
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Dinh, Quang Truong, Marco, James, Yoon, J. I. and Ahn, K. K. (2018) Robust predictive 
tracking control for a class of nonlinear systems. Mechatronics, 52. pp. 135-
149. doi:10.1016/j.mechatronics.2018.04.010 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/102758   
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://dx.doi.org/10.1016/j.mechatronics.2018.04.010
http://wrap.warwick.ac.uk/102758
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


 

1 
 

Robust Predictive Tracking Control for 

A Class of Nonlinear Systems 

 
T.Q. Dinh1,*, J. Marco1, J.I. Yoon2, K.K. Ahn3  

 

1 Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK;  

2 Korea Construction Equipment Technology Institute, Jeollabuk-do Gunsan 573-540 Sandan-ro 36, Korea; 
3 School of Mechanical Engineering, University of Ulsan, Namgu Muger2dong, Ulsan 680-749, Korea;  

* Correspondence: q.dinh@warwick.ac.uk; Tel.: +44-2476-574902 

 

ABSTRACT 

A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a 

class of nonlinear SISO systems. To improve the control performance, the RPTC architecture 

mainly consists of a robust fuzzy PID (RFPID) –based control module and a robust PI grey model 

(RPIGM) –based prediction module. The RFPID functions as the main control unit to drive the 

system to desired goals. The control gains are online optimized by neural network-based fuzzy 

tuners. Meanwhile using grey and neural network theories, the RPIGM is designed with two tasks: 

to forecast the future system output which is fed to the RFPID to optimize the controller parameters 

ahead of time; and to estimate the impacts of noises and disturbances on the system performance 

in order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map 

(FGCM) –based decision tool is built to regulate the RPIGM prediction step size to maximize the 

control efforts. Convergences of both the predictor and controller are theoretically guaranteed by 

Lyapunov stability conditions. The effectiveness of the proposed RPTC approach has been proved 

through real-time experiments on a nonlinear SISO system. 
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1. Introduction 

Nowadays, automation in control has been applied more and more in the modern life. However, 

most of industrial machines are nonlinear systems with large uncertainties which cause challenges 

to design the controllers. Conventional PID controllers are commonly used in industry due to their 

simplicity, clear functionality and ease of implementation. However, this type of controllers may 

not perform well for nonlinear, complex and vague systems with uncertainties. And it has been 

found that fuzzy-logic-based PID controllers is one of potential solutions with better capabilities 

of handling the aforesaid systems [2]-[17]. 

Although fuzzy logic has a reputation of handling complicated control problems, typical fuzzy 

designs depend largely on experiences of experts [1]-[5]. Hence, these controllers cannot adapt for 

highly uncertain systems working in environments with large perturbations [9], [12]. There is no 

systematic method to design and examine the number of rules, as well as input space partitions and 

membership functions (MFs). As a result, other control techniques, such as robust control, 

intelligent theory and estimation methods [6]-[14], are needed to combine with the fuzzy PID to 

overcome this weakness. Nevertheless, most of the traditional control strategies adopted the 

previous state information as the input signal of the controllers to make the decisions. 

Subsequently, this type of control reflects only the current status and lacks adaptability.  

As a recent trend to overcome this drawback, fuzzy PID combined with prediction theories 

could produce in advance the control action for the following step according to the predicted value 

of control error before it occurs [15], [16]. And the combination with neural technique and grey 

prediction is a feasible solution. Neural network is a universal algorithm which is able to 

approximate almost nonlinear functions [17]-[24] while the grey theory [25] is distinguished by its 

ability to deal with systems that have partially unknown parameters [15],[16],[26]-[35]. However, 

there are the shortcomings of the typical grey models such as grey sequence conditions and 

background series calculation which limit their applicability as well as prediction accuracy [34], 

[35]. Additionally, there is no constraint to guarantee the prediction stability of these developed 

models. 

The aim of this paper is to develop a robust predictive tracking control (RPTC) approach to 

improve performances of SISO systems with large nonlinearities and uncertainties. The RPTC 
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architecture mainly consists of two modules: robust PI grey model (RPIGM) -based prediction 

module and robust fuzzy PID (RFPID) -based control module with the following contributions: 

1) To deal with any signal with random distribution, the RPIGM is newly developed using a closed-

loop control form in which the robust prediction performance is ensured by a PI-based neural 

network controller.  

2) Outputs from the RPIGM module are fed to the RFPID control module to optimize its parameters 

and, used to compensate for the impacts of noises and disturbances on the overall system response. 

3) The RFPID of which the control gains are regulated by fuzzy tuners is designed to drive the 

system to a desired goal. Based on the RPIGM outputs, the control parameters are optimized in 

advance by a neural network-based learning mechanism. 

4) A fuzzy grey cognitive map (FGCM) –based decision tool is built and integrated to the RPIGM 

to regulate online the RPIGM prediction step size in order to maximize the control capability. 

5) The robust performances of both the RFPID and RPIGM are guaranteed by the Lyapunov 

stability conditions. 

As the result, the overall control performance with high accuracy, fast response and stability 

can be achieved. This paper is organized as: Section II shows the system description and the RPTC 

architecture. Section III presents the design of the RFPID control module while the design of the 

RPIGM prediction module is described in Section IV. Illustrative examples via real-time 

experiments are provided and discussed in Section V to verify the effectiveness of the proposed 

control methodology. Finally, concluding remarks are given in Section VI. 

2. System description and RPTC design architecture 

Without loss of generality, the RPTC control scheme is designed for an uncertain nonlinear 

system (P) with single-input-single-output (SISO) [12] as in Fig. 1. The proposed RPTC 

architecture with the two modules, RFPID and RPIGM, is employed to drive the system to follow 

a given reference (R) (the system response ( ) ty t y needs to reach to the desired level ( )r rty t y ). 

 



 

4 
 

 ry t
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 1N t 

+
+ Uncertain Nonlinear 

System 
(P)

+
+

+

 y t
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based Prediction Module
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 e t
 1D t 

  

Fig. 1. Overall RPTC control architecture for a generic nonlinear system. 

At step (t+1)th with the tracking error, e(t) = yr(t) – y(t), the RFPID generates a proper control 

action based on the PID algorithm, ( 1)( 1) ( 1)RFPID m m tu t u t u     . Meanwhile using the 

information of yr(t) and y(t), the RPIGM estimates the system actuation p-step ahead of time, 

ˆ ˆ( ) t py t p y   . This estimated response is then employed with the p-step ahead desired set point, 

( )ry t p ,  to optimize robustly the RFPID parameters. Moreover, the RPIGM produces an 

additive control correction,      11 1RPIGP c c tu t u t u     , which is added to the main control 

signal ( 1)m tu  , to compensate for system noises (N) and disturbances (D). Therefore, the system 

control input generated by the RPTC scheme is computed as 

       1 1 1 1RPTC m cu t u t u t u t        (1) 

             
0

1 1 1 1
t

m P I D

de t
u t K t e t K t e t dt K t

dt
        (2) 

     0ˆ 11 NDc cu K e tt     (3) 

where: e(t) is the control error; de(t) is the derivation of error e(t);  0ˆ ˆ( 1) ( 1) ( 1)NDe t y t y t     is 

the impact of noise and disturbance on the system response, ˆ( 1)y t  is estimated by the RPIGM; 

KP(t +1), KI(t +1), and KD(t +1) are the dynamic proportional, integral, and derivative gains of the 

PID algorithm, respectively, regulated by fuzzy inferences; Kc is the fixed conversion factor. 

The detailed designs of the RFPID and RPIGM modules are introduced in the following 

sections. 
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3. Robust fuzzy PID-based control module  

Structure of the RFPID control module (shown in Fig. 1) is described in Fig. 2a. This module 

includes two main blocks: a fuzzy PID mechanism, which is the combination of the PID algorithm 

and three fuzzy tuners to regulate the PID gains via a robust updating rule (RUR), to produce the 

control output, and a robust learning mechanism (RLM) to optimize parameters of the fuzzy tuners. 

