37,561 research outputs found

    Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task

    Get PDF
    Objective: This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. Approach: EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. Main results: The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p    0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p    0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Significance: Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation

    Neuroethical Considerations Regarding Transcranial Magnetic Stimulation

    Get PDF
    Along with advances in brain technologies comes the ability to enhance the cognitive and affective states of normal people. In this essay, I examine a relatively young technology used in cognitive neuroscience called transcranial magnetic stimulation (TMS). I explain what it is, how it works and what some of its applications are. I suggest that a potential source of reservation one might have regarding brain-altering enhancement is the threat it seemingly poses to the subjective importance of mental states. I then consider the possibility of its being used as an enhancement device and question the authenticity of abilities of individuals that are enhanced by use of TMS. I conclude that judgments regarding the appropriateness of such neurocognitive enhancements should be considered on a case by case basis

    Carry-Over Effects After Magnetic Stimulation - A Mechanistic Study

    Get PDF
    Magnetic stimulation is widely used for clinical neuromodulation, such as transcranial magnetic stimulation and peripheral nerve stimulation. Normally, neurons are expected to resume pre-stimulation states and functions immediately after the magnetic stimulation. However, the effects of magnetic stimulation still last after the termination of the magnetic stimulation (named “carry-over effects) and could generate profound outcomes in clinical magnetic stimulation. Using experimental and modeling methods, we investigate cellular and molecular mechanisms of carry-over effects during magnetic stimulation. Delineating these mechanisms is essential for the further development of the magnetic stimulation technology for quick, reversible neuromodulation

    Electronically Switchable Sham Transcranial Magnetic Stimulation (TMS) System

    Get PDF
    Transcranial magnetic stimulation (TMS) is increasingly being used to demonstrate the causal links between brain and behavior in humans. Further, extensive clinical trials are being conducted to investigate the therapeutic role of TMS in disorders such as depression. Because TMS causes strong peripheral effects such as auditory clicks and muscle twitches, experimental artifacts such as subject bias and placebo effect are clear concerns. Several sham TMS methods have been developed, but none of the techniques allows one to intermix real and sham TMS on a trial-by-trial basis in a double-blind manner. We have developed an attachment that allows fast, automated switching between Standard TMS and two types of control TMS (Sham and Reverse) without movement of the coil or reconfiguration of the setup. We validate the setup by performing mathematical modeling, search-coil and physiological measurements. To see if the stimulus conditions can be blinded, we conduct perceptual discrimination and sensory perception studies. We verify that the physical properties of the stimulus are appropriate, and that successive stimuli do not contaminate each other. We find that the threshold for motor activation is significantly higher for Reversed than for Standard stimulation, and that Sham stimulation entirely fails to activate muscle potentials. Subjects and experimenters perform poorly at discriminating between Sham and Standard TMS with a figure-of-eight coil, and between Reverse and Standard TMS with a circular coil. Our results raise the possibility of utilizing this technique for a wide range of applications

    Voluntary activation of human knee extensors measured using transcranial magnetic stimulation

    Get PDF
    The aim of this study was to determine the applicability and reliability of a transcranial magnetic stimulation twitch interpolation technique for measuring voluntary activation of a lower limb muscle group. Cortical voluntary activation of the knee extensors was determined in nine healthy men on two separate visits by measuring superimposed twitch torques evoked by transcranial magnetic stimulation during isometric knee extensions of varying intensity. Superimposed twitch amplitude decreased linearly with increasing voluntary torque between 50 and 100% of mean maximal torque, allowing estimation of resting twitch amplitude and subsequent calculation of voluntary activation. There were no systematic differences for maximal voluntary activation within day (mean ± S.D. 90.9 ± 6.2 versus 90.7 ± 5.9%; P = 0.98) or between days (90.8 ± 6.0 versus 91.2 ± 5.7%; P = 0.92). Systematic bias and random error components of the 95% limits of agreement were 0.23 and 9.3% within day versus −0.38 and 7.5% between days. Voluntary activation was also determined immediately after a 2 min maximal voluntary isometric contraction; in four of these subjects, voluntary activation was determined 30 min after the sustained contraction. Immediately after the sustained isometric contraction, maximal voluntary activation was reduced from 91.2 ± 5.7 to 74.2 ± 12.0% (P < 0.001), indicating supraspinal fatigue. After 30 min, voluntary activation had recovered to 85.4 ± 8.8% (P = 0.39 versus baseline). These results demonstrate that transcranial magnetic stimulation enables reliable measurement of maximal voluntary activation and assessment of supraspinal fatigue of the knee extensors

    Accuracy of transcranial magnetic stimulation and a Bayesian latent class model for diagnosis of spinal cord dysfunction in horses

