Hastie T, Tibshirani R, Wainwright M (2015). Statistical Learning with Sparsity. CRC Press.

Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, Chen K, Reiman E (2010). “Learning Brain
Connectivity of Alzheimer’s Disease by Sparse Inverse Covariance Estimation.” Neurolmage,
50(3), 935-949. doi:10.1016/j.neuroimage.2009.12.120.

Immer A, Gibberd A (2017). “GraphTime: A Package for Dynamic Graphical Model Esti-
mation.” https://github.com/GlooperLabs/GraphTime.

Jiang H, Fei X, Liu H, Roeder K, Lafferty J, Wasserman L, Li X, Zhao T (2019). huge:
High-Dimensional Undirected Graph FEstimation. R package version 1.3.4, URL https:
//CRAN.R-project.org/package=huge.

Kolar M, Song L, Ahmed A, Xing EP (2010). “Estimating Time-Varying Networks.” The
Annals of Applied Statistics, 4(1), 94-123. doi:10.1214/09-a0as308.

Kolar M, Xing EP (2012). “Estimating Networks with Jumps.” FElectronic Journal of Statis-
tics, 6, 2069-2106. doi:10.1214/12-ejs739.

Kolar M, Xing EP (2013). “Sparsistent Estimation of Time-Varying Discrete Markov Random
Fields.” arXiv:05677 [stat.ML]|, URL https://arxiv.org/abs/0907.2337.

Koller D, Friedman N (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Kossakowski J, Groot P, Haslbeck JMB, Borsboom D, Wichers M (2017). “Data from ‘Critical

Slowing Down as a Personalized Early Warning Signal for Depression’” Journal of Open
Psychology Data, 5(1). doi:10.5334/jopd.29.

Lauritzen SL (1996). Graphical Models. Number 17 in Oxford Statistical Science Series.
Clarendon Press, Oxford.

Liu H, Roeder K, Wasserman L (2010). “Stability Approach to Regularization Selection
(Stars) for High Dimensional Graphical Models.” In Advances in Neural Information Pro-
cessing Systems, pp. 1432-1440.

Loh PL, Wainwright MJ (2012). “Structure Estimation for Discrete Graphical Models: Gen-
eralized Covariance Matrices and Their Inverses.” In Advances in Neural Information Pro-
cessing Systems, pp. 2087-2095.

McNally RJ, Robinaugh DJ, Wu GW, Wang L, Deserno MK, Borsboom D (2015). “Men-
tal Disorders as Causal Systems a Network Approach to Posttraumatic Stress Disorder.”
Clinical Psychological Science, 3(6), 836-849. doi:10.1177/2167702614553230.

https://arxiv.org/abs/1510.05677
https://arxiv.org/abs/1510.05677
https://doi.org/10.3758/s13428-017-0910-x
https://doi.org/10.1016/j.neuroimage.2009.12.120
https://github.com/GlooperLabs/GraphTime
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge
https://doi.org/10.1214/09-aoas308
https://doi.org/10.1214/12-ejs739
https://arxiv.org/abs/0907.2337
https://doi.org/10.5334/jopd.29
https://doi.org/10.1177/2167702614553230

44 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Meinshausen N, Biithlmann P (2006). “High-Dimensional Graphs and Variable Selec-
tion with the Lasso” The Annals of Statistics, 34(3), 1436-1462. doi:10.1214/
009053606000000281.

Meinshausen N, Bithlmann P (2010). “Stability Selection.” Journal of the Royal Statistical
5bcﬁiy.3,72(4),4177473.doi:10.1111/j.1467-9868.2010.00740.X.

Monti RP (2014). “pySINGLE.” https://github.com/piomonti/pySINGLE.

Monti RP, Hellyer P, Sharp D, Leech R, Anagnostopoulos C, Montana G (2014). “Estimating
Time-Varying Brain Connectivity Networks from Functional MRI Time Series.” Neurolm-
age, 103, 427-443. doi:10.1016/j.neuroimage.2014.07.033.

Nelder JA, Baker RJ (1972). “Generalized Linear Models.” Encyclopedia of Statistical Sci-
ences. doi:10.1002/0471667196.ess0866.