Lyapunov-based 
Learning Algorithm

Decisive Vector Size 
Minimizer

Robust Learning 
Mechanism (RLM)

d/dt

e(t+p)

+-

d/dt

de(t+p)

e(t)

de(t)

Robust Fuzzy PID-based Control Module (RFPID)

e(t) uRFPID(t+1)

 um(t+1)

ŷ (t+p)yr(t+p)

Update Active Input/
Output MFs of Tuners

Fuzzy PID 
Mechanism

PID Algorithm

Robust Updating Rule 
(RUR)

Fuzzy Tuners (P/I/D)

 
(a) Internal structure of RFPID 

AND

AND

AND

AND

x1

x2

UFA fFA

k1

k2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

e(t)

de(t)

UA
Fuzzy

Saturation

Saturation

 
(b) Schematic diagram of a fuzzy tuner A (A representing P or I or D) 

Fig. 2. RFPID control module. 

3.1.  Fuzzy PID mechanism 

a) Fuzzy tuners 

To minimize the tracking error, the PID gains, KP, KI and KD, are online regulated using the 

three separate fuzzy tuners: fuzzy P, fuzzy I and fuzzy D, respectively, as the following: 
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   
   

01 1

1 (0,1), is , or

Fuzzy Fuzzy
A A A A

Fuzzy
A

K t K U t K

U t A P I D

    

 
 (4) 

where 1 0A A AK K K   is the allowable deviation of AK ; 0 1,A AK K are the minimum, maximum 

values of AK , respectively;  1Fuzzy
AU t  is the bounded parameter and derived from the fuzzy 

tuner P or I or D. Thus, one has   min max1 ,A A AK t K K     . 

Remark 1. For all the fuzzy tuners, triangle and singleton MFs are used to represent for partitions 

of fuzzy inputs and outputs, respectively. Fuzzy control is applied using local inferences. That 

means each rule is inferred and the inferring results of individual rules are then aggregated. Here, 

the most common inference using max-min method, which offers a computationally nice and 

expressive setting for constraint propagation, is selected. Finally, a defuzzification is needed to 

obtain a crisp output from the aggregated fuzzy result. The centroid defuzzification, which is 

widely used for fuzzy control problems needing crisp outputs, is chosen to construct the fuzzy 

tuners.  

From (2), (4) and using Remark 1, each fuzzy tuner are designed with two inputs (as the most 

practical fuzzy PID type [12]) and one output as depicted in Fig. 2b. For the optimisation purpose, 

each tuner is structured in the network form with five layers. In the layer 1, the two inputs x1 and 

x2 are the same for both the tuners and derived as normal scales or absolute scales of the control 

error and its derivative, which are depended on the symmetric behaviour of the system. The range 

for each fuzzy input is correspondingly forced into range from -1 to 1 or from 0 to 1 by proper 

scaling factors (k1 and k2) chosen from the system specifications. These inputs are then converted 

into fuzzy values via the layer 2 using triangle MFs. Each MF of each input variable can be 

expressed in a general form as follows: 

 
     
     

1 / if 0

1 / if 0

0,otherwise; [1,2]; [1,..., ]

i ij ji ij i ij

j i i ij ij i ij ij

i

x a b b x a

f x x a b x a b

i j N

 

 

      
     
  

 (5) 
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where 1 1 2 2( ; / )x k e x k de dt 
1 1 2 2or ( ; / )x k e x k de dt  ; k1 and k2 are the positive normalizing 

factors; , , ,ij ij ija b b  and Ni are the centroid, left half-width, right half-width of jth MF, and MF 

number of input ith, respectively.  

By using the layer 3, fuzzy rules based on ‘AND’ logic, layer 4, defuzzification with singleton 

MFs, and Remark 1, the crisp output from the layer 4 can be computed as: 

     
1 1

, is , or
M M

FA m m m
m m

U mf w w mf w A P I D
 

    (6) 

where wm
 
and M are in turn the weight of MF mth and MF number of the fuzzy A output (then, 

1 21 M N N  ); and mf(wm)
 
is the fuzzy output function given by 

   
,

m jk m
j k

mf w mf w   (7) 

where mfjk(wm) is defined as the consequent fuzzy output function when the first and second fuzzy 

inputs are in classes jth and kth. 

 jk m jk jkmf w    (8) 

where jk  is an activation factor, which is activated when input x1 
is in class jth, and input x2 

is in 

class kth; jk  is height of the consequent fuzzy function obtained from the inputs: 

   1 2min ,jk j kf x f x      (9) 

Finally, to ensure the boundary condition in (4), the fuzzy tuner output, Fuzzy
AU , is computed 

using the sigmoid activation function fFA in the layer 5 as 

       
1

1 0,1 , is , orFAUFuzzy
A A FA FAU U f U e A P I D

      (10) 

b) Robust updating rule 

Remark 2. In robust control design for a nonlinear system, a family of uncertainties of the system 

transfer function, P(s), needs to be firstly derived, subsequently, obtaining a set of the open-loop 
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transfer functions as well as a set of the closed-loop transfer functions. In order to ensure a robust 

control for this system, there are two control objectives. The first is closed-loop robust stability 

which must be checked with reasonable margins. The robust stability is presented by a forbidden 

region about the origin which is enclosed by an M-locus in the Nichols chart. By the Nyquist 

criterion, the closed-loop stability is retained as long as the loop gain of the Niquist plot does not 

cross the critical point q under the uncertainty (the (-1,0) point in the complex plane or the (-180o, 

0 dB) point in a Nichols chart). The second control objective is closed-loop disturbance attenuation. 

For the disturbance rejection requirement, the sensitivity reduction problem must be solved. With 

no feedback, there is no disturbance modification. Only a high gain feedback loop leads to small 

sensitivity and to disturbance reduction. Therefore, the upper tolerance is imposed on the sensitivity 

function. In conditionally stable systems, the complementary sensitivity condition enforces a large 

loop gain when the plot crosses the 180o line above 0 dB [10]. 

 Transfer function of the PID controller shown in (2) is expressed as 

I
PID P D

K
G K K s

s
    (11) 

 The open-loop transfer function set of the system is defined as 

     PIDL s P s G s  (12) 

where P(s) is the family of uncertainties of the system transfer function. This plant transfer function 

set can be defined by using an input-output data observation of the system open-loop tests and a 

simple identification toolbox in MATLAB [10]. 

The sensitivity function determining the set of transfers of the equivalent output disturbance to 

the controlled output Y can be derived as 

     
1

1 PID

S s
P s G s




 (13) 

Based on Remark 2, the criteria to select the PID controller gains can be derived. For the robust 

stability, an approximately minimal value of M = 1.4 (3 dB) gain margin for the closed-loop system 

set is given by 
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( )
1.4

1 ( )

L s
M

L s
 


 (14) 

For the disturbance rejection requirement, the general upper bound of the sensitivity is set to 

limit the peak value of disturbance amplification as follows: 

max

1
, 1

1 ( ) D DM M
L s

 


 (15) 

Therefore, to ensure that the controller can drive the system to satisfy the performance 

robustness specifications, the PID gains are updated for each working step of time (t+1)th using the 

RUR which is defined as follows: 

 

   
      

 
      

1 calculated by 4

IF: 1 makes 14 & 15 to be satisfied;
1

IF: 1 makes 14 & 15 to be not satisfied

Fuzzy
A

Fuzzy
A

A

A

Fuzzy
A

K t

K t
K t

K t

K t

 



  


 

 (16) 

From (16), at a working step, the PID controller parameters are then updated as the set given 

from the fuzzy tuners only if it can ensure the robust stability (14) and disturbance rejection 

criterion (15). On the other hand, the PID gains are remained the same values as those of the 

previous working step. Consequently, the main control signal using the designed fuzzy PID-based 

controller can be robustly computed. 

3.2.  Robust learning mechanism 

Based on the outputs from the RPIGM prediction module, the fuzzy tuners are optimized in 

advance using the robust learning mechanism to minimize effectively the control error (Fig. 2). 