    Get PDF
    Background: Spinal cord dysfunction/compression and ataxia are common in horses. Presumptive diagnosis is most commonly based on neurological examination and cervical radiography, but the interest into the diagnostic value of transcranial magnetic stimulation (TMS) with recording of magnetic motor evoked potentials has increased. The problem for the evaluation of diagnostic tests for spinal cord dysfunction is the absence of a gold standard in the living animal. Objectives: To compare diagnostic accuracy of TMS, cervical radiography, and neurological examination. Animals: One hundred seventy-four horses admitted at the clinic for neurological examination. Methods: Retrospective comparison of neurological examination, cervical radiography, and different TMS criteria, using Bayesian latent class modeling to account for the absence of a gold standard. Results: The Bayesian estimate of the prevalence (95% CI) of spinal cord dysfunction was 58.1 (48.3%-68.3%). Sensitivity and specificity of neurological examination were 97.6 (91.4%-99.9%) and 74.7 (61.0%-96.3%), for radiography they were 43.0 (32.3%-54.6%) and 77.3 (67.1%-86.1%), respectively. Transcranial magnetic stimulation reached a sensitivity and specificity of 87.5 (68.2%-99.2%) and 97.4 (90.4%-99.9%). For TMS, the highest accuracy was obtained using the minimum latency time for the pelvic limbs (Youden's index = 0.85). In all evaluated models, cervical radiography performed poorest. Clinical Relevance: Transcranial magnetic stimulation-magnetic motor evoked potential (TMS-MMEP) was the best test to diagnose spinal cord disease, the neurological examination was the second best, but the accuracy of cervical radiography was low. Selecting animals based on neurological examination (highest sensitivity) and confirming disease by TMS-MMEP (highest specificity) would currently be the optimal diagnostic strategy

    Transcranial magnetic stimulation

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenTranscranial Magnetic Stimulation (TMS) is a new non-invasive method to investigate the central nervous system. Initially it was used to assess the functional integrity of the pyramidal pathways but more recently various other aspects of brain function have been studied including cortical excitability. By localised interference with brain function, it is possible to use TMS to assess the relationship between various brain regions and cognitive functions. The therapeutic effect of TMS has been explored in the treatment of neurological diseases and psychiatric disorders such as epilepsy, cerebellar ataxia and depressive illness.Segulörvun heila í gegnum höfuðkúpu er notuð til rannsókna á miðtaugakerfi. Upphaflega var þessi aðferð þróuð til að meta starfsemi og ástand hreyfitauga­brauta milli heila og mænu, en er nú einnig notuð til margvíslegra rannsókna á heilastarfsemi. Meta má hömlunar- og örvunarástand heilabarkar sem getur breyst vegna heilasjúkdóma og við lyfjagjöf. Með staðbundinni truflun á starfsemi taugafrumna eftir segulörvun hefur verið hægt að kanna tengsl milli heilasvæða og hugrænna ferla. Í ljós hefur komið möguleg notkun segulörvunar í meðferð taugasjúkdóma og geðraskana. Rannsóknir hvað þetta varðar hafa meðal annars beinst að flogaveiki, mænu- og hnykilhrörnun og djúpri geðlægð

    Numerical modelling of plasticity induced by transcranial magnetic stimulation

    Get PDF
    We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols such as theta burst stimulation and paired-pulse protocols. Continuous repetitive protocols result mostly in depression, but intermittent repetitive protocols in potentiation. A paired pulse protocol results in depression at short (∼ 100 ms) interstimulus intervals, but potentiation for mid-range intervals. The model is sensitive to the choice of neural populations that are driven by the TMS pulses, and to the parameters that describe plasticity, which may aid interpretation of the high variability in existing experimental results. Driving excitatory populations results in greater plasticity changes than driving inhibitory populations. Modelling also shows the merit in optimizing a TMS protocol based on an individual’s electroencephalogram. Moreover, the model can be used to make predictions about protocols that may lead to improvements in repetitive TMS outcomes

    Insights into motor learning from a viewpoint of transcranial magnetic stimulation

    Get PDF
    Several protocols of non-invasive transcranial magnetic stimulation have been developed in the past decades. Single-and paired-pulse transcranial magnetic stimulation are painless, and noninvasive tools to evaluate cortical and corticospinal excitability in cerebral cortex compared with transcranial electric stimulation. Motor evoked potential induced by paired-pulse transcranial magnetic stimulation can particularly assess changes of the cortical excitability after motor learning, such as motor skill and motor practice in sports and functional recovery in rehabilitation. However, the effect of electric current in transcranial magnetic stimulation on pyramidal neuron and interneuron in gray and white matters is not actually understood well yet in the field of sports and rehabilitation sciences. Here, we show the important basic knowledge of neurophysiology and transcranial magnetic stimulation and introduce some studies of cortical plasticity and motor learning by using transcranial magnetic stimulation
    corecore