Nicholson W, Matteson D, Bien J (2019). BigVAR: Dimension Reduction Methods for Mul-
tivariate Time Series. R package version 1.0.6, URL https://CRAN.R-project.org/
package=BigVAR.

Novomestky F (2012). matrixcalc: Collection of Functions for Matriz Calculations. R package
version 1.0-3, URL https://CRAN.R-project.org/package=matrixcalc.

Pfaff B (2008a). Analysis of Integrated and Cointegrated Time Series with R. 2nd edition.
Springer-Verlag, New York. doi:10.1007/978-0-387-75967-8.

Pfaff B (2008b). “VAR, SVAR and SVEC Models: Implementation within R Package vars.”
Journal of Statistical Software, 27(4), 1-32. doi:10.18637/jss.v027.1i04.

Ravikumar P, Wainwright MJ, Lafferty JD (2010). “High-Dimensional Ising Model Selection
Using L1-Regularized Logistic Regression.” The Annals of Statistics, 38(3), 1287-1319.
doi:10.1214/09-a0s691.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schmittmann VD, Jahfari S, Borsboom D, Savi AO, Waldorp LJ (2015). “Making Large-Scale
Networks from fMRI Data.” PloS ONE, 10(9), e0129074. doi:10.1371/journal.pone.
0129074.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461-464. doi:10.1214/a0s/1176344136.

Song L, Kolar M, Xing EP (2009). “KELLER: Estimating Time-Varying Interactions between
Genes.” Bioinformatics, 25(12), i128-i136. doi:10.1093/bioinformatics/btp192.

Tao Q, Huang X, Wang S, Xi X, Li L (2016). “Multiple Gaussian Graphical Estimation with
Jointly Sparse Penalty.” Signal Processing, 128, 88—97. doi:10.1016/j.sigpro.2016.03.
009.

Trip DSL, Van Wieringen WN (2018). “A Parallel Algorithm for Penalized Learning of the
Multivariate Exponential Family from Data of Mixed Types.” arXiv:1812.02401 [stat.ME],
URL https://arxiv.org/abs/1812.02401.

https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://github.com/piomonti/pySINGLE
https://doi.org/10.1016/j.neuroimage.2014.07.033
https://doi.org/10.1002/0471667196.ess0866
https://CRAN.R-project.org/package=BigVAR
https://CRAN.R-project.org/package=BigVAR
https://CRAN.R-project.org/package=matrixcalc
https://doi.org/10.1007/978-0-387-75967-8
https://doi.org/10.18637/jss.v027.i04
https://doi.org/10.1214/09-aos691
https://www.R-project.org/
https://doi.org/10.1371/journal.pone.0129074
https://doi.org/10.1371/journal.pone.0129074
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1093/bioinformatics/btp192
https://doi.org/10.1016/j.sigpro.2016.03.009
https://doi.org/10.1016/j.sigpro.2016.03.009
https://arxiv.org/abs/1812.02401

Journal of Statistical Software 45

Van Borkulo C, Epskamp S (2016). IsingFit: Fitting Ising Models Using the ELasso Method.
R package version 0.3.1, URL https://CRAN.R-project.org/package=IsingFit.

Van Borkulo CD, Borsboom D, Epskamp S, Blanken TF, Boschloo L, Schoevers RA, Waldorp
LJ (2014). “A New Method for Constructing Networks from Binary Data.” Scientific
Reports, 4(5918). doi:10.1038/srep05918.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wainwright MJ, Jordan MI (2008). “Graphical Models, Exponential Families, and Variational
Inference.” Foundations and Trends® in Machine Learning, 1(1-2), 1-305. doi:10.1561/
2200000001.

Wan YW, Allen GI, Baker Y, Yang E, Ravikumar P, Liu Z (2015). XMRF: Markov Random
Fields for High-Throughput Genetics Data. R package version 1.0, URL https://CRAN.
R-project.org/package=XMRF.

Warnes GR, Bolker B, Lumley T (2018). gtools: Various R Programming Tools. R package
version 3.8.1, URL https://CRAN.R-project.org/package=gtools.

Wichers M, Groot PC, Psychosystems, ESM Group, EWS Group (2016). “Critical Slowing
Down as a Personalized Early Warning Signal for Depression.” Psychotherapy and Psycho-
somatics, 85(2), 114-116. doi:10.1159/000441458.