The steepest descent back-propagation (BP) training algorithm using delta rule is widely 

recognized as one of the most simple but powerful training tools for not only neural network 

designs but also other applications, for example, fuzzy scheduling systems. However, since it 

applies the delta rule to update system weighting factors, it suffers from a slow convergence rate 

and often yield sub-optimal solutions. A variety of approaches have been then applied in an attempt 

to accelerating the learning process. For example, the standard BP-based system can be improved 
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by implementing other techniques, such as least square methods, genetic algorithms and particle 

swam optimisation and Bayesian regularization scheme [36, 37]. Nevertheless, a more intelligent 

training mechanism normally requires extra computational cost, especially for applications to large 

and complex systems due to the large number of weighting factors (i.e. for tuning fuzzy inferences 

with many membership functions). To address these design challenges, this study presents the 

simple but efficient robust learning mechanism as stated in Remark 3. 

Remark 3.  The RLM is designed as the combination of a decisive vector size minimizer and the 

BP algorithm with learning rate adaptation based on Lyapunov stability condition. Here for each 

fuzzy tuner, the decisive vector size minimizer is firstly used to find out only active input MFs and 

corresponding active output MFs, which are activated by the fuzzy input values. Next, the BP 

algorithm using adaptive learning rates is used to optimize these active MFs to minimize an error 

function defined as 

      21
ˆ

2 rE t pT y t pT y t pT        (17) 

where  ry t pT  and  ŷ t pT  are in turn the desired and p-step ahead estimated system 

outputs; T is the sampling period. Without loss of generality, pT can be simplified as p by 

considering T is a unit of time. 

a) Learning algorithm 

Based on Remark 3 with the BP algorithm ([9], [17], [19]-[24]) and the designed fuzzy structure 

(Fig. 2b), the decisive factors of the input and output MFs, , ,ij ij ija b b   and mw , can be automatically 

updated for step time (t+1)th using the delta rule as follows: 

 

 

 

1

/ / / / /
1

1

/

/

/

ijt ijt ijt at t p ijtij t

ijt ijt ijt bt t p ijtij t

mt mt mt at t p mtm t

a a a a E a

b b b b E b

w w w w E w









         




       
       


      

 (18) 

where , andat bt wt   are the learning rates within range [0, 1]. 

 The factor /t p mtE w  in (18) can be calculated using the chain rule: 
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ˆ

ˆ
t p t p t p PIDt At FAt

mt t p PIDt At FAt mt

E E y u U U

w y u U U w
  



     


     
 (19) 

where, by employing the future system response, ˆ t py  , estimated by the RPIGM and (17), one has: 

   ˆ ˆ ,
ˆ

t p
t p r t p

t p

E
e t p y y

y


 



   


 (20) 

By simplifying the ratio ˆ /t p ty y  as unit, the second term in (19) can be approximated as (21) 

while the third term in (19) can be computed as (22) using the discrete forms of (2): 

 

1

1

ˆ ˆ ˆ ˆ ˆt p t p t p t p t pt

PIDt t PIDt PIDt PIDt PID t

y y y y yy

u y u u u u
     



   
  

    
 (21) 

 

 

 

    
1

/

: /

/ 1

PIDt Pt P

t
PIDt

PIDt It I
iAt

PIDt Dt D

u U K e t

u
u U K e i

U

u U K e t e t



   


     
     

  (22) 

From (10) and (6), the last two terms in (19) can be derived using the power rule: 

  1At
At At

FAt

U
U U

U


 


 (23) 

 

 
1

mtFAt
M

mt
lt

l

mf wU

w mf w





 
 

(24) 

 Similarly, the factor /t p ijtE a  in (18) can be computed using the chain rule: 

 
 t p t p ij tFAt

ijt FAt mt ijt

E E f xU

a U mf w a
   


   

 (25) 

where 
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 

  

 

1
2

1

M

lt mt lt
FAt l

M
mt

lt
l

mf w w w
U

mf w
mf w









  

 
 




 (26) 

 
   

   
1/ if 0

1/ if 0

0 otherwise

ij ij it ij

ij t
ij it ij ij

ijt

b b x a
f x

b x a b
a

 

 

    
     


 (27) 

 And, the factor //t p ijE b 
  in (18) can be computed by 

 
 

/ /

t p t p ij itFAt

ij FAt mt ij

E E f xU

b U mf w b
 

   

  


   
 (28) 

where 

 
2

2
/

( ) / ( ) if ( ) ( ) 0

( ) / ( ) if 0 ( )

0 otherwise.

it ij ij ij it ij

ij t
it ij ij it ij ij

ij

x a b b x a
f x

x a b x a b
b

 

 
 

     
     

 


 (29) 

b) Lyapunov stability condition 

Theorem 1. By selecting properly the learning rates at bt  and wt for step (t+1)th to satisfy 

condition (30), then the closed-loop stability of the RPTC control system in Fig. 1 is guaranteed. 

2

2 1 2 1
1 1

2 0
M M

t p t p
t at wt at wt

l llt lt

E E
e F F F F

w w
    

 

    
          

   (30) 

where  

 

 
1

1

/lt FAt
M

t
mt

m

mf w U
F

emf w


 
   

 
(31) 
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 2

2 / /
1 1

N
it ijtt p t p

i
i j ijt i ijt ijt

x aE E
F k

a k b b
 

   
 

  
   
   

  (32) 

Proof. See Appendix A. □ 

Remark 4.  There are many solutions to select the learning rates such that condition (30) holds. 

These rates are initially set to properly small values and then, are tuned using the iterative algorithm 

based on Theorem 1. The learning rates are kept as constant values when the system is stabilized. 

Moreover to simply select the learning rates and to provide a continuous transition between input 

partitions (no dead zone), the MFs of the fuzzy inputs must satisfy following requirements: 

 jth MF partition is overlapped by (j-1)th MF partition 

 jth MF partition overlaps (j+1)th MF partition 

 (j-1)th MF partition does not overlap (j+1)th MF partition 

Based on Remark 4 and the bounds of fuzzy inputs/outputs (Section 3.1), additional constraints 

to select the learning rates are derived as 

       

           
           

1 1 1 1

2 2 1 1

1 1 2 2

1 1,or:0 1

, 3

, 2

10 10

ij iji j i j i j i j

ij iji j i j i j i j

ij iji j i j i j i j

m

a a a a a a

a b a b a b j

a b a b a b j N

w

   

  
   

  
   

        

      

       


  

 (33) 

The suitable learning rates ,andat bt wt    of each fuzzy tuner at step (t+1)th are defined based 

on Theorem 1 and (33). 

c) Decisive vector size minimizer 

The decisive parameters of fuzzy PID mechanism are optimized online using the Lyapunov-

based learning algorithm to guarantee the control accuracy. However, for each the fuzzy tuner with 

the two inputs and single output, the more MFs and rules are, the larger the number of decisive 

factors, , ,ij ij ija b b   and mw ,  is. As the design presented in Section 3.1b, the total number of decisive 

factors of the three tuners is 9(N1+N2)+3M. For instant, each fuzzy input with five MFs commonly 

needs twenty five rules for the output and could lead to 165 decisive parameters. The time to train 
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the controller is therefore considerably increased and subsequently, restricts the applicability of 

this training method. In order to solve this problem, the decisive vector size minimizer is designed 

and implemented before the Lyapunov-based learning algorithm to minimize the number of 

calculations when training the control parameters. 

Remark 5.  With the fuzzy tuner based on Remark 1 and Remark 4, for a set of values of the inputs 

(x1, x2), it always exits one to maximum two MFs of each input which contain these values (at the 

left or right side of the MFs). These MFs are called active input MFs (AIMFs). Consequently, the 

output MFs corresponding to the AIMFs defined by the fuzzy rules are called active output MFs 

(AOMFs). From Remark 2, for each fuzzy tuner at each working step, only input/output MFs 

activated by the fuzzy input values, AIMFs and AOMFs, are tuned with respect to the minimization 

of control error function (17). 

