386 research outputs found

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation

    Development of an image converter of radical design

    Get PDF
    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product

    Fiabilisation de convertisseurs analogique-numérique à modulation Sigma-Delta

    Get PDF
    This thesis concentrates on reliability-aware methodology development, reliability analysis based on simulation as well as failure prediction of CMOS 65nm analog and mixed signal (AMS) ICs. Sigma-Delta modulators are concerned as the object of reliability study at system level. A hierarchical statistical approach for reliability is proposed to analysis the performance of Sigma-Delta modulators under ageing effects and process variations. Statistical methods are combined into this analysis flow.Ce travail de thèse a porté sur des problèmes de fiabilité de circuits intégrés en technologie CMOS 65 nm, en particulier sur la conception en vue de la fiabilité, la simulation et l'amélioration de la fiabilité. Les mécanismes dominants de vieillissement HCI et NBTI ainsi que la variation du processus ont été étudiés et évalués quantitativement au niveau du circuit et au niveau du système. Ces méthodes ont été appliquées aux modulateurs Sigma-Delta afin de déterminer la fiabilité de ce type de composant qui est très utilisé

    Fiabilisation de Convertisseurs Analogique-Num´erique a Modulation Sigma-Delta

    Get PDF
    Due to the continuously scaling down of CMOS technology, system-on-chips (SoCs) reliability becomes important in sub-90 nm CMOS node. Integrated circuits and systems applied to aerospace, avionic, vehicle transport and biomedicine are highly sensitive to reliability problems such as ageing mechanisms and parametric process variations. Novel SoCs with new materials and architectures of high complexity further aggravate reliability as a critical aspect of process integration. For instance, random and systematic defects as well as parametric process variations have a large influence on quality and yield of the manufactured ICs, right after production. During ICs usage time, time-dependent ageing mechanisms such as negative bias temperature instability (NBTI) and hot carrier injection (HCI) can significantly degrade ICs performance.La fiabilit´e des ICs est d´efinie ainsi : la capacit´e d’un circuit ou un syst`eme int´egr´e `amaintenir ses param`etres durant une p´eriode donn´ee sous des conditions d´efinies. Les rapportsITRS 2011 consid`ere la fiabilit´e comme un aspect critique du processus d’int´egration.Par cons´equent, il faut faire appel des m´ethodologies innovatrices prenant en comptela fiabilit´e afin d’assurer la fonctionnalit´e du SoCs et la fiabilit´e dans les technologiesCMOS `a l’´echelle nanom´etrique. Cela nous permettra de d´evelopper des m´ethodologiesind´ependantes du design et de la technologie CMOS, en revanche, sp´ecialis´ees en fiabilit´e
    corecore