Wickham H (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R
package version 1.4.0, URL https://CRAN.R-project.org/package=stringr.

Wild B, Eichler M, Friederich HC, Hartmann M, Zipfel S, Herzog W (2010). “A Graphical
Vector Autoregressive Modelling Approach to the Analysis of Electronic Diary Data.” BMC
Medical Research Methodology, 10(1), 28. doi:10.1186/1471-2288-10-28.

Yang E, Baker Y, Ravikumar P, Allen G, Liu Z (2014). “Mixed Graphical Models via Expo-
nential Families.” In Artificial Intelligence and Statistics, pp. 1042—-1050.

Yang E, Ravikumar P, Allen GI, Liu Z (2015). “Graphical Models via Univariate Exponential
Family Distributions.” Journal of Machine Learning Research, 16(1), 3813-3847.

Yang E, Ravikumar PK, Allen GI, Liu Z (2013). “On Poisson Graphical Models.” In Advances
in Neural Information Processing Systems, pp. 1718-1726.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2012). “The Huge Package for High-
Dimensional Undirected Graph Estimation in R” Journal of Machine Learning Research,
13(1), 1059-1062.

Zhou S, Lafferty J, Wasserman L (2010). “Time Varying Undirected Graphs.” Machine
Learning, 80(2-3), 295-319. doi:10.1007/s10994-010-5180-0.

Zou H, Hastie T (2005). “Regularization and Variable Selection via the Elastic Net.” Journal of
the Royal Statistical Society B, 67(2), 301-320. doi:10.1111/j.1467-9868.2005.00503.
X.

https://CRAN.R-project.org/package=IsingFit
https://doi.org/10.1038/srep05918
https://www.python.org/
https://www.python.org/
https://doi.org/10.1561/2200000001
https://doi.org/10.1561/2200000001
https://CRAN.R-project.org/package=XMRF
https://CRAN.R-project.org/package=XMRF
https://CRAN.R-project.org/package=gtools
https://doi.org/10.1159/000441458
https://CRAN.R-project.org/package=stringr
https://doi.org/10.1186/1471-2288-10-28
https://doi.org/10.1007/s10994-010-5180-0
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

46 mgm: Time-Varying Mixed Graphical Models in High-Dimensional Data

Affiliation:

Jonas M. B. Haslbeck

Psychological Methods

Nieuwe Achtergracht 129-B

Postbus 15906

1018 WT, Amsterdam, The Netherlands
E-Mail: jonashaslbeck@gmail.com
Website: http://www.jonashaslbeck.com/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
April 2020, Volume 93, Issue 8 Submitted: 2016-04-27

doi:10.18637/jss.v093.108 Accepted: 2019-01-16

mailto:jonashaslbeck@gmail.com
http://www.jonashaslbeck.com/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v093.i08

	Introduction
	Implementation and functionality
	Related implementations
	Overview of the paper

	Background
	Graphical models
	Mixed graphical models
	General mixed graphical models
	Example: The Ising-Gaussian model
	Relationship between model parameters and edges in graph

	Estimating mixed graphical models
	Mixed autoregressive models
	Estimating time-varying models

	Usage and examples
	Stationary mixed graphical models
	Estimating mixed graphical models
	Making predictions from mixed graphical models
	Visualizing mixed graphical models
	Bootstrap sampling distributions
	Sampling from mixed graphical models
	Application: Autism and well-being
	Estimating higher-order mixed graphical models

	Stationary mixed VAR models
	Estimating mixed VAR models
	Making predictions from mixed VAR models
	Visualizing mixed VAR models
	Sampling from mixed VAR models
	Application: Resting state fMRI data

	Time-varying mixed graphical models
	Estimating time-varying mixed graphical models
	Making predictions from time-varying mixed graphical models
	Visualizing time-varying mixed graphical models
	Sampling from time-varying mixed graphical models
	Bootstrap sampling distributions

	Time-varying mixed VAR models
	Estimating time-varying mixed VAR models
	Making predictions from time-varying mixed VAR models
	Visualizing time-varying mixed VAR models
	Sampling from time-varying mixed VAR models

	Concluding comments