From Remark 5, for each step of time with (x1, x2) value set, if existing two AIMFs of each 

fuzzy input, at least one to maximum four AOMFs, corresponding to one to four rules, are selected 

by the tuner to derive the instantaneous output Fuzzy
AU . In order words, the number of AIMFs and 

AOMFs can be then listed into four cases in Table 1.  

Table 1 

Active input MFs and corresponding active output MFs in fuzzy P/I/ Or D tuner. 

Number of AOMFs 
nA_AOMF; (A is P/I/ or D) 

Input x2: Number of AIMFs 
n A_AIMF2 

1 2 
Input x1: Number of AIMFs 

n A_AIMF1 
1 1 2 
2 2 4 

 
By utilizing Remark 5, each AIMF has only two parameters, , ( or ),j j ja b b   and each AOMF 

has one parameter, wk, which need to be optimized. Thus for each step of time, the decisive vector 

size minimizer identifies three dynamic characteristic vectors, denoted as VPt, VIt, and VDt, for 

which are then sent to the Lyapunov-based learning algorithm to update the corresponding 

parameters of the tuners, P, I, and D. From Table 1, sizes of these vectors are determined: 
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   
   

/ / / /
11 11 21 21 12 12 22 22 1 2 3 4max

/ /
11 11 21 21 1min

Size of 1 12

Size of 1 5 , : , .

At size t

At size t

V a b a b a b a b w w w w

V a b a b w A P I or D

       

   

     


     
 (34) 

From (34), the total number of parameters which needs to be tune each step is reduced from 

(9(N1+N2)+3M) to the range [15, 36] disregarding the number of input/output MFs. Thus, the 

decisive vector size minimizer could save remarkably the time to optimize the control parameters.  

4. Robust PI grey model-based prediction module 

The RPIGM prediction module comprises two RPIGM predictors in which each predictor is 

constructed based on a main grey model (MGM, Section 4.1) integrated a PI-based weight tuner 

(PIWT, Section 4.2) to perform the prediction. Here, the PIWT is designed based on a Lyapunov 

stability condition and employed to regulate online the weight factors of the MGM with respect to 

the prediction error minimisation in order to ensure a robust prediction. The prediction procedure 

using the proposed RPIGM is then demonstrated in Fig. 3. 

4.1.  Main grey model 

In grey prediction theory, GM(n, m) denotes the grey model, where n and m are the order and 

number of variables of the model. And GM(1,1) is known as the most popular grey model used for 

many practical applications [26]-[35]. With only a few historical data of the system output(s), the 

grey predictor can predict the future output(s) without knowing the mathematical model of the real 

system. 

To estimate a system behaviour, at first, a typical grey predictor conducts an accumulated 

generating operation (AGO) on an original data sequence of this behaviour. The new series 

obtained from the AGO is then used to generate a background series based on a mean generating 

operation (MGO). The resultant series is used to establish a differential equation to calculate 

optimal model coefficients via the least-square method (LSM). Next using these optimal 

coefficients, the accumulated generating series of the prediction model are obtained. These values 

can be returned to estimate the future system behaviour in the time-domain by using an inverse 

accumulated generating operation (IAGO) and/or recursive operation. 



 

16 
 

START

Prepare an object data Sequence using 
data rolling operation

Generate grey sequence, y(0) using: 
+ recurrent signal 
+ adaptive factors, c1 and c2 

Generate a new sequence using 
accumulated generating algorithm, y(1)

Generate a background series 
using weighting factor, wPINN 

Establish grey different equation & calculate
[a, b] using least square estimation

Setup prediction model & calculate model 
output at step (n+p)th, yraw(tn+p)

Stop working ?

STOP

Calculate recurrent 
signal: yraw(tn) = yraw(tn+1)

Y

N

Produce predicted object value 
for applications

Grey checking conditions
 to derive c1 and c2 

(0)

Update prediction error 
function

PIWT robust controller using 
adaptive learning rates

Update weighting factor, 
wPINN 

^ ^

^

(0)-^ (0)^

Learning rate selection 
based on 

Lyapunov stability condition

Reference vector for 
prediction optimisation

 

Fig. 3. RPIGM prediction procedure using the MGM(1,1) integrated PIWT. 

However, there exist some limitations in typical grey models which affect directly to their 

applicability as well as prediction accuracy: 

 Input raw data must be non-negative and satisfies the smooth condition (will be discussed later) 

to perform the grey model [25]. 

 The background series of the model obtained using the MGO could cause internal errors in 

constructing the grey model [35]. 

 There is no such condition or constraint to guarantee the model robustness. 

Acknowledging these challenges, without loss of generality, the MGM is designed in this study 

with single variable and first-order type, MGM(1,1), and integrated with the PIWT to estimate 
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precisely any signal, y, with random distribution. Using the grey theory, the MGM-based prediction 

procedure is built as demonstrated in Fig. 3 and, can be expressed as the following steps: 

Step 1: Prepare an input grey sequence capable of approximating any system: 

 Prepare an sequence containing at least five latest data points of the object using the data rolling 

operation (discarding an oldest data and adding a newest data for each cycling time, [25]): 

      1 2, ,..., ; 5Object O Object O Object Omy t y t y t m   (35) 

 Generate a raw input grey sequence with equal intervals from (35): 

              0 0 0 0
1 2, ,..., ; 5raw raw raw raw ny y t y t y t n   (36) 

here, if the condition (37) holds, then sequence (36) is exactly similar to sequence (35); otherwise, 

sequence (36) is the sequence containing sequence (35) and new elements up to latest time point 

with the same intervals that are derived as (38) using the same MGM-based prediction. 

   
 

1

1 1 1

/ 2; ; 2,...,

; : time of previous value of ;

Oi RGM Oi Oi O i

O O Olast Olast Object O

t T t t t i m

t t t t y t

      

  
 (37) 

here TMGM is the desired prediction sampling period; 

         

 

0 0

1

1

ˆ ; ;

2,..., ; / ; 1,..., 1;

raw k raw k Oi k O i

Om RGM

y t y t t t t

k n n t t T i m

  

      
 (38) 

here *   is the floor function to return nearest integer value. 

 To exhibit the dynamic temporal behaviour of the model, a recurrent signal as the one-step-

ahead predicted value, denoted as        0 0
1ˆ ˆraw n raw ny t y t

 , is added to the sequence. Thus, (36) 

becomes: 

              
       

0 0 0 0

1 2

0 0

, ,..., ; 6

ˆ .

raw raw raw raw n

raw n raw n

y y t y t y t n

y t y t

 


 (39) 
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 Remove the oldest elements from sequences (35) and (36). Then, generated a new series (40) 

from (39) using Remark 6 to make it satisfy grey sequence checking conditions (41).  

             
       

0 0 0 0
1 2

0 0
1 2

{ , ,..., }; 5

; 1,...,

n

k raw k

y y t y t y t n

y t y t c c k n

 

   
 (40) 

   
   
   

0

0

1
0

1

0

1 , 1,...,
2

k

k
k

i i
i

y t

y t k n

y t t




 

   
 


 (41) 

Remark 6.  By adding two non-negative additive factors c1 and c2 derived from (42) using the 

previous work [35], the sequence (39) becomes (40) and satisfies the grey sequence checking 

conditions (41). 

        
         

0 0
1

1,..,

1
0 0

1 1
1

2 11,..,

1

max , 0

2
max 0,

2

raw k raw k
k n

k

raw k k raw i i
i

kk n

i k
i

c y t y t

y t c t y t c t
c

t t











   
                

          





 (42) 

here, is the small positive constant. 

Step 2: Generate a new series y(1) from y(0) using the AGO: 

       
  

1 0

1

1 21

, 1, 2,...,
k

ki

k

raw ki

y k y i t k n

y i c c t





   

    




 (43) 

Step 3: Instead of employing the MGO in typical grey models, the background series z(1) is newly 

built from y(1) as: 

           1 1 1
1 1 ; 2, ...,k k k k kz t w y t w y t k n     (44) 

where {wk, wk-1} are the set of weight factors which are designed as: 
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     
     

1 1 2 1 2

1 1 1 2 1 2

0.5 1 1 1

0.5 1 1 1

k PINN PINN

k PINN PINN

w w w

w w w

    

    

     


     
 (45) 

where PINNw  is called the adaptive gain and 0 1PINNw  ; in order to ensure the robust prediction, 

this adaptive gain is online regulated by the PIWT (Fig. 3) that is introduced in the next section; 

1 2{ , }   is the set of activation factors and given as 

             
             

0 0 0
1 1

0 0 0
1 2 1 1

ˆ{1,0}, IF : ;

ˆ{ , } {1,1}, IF : ;

{0,1},Others

raw k raw k raw k Object k

raw k Object k raw k raw k

y t y t y t y t

y t y t y t y t 
 

 

  

  



 (46) 

Step 4: Establish the grey differential equation [25] 

       0 1
k ky t az t b   (47) 

where a and b are the model parameters. By employing the LSM [25], the optimal values of the 

model parameters are obtained: 

  1ˆˆ ˆ
T

T T
ab a b B B B Y

     (48) 

with 

   
   

   

   
   

   

1 0
2 2

1 0
3 3

1 0

1

1
, .

1n n

z t y t

z t y t
B Y

z t y t

   
   
   

    
   
      

  
  

Step 5: By replacing the optimal solution (48) into (47) and using the recursive operation, the 

MGM(1,1) prediction is setup as follows: 

   
   
 

  
 

0
1 10 1 1

32 2

ˆ ˆ1 1ˆ
ˆ

ˆ ˆ1 1

k
i i

k
i i i

t a tb ay t t
y t

t a t t a t


 

 



   


     (49) 

Step 6: From (40) and (49), the predicted value of y at step (n+p)th can be computed: 
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   
   
 

  
 

0
1 10 1 1

1 2
32 2

ˆ ˆ1 1ˆ
ˆ

ˆ ˆ1 1

n p
i i

raw n p
i i i

t a tb ay t t
y t c c

t a t t a t


 


 




   
  

     (50) 

where p is the step size of the grey predictor. 

4.2.  PI-based weight tuner 

In this section, the PI-based weight tuner is designed as the combination between PI algorithm, 

neural network and Lyapunov stability condition and integrated to the MGM to optimize online 

the adaptive gain PINNw  in order to ensure the robust prediction. 

Remark 7.  By considering the MGM-based prediction as a tracking control problem as described 

in Fig. 4, it is possible to derive a ‘robust controller’ PIWT to guarantee the closed-loop prediction 

stability of the ‘plant’ MGM. 

z-1

z-2

z-n-1

S 

S 

ONN

OP

OI

S MGM 'Plant'

 Lyapunov-based 
Tuning 

Mechanism

z-1

-

ŷraw(tk+1)

-
+

PIWT ‘controller’

wPINN

ŷraw(tk+1)

yraw(tk) yraw(tk-1) yraw(tk-n+2)

yraw(tk+1)

(0) (0) (0)

(0)

(0)

(0)

Input Layer Hidden Layer Output Layer

 

Fig. 4. Representative closed-control form to optimize the MGM using the PIWT. 

Based on Remark 7 and Fig. 4, the PIWT is designed as the PI-type neural network structure 

with the Lyapunov stability condition. Here, the network consists of three layers: an input layer 

containing the prediction error sequence    0 0ˆ{ }raw rawy y , a hidden layer with two nodes following PI 

algorithm, and an output layer to compute the adaptive gain, PINNw . Define 1 1{ ,..., }MGM
k ne e e   

   0 0
1 1ˆ( ( ) ( ), 1,..., 1)i raw k i raw k ie y t y t i n       is the input vector at step kth,{ , }Pi Ii

k kw w are the weight 

vectors of the hidden node P and I, respectively, and,{ , }P I
k kw w are the weights of the output layer. 

Since, the output from each hidden node is derived as 
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1

1

1

1 1

:Node P

:NodeI

nP Pi i
k k ki

nI I Ii i
k k k ki

O w e

O O w e






 

 


 




 (51) 

Then, the output from the network is obtained using the PI algorithm and sigmoid activation 

function: 

  1
,

1
NN
k

NN NN P P I I
PINN k k k k k kO

w f O O w O w O
e

   


 (52) 

The ‘controller’ output (52) is then fed into the ‘plan’ MGM (Section 4.1) to perform the 

prediction (as described in Fig. 3).  

Next in order to ensure the robust prediction, the BP training algorithm based on a Lyapunov 

stability condition is utilized to tune the PIWT weights. Define a prediction error function: 

          
2 21 10 0

1 11 1
ˆ0.5 0.5

n nMGM i
k raw k i raw k i ki i

E y t y t e
 

    
     (53) 

Thus, the weight factors of the PIWT are online tuned for the next prediction step, (k+1)th, 

using the delta rule: 

/ / / /
1

/ / / /
1

/

/

P I P I P I MGM P I
k k k k k

Pi Ii Pi Ii Pi Ii MGM Pi Ii
k k k k k

w w E w

w w E w








    


   
 (54) 

where / /,P I Pi Ii
k k  are learning rates within range [0,1]; the other factors in (54) are derived using the 

partial derivative of the error function with respect to each decisive parameter. 

Theorem 2. By selecting properly the learning rates / /Pi Ii P I
k k k    for step (k+1)th to satisfy (55), 

the stability of the MGM(1,1) prediction is guaranteed. 

 1 2 2

1
0.5 0

n i
k k k k ki

e F F 


   (55) 

with 

1

1

.
j MGM j MGMn

k k k k
k Pi Pj Ii Ij

j k k k k

e E e E
F

w w w w





  
     
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Proof. Define a Lyapunov function as 

          
2 21 10 0

1 1
ˆ0.5 0.5

n nMGM i
k raw i raw i ki i

V y t y t e
 

 
     (56) 

By using the same method as presented in Appendix A according to (56), the MGM(1,1) 

prediction is guaranteed to be stable only if 1 0MGM
kV   . By selecting properly the learning rate to 

satisfy (55), the sufficient condition for 1 0MGM
kV   is guaranteed. Therefore the proof is 

completed. 

4.3.  Fuzzy grey cognitive map decision tool for RPIGM 

A fuzzy cognitive map (FCM) is known as the neuro-fuzzy system which is graphically 

represented by a frame of nodes (input and output concepts) and connection edges between nodes 

to be capable of incorporating knowledge from experts [38]-[42]. With a traditional FCM, intensity 

of a causal relation between two concepts (weight) is set to zero in the adjacency matrix if this 

relation does not exist or is partial/completely unknown. Thus, a combination between FCMs and 

grey numbers can perform an effective decision making tool for solving problems within 

environments with high uncertainties and/or incomplete information.  

In this study, an adaptive fuzzy grey cognitive map is newly designed in which the grey weights 

with dynamic bounds are used to build the map and online adjusted to minimize a pre-defined cost 

function. This FGCM is then used to tune the RPIGM prediction step size. 

a) FGCM design 

By using the grey theory [25], the FGCM is generally designed for a set of NC concepts and, 

therefore, can be represented by 

    , , C
i ijC t w t f   (57) 

where ( )iC t is the grey value of ith concept defined in (58); ( )ijw t is the grey weight between 

concept ith and jth defined in (59); fC(*) is the activation function defined in (60) (  is the steepness 

parameter). 
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( ) [ ( ), ( )] ([0,1]or[ 1,1]),i i iC t C t C t     (58) 

( ) [ ( ), ( )] ([0,1] or [ 1,1]),ij ij ijw t w t w t     (59) 

 
 
 

(*) 1

(*) (*) (*) (*) 1

(1 ) , (*) 0,1 ,
*

( )( ) , (*) 1,1 .
C

e if
f

e e e e if



   

 

  

   
   

 (60) 

Remark 8.  Bounds of grey numbers in the FGCM (concepts’ values and weights) are properly 

initialized within the maximum range [0,1] or [-1,1]. These bounds are adjustable online but limited 

to their maximum ranges. 

By using FCM theory and Remark 8, the grey value of each concept can be updated for each 

step of time based on the influences of the other interconnected concepts: 

        
         

1,
1

1 , 1 0,1 or 1,1

NC
i i ji jj j i

i i

C t f C t w t C t

sat C t C t

 
      

    


 (61) 

where sat(*) is the saturation function of *. 

b) FGCM training algorithm 

In order to increase the decision accuracy of the FGCM when dealing with partial unknown 

systems and uncertainties, the grey weights are updated online using the nonlinear Hebbian-type 

learning rule [42]: 

     
          

         

1

1 , 1 0,1 or 1,1

ji ji ji

ji AFGCM j i ji j

ji ji

w t w t w t

w t C t C t w t C t

sat w t w t



      

       

    

 (62) 

here AFGCM is the learning rate. 

Remark 9. The FGCM grey weights are updated until one of the two following termination 

conditions are achieved: 

 Cost function minimization condition: 
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 2

min min1
, 0

i

m des des
d ii

J C C J J


     (63) 

 Minimum changing speed of decisive concepts’ values: 

   1 , 1,..., , 0des des
i i C CC t C t i m        (64) 

where
i

des
dC is the desired value of the decisive concept ith, des

iC ; m is the number of decisive 

concepts; Jmin is the desired cost; C is the small constant. 

4.4.  Utilization of RPIGM with FGCM for system response estimation 

By utilizing the designs of MGM(1,1), PIWT and FGCM, the first predictor, tagged as RPIGM1, 

is constructed to derive the filtered value of the system response at the current step,
 0ˆ ˆ( ) ( )raw ny t y t

, and its estimated value at p-step ahead, 
 0ˆ ˆ( ) ( )raw n py t p y t   . The filtered response is sent to the 

second predictor, tagged as RPIGM2, to produce the compensative control signal while the 

predicted future response is sent to the RFPID module to optimize its control parameters (Section 

3). Generally, the purpose is to design a controller to achieve a good tracking performance. In other 

words, the control system should be built in order to speed up the system response (or reduce the 

rising time), and reduce the steady state error (or increase the control precision). 

Remark 10.  In a control system using grey predictor, the prediction step size (p) affects directly 

on the system performance. During the rising time period, with a small value of p the predictor 

speeds up the system response but causes the large overshoot or oscillation. Otherwise when the 

system is closed to the desired state, the predictor with a large value of p reduces the overshoot but 

increases the rising time [16]. 

Based on Remark 10, the FGCM with three concepts is applied to the PRIGM1 to tune online 

the prediction step size, p. In this case, the tracking control error (e) and its derivative ( )e are the 

input concepts while the output concept is p. Please note that according to the tracking error, the 

step size p is continuously regulated using the principle in Remark 10 to improve the control 

performance. The grey weight training is only terminated once the weights reach to a stable pattern. 
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4.5.  Utilization of RPIGM for control compensation of noises and disturbances 

As presented in Section 4.3, the RPIGM2 receives the filtered response, output from the 

RPIGM1, to estimate the influences of noises and disturbances on the system performance at the 

following step and, consequently, to create properly the additive correction to the main control 

signal (as in (1)) to compensate for these undesirable influences.  

Here, the data sequence input to the model is the amount of system response, eND, caused by 

the noises and disturbances as 

              
           

_ _ _ _

_

0 0 0 0
1 2

0 0 0

, ,..., , 5

ˆ , 1, 2, ...,

ND raw ND raw ND raw ND raw
ND

ND raw

n ND

k raw k raw k ND

e e t e t e t n

e t y t y t k n

  

   

 (65) 

here 
   0 0ˆ( ) and ( )raw k raw ky t y t are in turn the measured system response ( )y t and its filtered value ˆ( )y t

using the RPIGM1 at step kth. 

The impacts of noises and disturbances on the system at the coming step of time, (n+1)th, is 

then estimated using (50) as 

   
   

 
  

 _

0 1
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1 1 2
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ˆ ˆ1 1ˆ
ˆ

ˆ ˆ1 1

ND

ND raw
ND

n
ND i ND iND ND ND

n ND ND
iND ND ND i ND i

t a tb a e t t
e t c c

t a t t a t


 


 




   
  

     (66) 

Finally, the additive control signal with respect to the estimated influence of perturbations on 

the system at the coming step, (t+1)th, shown in (3) can be derived by using the result in (66). 

5. Illustrative Examples 

5.1.  RPIGM prediction module evaluation 

a) Case study 1 – Prediction accuracy 

At first, the capability of the developed RPIGM predictor in estimating an arbitrary signal has 

been investigated. Here, a comparative study of three grey models, a typical GM(1,1) (shortened 

as GM) [16], the SAUIGM(1,1) (shortened as SAUIGM) [35] and the RPIGM (the PIWT-
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integrated MGM(1,1)), was carried out to perform one-step ahead estimation (p = 1) of 

communication delay problem in the networked system introduced in [35]. The functionalities of 

these models can be summarized in Table 2. 

Table 2 

Functionalities of comparative grey models. 

Grey model 
Functionalities 

Input data Data intervals 
Background 

series 
Prediction error 
minimisation 

GM Only data 
satisfying checking 
conditions 

Must be equal 
intervals 

Use MGO No 

SAUIGM Work with any data Work with 
unequal 
intervals 

Use modified 
MGO (exact 
solution) 

Use lth-order 
error correction 
accumulation 

RPIGM Work with any data Work with 
unequal 
intervals 

Use modified 
algorithm with 
adaptive weights 

Use PIWT with 
Lyapunov 
stability condition 

 

 

Fig. 5. Experimental setup to detect communication delays of the networked system [35]. 

The experimental setup used to investigate the networked system delays is demonstrated in Fig. 

5.  As shown in this figure, the networked system consists of one coordinator and one router based 

on ZigBee protocol, and the wireless series from Microchip Technology Inc.—MRF24J40MA with 

the operating frequency of 2.4 GHz was employed [35]. The coordinator also can exchange data 

with a personal computer (PC) through an NI multi-function card, PCI-6251. In addition, a time 

delay measurement (TDM) module employing a micro control unit (MCU) was installed and 

connected to the PC through the multi-function board. Here, the MCU with timer and counter 
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functions is capable of, first, measuring accurately the real working time of the system and, second, 

recognizing the networked communication delays [35].  

 To investigate only the communication delay through this networked setup and due to the 

applicability of the GM limited to equal-time-interval time series, a simple program with the fixed 

sampling period of 10ms was built in the Simulink environment combined with Real-time 

Windows Target Toolbox of Matlab to send a random signal to the coordinator during 30 seconds. 

This signal was then transmitted to the router by the ZigBee protocol. Once receiving the 

information from the coordinator, the router immediately sent a random signal back to the 

coordinator to perform the simple closed-loop networked system. The three grey models were then 

applied to forecast the time delays over the testing period. 

 

Fig. 6. Real-time delay predictions vs. actual delays. 

Table 3 

Real-time delay predictions using different models. 

Evaluation criteria 
Prediction models 

GM SAUIGM RPIGP 
ARE (%) 8.6720 0.9664 0.4783 
RMSE (10-4) 28.4937 3.7635 1.8398 
R2 0.8818 0.9679 0.9891 
 
The one-step ahead prediction results were then obtained and presented by the scatter plots of 

the predicted delays versus the actual delays in Fig. 6. The ideal prediction, with 100% prediction 

accuracy, was represented by the red linear lines. From the results, it is clear that the prediction 
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accuracy using the typical GM as shown in the top sup-plot of Fig. 6 was low due to its drawbacks 

(stated in Section 4.1 and Table 2). By applying the SAUIGM with the exact solution to compute 

the background series and lth-order error correction accumulation [35], the performance was 

significantly improved (see the middle sub-plot). However, there was no sufficient condition to 

ensure the robust prediction. Meanwhile, by employing the RPIGM, which was constructed based 

on the PIWT using the PI-based neural network and Lyapunov condition, the robust prediction 

with the highest accuracy could be achieved as presented in the bottom sub-plot.  

Three evaluation criteria, average relative error (ARE), root mean square error (RMSE), 

coefficient of determination (R2), were employed to evaluate the performances of the grey models: 

   
 

(0) (0)
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(%) 100
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k raw

y k y k
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 
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


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 (69) 

where y in this case if the communication delay; y is the mean value of this delay observation. 

The model evaluation was then carried out as shown in Table 3. The results confirmed that the 

best prediction performance was enhanced by the RPIGM. 

b) Case study 2 – Prediction stability 

To assess the stability performances of the three compared models, a series of predictions of 

the networked communication delay observed in the case study 1 has been performed using these 

models in which the prediction step sizes were varied from small to large values. After obtaining 
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the estimation results, a model fitness evaluation versus different values of the prediction step size 

(p) was done as plotted in  

Fig. 7. 

 

Fig. 7. Fitness evaluation on the delay prediction models. 

The result shows that the GM-based estimation accuracy was continuously reduced according 

to the step size increase (indicated by the black dot line). Although the SAUIGM could improve 

the accuracy with the error correction accumulation (the blue dash-dot line), its performance was 

also degraded due to the lack of stability constraint. Only by utilizing the RPIGM with the robust 

stability condition, the high accuracy could be well maintained as (the red solid line) or, the stable 

estimation was guaranteed. 

5.2.  RPTC tracking control evaluation 

In order to validate the ability of the RPTC approach in actual applications, real-time tracking 

control of an electro-magnetic levitation system (EMLS, [43]) as depicted in Fig. 8 has been 

investigated. This system is highly nonlinear, open-loop unstable and extremely challenging to 
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control robustly. The EMLS includes a sphere barium-strontium magnet (2.54mm of diameter), a 

ferrite-core coil to position the magnet, and a 50V/T Hall effect sensor to observe the magnet 

position. The driving coil and hall sensor are installed vertically and fixed on a frame to create the 

moving space for the magnet. The magnet can be levitated in mid-air with an impressive air gap 

about 25mm using a Hilink real-time multi-function card [44].  

The Hilink platform offers a seamless interface between a physical plant and Matlab/Simulink 

via a serial communication port. This is fully integrated into Matlab/Simulink and comes with a 

specific Hilink library blocks associated with hardware inputs and outputs. It therefore allows quick 

configuration of control strategies in real-time with a real plant in the loop. The platform achieves 

real-time operation with sampling rates up to 3.8kHz [44]. Here, the EMLS control signal is sent 

from the high performance PC installed Matlab/Simulink through the Hilink board. The magnet 

movement is managed and represented by the Hall sensor signal which is fed-back to the PC 

through the card to perform the closed-loop control system. 

To evaluate the control effectiveness, the proposed RPTC scheme was compared with other 

four control methods in driving the magnet of the EMLS. The compared controllers were a PID 

controller and three advanced controllers: fuzzy PID (FPID), fuzzy PID based on an online tuning 

grey predictor [16] (OTGFPID1), and online tuning fuzzy PID based on an online tuning grey 

predictor in which the grey model was the SAUIGM model developed in [35] (OTGFPID2). The 

advantages of these control methodologies over conventional techniques have been proven in [9] 

and [16]. 

 
(a) Experiment platform for EMLS tracking control tests 
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(b) Configuration of the EMLS  

Fig. 8. Configuration of EMLS system with real-time tracking control. 

 

Z VS S M B
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|de*(t)|
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(a) Initial MFs for the inputs:  *e t ,  *de t  

VS S M BZ

0.75 10.25 0.50

UA
Fuzzy

 
(b) Initial MFs for the output: Fuzzy

AU  (A is P, I, or D) 

Fig. 9. Initial MFs of the inputs/outputs of fuzzy tuners: P, I, or D. 

For simplicity in making the comparison with the developed controllers, the fuzzy tuner designs 

of the RFPID control module of the RPTC were followed the designs in [9] and [16]. Thus, each 

the fuzzy tuner contained two inputs,  *e t  and  *de t , and one output Fuzzy
AU (A is P, I, or D). 

For each fuzzy input as well as output, five MFs, tagged “Z”, “VS”, “S”, “M” and “B”, were used 

for smoothly operation while it does not require much calculating time consumption. For the initial 

state, these input and output MFs were positioned at the same intervals as in Fig. 9a and Fig. 9b, 

respectively. The rules for the fuzzy tuners were derived as in Table 4. Furthermore to form the 

RUR, the family of uncertainties of the system transfer function was obtained directly from the 

modelling results published in [43]. 
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Next, the designs and setting of the four comparative controllers were considered. With the PID 

controller, the PID gains were derived through a two-step procedure in Matlab/Simulink: first, the 

EMLS model developed in [43] was employed to represent the real system and their model 

parameters were optimized using the parameter estimation toolbox, and second, a closed-loop 

control simulation with the optimized model and the PID controller was performed to optimize the 

PID gains using the PID tuning toolbox. The last FPID, and OTGFPID1 and OTGFPID2 controllers 

were constructed with the same fuzzy PID design as that of the RPTC except the use of the robust 

learning mechanism (Section 3.2). In addition, the fuzzy PID parameters of the OTGFPID2 was 

online tuned by the delta rule-based learning mechanism in [9]. For the prediction functions, the 

typical grey model, GM(1,1), of OTGFPID1 and the SAUIGM model of OTGFPID2 used the same 

method proposed in [16] to tune the prediction step size.  

Table 4 

Rules table of RFPID control module. 

Fuzzy Outputs 
( , , )Fuzzy Fuzzy Fuzzy

P I DU U U  
 *de t  

Z VS S M B 

 *e t  

Z VS,B,M VS,B,M Z,B,M Z,B,B Z,B,B 
VS VS,B,S VS,B,M VS,B,M Z,M,M Z,M,B 
S S,M,VS S,M,VS S,M,VS VS,S,S VS,S,S 
M M,Z,Z M,Z,Z M,VS,VS S,VS,VS S,VS,VS 
B B,Z,Z B,Z,Z B,Z,Z B,Z,Z M,Z,Z 

 

The controllers were built in the Simulink environment combined with Real-time Windows 

Target toolbox. The sampling rate was set to 1ms. In addition, to evaluate the system stability, a 

noise source (N) and a disturbance source (D) were generated and in turn added to the controllers’ 

outputs and the Hall sensor feedback signal (Fig. 1) as 

( ) [ sin(2 ) Rand ( )]N N N NN t k A f t t   

here AN was given randomly from -1 to 1; fN was varied from 1 to 5 Hz; RandN is the noise signal 

with power 0.5; kN = 0.02; and: 

( ) [ sin(2 ) ( )]D D D DD t k A f t x t   
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where 

1 : 0 ( mod )
( ) , 0 1

0 : ( mod )
D D D

D D
D D D D

IF t T p T
x t p

IF p T t T T

 
    

 

here AD was the Gaussian distribution with mean 0.01 and variance 0.1; fD was varied from 1 to 0.1 

Hz; xD is the pulse wave signal with the pulse width, pD, set to 30% of the signal period TD = 2 s; 

and kD = 0.02. 

The control target was to drive the magnet to follow a given trajectory defined as the distance 

from the coil to the magnet. The best working position of the magnet was around a distance of 

20mm from the end surface of the driving coil. The real-time tracking control tests on the EMLS 

were then carried out to validate the applicability of the comparative approaches. 
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Fig. 10. EMLS multi-step tracking performances with different controllers. 

Firstly, the desired trajectory was selected as a multi-step trajectory (Fig. 10 with the top sub-

plot). The EMLS was then tested with the five controllers to track the given target. Subsequently, 

the control performances and tracking errors were obtained and analysed in Fig. 10. From the top 

sub-plot, it is clearly that both the PID and FPID could not enhance the desired performance 
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(marked as line number 1 and 2, respectively). Although, the PID gains were tuned based on the 

optimized system model, the fixed gain use could not keep the system stably when facing with the 

actual high nonlinear system including the large perturbations. The FPID with the PID gain 

regulation function could improve the performance of the typical PID. However, it still lacked the 

adaptability to the noises and disturbances. The control errors in these cases were very large (out 

of the plotting range in the bottom sub-plot of Fig. 10). With the use of online tuning grey predictor 

to produce the control action in advance, the OTGFPID1 could provide the better tracking result. 

However due to the lack of fuzzy parameter tuning function and the limitations of typical grey 

model (GM(1,1)), the steady state error (SSE) was still large as 25% (considering the minimum 

distance was at 18mm). The performance was then upgraded by the OTGFPID2 which possessed 

both the adaptive SAGUIGM predictor (Section 5.1a) and the online tuning controller. Although 

employing the SAUIGM-based predictor with higher accuracy compared to the conventional grey 

model, there was no constraint to guarantee the robust prediction. Furthermore, the controller 

lacked of the robust learning and disturbance rejection capability. There reasons led to the limited 

improvement of the overall tracking result (SSE was around 10% in this case). Meanwhile with the 

use of RPTC approach, in which both the RFPID and RPIGM modules could be robustly optimized 

in advance, the bad-effects of the generated noises and disturbances on the tracking performance 

were efficiently eliminated. Since, it could adapt well with the system changes as well as the 

disturbed environment and, subsequently, the best performance with fast setting time and small 

SEE, within 2%, was obtained (the solid-black lines numbered as 5 in Fig. 10).  



 

35 
 

18

19

20

21

22

23

24

25

0.  Reference  ; 1.  PID;
2.  FPID          ; 3.  OTGFPID1;
4.  OTGFPID2; 5.  RPTC

M
a

gn
et

 D
is

pl
a

ce
m

en
t [

m
m

] 1

2

3

4

5

5

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

 Time [s]

 

T
ra

ck
in

g
 E

rr
or

 [
m

m
]

4

3

 
Fig. 11. EMLS sinusoidal tracking performances with different controllers. 

Next, the experiments on the EMLS using the compared controllers were performed in which 

the desired trajectory was changed to a sinusoidal trajectory with 1Hz frequency and 1mm the 

amplitude around the idea working distance of the magnetic ball (20mm). The control results are 

then shown in Fig. 11. Similar to the multi-step tracking experiments, the PID controller could not 

drive the ball to follow the target profile, especially during the first two seconds. When starting, 

the large system offset with noises and disturbances caused the significant tracking error (the dot-

green line (1) of the top sub-plot). This error was slowly lessened but still at the high level.  With 

the FPID, the system could follow the reference with much smaller error compared to the PID case. 

However after a few seconds, the system performance was diverged and became unstable. The 

reason was that the FPID without adaptability to noises and disturbances could made the wrong 

regulation of PID gains and, therefore, the control error was amplified. The performance had better 

improvements by applying the other three controllers, OTGFPID1, OTGFPID2 and RPTC. 

Nevertheless, without the robust learning functions of either the fuzzy tuners or the grey predictors 

and without the noise-disturbance rejection, the tracking errors could not converge to the acceptable 

range (the errors were around 0.4 to 0.5mm as shown in the bottom sub-plot of Fig. 11). Meanwhile, 

the RPTC, which contained both the advanced control and prediction functions with robust 
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constraints, could drive the system to the given target quickly and accurately. The smallest SSE 

(about 3%) was achieved and guaranteed in this case. 

18.9

19.0

19.1

19.2
M

ag
ne

t D
is

pl
ac

em
en

t [
m

m
]

0.  Reference ; 1.  PID            ; 2.  FPID;
3.  OTGFPID1; 4.  OTGFPID2; 5.  RPTC

1

2

3

4

5

5

2

1

1.000 1.001 1.002 1.003 1.004
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Time [s]

 

T
ra

ck
in

g 
E

rr
or

 [m
m

]

4

3

 

Fig. 12. EMLS high speed tracking performances with different controllers. 

Finally, the system was investigated in the high frequency region. The magnet trajectory was 

selected as a square signal of which the amplitude was 0.1mm and the frequency was at high values: 

0.5kHz and 1kHz (see Fig. 12). In this case, the sampling time was set to 10kHz to ensure the 

system operation and the magnet was driven stably to the working point before starting to track the 

desired trajectory. In order to perform this experiment series with the high speed sampling rate, the 

NI multi-function card (PCI-6251 in Section 5.1 and Fig. 8a) has been selected instead of the Hilink 

board to perform the communication between the EMLS and the controllers at the PC. The 

experimental results with the different controllers were obtained as plotted in Fig. 12. The results 

show that the controllers except the RPTC could not drive the highly nonlinear system as the EMLS 

in the high frequency region. Only using the RPTC, the acceptable performance could be achieved 

and the error was converged into the acceptable region. It comes as no surprise, since the propose 

scheme possess: the robust-adaptive control module, RFPID, the robust prediction module, RPIGM, 

and the ability to compensate the influences of the noises and disturbances on the system 

performance based on the noise-disturbance estimation. 
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In summary, the results indicated that the proposed control approach has strong applicability to 

nonlinear control systems with fast response, high adaptability and stability even in case the 

working conditions contain large and sudden perturbations. 

6. Conclusions 

This paper presents the novel control approach – robust predictive tracking control for 

applications to systems containing large nonlinearities and uncertainties. The RPTC controller is 

designed with the two advanced technologies: robust fuzzy PID-based control and robust PI grey 

model-based prediction to ensure the robust tracking performance.  

Through the numerical experiments to evaluate the prediction accuracy and stability, it is clear 

that the RPIGM possess enough ability for both signals forecasting and/or control applications. 

Next, the effectiveness of the overall control scheme, RPTC, has been validated through the 

comparative study with the other four controllers in driving the magnet of the EMLS to its desired 

trajectories. The experimental evaluation proved evidently the advantages of the RPTC over the 

other methods to guarantee the good tracking with fast response, high stability and disturbance 

rejection ability even working in the environment containing large perturbations. 

Although the accurate control results were ensured by employing the proposed approach, it is 

realized that the tracking errors was only converged into the acceptable region (SSE within 5%) 

and kept fluctuating within this range (for instance, Fig. 11) because the effects of noises and 

disturbances have not been fully compensated. The further improvement of this control technique 

therefore would be a modification in generating the noise-disturbance compensation control signal 

by using an integral function. Other future research topics would be the development of this 

approach for sensorless control systems as well as industrial applications. 
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Appendix 

The Lyapunov function is properly selected as 

      2 2
1

1 1
1 1 1

2 2r tV t y t y t e          (A1) 

The change of this lyapunov function is derived as 

   2 2 2
1 1

1 1
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2 2t t t t t t tV t V V e e e e e            (A2) 

1t t te e e     (A3) 

From the configuration of the RFPID controller (Fig. 2) 
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   (A4) 

From Fig. 2, and note that /it t ix e k    , one has 

 
/ /

1
/ /ij ij it

i
ijt ijt t ijt ijt

f f ke
k

a a e b b   

        
                       

  (A5) 



 

41 
 

Similarly, 
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/ / /

/
it ijtij ijt
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Here /FAt tU e  is computed similar as calculating /FAt ijtU a  . The terms /, ,ijt ijt lta b w     are 

calculated by (19)-(29). From (18), (A5)-(A7), and by selecting at bt  , (A4) becomes: 
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From (A8), (A2) is represented as 

 
2

2 1 2 1
1 1

1 / 2
M M

t p t p
t at wt at wt

l llt lt

E E
V t e F F F F

w w
    

 

    
            

   (A9) 

The RPTC control system is guaranteed to be stable only if  1 0V t   for all steps. According 

to (A9), it is clear that except at and wt , the other factors are determinable for each working step. 

Since, by selecting these learning rates to satisfy (30), the sufficient condition for  1 0V t   is 

achieved. 


